
J. Math. Phys. 63, 092501 (2022); https://doi.org/10.1063/5.0106433 63, 092501

© 2022 Author(s).

Light propagation in a plasma on an axially
symmetric and stationary spacetime:
Separability of the Hamilton–Jacobi
equation and shadow
Cite as: J. Math. Phys. 63, 092501 (2022); https://doi.org/10.1063/5.0106433
Submitted: 28 June 2022 • Accepted: 16 August 2022 • Published Online: 20 September 2022

 Barbora Bezděková,  Volker Perlick and  Jiří Bičák

https://images.scitation.org/redirect.spark?MID=176720&plid=1779088&setID=406887&channelID=0&CID=653488&banID=520661581&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=1ed07a4d501c7ae4ca2baa8a1a3ca3ee9a21824f&location=
https://doi.org/10.1063/5.0106433
https://doi.org/10.1063/5.0106433
https://orcid.org/0000-0002-8599-4483
https://aip.scitation.org/author/Bezd%C4%9Bkov%C3%A1%2C+Barbora
https://orcid.org/0000-0002-8400-8901
https://aip.scitation.org/author/Perlick%2C+Volker
https://orcid.org/0000-0001-7938-7815
https://aip.scitation.org/author/Bi%C4%8D%C3%A1k%2C+Ji%C5%99%C3%AD
https://doi.org/10.1063/5.0106433
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0106433
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0106433&domain=aip.scitation.org&date_stamp=2022-09-20


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Light propagation in a plasma on an axially
symmetric and stationary spacetime: Separability
of the Hamilton–Jacobi equation and shadow

Cite as: J. Math. Phys. 63, 092501 (2022); doi: 10.1063/5.0106433
Submitted: 28 June 2022 • Accepted: 16 August 2022 •
Published Online: 20 September 2022
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ABSTRACT
The properties of light rays around compact objects surrounded by a plasma are affected by both strong gravitational fields described by a
general-relativistic spacetime and by a dispersive and refractive medium, characterized by the density distribution of the plasma. We study
these effects employing the relativistic Hamiltonian formalism under the assumption of stationarity and axisymmetry. The necessary and
sufficient conditions on the metric and on the plasma frequency are formulated such that the rays can be analytically determined from a fully
separated Hamilton–Jacobi equation. We demonstrate how these results allow us to analytically calculate the photon region and the shadow
if they exist. Several specific examples are discussed in detail: the “hairy” Kerr black holes, the Hartle–Thorne spacetime metrics, the Melvin
universe, and the Teo rotating traversable wormhole. In all of these cases, a plasma medium is present as well.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0106433

I. INTRODUCTION
It was 110 years ago, as early as 1912, when Einstein, during his stay in Prague (April 1911–July 1912), sketched the basic properties of a

gravitational lens in one of his notebooks, presumably on the occasion of a visit to Berlin in April to meet astronomer Freundlich.1–4

For many years, gravitational lensing, one of the most lively fields of research in relativistic astrophysics, has been focused on lensing by
(clusters of) galaxies or microlensing by individual objects where bending angles are small. Over the last 20 years, however, more and more
attention has also been paid to lensing by black holes and other compact objects where bending angles can be arbitrarily large. The most
important achievement in this direction has been the observation of the “shadow” of the compact object—most likely a supermassive black
hole—at the center of galaxy M87 by the Event Horizon Telescope Collaboration.2 Related theoretical investigations are primarily aiming at
distinguishing the standard Kerr black holes of general relativity from other compact objects by way of their lensing features, in particular,
their shadows. Among many other examples, this includes black holes in strong magnetic fields, see Refs. 3 and 4, or black holes with hairs
and boson stars, see, e.g., Ref. 8. For recent reviews on shadow calculations, see Refs. 9 and 10.

When comparing Kerr black holes with other compact objects, in the first approach, it is natural to still assume stationarity and axisym-
metry. This, however, does not give us sufficiently many symmetries for the complete integrability of the equations of motion for vacuum light
rays, i.e., it does not allow us to reduce the equation for lightlike geodesics to the first-order form. Therefore, it is not, in general, possible to
calculate lensing features, such as the shadow, analytically in a stationary and axisymmetric spacetime. This is possible if there is an additional
constant of motion, known as a (generalized) Carter constant, which exists if and only if the Hamilton–Jacobi equation for lightlike geodesics
separates. The best known example where a Carter constant exists is the Kerr metric. However, even on a spacetime for which a Carter con-
stant exists, it is not, in general, true that the equations of motion for light rays in a medium are completely integrable. In view of applications
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to astrophysics, the most interesting example of a medium is a plasma. A comprehensive treatment of the light propagation and formation
of a shadow in a non-magnetized and pressure-free plasma in the Kerr background is described in Ref. 11. More recently, this approach was
further studied in Refs. 12 and 13. In particular, the conditions on the form of the plasma frequency have been formulated, which enable
one to find a generalized Carter constant for, e.g., black holes with the surrounding plasma in some generalized gravity spacetimes, implying,
together with stationarity and axisymmetry, the complete integrability of the equations for the rays.

The purpose of the present work is to discuss, within the framework of geometrical optics, the possibility of an analytical approach to
lensing in general axisymmetric stationary spacetimes containing a plasma medium. If, in addition to axisymmetry and stationarity, the exis-
tence of an equatorial plane is assumed and if the plasma density shares all symmetries of the spacetime, complete integrability is guaranteed
for light rays in the equatorial plane. However, for almost all applications, one is also interested in light rays off the equatorial plane, and in
some interesting spacetimes, an equatorial plane does not even exist. Therefore, in this paper, we want to derive the necessary and sufficient
conditions for the existence of a Carter constant for light rays in a plasma on an arbitrary stationary and axisymmetric spacetime without any
further restrictions.

There are powerful, systematic studies of the separability of the geodesic equation and its first integrals in general pseudo-Riemannian
(Lorentzian) spacetimes of any dimension d > 1. These studies analyze “separability structures” classified by the number of Killing vectors and
Killing tensors, which spacetimes possess. In general, relativity, Carter’s discovery of separable spacetimes14 inspired a number of contribu-
tions on the separability of the Hamilton–Jacobi equation and the closely related problem of the separability of the wave equation. We refer,
in particular, to the papers by Benenti and Francaviglia on spacetimes with two commuting Killing vector fields; for their review, see Ref. 15.
Recent studies of the separability of the Hamilton–Jacobi, Klein–Gordon, and Dirac equations, including black holes and other related objects
in higher dimensions, are reviewed in Ref. 16. One of the most recent studies of the similar topic was performed in Ref. 17, where relativistic
simulations of a massive Proca field evolving on a Kerr background were analyzed, allowing one to effectively study the effect of plasmas, lead-
ing to super-radiance. However, we emphasize that there are two important differences between these earlier works, most notably the ones
by Benenti and Francaviglia, and our’s: First, they do not consider a plasma, and second, they require separability of the Hamilton–Jacobi
equation for all geodesics—timelike, lightlike, and spacelike.

This paper is organized as follows. In Secs. II and III (and in the Appendix), we derive the conditions for the existence of the Carter
constant for rays in axisymmetric stationary spacetimes containing plasmas. As a preparation for calculating the shadow, in Sec. IV, the photon
regions in axisymmetric and stationary spacetimes are analyzed by employing the Hamilton equations and requiring the first two derivatives
of the photons’ radial coordinate with respect to a curve parameter to vanish. The form of the shadows caused by black holes surrounded by
plasmas is studied in Sec. V. The remaining parts of this paper present the analysis of specific examples: spacetimes of the hairy Kerr black
holes are shown to enable separation in a way very similar to Kerr black holes without hair in Sec. VI. However, the Hartle–Thorne metrics
describing slowly rotating relativistic stars with a quadrupole moment (with or without plasmas) do not permit the separation (Sec. VII).
As the third example, the Melvin cylindrical universe with plasmas is analyzed. Besides a general interest in this case, we wish to emphasize
that it serves as an instructive example of the fact that the separation of the Hamilton–Jacobi equation crucially depends on the choice of the
coordinates. Whereas in the spherical-type coordinates (used in this paper so far), the Carter constant (and thus the separability) cannot be
obtained, in cylindrical-type coordinates, it does work, and the Carter constant and the photon region can be found (Sec. VIII). A detailed
study is performed in Sec. IX: here, the Teo wormhole metric with a plasma is investigated, the separability of the Hamilton–Jacobi equation
is shown, the condition for the existence of a spherical light ray around the wormhole is derived, and the shadow caused by the Teo wormhole
is found. The results both for the vacuum case and for the case when a plasma is present are analyzed thoroughly; additionally, they are
illustrated and characterized graphically. Short conclusions follow.

