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We investigate the sensitivity of an Unruh–DeWitt detector to the global features of a deficit angle that 
are otherwise classically inaccessible. Specifically, we consider a detector placed inside an infinite thin 
hollow cylinder whose spacetime is everywhere flat but outside of which the spacetime has a deficit 
angle and study its response to a scalar field to which it couples. We find that the response of the 
detector is sensitive to the deficit angle, despite the fact that it does not interact with the cylinder.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The Unruh–DeWitt (UDW) detector [1,2] was first introduced 
to give an operational meaning to acceleration radiation (in the 
context of the Unruh effect) and to particle detection in curved 
spacetimes. Today, we can use it to probe (theoretically) various 
global features of the spacetime. For example, the response of a 
detector placed in different quotient spaces of Minkowski space 
has been shown to be sensitive to spacetime topology [3,4], and 
their sensitivity to topological features hidden behind event hori-
zons has likewise been demonstrated [5,6]. UDW detectors have 
also been shown to be able to detect the presence of a massive 
spherical shell enveloping the inertial detectors [7,8] and the cor-
responding frame dragging in the case of a rotating shell [9] in 
situations not possible for classical measuring devices.

In the present paper we focus on quantum detection of space-
time conicity. Specifically, we are interested in studying the sensi-
tivity of a UDW detector to the global features of a deficit angle 
when its quasilocal manifestation is absent. We do this by plac-
ing the detector inside an infinite thin hollow cylinder (cylindrical 
shell), described by a special case of the Levi-Civita metric [10], 
whose spacetime is flat everywhere, but has a deficit angle outside
the cylinder. Being induced by the energy-momentum of the cylin-
der, the deficit angle is not present inside the cylinder (where the 
detector is situated) and the axis is regular. This is in contrast to 
the usual idealized (distributional) cosmic string spacetime [11,12], 
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where the conical deficit is present throughout.1 The absence of a 
deficit angle inside the cylinder provides an interesting set-up to 
study the response of a UDW detector since an observer with ac-
cess only to classical measuring devices in a finite-sized quasilocal 
region within the cylinder could not detect its presence.

The effects of a “global conical deficit” on the vacua of quan-
tum fields have been studied in the literature, such as the vacuum 
polarisation of the field [18–20] and particle creation in these 
spacetimes [21,22]. UDW detectors and other quantum particles 
in cosmic string spacetimes have also been studied in the litera-
ture and it has been demonstrated that the detectors or particles 
are in general sensitive to the presence of a cosmic string [23–30]. 
Contrary to all these studies, in our setup the UDW detector is not 
situated in the region with the conical deficit; such a deficit is only 
present outside the cylinder.

The outline of our paper is as follows: Section 2 details the spe-
cial form of the Levi-Civita metric we are using, Section 3 presents 
the quantisation of the massless scalar field, Section 4 computes 
the UDW detector response, with the results displayed in Section 5, 
and conclusions in Section 6. The details of the stress-energy ten-
sor of the cylindrical shell are presented in Appendix A.

2. Cylinder spacetime

Just as spherically symmetric massive shells are sources for the 
Schwarzchild spacetime, cylinders are sources for the Levi-Civita 

1 The distributional cosmic string spacetime [13] is recovered upon the limit of 
the vanishing radius of the cylinder. More elaborate models of cosmic strings where 
the distributional character is smoothed out include, for example, constant density 
models [14], the abelian Higgs model [15,16], or the recent model [17] which takes 
into account a non-local description of the gravitomagnetism.
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metric [10]. However, constructing physical cylinders and relating 
their properties (such as mass) to the parameters of the Levi-Civita 
metric is more involved than in the spherical case, see, e.g., [31–
33]. The metric we shall employ is the M = 0 case of one studied 
by Bičák and Žofka [31], which is globally flat. Inside the cylinder 
we have the usual Minkowski spacetime, with the metric written 
in cylindrical coordinates as:

ds2 = −dt2 + dz2 + dρ2− + ρ2−dφ2 , 0 ≤ ρ− ≤ R1, (1)

