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Resonant collisions of electrons with O2 via the lowest-lying 2�g state of O−
2
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We report the results of an ab initio study of resonant vibrational excitation of molecular oxygen by electron
impact at low energies where the lowest-lying 2�g resonant state of O−

2 dominantly contributes to the cross sec-
tions. The contribution of this resonance to the dissociative electron attachment cross section is also determined
and the origin of its unusual oscillations is discussed. Calculations were performed within the nonlocal resonance
model describing the nuclear dynamics of O−

2 after electron capture into the resonant state. The model was
constructed using potential-energy curves obtained with standard quantum-chemical methods and eigenphase
sums from the fixed-nuclei R-matrix calculations of electron scattering off O2. The effect of the spin-orbit
interaction is taken into account when determining the potential-energy curves of the molecular negative ion.
The vibrational excitation cross sections are compared with other available theoretical and experimental results.
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I. INTRODUCTION

The knowledge of accurate cross sections of various pro-
cesses involving molecular oxygen is important in a range
of fields, including physics and chemistry of the Earth’s at-
mosphere [1], where oxygen is the second most abundant
molecule, or various models concerning astrophysical plasma
or radiation damage [2,3].

Many experimental and theoretical studies have been pub-
lished about processes involving low-energy electrons and
molecular oxygen; see, e.g., the review of the cross sections
by Itikawa [4] and references therein. Below we mention only
works directly related to our study.

Our interest primarily lies in resonant collisions of elec-
trons with O2 resulting in vibrational excitation (VE) and
dissociative electron attachment (DA):

e− + O2(νi ) → O2
−(

2�g
) → e− + O2(ν f ), (1)

e− + O2(νi ) → O2
−(

2�g
) → O− + O, (2)

where νi and ν f are initial and final vibrational states, respec-
tively. Although another process of rotational excitation plays
an important role at low energies, we do not consider it in
this paper and we also neglect any rotational effects for the
process (1) because these effects are very small for oxygen
at low temperatures. However, they can be significant for dis-
sociative attachment (2) as the threshold decreases for higher
initial rotational states. Since we are primarily interested in
the interpretation of the structures appearing in the DA cross
sections and not in providing data to be directly compared
with experiments, we do not study this process for higher
rotational states.
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At energies from 0 to 2.5 eV, the dynamics of these col-
lisions dominantly proceeds via the lowest-lying resonant
electronic 2�g state of O−

2 . This resonance manifests itself
in the form of sharp peaks in the VE cross sections, each
peak corresponding to a vibrational level of the negative ion.
These peaks were first observed in the early measurements
of Boness and Schulz [5] and of Linder and Schmidt [6] in
the differential cross sections, and later by Land and Raith
[7] in the total cross sections. More recent measurements by
Field et al. [8] and by Allan [9] show a great improvement in
resolution allowing the observation of the spin-orbit splitting
of the 2�g resonant state. The most recent work of Okumura
[10] presents the absolute total cross section with a striking
resolution of 7 meV.

Several theoretical works that considered collisions of elec-
trons with molecular oxygen have been published, but most
of them focus only on the fixed-nuclei electron-scattering
calculations and not on the nuclear dynamics which is nec-
essary to provide a proper description of the processes (1) and
(2). Noble, Burke, et al. [11,12] first employed the R-matrix
method to obtain the fixed-nuclei scattering cross sections.
Afterwards, they calculated the cross sections for several VE
transitions [13] using the method developed by Schneider
et al. [14] getting satisfactory agreement with the experiment
by Field et al. [8]. Later works [15,16] also applied the R-
matrix approach or used a combination of other methods but
usually covered larger energies and subsequently needed to
treat higher electronic resonances of O−

2 . The most recent
treatment of the nuclear dynamics for the processes (1) and
(2) was provided by Laporta et al. [17,18] within the local
complex potential (LCP) approximation, also known as the
boomerang model [19].