II. LIGHT PROPAGATION IN A NON-MAGNETIZED PRESSURELESS PLASMA
Considering a description of the ray propagation through a refractive medium used by Synge,18 a respective Hamiltonian takes the form

H(xα, pα) =
1
2
[gβδpβpδ − (n

2
− 1)(pγVγ

)
2
], (1)

where pα is the canonical 4-momentum (called the frequency 4-vector in Ref. 18) and Vα is the 4-velocity of the medium, i.e.,

ω(xα) = −pαVα (2)

is the frequency measured in the rest system of the medium. The rays are, then, the solutions to Hamilton’s equations,

ẋ α
=
∂H
∂pα

, ṗα = −
∂H
∂xα

, H(x, p) = 0. (3)

For a non-magnetized pressureless plasma, the refractive index n depends on the photon frequency ω(xα) in the form

n2
= 1 −

ω2
pl(x

α
)

ω2(xα)
. (4)
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Here, ωpl is the plasma frequency whose square equals the electron density up to a constant factor. Then, Hamiltonian (1) can be
rewritten as

H(xα, pα) =
1
2
[gβδ(xα)pβpδ + ω

2
pl(x

α
)], (5)

i.e., it is independent of the medium velocity. The basic results of Synge are summarized in a physical way in Ref. 19. Therein, the concept of
the photons (light particles) associated with wave packets in media and the Minkowski energy–momentum tensor for an electromagnetic field
in a medium are also discussed. Hamiltonian (5) can be derived from Maxwell’s equations on a curved background with a two-fluid plasma
model; see the work of Breuer and Ehlers.20

Hamiltonian (5) demonstrates that the light rays in a plasma are determined by the same equations as the trajectories of massive particles
with a “spacetime-dependent mass function.” Moreover, if the plasma density is nowhere zero, we can introduce the conformally rescaled
metric,

g̃μν(xα) = ω2
pl(x

β
)gμν(xγ), g̃ μν

(xα) = ω−2
pl (x

β
)gμν(xγ), (6)

and the modified Hamiltonian,
H̃(xα, pβ) = ω

−2
pl (x

γ
)H(xρ, pσ) =

1
2
(g̃ μν
(xα)pμpν + 1). (7)

As multiplying the Hamiltonian with a nowhere vanishing function leaves the solutions to (3) invariant up to parameterization, the solutions
to (3) actually coincide with the (non-affinely parameterized) timelike geodesics of metric (6), i.e., the light rays in the plasma coincide with
the trajectories of freely falling massive particles for which the separability of the Hamilton–Jacobi equation was originally discussed by Carter
in 1968.21 However, as metric (6) cannot be globally introduced if the plasma density is zero on some part of the spacetime, we will not use it
in the following.

III. DERIVATION OF THE CARTER CONSTANT IN A GENERAL AXIALLY SYMMETRIC STATIONARY
SPACETIME IN PLASMA

Let us assume an axially symmetric stationary metric given in coordinates (t,φ, r, ϑ), with the metric coefficients independent of t and φ.
It is our goal to find out under what conditions the Hamilton–Jacobi equation for light rays in a plasma separates, i.e., under what conditions
a (generalized) Carter constant exists. We prove in the Appendix that the following two statements are true: Separation is possible only if the
plasma density is independent of t and φ, and if the Hamilton–Jacobi equation separates at all, then it separates in coordinates in which the
metric coefficients gtr , gtϑ, gφr , gφϑ, and grϑ vanish, so we may write the metric in the following form:

ds2
= −A(r, ϑ)dt2

+ B(r, ϑ)dr2
+ 2P(r, ϑ)dtdφ +D(r, ϑ)dϑ2

+ C(r, ϑ)dφ2. (8)

We assume that the Killing vector fields ∂/∂t and ∂/∂φ span timelike surfaces, which requires AC + P2
> 0, B > 0, and D > 0. The met-

ric coefficients may depend on arbitrarily many parameters; for example, for a Kerr black hole, they depend on a mass parameter and
on a spin parameter. We emphasize that the question of whether or not the Hamilton–Jacobi equation for light rays separates is a purely
local question, i.e., the range of the coordinates is quite irrelevant. In particular, it is irrelevant that t runs over all of R and φ runs over
a circle. In this sense, the following consideration is not restricted to spherical coordinates; what matters is that we have two commuting
Killing vector fields that span timelike surfaces. In the following, we stick with the (t,φ, r, ϑ) notation, but we emphasize that the coordi-
nates could have any meaning. It turns out that standard spherical coordinates can be inappropriate for finding the Carter constant, while
in another framework respecting symmetries of the given spacetime, it is quite straightforward. This aspect is further discussed in detail in
Example 3.

Non-vanishing terms of the inverse metric to (8) are

grr
=

1
B(r, ϑ)

, gϑϑ =
1

D(r, ϑ)
, gφφ =

A(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

,

gtt
=

−C(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

, gtφ
=

P(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

. (9)

As proven in the Appendix, separation can hold only if the plasma frequency ω2
pl(x

α
) is a function solely of the coordinates r and ϑ, i.e.,

ω2
pl(r, ϑ). In a spacetime described by metric (8), Hamiltonian (5), then, takes the form

H(xα, pα) =
1
2
[

p2
r

B(r, ϑ)
+

p2
ϑ

D(r, ϑ)
+

p2
φA(r, ϑ)

A(r, ϑ)C(r, ϑ) + P2(r, ϑ)
−

p2
t C(r, ϑ)

A(r, ϑ)C(r, ϑ) + P2(r, ϑ)
+

2ptpφP(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

+ ω2
pl(r, ϑ)]. (10)

Because it obviously holds that ∂H
∂t = 0 and ∂H

∂φ = 0, we know that pt and pφ are constants of motion. If the spacetime is asymptotically flat,
and for a light ray that reaches infinity, the component −pt is the frequency measured by a stationary observer at infinity (see, e.g., Ref. 11).
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To stress its physical meaning, let us denote it as ω0. The third constant of motion in this system is H(xα, pα) = 0. However, when applying
this formula, it is useful to rewrite the Hamiltonian H(xα, pα) as a function of xα and ∂S

∂xα to get the Hamilton–Jacobi equation. We now
require the action S to be separated as follows:

S(t,φ, r, ϑ) = −ω0t + pφφ + Sr(r) + Sϑ(ϑ). (11)

Then, it is possible to write the Hamilton–Jacobi equation

0 = H(xα,
∂S
∂xβ
) (12)

in the form

0 =
1

B(r, ϑ)
(

dSr(r)
dr
)

2

+
1

D(r, ϑ)
(

dSϑ(ϑ)
dϑ

)

2

+
p2
φA(r, ϑ)

A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

−
ω2

0C(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

−
2ω0pφP(r, ϑ)

A(r, ϑ)C(r, ϑ) + P2(r, ϑ)
+ ω2

pl(r, ϑ). (13)

Here, it is crucial that this condition has to hold for all pφ and for all ω0. The only freedom we have is to multiply this equation with a function
F(r, ϑ),

0 =
F(r, ϑ)
B(r, ϑ)

(
dSr(r)

dr
)

2

+
F(r, ϑ)
D(r, ϑ)

(
dSϑ(ϑ)

dϑ
)

2

+ F(r, ϑ)ω2
pl(r, ϑ) +

F(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

[p2
φA(r, ϑ) − ω2

0C(r, ϑ) − 2ω0pφP(r, ϑ)], (14)

where F(r, ϑ) is arbitrary except for the condition that it must not have any zeros. Separability holds if and only if the right-hand side of (14) is
for all pφ and all ω0, the sum of a function of r alone and a function of ϑ alone. We first consider the terms that are independent of pφ and ω0.
As for generic light rays, dSr(r)/dr and dSϑ(ϑ)/dϑ are non-zero, we find that separability can hold only if

F(r, ϑ)
B(r, ϑ)

≡ F(r) and
F(r, ϑ)
D(r, ϑ)

≡ G(ϑ), (15)

which implies
B(r, ϑ)
D(r, ϑ)

=
G(ϑ)
F(r)

. (16)

This is the first important condition for separability we have found: If the quotient of B(r, ϑ) and D(r, ϑ) is not of this form, we know
that separability cannot hold, neither for light rays in vacuum nor in any plasma density. If (16) does hold, we get our function F(r, ϑ) from
the first or, equivalently, from the second equation in (15). As G(ϑ) and F(r) are unique up to a common non-zero constant factor, F(r, ϑ) is
fixed up to a non-zero constant factor. Here, it is crucial to note that F(r, ϑ) is determined by the metric coefficients, i.e., that it is independent
of the plasma. As we assume that B(r, ϑ) and D(r, ϑ) are positive, it is also clear that F(r) and G(ϑ) can be chosen both positive; hence, F(r, ϑ)
is positive and it is guaranteed that it has, indeed, no zeros.