where R1 is the proper radius of the cylinder. This metric will be 
matched on the cylinder to a special case of the Levi-Civita metric 
outside the cylinder, which is given by

ds2 = −dt2 + dz2 + dρ2+ + ρ2+
c2

dφ2 , cR1 ≤ ρ+ < cR2, (2)

where φ ∈ [0, 2π ]. In these coordinates, the cylinder is located 
at ρ+ = cR1, which ensures that the metrics (1) and (2) when 
induced on the cylinder agree, obeying the first Israel junction 
condition [34]. The second junction condition relates the stress-
energy tensor of the cylinder to the jump in the extrinsic curvature 
across the cylinder. This stress-energy tensor has been worked out 
in [31], where a more general metric for the spacetime outside the 
cylinder was used. We review the main results in Appendix A. The 
parameter c in Eq. (2) describes the “conicity”, see, e.g., [31,33] of 
the spacetime, and is related to a non-zero mass per unit length of 
the cylinder

μ = 1

4

(
1 − 1

c

)
. (3)

In this paper, we are interested in the case c > 1. Specifically, we 
can define a new angular coordinate ϕ = φ/c, for which the metric 
in (2) reduces to the usual Minkowski metric in cylindrical coordi-
nates but now ϕ ∈ [0, 2π/c]. In other words, the spacetime has a 
conical deficit of δ = 2π(1 − 1/c) > 0.

In order to avoid dealing with asymptotics of infinite cylindrical 
systems, in what follows we will impose Dirichlet boundary condi-
tions for the field on the surface ρ+ = cR2. This can be interpreted 
as a second infinitely long, perfectly reflecting cylinder, concen-
tric to the first and having a proper radius of R2 (see also [35]). 
We will not concern ourselves with the metric outside this sec-
ond cylinder as the Dirichlet boundary condition ensures that the 
field will not respond to this part of the spacetime. However, we 
refer the readers to ref. [31] for a discussion on some interesting 
subtleties involved in defining such spacetimes.

3. Massless scalar field

The massless scalar field equation in the above spacetime ad-
mits the mode decomposition:

�kmq = Nkmqe−iωteikzeimφψmq(ρ±), (4)

with ω2 ≡ q2 + k2 and Nkmq being a normalisation constant. In-
side the cylinder, ρ− < R1, the radial equation governing ψmq(ρ−)

reads(
q2 − m2

ρ2−

)
ψmq(ρ−) + ψ ′

mq(ρ−)

ρ−
+ ψ ′′

mq(ρ−) = 0 , (5)

which admits the general solution

ψmq(ρ−) = a1 J |m|(qρ−) + a2Y |m|(qρ−), (6)

where Jm and Ym are the Bessel functions of the first and second 
kind, respectively. To impose regularity at ρ− = 0, we set a2 = 0, 
2

and to impose periodicity in φ, we have m ∈Z. We can take a1 = 1
by absorbing it into the normalisation constant Nkmq .

Meanwhile, the radial equation outside the cylinder reads:(
q2 − c2m2

ρ2+

)
ψmq(ρ+) + ψ ′

mq(ρ+)

ρ+
+ ψ ′′

mq(ρ+) = 0 . (7)

This admits the general solution

ψmq(ρ+) = c1 J |cm|(qρ+) + c2Y |cm|(qρ+) . (8)

The arbitrary constants c1 and c2 are determined by the continuity 
of ψmq and its derivative on the cylinder:

ψmq(ρ− = R1) = ψmq(ρ+ = cR1) , (9)

∂ρ−ψmq(ρ− = R1) = ∂ρ+ψmq(ρ+ = cR1) , (10)

which gives

c1(q) = 1

2
πqcR1

(
J |m|(qR1)Y |cm|−1(qcR1)

− J |m|−1(qR1)Y |cm|(qcR1)
)

,

c2(q) = 1

2
πqcR1

(
J |m|−1(qR1) J |cm|(qcR1)

− J |m|(qR1) J |cm|−1(qcR1)
)

. (11)

To impose the Dirichlet boundary condition at R2, we restrict the 
‘radial quantum number’ q to the discrete set such that ψmq(ρ+ =
cR2) = 0.