Collisions of electrons with many diatomic molecules of
interest [20] have been described within the nonlocal reso-
nance model (also known as the discrete-state-in-continuum
approach) reviewed by Domcke [21] and by Čížek and Houfek
[22]. However, the O2 molecule has not yet been treated
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within this approach, which proved to be necessary to get the
correct behavior of the cross sections near thresholds [23]. In
this paper we present the VE and DA cross sections for O2

obtained within the nonlocal resonance model constructed for
the lowest-lying 2�g resonant state and we compare them with
the results of the works cited above.

II. THEORY FOR NUCLEAR DYNAMICS

A. Discrete state in continuum

For the nuclear dynamics involved in the processes (1)
and (2) we use the nonlocal resonance model (NRM) [21].
This theory assumes that a metastable state of the incoming
electron captured by a molecule can be described by a square-
integrable, diabatic discrete state |φd〉 with the energy Vd(R)
dependent on the internuclear distance R. The discrete state
interacts with electronic continuum via the coupling element
Vdε(R), which is a function of R and electron energy ε.

The theory is based on the Feshbach projection-operator
approach [21,24,25] and leads to the equation for the nuclear
wave function ψd (R), which corresponds to the discrete-state
part of the electronic Hilbert space,

[E − TR − Vd(R)]ψd(R) −
∫

dR′ F (E , R, R′)ψd(R′)

= Vdενi
(R)χνi (R), (3)

where E is the total energy of the system and

TR = − 1

2μ

∂2

∂R2

is the kinetic-energy operator of the relative motion of the
nuclei with the reduced mass μ. The interaction with the
continuum is effectively described by the nonlocal, complex,
and energy-dependent potential

F (E , R, R′) = 	(E , R, R′) − i

2

(E , R, R′). (4)

This potential can be expressed using the expansion into the
vibrational states of the neutral molecule as

F (E , R, R′) =
∑

ν

χν (R)

[
	̃(εν, R, R′)

− i

2

̃(εν, R, R′)

]
χ∗

ν (R′), (5)

where εν = E − Eν is electron energy when the molecule
is in the vibrational state χν (R) with the energy Eν . These
vibrational states satisfy the equation

[TR + V0(R)]χν (R) = Eνχν (R), (6)

with V0(R) being the potential energy of an electronic state
of the neutral molecule (in our case the lowest one). The
level shift 	̃(ε, R, R′) and the resonance width 
̃(ε, R, R′) are
given by


̃(ε, R, R′) = 2πVdε(R)V ∗
dε(R′), (7)

	̃(ε, R, R′) = 1

2π
P.V.

∫
dε′ 
̃(ε′, R, R′)

ε − ε′ , (8)

where P.V. denotes the Cauchy principal value.

The cross sections for vibrational excitation νi → ν f and
for dissociative attachment can be obtained as

σνiν f (E ) = g
4π3

k2
i

∣∣∣∣
∫ ∞

0
dR χ∗

ν f
(R)VdE f (R)ψd(R)

∣∣∣∣
2

, (9)

σDA(E ) = g
2π2

k2
i

K

μ
lim

R→∞
|ψd(R)|2, (10)

where g is the statistical factor, ki is the initial electron mo-
mentum corresponding to the energy ενi , and K is the relative
momentum of the outgoing nuclei in the DA channel with
energy E − Vd(R)|R→∞ = K2/2μ (see Refs. [21,23] for more
details).

B. Local complex potential approximation

If Vdε(R) depends weakly on energy then for a fixed inter-
nuclear distance R, electron energy ε can be approximated by
resonance energy Eres(R). From Eqs. (5) and (7) it follows that

(E , R, R′) becomes local and energy independent [26]:


(E , R, R′) ≈ 2π
∑

ν

χν (R)
∣∣VdEres (R)

∣∣2
χ∗

ν (R′)

= 2π
∣∣VdEres (R)

∣∣2
δ(R − R′). (11)

Consequently, the energy-independent local resonance width
can be defined as


(R) = 2π
∣∣VdEres (R)

∣∣2
. (12)

Similarly, 	(E , R, R′) reduces to

	(R) = 1

2π
P.V.