Plugging conditions (15) into (13) yields

0 = F(r)(dSr(r)
dr
)

2

+ G(ϑ)(dSϑ(ϑ)
dϑ

)

2

+ F(r, ϑ)ω2
pl(r, ϑ) +

F(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

(p2
φA(r, ϑ) − ω2

0C(r, ϑ) − 2ω0pφP(r, ϑ)). (17)

Looking still at the terms that are independent of pφ and ω0, we now see that the separability condition can hold only if the plasma
frequency ω2

pl(r, ϑ) is of the form

ω2
pl(r, ϑ) =

fr(r) + fϑ(ϑ)
F(r, ϑ)

, (18)

where fr(r) is an arbitrary function of r and fϑ(ϑ) is an arbitrary function of ϑ. Here, we have to use the positive function F(r, ϑ) that was
determined in the previous step, uniquely up to a constant factor, by the metric alone. We now consider the terms in (17) that are proportional
to p2

φ, ω2
0, and pφω0, respectively. We find that the separability condition requires that A(r, ϑ), C(r, ϑ), and P(r, ϑ)must meet the conditions

F(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

X(r, ϑ) = Xr(r) + Xϑ(ϑ), (19)

where X stands for A, C, or P.
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If the separability conditions are satisfied, we can rewrite (14) as

F(r)(dSr(r)
dr
)

2

+ f r(r) + p2
φAr(r) − ω2

0Cr(r) − 2ω0pφPr(r)

= −G(ϑ)(dSϑ(ϑ)
dϑ

)

2

− f ϑ(ϑ) − p2
φAϑ(ϑ) + ω

2
0Cϑ(ϑ) + 2ω0pφPϑ(ϑ) ≡ −K. (20)

From this equation, we read that K is independent of both r and ϑ, i.e., that it is a constant of motion. We refer to K as the (generalized) Carter
constant.

Two observations are crucial: If on the given spacetime the Hamilton–Jacobi equation for vacuum light rays does not separate, then
it does not separate for light rays in a plasma either, whatever the plasma density may be. In addition, if the Hamilton–Jacobi equation for
vacuum light rays does separate, then there is an entire family of plasma densities, given by (18) with F(r, ϑ) determined by the metric but
fr(r) and fϑ(ϑ) arbitrary such that it separates for light rays in this plasma as well.

We end this section by showing that the Carter constant is associated with a conformal Killing tensor field not only in vacuum but also
in a plasma. To that end, it is important to realize that (20) gives us the Carter constant only on the hypersurface H = 0. To extend it to the
entire cotangent bundle, we define

K(xα, pβ) = Kμν
(xα)pμpν −

1
2

f r(r) +
1
2

f ϑ(ϑ), (21)

where
Kμν
(xα)pμpν =

1
2
G(ϑ)p2

ϑ −
1
2
F(r)p2

r +
1
2
(Aϑ(ϑ) − Ar(r))p2

φ

−
1
2
(Cϑ(ϑ) − Cr(r))p2

t + (Pϑ(ϑ) − Pr(r))pφpt. (22)

This defines a symmetric second-rank tensor field Kμν
(xα) that depends on the metric coefficients but not on the plasma density. By a

straightforward calculation, this function K(xα, pβ) can be equivalently rewritten in the following two ways:

K(xα, pβ) = −F(r)p2
r − Ar(r)p2

φ + Cr(r)p2
t − 2Pr(r)pφpt − f r(r) + F(r, ϑ)H(xα, pβ), (23)

K(xα, pβ) = G(ϑ)p2
ϑ + Aϑ(ϑ)p

2
φ − Cϑ(ϑ)p

2
t + 2Pϑ(ϑ)pφpt + f ϑ(ϑ) − F(r, ϑ)H(xα, pβ). (24)

Restricting these two expressions to the hypersurface H = 0 shows that the function K defined in (21) gives us, indeed, the Carter constant,
as it was introduced in (20). The fact that K is a constant of motion means that the Poisson bracket {K,H} vanishes on the hypersurface
H = 0 for every choice of fr(r) and fϑ(ϑ). If we choose fr(r) = 0 and fϑ(ϑ) = 0, we find that the Poisson bracket {Kμν

(xα)pμpν, gρσ(xβ)pρpσ}
vanishes on the hypersurface gρσ(xβ)pρpσ = 0. This demonstrates that Kμν

(xα) is a conformal Killing tensor field of the spacetime
metric.

IV. PHOTON REGION IN A GENERAL AXIALLY SYMMETRIC SPACETIME WITH PLASMA
For simplicity, let us further generally write Ar instead of Ar(r), etc., keeping in mind that these functions depend on the argument that

they carry as an index. We can now apply the relations dSr
dr = pr and dSϑ

dϑ = pϑ. Hence, one gets

F(r)p2
r = −K − f r − p2

φAr + ω2
0Cr + 2ω0pφPr , (25)

G(ϑ)p2
ϑ = K − f ϑ − p2

φAϑ + ω
2
0Cϑ + 2ω0pφPϑ. (26)

The photon region is the set of all events through which there is a light ray that is completely contained in a hypersurface r = constant.
For the sake of brevity, we will call such light rays “spherical” in the following, even though r is not necessarily a radius coordinate. Along
each spherical light ray, the equations ṙ = r̈ = 0 have to hold, where the overdot denotes the derivative with respect to the same parameter as
in Hamilton’s equations. The equations of motion

ṙ =
∂H
∂pr
=

pr

B(r, ϑ)
, ϑ̇ =

∂H
∂pϑ
=

pϑ
D(r, ϑ)

(27)

give
B2
(r, ϑ)F(r)ṙ 2

= −K − f r − p2
φAr + ω2

0Cr + 2ω0pφPr (28)
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and

D2
(r, ϑ)G(ϑ)ϑ̇ 2

= K − f ϑ − p2
φAϑ + ω

2
0Cϑ + 2ω0pφPϑ. (29)

Hence, along every spherical light ray, the following two equations have to hold:

0 = −K − f r − p2
φAr + ω2

0Cr + 2ω0pφPr ≡ R(r), (30)

0 = − f ′r − p2
φA′r + ω

2
0C′r + 2ω0pφP′r ≡ R′(r). (31)

Here, the derivative with respect to r is denoted as ′. This gives us the constants of motion K and pφ for every spherical light ray, i.e.,

pφ =
ω0P′r

A′r

⎛

⎝
1 ±

¿
Á
ÁÀ1 −

A′r
ω2

0P′2r
( f ′r − ω2

0C′r)
⎞

⎠
, (32)

K = Ar

A′r
( f ′r − ω

2
0C′r) + ω

2
0Cr + 2

ω2
0P′r
A′r
(Pr −

ArP′r
A′r
)
⎛

⎝
1 ±

¿
Á
ÁÀ1 −

A′r
ω2

0P′2r
( f ′r − ω2

0C′r)
⎞

⎠
− f r. (33)

The other set of the equations of motion takes the form

φ̇ =
∂H
∂pφ
=

pφA(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

−
ω0P(r, ϑ)

A(r, ϑ)C(r, ϑ) + P2(r, ϑ)
, (34)

ṫ =
∂H
∂pt
=

ω0C(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

+
pφP(r, ϑ)

A(r, ϑ)C(r, ϑ) + P2(r, ϑ)
. (35)

As the left-hand side of (29) cannot be negative, the inequality

K − f ϑ ≥ p2
φAϑ − ω

2
0Cϑ − 2ω0pφPϑ (36)

has to hold. Inserting (32) and (33) leads to

Ar

A′r
(

f ′r
ω2

0
− C′r) + Cr + 2

P′r
A′r
(Pr −

ArP′r
A′r
)
⎛
⎜
⎝

1 ±

¿
Á
ÁÀ1 −

A′r
P′2r
(

f ′r
ω2

0
− C′r)

⎞
⎟
⎠
−

f r + f ϑ
ω2

0

≥ −
Aϑ

A′r
(

f ′r
ω2

0
− C′r) − Cϑ + 2

P′r
A′r
(

AϑP′r
A′r
− Pϑ)

⎛
⎜
⎝

1 ±

¿
Á
ÁÀ1 −

A′r
P′2r
(

f ′r
ω2

0
− C′r)

⎞
⎟
⎠

. (37)

At every point (r, ϑ) where this condition holds (either for the plus or for the minus sign before the square root), there is a spherical light ray,
i.e., the inequality (37) determines the photon region.