Finally, the Nkmq ’s are chosen such that the solutions are nor-
malised with respect to the Klein–Gordon (KG) inner product. This 
gives

Nkmq = 1

2π

√
2
√

k2 + q2||ψmq||
, (12)

with

||ψmq||2 =
R1∫

0

[ J |m|(qρ)]2ρdρ

+
cR2∫

cR1

[c1 J |cm|(qρ) + c2Y |cm|(qρ)]2(ρ/c)dρ . (13)

It can be checked that the solutions defined above are orthogonal 
with respect to the KG inner product.

We can then proceed with canonical quantisation of the field 
by defining the field operator as

ψ̂(x) =
∑
m,q

∞∫
−∞

dk
(

âkmq�kmq(x) + â†
kmq�

†
kmq(x)

)
, (14)

where âkmq and â†
kmq are annihilation and creation operators re-

spectively satisfying the usual commutation relations. We will let 
|0〉F denote the vacuum state of the field satisfying âkmq |0〉F = 0
for all âkmq .

4. Detector response

In this section, we will derive the expression for the response 
function, F , of a UDW detector placed inside the first cylinder. 
The detector itself is a simple two-level, point-like quantum sys-
tem [1,2]. We will denote the ground and excited states of the 
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detector using |0〉D and |1〉D respectively, and let � denote the 
energy difference between these two states. In general, the detec-
tor can have any arbitrary trajectory in the spacetime of interest. 
For our purposes it is enough to consider simple stationary trajec-
tories where the detector stays at a fixed spatial position. In terms 
of the proper time τ of the detector, these trajectories are given 
by:

x(τ ) ≡ (t(τ ),ρ−(τ ), z(τ ),φ(τ ))

= (τ ,ρd, zd, φd), (15)

for ρd ∈ [0, R1], zd ∈ (−∞, ∞) and φd ∈ (0, 2π ].
As the detector travels along its trajectory, it interacts locally 

with the background quantum field. This interaction is modelled 
by the UDW interaction Hamiltonian which, in the interaction pic-
ture, reads:

Ĥ I (τ ) = λχ(τ ) (e−i�τ |1〉D 〈0|D + ei�τ |0〉D 〈1|D) ⊗ ψ̂(x(τ )) .

(16)

In this expression, λ is a dimensionless coupling constant and χ(τ )

is a continuous, compact function describing the relative coupling 
strength in time. It is aptly called the “switching function” of the 
detector [36]. Following [8] we will use the following switching 
function:

χ(τ ) =
{

cos4(ητ ), − π
2η ≤ τ ≤ π

2η

0, otherwise .
(17)

This switching function goes continuously to zero at τ = ± π
2η , i.e., 

the detector and the field interact only for a finite time interval of 
�τ = π/η.

If the detector and the field were initialised in the state 
|0〉D |0〉F , there might be a non-zero probability of finding the 
detector in the state |1〉D at the end of the interaction. This prob-
ability can be computed using perturbation theory and is given by 
[37,38]

P = λ2

∞∫
−∞

dτ1

∞∫
−∞

dτ2χ(τ1)χ(τ2)e−i�(τ2−τ1)

× W (x(τ1), x(τ2))

(18)

to second order in λ. The term W (x(τ1), x(τ2)) is the Wight-
man function of the field evaluated along the detector trajectory, 
W (x(τ1), x(τ2)) := 〈0| ψ̂(x(τ2))ψ̂(x(τ1)) |0〉. It can be expanded in 
terms of the modes given in the previous section as follows:

W (x(τ1), x(τ2)) =
∑
m,q

∞∫
−∞

dk �
†
kmq(x(τ1))�kmq(x(τ2)) . (19)

Substituting this mode expansion into Eq. (18) gives,

F =
∞∫

−∞

∞∫
−∞

dt dt′χ(t)χ(t′)e−i�(t−t′)

×
∑
m,q

∞∫
−∞

dkN2
kmq| J |m|(q ρd)|2e−iω(t−t′)