∫
dE ′ 
(R)

Eres(R) − E ′ . (13)

The substitution of Eqs. (12) and (13) into Eq. (3) yields

[E − TR − Vloc(R)]ψd(R) =
√


(R)

2π
χνi (R), (14)

with Vloc(R) being the local complex potential given by

Vloc(R) = Vion(R) − i

2

(R)

= Vd(R) + 	(R) − i

2

(R). (15)

The VE cross sections are now given by

σνiν f (E ) = g
4π3

k2
i

∣∣∣∣∣
∫

dR χ∗
ν f

(R)

√

(R)

2π
ψd(R)

∣∣∣∣∣
2

. (16)

The DA cross section is still given by Eq. (10).

III. CALCULATION DETAILS

A. Potential-energy curves

The potential-energy curves of the electronic states 3�−
g of

O2 and 2�g of O−
2 with the dominant electronic configurations

3�−
g : 1σ 2

g 1σ 2
u 2σ 2

g 2σ 2
u 3σ 2

g 1π4
u 1π2

g ,

2�g : 1σ 2
g 1σ 2

u 2σ 2
g 2σ 2

u 3σ 2
g 1π4

u 1π3
g ,
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TABLE I. Comparison of calculated electron affinities Eea and
dissociation energy D0 with experimental values. Calc. + shift means
that the 2�g curve was shifted to reproduce experimental Eea(O).

Eea(O) (eV) Eea(O2) (eV) D0(O2) (eV)

expt. [33] 1.4611096(7) 0.450(2) 5.165(2)
calc. 1.198 0.211 5.159
calc. + shift 1.461 0.474 5.159

were obtained by employing the complete-active-space self-
consistent-field (CASSCF) and multireference configuration-
interaction (MRCI) methods. The CASSCF method [27,28]
was used to construct natural molecular orbitals by optimiz-
ing energies of these states separately for O2 and O−

2 . The
MRCI calculations [29] followed to improve the relative en-
ergy between the 3�−

g and 2�g states. Both calculations were
carried out using the MOLPRO quantum chemistry package
[30,31] with the aug-cc-pVQZ basis set [32]. The com-
plete active space (CAS) was spanned by molecular orbitals
(3σg1πu1πg3σu4σg2πu2πg4σu5σg5σu) with (1σg1σu2σg2σu)
kept closed in both calculations.

The quality of calculated potential-energy curves was as-
sessed by comparing electron affinities Eea and dissociation
energy D0 with available experimental data. Since it is very
computationally demanding to converge to the correct elec-
tron affinity of the atomic oxygen for large internuclear
distances, we decided to adjust the 2�g curve to reproduce
the experimental value 1.461 eV taken from Ref. [33]. If the
shapes of the curves were correct then, after this adjustment,
one should obtain the correct value of Eea(O2). The compar-
ison in Table I shows that the calculated value of Eea(O2)
is 24 meV higher than the experimental value 0.45 eV. In
the end, we decided to use the shifted 2�g curve to get the
correct DA threshold, even though positions of the narrow
peaks in the VE cross sections can be slightly misplaced when
compared with the experimental ones.

We also performed several larger calculations with the
aug-cc-pV5Z and aug-cc-pV6Z basis sets and tried the
complete-basis-set extrapolation to obtain more accurate
potential-energy curves. However, the relative shape and po-
sition of the curves were not improved in comparison with the
shifted aug-cc-pVQZ curves and thus we decided to use the
results obtained with the smaller basis set.

The splitting of peaks occurring due to the spin-orbit
interaction was observed in the experimental VE cross sec-
tions [8–10]. To include this phenomenon into our model,
we calculated the spin-orbit correction to the 2�g curve by
diagonalizing the spin-orbit matrix in the smaller cc-pVTZ
basis set [32] within the MRCI method of the MOLPRO pack-
age. The Gaussian fit to these data shown in Fig. 1 was then
used to obtain the 2�1/2

g and 2�3/2
g potential-energy curves

of O−
2 which lie symmetrically around the 2�g curve. The

effect is too small to be visible in Fig. 2 where potential-
energy curves of models for nuclear dynamics calculations
are shown, but see the detail of the potential curves in Fig. 6.
Each of these two curves was used for independent calcu-
lation of the nuclear dynamics within both LCP and NRM
models.

