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ABSTRACT
We perform a bivariate Taylor expansion of the axisymmetric Green function in order to
determine the exterior potential of a static thin toroidal shell having a circular section, as given
by the Laplace equation. This expansion, performed at the centre of the section, consists in an
infinite series in the powers of the minor-to-major radius ratio e of the shell. It is appropriate
for a solid, homogeneous torus, as well as for inhomogeneous bodies (the case of a core
stratification is considered). We show that the leading term is identical to the potential of a
loop having the same main radius and the same mass – this ‘similarity’ is shown to hold in the
O(e2) order. The series converges very well, especially close to the surface of the toroid where
the average relative precision is ∼10−3 for e = 0.1 at order zero, and as low as a few 10−6

at second order. The Laplace equation is satisfied exactly in every order, so no extra density
is induced by truncation. The gravitational acceleration, important in dynamical studies, is
reproduced with the same accuracy. The technique also applies to the magnetic potential and
field generated by azimuthal currents as met in terrestrial and astrophysical plasmas.
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1 IN T RO D U C T I O N

The derivation of reliable and compact expressions for the grav-
itational potential of massive toroids is a longstanding problem
of dynamical astronomy, from planetary to galactic scales. This
is essential to not only examine the motion of test particles and
fluids orbiting around, in the classical framework as well as in
general relativity (Nieto 2005; Šubr & Karas 2005; Semerák &
Suková 2010; Tresaco, Elipe & Riaguas 2011; Iorio 2012), but also
understand the conditions for the formation, evolution, and stability
of toroids themselves (Dyson 1893; Hachisu 1986; Chandrasekhar
1987; Tohline & Hachisu 1990; Woodward, Sankaran & Tohline
1992; Christodoulou 1993; Eriguchi & Mueller 1993; Hashimoto
et al. 1993; Storzer 1993; Nishida & Eriguchi 1994; Pickett,
Durisen & Link 1997; Horedt 2004; Lehmann, Schmidt & Salo
2019). While it is relatively easy to deduce the mass density
corresponding to a given potential (e.g. Binney & Tremaine 1987),
the inverse procedure is very complicated by analytical means, and it
is almost impossible to go beyond the classical series representations
and to get closed forms (Clement 1974; Cohl et al. 2001; Petroff &
Horatschek 2008). Fully numerical approaches may be preferred
for their apparent simplicity, but the computing times are generally
large, often prohibitive at high spatial resolution, especially for very
inhomogeneous configurations and/or very extended systems like
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discs. The numerical accuracy of discretization schemes is mainly
limited when treating thin sources (having less than three spatial
dimensions) whose field typically suffers a certain irregularity at
their position.

In axial symmetry, the Green function G(�r|�r ′) of the Poisson
equation involves the complete elliptic integral of the first kind K
whose argument (or modulus) gathers all the pertinent variables
(Kellogg 1929; Durand 1953; Fukushima 2016). The presence of a
special function is a real obstacle when it is to be convolved with
any non-trivial mass density ρ(�r ′). One can overcome this difficulty
by expanding K over the modulus, but the ‘dual’ nature of the series
– different for large and for short separations – means piece-wise
approximations whose connection requires technical efforts. This
is done for instance in Bannikova, Vakulik & Shulga (2011), who
match together the internal and the external potentials of the solid
(i.e. homogeneous) torus from a minimization procedure.