=
∑ | J |m|(qρd)|2

||ψmq||24π

∫ |χ̂ (� + √
k2 + q2)|2√

k2 + q2
dk (20)
mq

3

Fig. 1. Response against detector energy gap. Top: This figure shows how the differ-
ence Fc −Fc=1 varies with c and the detector energy gap �. The difference appears 
to be symmetric in �, and peaks at � = 0. The magnitude of the difference also in-
creases with c. Below: This figure shows the general shape of F as a function of �. 
The value of c used here was c = 1; the corresponding curves for the other c val-
ues in the top plot will simply overlap with the existing curve due to scale of the 
figure. The other parameters used here are R1 = 1, R2 = 5, ρd = 0 and �τ = 1.

for the response function F ≡ P/λ2. Here, the function χ̂ is the 
Fourier transform of the switching function,

χ̂ (y) = 1√
2π

∞∫
−∞

dτχ(τ )e−iyτ . (21)

Note that the response of the detector depends, as expected, only 
on radial coordinate of the detector, and not on its φ and z coordi-
nates due to the symmetry of the set-up. In addition, the response 
does have an implicit dependence on the conicity parameter c
coming from the normalisation term ||ψmq||2, see (13). The results 
of the next section will illustrate this dependence.

5. Results

Having introduced the set-up and derived the response of the 
detector in the previous sections, we are now ready to look at how 
the response Fc depends on the conicity c. The response of a de-
tector placed in a spacetime with no conical deficit (corresponding 
to c = 1) will be denoted as Fc=1.

The top figure in Fig. 1 shows a plot of Fc − Fc=1 against �
for c ∈ {1, 2, 3, 4}. From this we see that the difference is indeed 
non-zero, peaks around � = 0, and increases as c increases. In this 
plot, we have set �τ = R1 = 1, so that the detectors are switched 
on only for a short duration, during which no signal could have 
travelled from the detector to the shell and back to convey in-
formation about c. Intuitively, the dependence of the response on 
c conveys the fact that the local vacuum fluctuations around the 
detector carry non-local information about the spacetime. The de-
pendence of F on c can be seen more clearly in Fig. 2, which gives 
a plot of Fc against c for � = 0. This graph shows a logarithmic 
increase in the response of the detector as c increases.

The results shown in Fig. 1 were for ρd = 0, with the detector 
placed on the axis of symmetry. This greatly reduces the computa-
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Fig. 2. Dependence of response on c. This figure gives a plot of Fc against c for 
R1 = 1, R2 = 5, � = 0, ρd = 0 and �τ = 1.

Fig. 3. Dependence of response on detector radial distance. The figure here shows 
that the difference Fc −Fc=1 increases as ρd increases i.e., the detector gets closer 
to the cylindrical shell. The parameters used here are R1 = 1, R2 = 5 and � = 2.

tional effort since Jm(0) = δm,0 and only the m = 0 term in Eq. (20)
contributes. Fig. 3 shows that the difference in response increases 
as the detector is moved closer to the cylindrical shell.

Recall that we have discretised the integral over q into a dis-
crete sum by introducing a Dirichlet boundary condition at ρ+ =
cR2. Fig. 4 shows what happens as we push this boundary out-
wards. From the top figure, we see that the difference in response 
asymptotes to some finite value as R2 increases. Meanwhile, plot-
ting the difference in response against � at R2 = 50 displays the 
same trends as Fig. 1 but with slightly decreased magnitude. How-
ever, based on the top figure, we can expect non-zero differences 
even when the Dirichlet boundary is pushed out towards infinity.

6. Conclusion

We have shown that a conical deficit exerts a detectable influ-
ence on the response of a UDW detector even if that detector is in 
a flat spacetime region without access to the region of spacetime 
where the deficit is manifest. An observer restricted to the same 
region with access only to classical measuring devices would not 
be able to detect the presence of the deficit outside the cylinder. 
However the UDW detector can discern the presence of the deficit.

This situation is similar to that for a detector located inside a 
spherical shell: it can read out information about the non-local 
structure of spacetime even when switched on for scales much 
shorter than the characteristic scale of the non-locality [7]. As with 
the spherical shell, we find the sensitivity to the deficit is strongest 
at vanishing energy gap for a detector located on the axis of the 
cylinder, and increases as the detector is located further from the 
axis.