FIG. 1. Dependence of the total spin-orbit (SO) splitting of the
2�g potential-energy curve of O−

2 on the internuclear distance to-
gether with its Gaussian fit. Internuclear distances are given in atomic
units, i.e., in units of the Bohr radius a0 = 5.291 772 × 10−10 m.

B. Fixed-nuclei scattering

The character of the anion 2�g electronic state depends
on the internuclear distance. For large distances, the ex-
tra electron is bound and the state is described by the
real-valued potential-energy curve discussed in the previous
section (bound-state region). However, the anion state crosses
the 3�−

g state of the neutral molecule close to its equilib-
rium and becomes metastable for short distances (resonance
region). As a result, its potential-energy becomes complex-
valued. This complex part of the anion curve was determined
from fixed-nuclei scattering data obtained using the R-matrix
method [34], as implemented in the UKRmol suite of codes
[35,36]. In this approach, the wave function describing the
compound system of N + 1 electrons in the inner region is
expanded into the basis functions of the form

�N+1
k = A

∑
i, j

ai jk�
N
i γi j +

∑
i

bikχ
N+1
i , (17)

FIG. 2. Potential-energy curves of O2 and O−
2 (full lines), the

real part of the complex potential energy of the 2�g state (dashed
line), the discrete-state potential Vd of the nonlocal resonance model
(dotted line), and the local resonance width 
(R) (dash-dotted line).
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where �N
i are the bound electronic states of the neutral

molecule (target), γi j describe the scattered electron, and
χN+1

i are L2-integrable functions included to describe possible
resonant states in the system. The operator A ensures the
proper antisymmetrization.

The target functions �N
i were again obtained by the

CASSCF method, but with the smaller cc-pVTZ basis
[32]. The general structure of used configuration state
functions was

�N
i : [core]Nc [CAS]N−Nc , (18)

with the complete active space spanned by [CAS] =
(2σg2σu3σg1πu1πg3σu) orbitals and with [core] = (1σg1σu)
orbitals kept frozen. The L2-functions χN+1

i were chosen ac-
cording to the overall symmetry in the general forms

χN+1
i : [core]Nc [CAS]N−Nc+1,

and [core]Nc [CAS]N−Nc [virtual]1. (19)

The resonance energy Eres(R) and width 
(R) can be ex-
tracted from the eigenphase sums δsum(ε, R) produced by the
R-matrix scattering calculations. Within the UKRmol suite
this is achieved with the program RESON [37] by fitting the
Breit-Wigner formula to the K matrices:

K (ε, R) = tan δsum(ε, R) =
1
2
(R)

Eres(R) − ε
. (20)

The real part of the anion curve in the resonance region is
constructed as

Vion(R) = V0(R) + Eres(R). (21)

We varied the R-matrix scattering models by changing the
number of bound states �N

i in Eq. (17) and the number of
virtual orbitals in Eq. (19). We found several models which
produced a satisfactory continuation of the 2�g curve to the
bound-state region. Eventually, we decided to use the R-
matrix model with three lowest target states and ten virtual
orbitals to construct both the nonlocal and local models for
nuclear dynamics, since it gives the smoothest continuation of
the 2�g curve from MOLPRO calculations. The final potential-
energy curves are depicted in Fig. 2.

C. Nonlocal resonance model

The nonlocal resonance model was constructed by fitting
the generalized Breit-Wigner formula (23) to the eigenphase
sums obtained in the R-matrix calculations. We suppose the
eigenphase sums can be expressed as

δ(ε, R) = δbg(ε, R) + δres(ε, R), (22)

δres(ε, R) = − arctan

( 1
2 
̃(ε, R)

ε − Vd(R) − 	̃(ε, R) + V0(R)

)
,

(23)

where δbg is assumed to take the simple form

δbg(ε, R) = cεα, (24)

TABLE II. Nonlocal resonance model parameters in atomic units
(a0 is the Bohr radius, Eh is the Hartree energy).