Spherical light rays may be stable or unstable with respect to perturbations in the r-direction. The unstable ones are particularly important
because they can serve as limit curves for light rays that approach the photon region from far away. A spherical light ray is unstable if

0 < R′′(r) = − f ′′r − p2
φA′′r + ω

2
0C′′r + 2ω0pφP′′r . (38)

V. BLACK HOLE SHADOW IN AN AXIALLY SYMMETRIC AND STATIONARY SPACETIME WITH PLASMA
We will now demonstrate that the separability of the Hamilton–Jacobi equation for light rays allows us to derive an analytical formula

for the boundary curve of the shadow. We will do this for the case that our spacetime describes a black hole, but we mention that the same
methodology also works for some other compact objects, e.g., for wormholes, see Example 4.
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We want to calculate the shadow for an observer located at coordinates (rO, ϑO) outside of the black hole horizon. To that end, we
introduce an orthonormal tetrad

e0 = Y1∂t + Y2∂φ∣(rO ,ϑO), (39)

e1 =
1

√
D(r, ϑ)

∂ϑ∣
(rO ,ϑO)

, (40)

e2 = Y3∂t + Y4∂φ∣(rO ,ϑO), (41)

e3 = −
1

√
B(r, ϑ)

∂r∣

(rO ,ϑO)
. (42)

The coefficients Y1, Y2, Y3, and Y4 are chosen so that the orthonormality conditions g(e0, e0) = −1, g(e2, e2) = 1, and g(e0, e2) = 0 hold.
Their concrete form can be derived for any given metric. We assume that e0 is the four-velocity of the observer. The orthonormality conditions
for our general form of metric (8) read

− A(r, ϑ)Y2
1 + 2P(r, ϑ)Y1Y2 + C(r, ϑ)Y2

2 = −1, (43)

− A(r, ϑ)Y2
3 + 2P(r, ϑ)Y3Y4 + C(r, ϑ)Y2

4 = 1, (44)
− A(r, ϑ)Y1Y3 + P(r, ϑ)(Y1Y4 + Y2Y3) + C(r, ϑ)Y2Y4 = 0. (45)

One can see that there are actually only three equations (43)–(45) for four unknowns, which means that one of the components can be
chosen arbitrarily. This reflects the fact that we can choose for the four-velocity any normalized timelike vector in the two-space spanned by
∂t and ∂φ.

A tangent vector to a light ray λ(s) = (r(s), ϑ(s),φ(s), t(s)) can be written as

λ̇ = ṙ∂r + ϑ̇∂ϑ + φ̇∂φ + ṫ∂t. (46)

Here, the overdot denotes the derivative with respect to s, which is the parameter that is used in Hamilton’s equations. At the observation
event, the same tangent vector can be written as

λ̇ = − αe0 + β(sin θ cos ψe1 + sin θ sin ψe2 + cos θe3)∣(rO ,ϑO). (47)

Factors α, β are positive. Coordinates θ and ψ denote the celestial coordinates of the observer—the colatitude and the azimuthal angle,
respectively. Due to the form of Hamiltonian (1), the light rays are parameterized as g(λ̇, λ̇) = −ω2

pl, and, approve thus,

α2
− β2
= ω2

pl∣(rO ,ϑO). (48)

Furthermore, α can be derived as

α = g(λ̇, e0) = g(λ̇, Y1∂t + Y2∂φ) = Y1(ṫgtt + φ̇gtφ) + Y2(ṫgtφ + φ̇gφφ) = Y1(−ω0) + Y2pφ, (49)

and then,

β =
√

(−Y1ω0 + Y2pφ)2
− ω2

pl . (50)

Here, all expressions have to be evaluated at (rO, ϑO). Note that our assumption α > 0 means that the light ray goes from the observer position
into the past; hence, ω0 = −pt is negative.

A general relation between celestial coordinates θ, ψ and constants of motion pφ, K can be found, comparing factors of ∂r and ∂φ in (46)
and (47). This yields

ṙ = −β cos θ
1

√
B(r, ϑ)

, (51)

φ̇ = −αY2 + β sin θ sin ψY4. (52)
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It is now desirable to plug into these general formulas the expressions for dotted variables (28), (29), (34) and (35) and factors α, β (49),
and (50) derived above. One, then, gets

sin θ =
⎛

⎝
1 +

K + f r + p2
φAr − ω2

0Cr − 2ω0pφPr

F(r, ϑ)((−Y1ω0 + Y2pφ)2
− ω2

pl)

⎞

⎠

1/2RRRRRRRRRRRRR(rO ,ϑO)
, (53)

sin ψ =
(Ar + Aϑ + F(r, ϑ)Y2

2)pφ − (Pr + Pϑ + F(r, ϑ)Y1Y2)ω0

F1/2(r, ϑ)Y4[F(r, ϑ)(−Y1ω0 + Y2pφ)2
+K − f ϑ + p2

φAr − ω2
0Cr − 2ω0pφPr]

1/2

RRRRRRRRRRRRR(rO ,ϑO)
. (54)

For discussing the shadow, we have to consider all light rays that issue from the observer position into the past. If there is only one photon
region outside of the horizon and if it consists of unstable spherical light rays, the boundary of the shadow is determined by those light rays
that asymptotically approach one of these spherical light rays. As the former must have the same constants of motion pφ and K as the latter,
we can insert (32) and (33) into (54) to get θ and ψ as functions of the radius coordinate r = rp on which pφ and K depend. This gives us the
boundary of the shadow on the observer’s sky as a curve parameterized by rp.

Minimum and maximum values of rp can be obtained from the condition sinψ = ±1. This is achieved when

(Ar + Aϑ + F(r, ϑ)Y2
2)pφ − (Pr + Pϑ + F(r, ϑ)Y1Y2)ω0∣(rO ,ϑO)

= ±F(r, ϑ)Y4[F(r, ϑ)((−Y1ω0 + Y2pφ)2
− ω2

pl) +K + f r + p2
φAr − ω2

0Cr − 2ω0pφPr]
1/2
∣
(rO ,ϑO)

. (55)

In a plasma, the shadow depends on ω0. We have already mentioned that in the case of asymptotic flatness and for a light ray that reaches
infinity, ω0 is the frequency measured by a stationary observer at infinity. As we parameterize our light rays in the past-oriented direction, ω0
is negative and the positive frequency ωobs measured by our observer at (rO, ϑO) whose four-velocity is determined by the tetrad coefficients
Y1 and Y2 is

ωobs = Y1(−ω0) + Y2pφ. (56)

If Y2 = 0, all light rays with the same ω0 give the same ωobs; this is not the case if Y2 ≠ 0.

VI. EXAMPLE 1: THE HAIRY KERR METRIC
To demonstrate how our general formula works, let us now apply it to the hairy Kerr metric. This is a generalized case to the Kerr metric,

and the obtained expressions can be, thus, easily compared with the results derived in Ref. 11. The metric describing a generalized Kerr black
hole in the Boyer–Lindquist coordinates reads (e.g., Ref. 22)

ds2
= −(1 −

2rM(r)
ρ2 )dt2

+
ρ2

Δ
dr2
+ ρ2dϑ2

−
4arM(r)

ρ2 sin2 ϑdtdφ + (r2
+ a2
+

2a2rM(r)
ρ2 sin2 ϑ)sin2 ϑdφ2, (57)

where Δ = r2
+ a2
− 2M(r)r, ρ2

= r2
+ a2 cos2 ϑ. The Kerr metric can be obtained as a special case when M(r) = m = const.

In this case, the relevant terms become

B(r, ϑ) =
ρ2

Δ
, D(r, ϑ) = ρ2, (58)

F(r, ϑ) = ρ2, F(r) = Δ, G(ϑ) = 1, (59)

Ar = −
a2

Δ
, Aϑ = sin−2 ϑ, (60)

Cr =
(r2
+ a2
)

2

Δ
, Cϑ = −a2 sin2 ϑ, (61)

Pr = −
a(r2
+ a2
)

Δ
, Pϑ = a. (62)

These are formally the same expressions as those obtained for the Kerr metric, but Δ differs, containing a general function M(r).

J. Math. Phys. 63, 092501 (2022); doi: 10.1063/5.0106433 63, 092501-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Assuming that ω2
pl(r, ϑ) = ( f r + f ϑ)/F(r, ϑ) and applying the formulas introduced above lead to

F(r)(dSr

dr
)

2

+ f r + p2
φAr − ω2

0Cr − 2ω0pφPr = Δ(
dSr

dr
)

2

+ f r −
1
Δ
(apφ + (r2

+ a2
)ω0)

2

and

−G(ϑ)(dSϑ
dϑ
)

2

− f ϑ − p2
φAϑ + ω

2
0Cϑ + 2ω0pφPϑ = −(

dSϑ
dϑ
)

2

− f ϑ − (
pφ

sin ϑ
+ a sin ϑω0)

2
.