This article brings a new contribution to this general and chal-
lenging problem. It is inspired by Huré et al. (2019), who derived a
reliable approximation for the interior potential of a toroidal shell
of circular cross-section, based on a bivariate expansion performed
at the pole (or focal ring) of the toroidal coordinates. At this
singular point, all the partial derivatives of the Green function are
exceptionally analytical. Unfortunately, the ‘pole’ method does not
apply outside the shell cavity because the line segment linking the
focal ring to any exterior point crosses the shell where the Green
function is basically singular. We generate accurate approximations
for the exterior solution of the toroidal shell by expanding the
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axisymmetric Green function as a Taylor series before integrating
over the source. As for the classical multipole expansion, the shell
potential writes as an infinite series (e.g. Majic 2020), but our
approach differs in that the origin of coordinates does not play
a special role: the expansion is performed at the centre of the
toroid section. Such an approach has been reported very recently by
Kondratyev (2018) in the case of the solid torus. The author writes
the external potential in the form

∑
nφne2n (e is the minor-to-major

radius ratio, i.e. the torus parameter). He then uses the second-order
expression to set constraints on the masses of thin, virialized rings
orbiting an asteroid.

In this article, we go beyond the hypothesis made in Bannikova
et al. (2011) and in Kondratyev (2018) by considering inhomoge-
neous systems too. In particular, we show that, when the toroid is
radially stratified from the centre to the surface, only moments of
the density need to be calculated. The method has an unexpected
efficiency, not only at large distances but also quite close to the
surface of the toroid. The leading term has a correct behaviour at
infinity as well as on the Z-axis, and it obeys the Laplace equation.
As a matter of fact, these desirable properties are shared by all terms
of the expansion. There is thus no spurious noise or extra density
induced in space, whatever the truncation order. We treat orders 0 to
2 explicitly (a driver F90 program is appended). The resulting shell
potential can be recast in the form of a ‘modified monopole’ or in
the form of an ‘equivalent loop’, which concept has been discussed
in Stahler (1983), while proofs are found in Bannikova et al. (2011)
and Kondratyev (2018). We show that the exterior potential of the
solid torus, which is of more astrophysical relevance than the shell,
is easily deduced, with all the properties observed for the shell
maintained. The method also applies to the determination of the
vector potential and magnetic field of electromagnetism for toroids
carrying a purely azimuthal current (Trova et al. 2018).

The paper is organized as follows. In Section 2, the expression
for the potential of a toroidal shell is given in its integral form. The
axisymmetric Green function is expanded, in a bivariate manner,
in Section 3. The leading term is calculated and compared with
the potential of a monopole (i.e. a point mass) and of a circular
loop. Its precision is checked against an ‘exact’ numerical reference
in Section 4. The first-order and second-order approximations are
then treated similarly in Section 5. In Section 6, we show how the
exterior and interior solutions match together at the shell surface.
The procedure leading to the nth-order term is detailed in Section 7.
The case of a solid torus is treated in Section 8, while the case of
core-stratified toroids is the aim of Section 9. The formula for the
gravitational acceleration is derived in Section 10. In particular, we
show that the vertical component that rules hydrostatic equilibrium
differs by a factor of about 2 from Paczynski’s estimate valid for
thin discs (Paczynski 1978). This result is suited to examining the
stability of rings (e.g. Wisdom & Tremaine 1988). From the radial
component, we deduce the circular velocity of test particles orbiting
in the equatorial plane. This formula can be helpful in explaining the
deviations to the Kepler’s law in massive systems (e.g. Guilloteau,
Dutrey & Simon 1999). Section 11 is devoted to the magnetic
potential due to toroidal currents (the leading term is derived).
Two general comments are found in Section 12. Conclusions and
perspectives are found in the last section.

2 POTENTIAL O F THE TO RO IDAL SHELL

We consider the simplest possible toroidal shell, as depicted in
Fig. 1. The major radius is Rc and the meridional section is circular,

Figure 1. The infinitely thin, toroidal shell (main centre O and main radius
Rc) with a circular meridional section (centre C and core radius b).

with centre C and minor radius

b ≡ eRc ≤ Rc, (1)

where e ∈ [0, 1] denotes the shell parameter. We work in cylindrical
coordinates (R, Z), using the symmetry axis of the shell as the Z-axis,
and xOy as the plane of symmetry. For this specific problem, the
Green function of the Poisson equation (e.g. Kellogg 1929; Durand
1953) is