a0 13.836690 E−1.5
h b0 3.015014 E−1.5

h

a1 0.892095 E−1.5
h a−1

0 b1 0.718160 E−1.5
h a−1

0

a2 −0.935987 a−1
0 c −14.260279 E−2.5

h

with α = l + 1/2 and l = 2 for the 2�g resonance of O−
2 . We

used the following form of the width function:


̃(ε, R) = 2πεαA(R) exp−B(R)ε, (25)

where

A(R) = (a0 + a1R) exp (a2R), (26)

B(R) = b0 + b1R, (27)

since it allows us to evaluate the level-shift function

	̃(ε, R) = 1

2π
P.V.

∫
dε′ 
̃(ε′, R)

ε − ε′ (28)

in closed form [21]. To construct the discrete-state potential
Vd(R) we used the resonance energy Eres(R) from the R-matrix
calculations. Thus, Vd(R) is given by

Vd(R) = V0(R) + Eres(R) − 	̃(Eres(R), R). (29)

The nonlocal functions 	̃(ε, R, R′) and 
̃(ε, R, R′) were con-
structed from their local versions as follows:


̃(ε, R, R′) =
√


̃(ε, R)
̃(ε, R′), (30)

	̃(ε, R, R′) = 1

2π
P.V.

∫
dε′ 
̃(ε, R, R′)

ε − ε′ . (31)

Equation (3) was then solved by employing methods de-
scribed in Refs. [38,39].

The unknown parameters in Eqs. (24), (26), and (27) were
determined with the Nelder-Mead algorithm (also known as
Amoeba) [40] by minimizing the mean-squared error of the
eigenphase sums using the shifted potential-energy curves to
match the experimental electron affinity of the oxygen atom
(see Table I). The final values are listed in Table II. For several
internuclear distances R, the eigenphase sums are plotted in
Fig. 3 and the local width 
̃(ε, R) and level shift 	̃(ε, R) in
Fig. 4.

If the 2�g resonance of O−
2 is treated without spin-

orbit splitting, the statistical factor g in the cross sections
would be [41]

g
(

2�g
) = 2

3 .

When the spin-orbit separation is considered, the factors be-
come

g
(

2�1/2
g

) = g
(

2�3/2
g

) = 1
3 .

Because the cross section for both 2�1/2
g and 2�3/2

g states are
calculated separately, the final VE or DA cross sections are
their sum

σ (E ) = σ2�
1/2
g

(E ) + σ2�
3/2
g

(E ).
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FIG. 3. Eigenphase sums from the R-matrix scattering calcula-
tions (points) and the fitted curves (lines) obtained when constructing
the nonlocal resonance model. From right to left, the curves corre-
spond to internuclear distances of 1.80, 1.85, 1.90, 1.95, 2.00, 2.05,
2.10, 2.15, 2.20, and 2.25 in units of a0.

IV. RESULTS

A. Vibrational excitation

The cross sections for vibrational excitation of the O2

molecule in its ground vibrational state calculated using the
nonlocal resonance model and the local complex potential
approximation are shown in Fig. 5. Double peaks, appearing
in all cross sections at the same positions, correspond to the
vibrational levels in the real part of the 2�1/2

g and 2�3/2
g

potential-energy curves of O−
2 as one can clearly observe in

Fig. 6 for several VE cross sections.
The LCP results for inelastic transitions are much larger at

low energies, as one can expect due to the incorrect threshold
behavior of the local width 
(R), which is energy-dependent
in the nonlocal approach. Especially in the 0 → 2 cross sec-
tions, the peak stemming from vibrational level ν ′ = 7 of O−

2
at around 0.46 eV is not visible at all in the NRM cross
section. However, it is still present but strongly suppressed.

FIG. 4. Local width 
̃(ε, R) and level shift 	̃(ε, R) as functions
of electron energy and internuclear distance. The curves correspond
to internuclear distances of 1.80, 2.00, 2.20, 2.40, 2.60, and 2.80 in
units of a0, the closer a curve is to the zero energy, the larger the
internuclear distance.