The obtained expressions formally agree with relation (27) introduced in Ref. 11.
A difference from the Kerr metric occurs in the formula for the photon region. From general expression (37), one gets

⎡
⎢
⎢
⎢
⎢
⎢
⎣

r2Δ
(r −M − rM′)2

⎛

⎝
1 ±

¿
Á
ÁÀ1 −

f ′r(r −M − rM′)
2r2ω2

0

⎞

⎠

2

−
f r + f ϑ
ω2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

a2 sin2 ϑ (63)

≥

⎡
⎢
⎢
⎢
⎢
⎣

1
r −M − rM′

⎛

⎝
M(a2

− r2
) + rM′(r2

+ a2
) ± rΔ

¿
Á
ÁÀ1 −

f ′r(r −M − rM′)
2r2ω2

0

⎞

⎠
+ a2 sin2 ϑ

⎤
⎥
⎥
⎥
⎥
⎦

2

. (64)

The Kerr case derived in Ref. 11 is, indeed, obtained when M′ = 0.
Let us note that the expression for the hairy Kerr black hole shadow would formally be the same as introduced in Ref. 11 for the Kerr black

hole though Δ can be more general as introduced above. For this reason, the formula for the hairy Kerr black hole shadow is not explicitly
given here. Although there is a formal correspondence of the obtained expressions, the physical situation described by these two metrics can
be significantly different. A natural assumption is that in a physically relevant case, the function M(r) suitably decays with increasing r, and
the matter stress tensor arises due to a non-constant M(r) satisfying energy conditions.

VII. EXAMPLE 2: THE HARTLE–THORNE METRIC
In the Appendix of Ref. 23, a form of the Hartle–Thorne metric for the external gravitational field of a rotating star, accurate to the

second order in the angular velocity, can be found, namely,

ds2
= −(1 −

2M
r
+

2J2

r4 ){1 + 2P2(cos ϑ)[
J2

Mr3 (1 +
M
r
) +

5
8

Q − J2
/M

M3 Q2
2(

r
M
− 1)]}dt2

+ (1 −
2M

r
+

2J2

r4 )

−1

{1 − 2P2(cos ϑ)[
J2

Mr3 (1 −
5M

r
) +

5
8

Q − J2
/M

M3 Q2
2(

r
M
− 1)]}dr2

+ r2
{1 + 2P2(cos ϑ)[−

J2

Mr3 (1 +
2M

r
) +

5
8

Q − J2
/M

M3 ⟨
2M

√
r(r − 2M)

Q1
2(

r
M
− 1)

−Q2
2(

r
M
− 1)⟩]} × {dϑ2

+ sin2 ϑ(dφ −
2J
r3 dt)

2
}. (65)

Here, M, J, and Q are constants. M determines the mass, J stands for the total angular momentum, and Q is the quadrupole moment of the
star. Function P2(cos ϑ) denotes the Legendre polynomial of order 2 of the argument cos ϑ, and Qm

n (
r

M − 1) denotes the associated Legendre
functions of the second kind of the argument r

M − 1.
It was observed already by Glampedakis and Babak24 that for the Hartle–Thorne metric in the chosen coordinates, the Hamilton–Jacobi

equation for geodesics separates only in the Schwarzschild case where J = 0 and Q = 0; in all other cases, including the Kerr case Q = J2
/M ≠ 0,

separability fails. As this is true, in particular, for lightlike geodesics, it is clear that separability cannot hold in the chosen coordinates
for light rays in a plasma, whatever the plasma density may be. In this section, we will rederive this result with the help of our general
equations.
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For a better transparency, let us introduce

A1 = 1 −
2M

r
+

2J2

r4 , j =
J2

Mr3 ,

K =
5
8

Q − J2
/M

M3 , j1 =
2J
r3 , (66)

and let us write Qm
n instead of Qm

n (
r

M − 1). Let us further denote

MA = 1 + 2P2(cos ϑ)[j(1 +
M
r
) + KQ2

2], (67)

MB = 1 − 2P2(cos ϑ)[j(1 −
5M

r
) + KQ2

2], (68)

Mφ = 1 + 2P2(cos ϑ)[−j(1 +
2M

r
) + K(

2M
√

r(r − 2M)
Q1

2 −Q2
2)]. (69)

Then, the metric terms introduced in a general form in (8) are

A(r, ϑ) = A1MA − j2
1r2 sin2 ϑMφ, B(r, ϑ) = A−1

1 MB,

C(r, ϑ) = r2 sin2 ϑMφ, D(r, ϑ) = r2Mφ,

P(r, ϑ) = −j1r2 sin2 ϑMφ. (70)

It can be seen that the ratio of terms B(r, ϑ) and D(r, ϑ) gives

B(r, ϑ)
D(r, ϑ)

=
MB

A1r2Mφ
. (71)

Separability requires the right-hand side to be a function of ϑ alone divided by a function of r alone. From the way in which MB and Mφ

depend on r and ϑ, we read that this is true only if J = 0 and Q = 0, i.e., in the Schwarzschild case. In the Kerr case Q = J2
/M(≠ 0), it is possible

to change to Boyer–Lindquist coordinates in which separability is well-known to hold. The explicit form of this coordinate transformation
can be found in the above-mentioned paper by Glampedakis and Babak.24

VIII. EXAMPLE 3: THE MELVIN UNIVERSE
In this section, we discuss the specific example of the Melvin universe, which is a solution to the Einstein–Maxwell equations with

a uniform magnetic field. It was found by Bonnor25 and, then, independently rediscovered by Melvin.26 For a detailed discussion of the
geodesics in this spacetime, we refer to Ref. 27.

The metric of the Melvin universe can be written as

ds2
= ã 2
[(1 + ρ2

)
2
(−dt2

+ dρ2
+ dz2

) + ρ2
(1 + ρ2

)
−2dφ2

], (72)

where ã is a positive constant that plays the role of an overall scaling factor, t is a time coordinate, and ρ, z, and φ are the usual cylindrical
polar coordinates. We denote Λ(ρ) ≡ 1 + ρ2.

A. Separation in the spherical coordinates
To obtain a Carter constant, the separated terms have to be found. Because our general formulas defined above are written in the spherical

coordinates (t, r, ϑ,φ), we transform the cylindrical coordinates (t, ρ, z,φ) used in (72) by putting

t = t, (73)
ρ = r sin ϑ, (74)
z = r cos ϑ, (75)
φ = φ. (76)
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In the spherical coordinates, the Melvin metric can be, hence, rewritten in the form

ds2
= ã 2
[Λ2
(r, ϑ)(−dt2

+ dr2
+ r2dϑ2

) + r2 sin2 ϑΛ−2
(r, ϑ)dφ2

], (77)

where Λ(r, ϑ) = 1 + r2 sin2 ϑ. If we had Λ(r, ϑ) = 1, this would be Minkowski space.
The individual metric terms, when using the notation of Sec. III, read

A(r, ϑ) = ã 2Λ2
(r, ϑ), B(r, ϑ) = ã 2Λ2

(r, ϑ), (78)

C(r, ϑ) = ã 2r2 sin2 ϑΛ−2
(r, ϑ), D(r, ϑ) = ã 2r2Λ2

(r, ϑ), P(r, ϑ) = 0. (79)

This implies
B(r, ϑ)
D(r, ϑ)

= r−2
⇒ F(r, ϑ) = ã 2r2Λ2

(r, ϑ), F(r) = r2, G(ϑ) = 1 (80)

and

A(r, ϑ)C(r, ϑ) + P2
(r, ϑ) = ã 4r2 sin2 ϑ, (81)

F(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

A(r, ϑ) = Λ4
(r, ϑ)sin−2 ϑ = sin6 ϑ(r2

+ sin−2 ϑ)4
≠ Ar + Aϑ, (82)

F(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

C(r, ϑ) = r2
= Cr , (83)

F(r, ϑ)
A(r, ϑ)C(r, ϑ) + P2(r, ϑ)

P(r, ϑ) = 0. (84)

We see that the term A(r, ϑ) is not in a separated form, and the Carter constant cannot be obtained.

B. Separation in the cylindrical coordinates
If, however, the cylindrical-type coordinates ρ, z in which the Melvin metric was originally given [see (72)] are used instead, the separation

can be performed. Following our original notation of Sec. III, let us introduce

A(ρ, z) = ã 2Λ2
(ρ), B(ρ, z) = ã 2Λ2

(ρ), (85)

C(ρ, z) = ã 2ρ2Λ−2
(ρ), D(ρ, z) = ã 2Λ2

(ρ), P(ρ, z) = 0. (86)

All these terms are solely functions of ρ. Proceeding like before, we find

B(ρ, z)
D(ρ, z)

= 1 ⇒ F(ρ, z) = ã 2Λ2
(ρ), F(ρ) = 1, G(z) = 1 (87)

and

A(ρ, z)C(ρ, z) + P2
(ρ, z) = ã 4ρ2, (88)

Aρ = ρ−2Λ4
(ρ), Az = 0, (89)

Cρ = 1, Cz = 0, (90)
Pρ = 0, Pz = 0. (91)

Note that these results are not unique: We can always add a constant to Xρ and subtract the same constant from Xz , where X stands for
A, C, or P.