A number of future studies merit consideration. Can further 
information be extracted via this process so that the cylindrical 
shell’s more general mass density and possibly rotation can be de-
termined?
4

Fig. 4. Dependence of response on R2. Top: The figure shows a plot of Fc − Fc=1

against R2, the position of the Dirichlet boundary, for various c values. The differ-
ence asymptotes to some non-zero value at large R2. Below: Plot of Fc − Fc=1

against � (cp Fig. 1) for R2 = 50. The other parameters used here are R1 = 1 and 
ρd = 0.

Finally, we note that one may also consider placing the UDW 
detector outside the first cylinder. In this case, the R1 → 0 limit 
will correspond to a cosmic string placed inside a reflective con-
centric cylinder. We can see this by noting that c2(q) → 0 in this 
limit and the solution ψmq(ρ+) in Eq. (8) reduces to that in the 
cosmic string spacetime after normalisation. The model can then 
be used to compare, for example, the difference between the cases 
when the string is modelled as a Dirac delta source or as a finite 
cylinder. Work on these areas is in progress.
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Appendix A. Stress-energy of cylinder

In this Appendix we briefly review the stress-energy tensor of 
the cylindrical shell following the discussion in [31]. The general 
line element of a spacetime admitting cylindrical symmetry has 
the form,

ds2 = −e2U (r̃)dt̃2 + e−2U (r̃)[A(r̃)2dr̃2 + B(r̃)2dϕ2 + C(r̃)2dz̃2] .
(A1)

By substituting this ansatz into the vacuum Einstein’s field equa-
tions, after appropriate rescaling and translation of the coordinates, 
the general solution has three arbitrary constants, r0, M and c [33]:

ds2 = − ( r

r0

)2M
dτ 2 + ( r

r0

)2M(M−1)
(dζ 2 + dr2)

+ r2( r

r0

)−2M
dϕ2/c2, (A2)

with the coordinate ranges τ ∈ R, r ∈ R+ , ζ ∈ R and ϕ ∈ [0, 2π). 
However, we can get rid of r0 by another coordinate rescaling

(τ , ζ, r,ϕ) → (r
M

M2−M+1
0 t, r

M(M−1)

M2−M+1
0 z, r

M(M−1)

M2−M+1
0 ρ,ϕ) ,

so that the final metric reads:

ds2 = −ρ2Mdt2 + ρ−2M
[
ρ2M2

(dz2 + dρ2) + ρ2dϕ2/c2
]

. (A3)

We are thus left with only 2 physical parameters M and c for the 
spacetime. This is the common form of the Levi-Civita metric ap-
pearing in the literature.

We now move on to discuss the cylindrical shell that can give 
rise to such a metric. A general cylindrical shell spacetime consists 
of two regions, each described by the metric in Eq. (A3) with spe-
cific parameter choices: an “inside” region which is regular along 
the z-axis with c− = 1 and M− = 0 running from 0 ≤ ρ− ≤ R− , 
and an “outside” region with arbitrary c+ and M+ running from 
R̃1 ≤ ρ+ ≤ R̃2. These two regions are joined at the shell surface 
using the Israel formalism, which sets R1 = R̃1−M+

1 /c, as well as 
the non-vanishing components of the stress-tensor of the shell as:

8π Stt = 1/R1 − R̃
M+−M2+−1
1 (1 − M+)2 ,

8π Szz = R̃
M+−M2+−1
1 − 1/R1 ,

8π Sϕϕ = R̃
M+−M2+−1
1 M2+ . (A4)

We can define the mass per unit coordinate length of the cylin-
der as μ = 2π R1 Stt , which in terms of the spacetime parameters, 
reads

μ = 1

4

(
1 − 1

c+
(1 − M+)2

R̃
M2+
1

)
. (A5)

As we were only interested in studying the sensitivity of a UDW 
to the conical deficit outside the cylinder, we have set M+ = 0 in 
the main text to avoid any effects on the UDW due to non-trivial 
curvature outside the cylinder. However, we see here that even in 
this case, the shell has a non-zero mass per unit length, given by 
(3) in the main text.
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