In Fig. 7 we compare the VE cross sections obtained within
the nonlocal model without the spin-orbit splitting with the
results of Higgins et al. [13], which were retrieved by dig-
itizing graphs presented therein. The first peak at 0.1 eV in
the elastic channel was cut short by the graph range, and
therefore, it appears to be much lower. However, Higgins
et al. mention that the height of the first peak exceeds 1200a2

0.
The heights of the other peaks are in a reasonable agreement
with our results, with the exception of the peak at 0.8 eV of
the 0 → 3 excitation, which is suppressed in our model. All
peaks in the results of Higgins et al. are uniformly shifted
towards higher energies by approximately 20 meV (the value
comparable to the spin-orbit splitting). Since the position of
the peaks clearly corresponds to the vibrational levels of O−

2 ,
this shift is most likely caused by the difference in the relative
position of the potential-energy curves of the 3�−

g and 2�g

states. Moreover, there is also a notable difference in widths of
the individual peaks. In our results, the widths of the peaks are
approximately four times smaller than those of Higgins et al.
Table III shows relative intensities of several peaks in the total
cross section compared with results of Higgins et al. and of
Field et al. [8] (discussed later). Our total cross sections are
obtained as the sum of all calculated VE cross sections. We
calculated the intensities as integrals over individual peaks,
Higgins et al. approximated them by rectangles. Relative in-
tensities of peaks corresponding to vibrational levels ν ′ = 4–6
agree quite well despite rather large discrepancy in the peak
widths. For ν ′ = 8, 9, Higgins et al. claim that the rectangle
approximation starts to fail, which causes disagreement with
results of Field et al.

To compare our results with experimental ones we con-
volved our data using the general formula

σc(ε) =
∫

dε′σ (ε′)g(ε − ε′, σFWHM), (32)

where σ (ε) is a certain calculated VE cross section and
g(ε, σFWHM) is the normalized Gaussian distribution sim-
ulating the finite experimental resolution. The effect of
the convolution for the VE 0 → 1 cross section as calcu-
lated within the nonlocal resonance model is illustrated in
Fig. 8.

The experimental VE cross sections of Allan [9] were mea-
sured with the finite-energy resolution of σFWHM = 10 meV
for transitions 0 → 1–3 and σFWHM = 15 meV for 0 → 4–7.
In Fig. 9 we compare these experimental results with the
convolved VE cross sections calculated using the LCP ap-
proximation (upper panel) and the NRM (lower panel). Since
Allan presented his data in arbitrary units, we normalized our
cross sections to get the same maximal value of the highest
peaks. All calculated peaks are shifted to higher energies
by around 10 meV, which is still well within the 30 meV
experimental uncertainty [9]. Furthermore, Allan explicitly
measures spin-orbit separation in the 0 → 1 cross section on
the ν ′ = 9 doublet as 19.6 ± 1.0 meV. Our calculation shows
the separation of 17.8 meV. The discrepancy of 1.8 meV is still
much less then the typical errors of the quantum-chemistry
calculations [42] and we consider the agreement to be very
good.

We can see that neither the local nor the nonlocal approach
are able to accurately reproduce the experimental relative
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FIG. 5. Comparison of the vibrational excitation cross sections from νi = 0 to νf = 0–6 calculated within the nonlocal resonance model
(NRM) and the local complex potential (LCP) approximation.

heights of the individual peaks. The local approximation
(LCP) tends to amplify peaks on the low-energy side because
of its incorrect threshold behavior. Our nonlocal resonance
model on the other hand seems to suppress these peaks too
much. There are also significant discrepancies at higher ener-
gies for transitions 0 → 5–7 in both approaches.