Applying (20) leads to

(
dSρ
dρ
)

2

+ f ρ(ρ) + p2
φρ
−2Λ4
(ρ) − ω2

0 = −(
dSz

dz
)

2

− f z(z) ≡ −K, (92)

which corresponds to the results introduced in Ref. 27.
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Thus, the photon region is given by the relation

ρΛ(ρ) f ′ρ(ρ)
2(3ρ2 − 1)

+ ω2
0 − f ρ(ρ) − f z(z) ≥ 0. (93)

If there is no plasma, the entire spacetime is the photon region. Note that in the Melvin universe, the photon region is filled with “cylindrical
light rays,” rather than with spherical light rays. As these cylindrical light rays are not trapped within a spatially compact region, there is no
meaningful notion of a “shadow” in the Melvin spacetime.

We mention that there are exact solutions to the Einstein–Maxwell equations that describe a Schwarzschild or a Kerr black hole immersed
in a Melvin universe; see the work of Ernst28 for the Schwarzschild case and the work of Ernst and Wild29 for the Kerr case. The shadow of
such a black hole was recently discussed in Refs. 3 and 4, respectively. However, in these cases, the equations for the light rays are not
separable.

IX. EXAMPLE 4: THE TEO WORMHOLE METRIC
To show another example where our general formulas can be used, let us turn to a stationary and axisymmetric metric describing a

rotating traversable wormhole obtained by Teo.30 Our general results will give us, for light rays in a plasma on a such spacetime, the necessary
and sufficient conditions for the separability of the Hamilton–Jacobi equation. This will allow us to analytically determine the photon region
and the shadow. We note that, without a plasma and for a subclass of Teo metrics, the shadow was already calculated by Nedkova et al.; see
Ref. 31 and cf. Refs. 32 and 33.

This system is described by the metric

ds2
= −N2dt2

+ (1 −
b
r
)

−1

dr2
+ r2K2dϑ2

+ r2K2 sin2 ϑ(dφ − ωdt)2, (94)

where N, K, b, and ω are functions of r and ϑ. The given metric is supposed to be asymptotically flat. To meet this assumption, the introduced
functions must at r →∞ obey

N = 1 −
M
r
+O( 1

r2 ), K = 1 +O(1
r
),

b
r
= O(1

r
), ω =

2J
r3 +O(

1
r4 ). (95)

The chosen coordinates are supposed to cover the spacetime region between the “neck,” which is defined by the equation b(r, ϑ) = r, and
infinity. On this domain, the functions N, b, and K have to be strictly positive. Moreover, it is assumed that ∂b(r, ϑ)/∂ϑ→ 0 and b(r, ϑ)
> r∂b(r, ϑ)/∂r if the neck is approached. Then, one can glue two copies of the spacetime together at the neck to get a wormhole that connects
two asymptotically flat ends.

According to our notation introduced in (8), it can be easily seen that

A(r, ϑ) = N2
− r2K2ω2 sin2 ϑ, B(r, ϑ) = (1 −

b
r
)

−1

,

C(r, ϑ) = r2K2 sin2 ϑ, D(r, ϑ) = r2K2, P(r, ϑ) = −ωr2K2 sin2 ϑ. (96)

This leads to [by using (15) and (19)]

F(r, ϑ) = r2K2, F(r) = r2K2
(1 −

b
r
), G(ϑ) = 1, (97)

A(r, ϑ)C(r, ϑ) + P2
(r, ϑ) = N2r2K2 sin2 ϑ, (98)

Ar = −
r2K2

N2 ω2, Aϑ = sin−2 ϑ, (99)

Cr =
r2K2

N2 , Cϑ = 0, (100)

Pr = −
r2K2

N2 ω, Pϑ = 0. (101)
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For this general form, we find

A′r = −2
rK2

N2 ω
2
− r2ω2

(
K2

N2 )

′
−

r2K2

N2 (ω
2
)
′, (102)

C′r = 2
rK2

N2 + r2
(

K2

N2 )

′
, (103)

P′r = −2
rK2

N2 ω − r2ω(
K2

N2 )

′
−

r2K2

N2 ω′. (104)

These relations show that to be able to perform the separability of variables, each of the terms

K
N

, K2
(1 −

b
r
), ω

must be a function of r only.
When the separability condition holds, a new radial coordinate ℓ can be introduced, obeying

dℓ = ±
⎛

⎝
K

√

1 −
b
r
⎞

⎠

−1

dr. (105)

This coordinate describes the radial length in a new metric obtained by a conformal transformation gμν ↦ K−2 gμν. While the original Teo
coordinates (r, θ,ϕ, t) describe only one-half of the spacetime (from an asymptote up to the neck), the new coordinates (ℓ, θ,ϕ, t) cover the
whole spacetime because ℓ runs from −∞ to∞ and, thus, from one asymptotic end to the other. In the following, however, we will use the
original Teo coordinates.

Plugging the separated terms into (20) gives the equation for the Carter constant in the form

r2K2
(1 −

b
r
)(

dSr

dr
)

2

+ f r(r) − p2
φ

r2K2

N2 ω2
− ω2

0
r2K2

N2 + 2ω0pφ
r2K2

N2 ω

= −(
dSϑ
dϑ
)

2

− f ϑ(ϑ) − p2
φ sin−2 ϑ ≡ −K. (106)

The equations for the derivatives of Sr and Sϑ can, then, be rewritten as follows:

N2
(1 −

b
r
)(

dSr

dr
)

2

= (ω0 − ωpφ)2
−

N2

r2K2 (K + f r(r)), (107)

(
dSϑ
dϑ
)

2

= K − f ϑ(ϑ) − p2
φ sin−2 ϑ. (108)

For the special case that the plasma density is zero and that each of the metric coefficients N, b, K, and ω separately depends on r only, these
equations have already been given by Nedkova et al.31

The general expressions (32) and (33) for K and pφ in this case give

ωpφ =
ω0(Q ′ +Qω′

ω ) ± ω0

√

Q 2(ω
′
ω )

2
+

f ′r
ω2

0
(Q ′ + 2Qω′

ω )

Q ′ + 2Qω′
ω

, (109)

K =
ω2

0Q(Q ω′
ω ∓

√

Q 2(ω
′
ω )

2
+

f ′r
ω2

0
(Q ′ + 2Qω′

ω ))

2

(Q ′ + 2Qω′
ω )

2 − f r , (110)

where

Q ≡ r2K2

N2

is a function of r only and ′ denotes the derivative with respect to r.
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Inserting these expressions for pφ and K into (108) leads to

Q
⎛
⎜
⎝
Q ω′

ω
∓

¿
Á
ÁÀQ 2(

ω′

ω
)

2
+

f ′r
ω2

0
(Q ′ + 2Qω′

ω
)
⎞
⎟
⎠

2

−
f r + f ϑ
ω2

0
(Q ′ + 2Qω′

ω
)

2

≥ sin−2 ϑ ω−2
⎛
⎜
⎝
Q ′ +Qω′

ω
±

¿
Á
ÁÀQ 2(

ω′

ω
)

2
+

f ′r
ω2

0
(Q ′ + 2Qω′

ω
)
⎞
⎟
⎠

2

, (111)

which is the condition for the existence of a spherical light ray around the Teo wormhole. Alternatively, this expression can be obtained by
applying the general formula (37).

With pφ and K expressed as functions of the radius coordinate r = rp by (109) and (110), respectively, Eqs. (53) and (54) give us the
boundary curve of the shadow parameterized by rp,

sin θ = (
K − f ϑ

Q (ωpφ − ω0)2 − ( f r + f ϑ)
)

1/2RRRRRRRRRRRR(rO ,ϑO)
, (112)

sin ψ =
pφ

sin ϑ
√
K − f ϑ

∣

(rO ,ϑO)
. (113)

Note that the orthonormal tetrad

e0 =
1
N
(∂t + ω∂φ)∣

(rO ,ϑO)
, (114)

e1 =
1

rK
∂ϑ∣
(rO ,ϑO)

, (115)

e2 =
1

rK sin ϑ
∂φ∣
(rO ,ϑO)

, (116)

e3 = −(1 −
b
r
)

1/2
∂r∣
(rO ,ϑO)

(117)

was applied in order to obtain the relations for the wormhole shadow.
As a specific example, we consider the Teo wormhole of the form

ds2
= Ω(r, ϑ)

⎛

⎝
−dt2

+
dr2

1 − r2
0

r2

+ r2dϑ2
+ r2 sin2 ϑ(dφ −

2 a dt
r3 )

2⎞

⎠
(118)

with

Ω(r, ϑ) = 1 +
(4 a cos ϑ)2

r3
0 r

, (119)

where r0 is a positive constant with the dimension of length and a is a constant with the dimension of length squared. The radius coordinate
ranges from r0 to infinity. The neck is situated at r0 where, indeed, the condition (r/Ω(r, ϑ))(1 − r2

0/r
2
) = 0 is satisfied.