Figure 10 displays the resonant contribution to the total
cross section obtained within the nonlocal resonant model
compared with the results of Field et al. [8] who measured
the total cross sections with energy resolution of 3.5 meV. In
Fig. 10, we only show the convolutions of our NRM results

with σFWHM of 7 and 15 meV. The convolution with σFWHM =
3.5 meV produces peaks much higher than those of Field
et al. In comparison with Higgins et al., our cross sections
show narrower and higher peaks, but the relative intensities
remain roughly the same, see Table III. There seems to be
a disproportionate difference in the peak heights at 0.2 eV.
Field et al. obtained the resonant part of the cross sections by
subtraction of the nonresonant part from the total cross sec-
tions, which may introduce inaccuracies, especially when the
resonant contribution is small compared with the nonresonant
part. Field et al. also observed the spin-orbit splitting of the
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FIG. 6. Sharp peaks in the different VE cross sections lie always at the same positions, clearly corresponding to the quasibound vibrational
levels of O−

2 .

2�g resonance and measured the magnitude of the split to be
18.8 ± 1.0 meV, which is again in a very good agreement with
our result.

In Fig. 11, we compare the resonant contribution to the
total cross section with the resonant component of the absolute
total cross section for electron scattering from O2 measured by
Okumura et al. [10] with the resolution of 7 meV. Therefore,
the calculated cross sections were convolved with σFWHM =

7 meV. Our NRM results are 2–5 times larger depending on
the peak. The positions of the peaks agree well at higher ener-
gies. However, there is a significant shift of the peaks at lower
energies reaching approximately 22 meV for the first peak, the
value which is larger than the spin-orbit separation. This may
be caused by inaccuracies in the potential-energy curves. Our
value of Eea(O2) is larger by 24 meV than the experimental
value, see Table I, which is very close to the discrepancy of

FIG. 7. Vibrational excitation cross sections obtained within the nonlocal resonance model without the spin-orbit splitting of the 2�g state
compared with the results of Higgins et al. [13] who published the cross sections only up to 1 eV.
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TABLE III. Relative peak intensities in the total cross section.
The experiment and theory are normalized to 1 for ν ′ = 7.

ν ′ Field [8] Higgins [13] LCP NRM

4 0.227 1.008 0.141
5 0.63 0.664 0.522 0.542
6 0.86 0.875 0.879 0.852
7 1.00 1.000 1.000 1.000
8 0.91 0.751 1.031 0.989
9 0.64 0.520 0.951 0.837

22 meV observed here. Small variations of potential-energy
curves can, however, cause significant changes in positions
and spacing of the peaks in the cross sections.

Applications use the rate coefficients for VE processes
defined as

kνiν f (T ) =
√

8

meπ

(
1

Te

)3/2 ∫ ∞

0
dE Eσνiν f (E )e−E/Te , (33)

where we assume the Maxwell-Boltzmann electron energy
distribution at temperature Te given in electronvolts. The rate
coefficients at very low temperatures can be sensitive to the
model used for the cross-section calculations. We illustrate
this sensitivity in Fig. 12, where we show the rate coefficients
for two VE transitions 0 → 0 and 0 → 2. Since our study fo-
cuses on the lowest-lying 2�g resonance, we show the results
only up to 2.0 eV, because other resonances start to contribute
significantly at higher energies. The rate coefficients can differ
by a factor 2–5 not only when comparing the NRM and LCP
models but also when comparing our LCP results with those
of Laporta et al. [17], which were also calculated within the
LCP model with slightly different potential-energy curves.

B. Dissociative attachment

The contribution of the 2�g resonance to the DA cross
section for O2 in its ground vibrational state as calculated
within our NRM and LCP models is shown in Fig. 13. We
encountered the same oscillatory behavior of the cross section

FIG. 8. NRM cross section for vibrational excitation 0 → 1
before and after convolution with the Gaussian distribution for
σFWHM = 10 meV, the experimental resolution of Allan [9] for this
particular process.

FIG. 9. Vibrational excitation cross sections (solid lines) ob-
tained within the local approximation (upper panel) and the nonlocal
model (lower panel), convolved using the experimental resolution,
compared with the data of Allan (dashed lines) [9]. Each cross
section is normalized to get the same maximum of the highest peak.

as Laporta et al. [18], but their cross section is approximately
100 times larger. Because the DA cross section at the threshold
is quite small, such a large disagreement can be probably ex-
plained by the use of slightly different potential-energy curves
and resonance widths in both LCP calculations. However, the
available experiments [43–45] point to rather smaller values
of the DA cross section at energies close to the DA threshold
(i.e., in the region 3.7–4.5 eV), where the contribution of the
2�g resonance could be significant.