Individual terms relevant for the photon region and the shadow of this object, thus, are

A(r, ϑ) = Ω(r, ϑ)(1 −
4a2

r4 sin2 ϑ), B(r, ϑ) = Ω(r, ϑ)(1 −
r2

0

r2 )

−1

, (120)

C(r, ϑ) = Ω(r, ϑ)r2 sin2 ϑ, D(r, ϑ) = Ω(r, ϑ)r2, P(r, ϑ) = −
2a
r
Ω(r, ϑ)sin2 ϑ. (121)
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The separated terms are

F(r, ϑ) = Ω(r, ϑ)r2, F(r) = r2
(1 −

r2
0

r2 ), G(ϑ) = 1, (122)

A(r, ϑ)C(r, ϑ) + P2
(r, ϑ) = Ω2

(r, ϑ)r2 sin2 ϑ, (123)

Ar = −
4a2

r4 , Aϑ = sin−2 ϑ, (124)

Cr = r2, Cϑ = 0, (125)

Pr = −
2a
r

, Pϑ = 0. (126)

The Carter constant exists if the plasma density is of the form

ωpl(r, ϑ)2
=

f r(r) + f ϑ(ϑ)
Ω(r, ϑ)r2 . (127)

The equations of motion (28), (29), (34), and (35) read

Ω2
(r, ϑ)r4 ṙ 2

= (r2
− r2

0)(−K + (
2a
r2 pφ − ω0r)

2
− f r(r)), (128)

Ω2
(r, ϑ)r4 ϑ̇ 2

= K −
p2
φ

sin2 ϑ
− f ϑ, (129)

φ̇ =
pφ(r4

− 4a2 sin2 ϑ) + 2 aω0 r5 sin2 ϑ
Ω(r, ϑ) r6 sin2 ϑ

, (130)

ṫ =
ω0 r3

− 2 a pφ
Ω(r, ϑ) r3 . (131)

For spherical light rays, the right-hand side of (128) and its derivative must be equal to zero. Evaluating these two equations, we see that they
are always satisfied at the neck, at r = r0, and the Carter constant of the corresponding light rays is a function of pφ, i.e.,

K(pφ) = (
2a
r2 pφ − ω0r)

2
− f r(r). (132)

In vacuum, these spherical light rays at the neck are unstable, but in the plasma, some of them may become stable depending on the special
form of the function fr(r). For r ≠ r0, setting the right-hand side of (128) and its derivative equal to zero and solving these two equations for
pφ and K show that for a light ray on a sphere of radius rp, these constants of motion are

pφ(rp) =
ω0r2

p

8a
⎛

⎝
rp ∓

¿
Á
ÁÀ9r2

p − 4rp
f ′r(rp)

ω2
0

⎞

⎠
, (133)

K(rp) =
ω2

0

16
⎛

⎝
3rp ±

¿
Á
ÁÀ9r2

p − 4rp
f ′r(rp)

ω2
0

⎞

⎠

2

− f r(rp). (134)

Hence, in addition to the photon sphere at the neck, we also have, in general, a photon region, given by (37) specified to the case at hand,

⎛

⎝
3r ±

¿
Á
ÁÀ9r2 − 4r

f ′r(r)
ω2

0

⎞

⎠

2

− 16
f r(r) + f ϑ(ϑ)

ω2
0

≥
r4

4a2 sin2 ϑ
⎛

⎝
r ∓

¿
Á
ÁÀ9r2 − 4r

f ′r(r)
ω2

0

⎞

⎠

2

. (135)

From (128), one gets the condition for the spherical light orbits in the photon region to be unstable,

0 < R′′(r) = − f ′′r (r) + 2(
40a2

r6 p2
φ + ω

2
0 −

4a
r3 ω0pφ). (136)
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In vacuum, only the upper sign in (135) is possible, and for a < r2
0/6, the photon region does not exist, i.e., only the unstable photon orbits in

the neck can serve as limit curves for light rays that determine the boundary of the shadow. For a > r2
0/6, the photon region exists. It is divided

by the photon sphere at the neck into two symmetric parts. The boundary curve of the shadow is partly formed by light rays that spiral toward
the photon sphere and partly by light rays that spiral toward unstable spherical orbits in the photon region at radii rp ≠ r0. In a plasma, the new
feature is that the photon region may become detached from the neck with the spherical orbits at the neck being stable. The boundary curve
of the shadow is, then, entirely determined by light rays that spiral toward spherical orbits in the component of the photon region that is on
the same side of the neck as the observer. The photon orbits for a wormhole with the choice of a = r2

0/3 and a = 0.8r2
0 , respectively, are shown

in Fig. 1. Note that if the plasma profile is chosen as f r = 4ω2
0r2

0(r0/r)1/2 and fϑ = 0, the photon region of the Teo wormhole with a = r2
0/3 does

not exist.
For calculating the shadow, we choose the same tetrad as in (114)–(117), which now takes the following form:

e0 =
1

√
Ω(r, ϑ)

(∂t +
2a
r3 ∂φ)∣

(rO ,ϑO)
, (137)

e1 =
1

√
Ω(r, ϑ)r

∂ϑ∣
(rO ,ϑO)

, (138)

e2 =
1

√
Ω(r, ϑ)r sin ϑ

∂φ∣
(rO ,ϑO)

, (139)

e3 = −
1

√
Ω(r, ϑ)

(1 −
r2

0

r2 )

1/2
∂r

RRRRRRRRRRRR(rO ,ϑO)
. (140)

Here, the observer position rO should not be confused with the radius r0 of the neck. Comparing the coefficients of ∂t and ∂φ in (46) with
those in (47), then, yields

α =
2apφ − ω0r3

O√
Ω(rO, ϑO) r3

O

, (141)

β =
pφ

√
Ω(rO, ϑO) rO sin ϑO sin ψ sin θ

. (142)

FIG. 1. Photon regions for the Teo wormhole in the case when (a) a = r2
0 /3 and (b) a = 0.8r2

0 . The blue dashed lines show the boundary of the photon region in the vacuum
case, while the red solid line corresponds to the case that f r = 4ω2

0r2
0(r0/r)1/2 and fϑ = 0.
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FIG. 2. Shadow of the Teo wormhole for an observer at rO = 5r0/2 and ϑO = π/2 in the case when (a) a = r2
0 /3, fr = 0, and fϑ = 0 and (b) a = 0.8r2

0 , f r = 4ω2
0r2

0(r0/r)1/2,
and fϑ = 0. The thick purple curves show the boundary of the shadow that is given by light rays spiraling toward spherical light rays in the photon region, and the thin green
curve corresponds to the shadow boundary formed by light rays that spiral toward the photon sphere at the neck, i.e., when r = r0. The dashed-dotted circle shows the
position of the celestial equator.

Here, we have used (130) and (131). Similarly, we compare the coefficients of ∂r and ∂ϑ. Inserting the resulting expressions for ṙ and ϑ̇ into
(128) and (129), substituting for β from (142), and solving for the celestial coordinates ψ and θ give

tan2 θ =
K − f ϑ(ϑO)

( 2a
r2

O
pφ − ω0rO)

2
−K − f r(rO)

, (143)

sin2 ψ =
p2
φ

(K − f ϑ(ϑO)) sin2ϑO
. (144)

Inserting pφ = pφ(rp) and K = K(rp) from (133) and (134) gives the part of the boundary curve of the shadow that is formed by light rays
that spiral toward spherical light rays in the photon region; this curve is parameterized by rp. Inserting K = K(pφ) from (132) gives the
part of the boundary curve of the shadow that corresponds to light rays that spiral toward the photon sphere at the neck; this curve is
parameterized by pφ.

The shadow as seen by an observer located at rO = 5r0/2 and ϑO = π/2 in vacuum and in a plasma, respectively, is shown in Fig. 2. The
dimensionless Cartesian coordinates used in Ref. 11 were applied to depict the shadow curve. They read

X(r) = −2 tan(
θ(r)

2
) sin(ψ(r)), (145)

Y(r) = −2 tan(
θ(r)

2
) cos(ψ(r)). (146)

The coordinates are defined in the plane that is tangent to the celestial sphere at the pole θ = 0, and the stereographic projection onto it is
performed.

X. CONCLUSIONS
Axisymmetric stationary spacetimes represent a natural arena for objects that are of astrophysical interest. If such objects are surrounded

by plasmas, the light rays are affected by both the curved geometry and properties of the medium. We studied such situations starting from
the elegant Hamiltonian formalism of the light rays propagating in general stationary axisymmetric spacetimes with a non-magnetized (hence
locally isotropic) and pressure-free plasma, which is refractive and dispersive (Sec. II). If the plasma density shares the symmetry of the space-
time, the Killing vector fields associated with stationarity and axisymmetry give us two constants of motion in addition to the Hamiltonian.
If the spacetime admits an equatorial plane and if the plasma density is symmetric with respect to the equatorial plane, this gives us enough
constants of motion for integrating the light rays in the equatorial plane and also along the axis of symmetry. For general light rays, however,
the equations of motion are not completely integrable. We investigated what conditions arise on the axisymmetric, stationary metric in the
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coordinates adapted to the symmetries [see Eq. (8)] and on the plasma density if we require the Hamilton–Jacobi equation for the rays to be
separable. Similarly to the most relevant case of this type, the Kerr metric, another constant of motion, the “generalized Carter constant,” must
exist. In Sec. III, we found these conditions [see Eqs. (15), (18), and (19)]. Assuming such a constant to exist and employing the Hamilton
equations of motion, we determined the photon region by calculating the position of the spherical light rays (Sec. IV) and the black hole
shadow in a stationary and axisymmetric spacetime with plasmas (Sec. V). As the separability condition is local in nature, our results are also
applicable to all other cases where we have two commuting Killing vector fields that span timelike two-surfaces. A noteworthy observation is
that, on a spacetime with such symmetries, the separability condition cannot hold for light rays in any plasma density if it does not hold for
light rays in vacuum.

After these considerations, we analyzed several examples in Secs. VI–IX. First, we showed how our general formulas work for the so-
called “hairy Kerr metrics” arising by assuming the mass in the Kerr metric to be a function of the radial (Boyer–Lindquist-type) coordinate
rather than a constant. Next, we turned to the Hartle–Thorne approximate metric representing exterior regions of slowly rotating objects
with a quadrupole moment and verified with the help of our general results that in the chosen coordinates, the full separability of variables
in the Hamilton–Jacobi equation cannot be achieved unless in the limiting Schwarzschild case. An instructive example demonstrating the
importance of the choice of a suitable coordinate system was presented in our discussion of the Melvin universe arising due to the strong
“uniform” magnetic field; again, we also assumed the plasma to be present. The equations for rays are separable in the “cylindrical-type”
coordinates, but not in the “spherical-type” coordinates.

The most detailed discussion was devoted to Teo’s rotating traversable wormhole spacetime with plasmas. The separability of variables
(the existence of the Carter constant) was shown to be possible if certain metric terms are only functions of the radial-type coordinate and if
the plasma density is of a certain separated form. The photon region and the shadow of the wormhole with plasmas were determined, and the
results were compared with those of Nedkova et al.31 In Fig. 1, the shapes of the photon regions around a specific Teo wormhole in vacuum
and with some specific plasma distribution are constructed; in Fig. 2, the shadows are compared.

Of course, there exist more cases of stationary and axisymmetric spacetimes with plasmas in which the Carter-type constant will exist, and
the separability of the Hamilton–Jacobi equation for rays will be feasible. For example, the “specific variant” of the old Lense–Thirring metric
(in their original asymptotic form) became recently of interest, see, e.g., Ref. 34, because they can be applied as a perfectly good approximation
for the gravitational field generated by rotating sources with angular momentum.
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APPENDIX: THE DERIVATION OF THE BASIC METRIC (8)

In this appendix, we assume an axially symmetric and stationary metric, i.e., a metric given in coordinates (t,φ, r, ϑ) with the metric
coefficients being independent of t and φ, and we prove the following two statements: The Hamilton–Jacobi equation for light rays in a
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plasma can separate only if the plasma density is independent of t and φ, and if separation holds in the chosen coordinates, then it holds in
coordinates with gtr = gtϑ = gφr = gφϑ = grϑ = 0, i.e., in coordinates such that the metric takes the form of Eq. (8). To that end, we assume that
the two Killing vector fields, ∂/∂t and ∂/∂φ, span two-dimensional hypersurfaces of signature (+,−). This assumption implies that grr and
gϑϑ are non-zero because a timelike vector cannot be tangential to a lightlike hypersurface.

We want to solve the Hamilton–Jacobi equation,

H(xα,
∂S
∂xβ
) = 0, (A1)

under the assumption that S satisfies the separation form,

S(xα) = St(t) + Sφ(φ) + Sr(r) + Sϑ(ϑ). (A2)

Then, the Hamilton–Jacobi equation reads

gtt
(

dSt

dt
)

2

+ 2gtφ dSt

dt
dSφ
dφ
+ gφφ(

dSφ
dφ
)

2

+ 2gtr dSt

dt
dSr

dr
+ 2gtϑ dSt

dt
dSϑ
dϑ
+ 2gφr dSφ

dφ
dSr

dr

+ gφϑ
dSφ
dφ

dSϑ
dϑ
+ grr
(

dSr

dr
)

2

+ 2grϑ dSr

dr
dSϑ
dϑ
+ gϑϑ(

dSϑ
dϑ
)

2

+ ω 2
pl = 0, (A3)

where ωpl is the plasma frequency. Differentiation with respect to t yields

(gtt dSt

dt
+ gtφ dSφ

dφ
+ gtr dSr

dr
+ gtϑ dSϑ

dϑ
)

d2St

dt2 + ωpl
∂ωpl

∂t
= 0. (A4)

As the plasma density is independent of the individual solution to the Hamilton–Jacobi equation, this can be true only if ∂ωpl/∂t is zero and
pt = dSt/dt is a constant. An analogous calculation shows that ∂ωpl/∂φ must be zero and pφ = dSφ/dφ must be a constant; hence,

S(x) = pt t + pφ φ + Sr(r) + Sϑ(ϑ), (A5)

with constants pt and pφ. Here, we are free to multiply the left-hand side of the Hamilton–Jacobi equation with a function F(r, ϑ) that is
non-zero but otherwise arbitrary. Written out in full, the Hamilton–Jacobi equation reads

F (gttp2
t + 2gtφptpφ + gφφp2

φ + 2gtrpt
dSr

dr
+ 2gtϑpt

dSϑ
dϑ
+ 2gφrpφ

dSr

dr
+ gφϑpφ

dSϑ
dϑ

+ grr
(

dSr

dr
)

2

+ 2grϑ dSr

dr
dSϑ
dϑ
+ gϑϑ(

dSϑ
dϑ
)

2

+ ω 2
pl) = 0. (A6)

Separability requires that the left-hand side is a function of r only plus a function of ϑ only. As this has to hold for all pt and pφ and as the
plasma density is independent of pt , pφ, Sr , and Sϑ, this gives us the following set of equations:

F gtt
= ρr + ρϑ, F gtφ

= λr + λϑ, F gφφ = σr + σϑ, (A7)

F gtr
= δr , F gtϑ

= δϑ, F gφr
= εr , F gφϑ = εϑ, (A8)

F grr
= ζr , F gϑϑ = ζϑ, grϑ

= 0, (A9)

F ω2
pl = f r + f ϑ. (A10)

Here and in the following, functions with an index r depend on r only and functions with an index ϑ depend on ϑ only. In particular, we read
from (A9) that the separability can hold only if grϑ

= 0.
We now perform a coordinate transformation,

t ↦ t + αr + αϑ, φ↦ φ + βr + βϑ, r ↦ r, ϑ↦ ϑ, (A11)

dt ↦ dt +
dαr

dr
dr +

dαϑ
dϑ

dϑ, dφ↦ dφ +
dβr

dr
dr +

dβϑ
dϑ

dϑ, dr ↦ dr, dϑ↦ dϑ, (A12)
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∂

∂t
↦

∂

∂t
,

∂

∂φ
↦

∂

∂φ
,

∂

∂r
↦

∂

∂r
−

dαr

dr
∂

∂t
−

dβr

dr
∂

∂φ
,

∂

∂ϑ
↦

∂

∂ϑ
−

dαϑ
dϑ

∂

∂t
−

dβϑ
dϑ

∂

∂φ
. (A13)

Hence,

gtr
↦ gtr

+
dαr

dr
grr
+

dαϑ
dϑ

gϑr
=

1
F
(δr +

dαr

dr
ζr), (A14)

gtϑ
↦ gtϑ

+
dαr

dr
grϑ
+

dαϑ
dϑ

gϑϑ =
1
F
(δϑ +

dαϑ
dϑ

ζϑ), (A15)

gφr
↦ gφr

+
dβr

dr
grr
+

dβϑ
dϑ

gϑr
=

1
F
(εr +

dβr

r
ζr), (A16)

gφϑ ↦ gφϑ +
dβr

dr
grϑ
+

dβϑ
dϑ

gϑϑ =
1
F
(εϑ +

dβϑ
dϑ

ζϑ). (A17)

As ζr = Fgrr and ζϑ = Fgϑϑ are non-zero, we can choose functions αr , αϑ, βr , and βϑ such that the right-hand sides of these four equations are
zero, i.e., such that in the new coordinates, the metric components gtr , gtϑ, gφr , and gφϑ vanish. Conditions (A8) are, then, still satisfied, now
with the right-hand sides equal to zero. Equations (A9) and (A10) are unchanged, whereas Eq. (A7) is still true, but now with new functions
ρr , ρϑ, λr , λϑ, σr , and σϑ, so separability still holds in the new coordinates if it did so in the original coordinates. By inverting the matrix (gμν),
we see that in the new coordinates, the metric takes, indeed, the form of Eq. (8).
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