The origin of the oscillatory structure in the DA cross
sections is not discussed by Laporta et al. [18]. We propose the
following explanation of its origin: The initial vibrational state
is localized at larger internuclear distances than the classical
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FIG. 10. Calculated resonant contribution to the total cross
section obtained within our nonlocal model compared with measure-
ments by Field et al. [8] (the double peak at 0.45 eV is not presented
in Ref. [8]).

turning points of the anion potential-energy curve (the 2�g

state) at energies above the DA threshold; see χ0(R) and
large peaks of the wave functions at around R = 2.25 a0 in
Fig. 14. Thus, the nuclei can move in both directions, either
directly towards the DA channel or first towards the smaller
internuclear distances and later, after reflection near the clas-
sical turning point, also towards the DA channel. The wave
functions describing these two nuclear motions constructively
interfere with each other for energies at maxima of the DA
cross section. But the interference is destructive for energies
at minima, giving rise to the oscillations in the DA cross
sections.

V. CONCLUSION

We performed ab initio calculations of the 2�g resonance
contribution to the cross sections for vibrational excitation
and dissociative attachment in collisions of electrons with

FIG. 11. Resonant contribution to the total cross sections as ob-
tained by Okumura et al. [10] compared with our results calculated
using the nonlocal resonance model (NRM) and the local complex
potential (LCP) approximation.

FIG. 12. Examples of sensitivity of the rate coefficients at low
temperatures to the model for VE 0 → 0 and 0 → 2. Our NRM and
LCP results are compared with results by Laporta et al. [17] also
obtained within the LCP model.

O2. Based on the fixed-nuclei data we constructed both the
nonlocal resonance model and its local approximation and
compared our results with available experimental and theoret-
ical data. We included the effect of the spin-orbit interaction
which leads to the separation of the peaks in the VE cross
sections and better agreement with the experiments.

The overall structure of the cross sections agrees well
with other works, both theoretical and experimental, and we
found a good agreement in the magnitude of the spin-orbit
splitting. There are, however, some discrepancies between
our results and those published earlier. First, the positions
of peaks are very sensitive to the relative position of the
neutral and negative-ion potential-energy curves and even its
small change can lead to significant differences in the cross
sections. However, we estimate that the error in the positions
of peaks in our results is not larger than 20–30 meV. Second,
the widths of individual peaks are much smaller in our results
than in other approaches. We are not sure what the reason
causing this behavior is and we plan to probe this problem in
more detail using a new O2-like two-dimensional model for
electron-molecule collisions similar to the models introduced

FIG. 13. Comparison of our NRM and LCP dissociative attach-
ment cross sections for initial vibrational state νi = 0 with the results
by Laporta et al. [18]. Only contributions of the 2�g resonance are
shown.
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FIG. 14. Vibrational excitation 0 → 2 and dissociative attachment cross sections placed next to the potential-energy curves of O2 and O−
2

together with solutions of Eq. (3) at several energies chosen to demonstrate how changes in the wave functions correspond to changes in the
cross sections.

in Refs. [23,46] to compare the exact results with various
approximations to nuclear dynamics used in the other works,
especially with the R-matrix approach of Schneider et al.
[14] which otherwise agrees with our results quite well. The
direct comparison with experiments is more difficult because
of the finite resolution and nonzero temperature. Our VE cross
sections convolved to reproduce the specific resolution of a
certain experiment are generally larger than the experimental
one, but the heights of the peaks change significantly if we
assume a different resolution, as shown in Fig. 10.

Finally, we should stress that large differences in the
heights of the VE cross-section peaks close to the thresh-
olds predicted by the nonlocal resonance model and its local

approximation lead to significant changes in the correspond-
ing rate coefficients at low temperatures (as shown in Fig. 12).
Therefore, the calculated rates should be used with care in
applications, since it is very difficult to provide reliable data
for this temperature region.

ACKNOWLEDGMENTS

We would like to thank our colleagues Martin Čížek and
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