G(R, Z; a, z) = −2

√
a

R
kK(k), (2)

where

K(k) =
∫ π

2

0

dϑ√
1 − k2 sin2 ϑ

(3)

is the complete elliptic integral of the first kind,

k = 2
√

aR

�
∈ [0, 1] (4)

is its modulus, and

�2 = (R + a)2 + ζ 2, (5)

where ζ = Z − z, and (a, z) are the cylindrical coordinates of any
point P′ belonging to the shell. Basically, equation (2) corresponds
to the potential created by an infinitesimally thin circular ring with
unit mass per unit length, radius a, and altitude z. This function
is known to be logarithmically singular at the location of the ring
(where k → 1). The gravitational potential generated, at any point
P(�r) of space, by such axisymmetric shell is then given by the
integral

	(�r) = −2G

∫ 2π

0

(�)

√
a

R
kK(k)d�, (6)

where 
 is the local surface density, and d� is the infinitesimal
length along the shell section. In the case of a shell with a circular
section of radius Rc, a and z are simply given by

a = Rc + b cos θ, z = b sin θ, (7)

where θ ∈ [0, 2π ] is the angular position of any point P′ on
the shell with respect to the equatorial plane (see Fig. 1). The
infinitesimal length then takes its simplest form, namely d� = bdθ .
Other options are possible, but the subsequent calculations are much
more complicated (see Section 12).

The surface density 
 may be variable in local latitude θ .
However, even if it is independent of θ , equation (6) cannot in
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Figure 2. The gravitational potential of the toroidal shell in units of
GM/Rc (homogeneous case) obtained by direct numerical computation of
the integral in equation (6). The axis is in units of the main radius Rc. The
normalized core radius (or shell parameter) is e ≡ b/Rc = 0.1. Also shown
are the values on the Z-axis from the formula by Šácha & Semerák (2005)
(thick black line), the projected shell section (blue line), and its centre C
(black dot); see also Fig. 1.

general be integrated into a compact form, except on the Z-axis
(Šácha & Semerák 2005). An example of a direct numerical estimate
of 	 is given in Fig. 2 for e = 0.1. We use the trapezoidal rule as
the quadrature scheme. We will use such a numerical potential,
denoted 	 ref in the following, as a ‘reference’ against which we
will compare our approximations. As shown in Huré et al. (2019),
the potential inside the shell cavity is a quasi-linear function of the
cylindrical radius R, and it is weakly sensitive to the Z-coordinate,
especially when e � 1. We see that the potential outside the cavity
has a more complex structure. It resembles the potential of a loop,
as already pointed out (e.g. Wong 1973; Bannikova et al. 2011;
Kondratyev 2018).

3 EX PA N S I O N O F TH E G R E E N F U N C T I O N .
Z E RO - O R D E R FO R M U L A

As quoted in the introduction, the elliptic integral K may be
expanded over k at k → 0, which means far away from the source
or close to the Z-axis, and over k′ = √

1 − k2 at k → 1, e.g. close
to or even inside the source (see e.g. Abramowitz & Stegun 1964;
Gradshteyn & Ryzhik 2007). However, such two series have to be
matched somewhere (Bannikova et al. 2011). In the present paper,
we propose a more synthetic approach that consists in expanding the
axisymmetric Green function over a and z, before integration over θ

in equation (6). We expect to preserve the asymptotic behaviour of
the potential at large distances. Let us remind that, for any ‘regular
enough’ function f of two independent variables x and y, the bivariate
Taylor expansion at (x0, y0) writes

f (x, y) = f (x0, y0) +
∞∑

n=1

1

n!

{[
(x − x0)

∂

∂x ′

+ (y − y0)
∂

∂y ′

]n

f (x ′, y ′)
}

x′=x0
y′=y0

. (8)

The expansion is performed in x ≡ a and y ≡ z, at the centre C of the
shell, i.e. at x0 ≡ Rc and y0 ≡ 0 (see Section 12 for the expansion at
the focal ring). We see from equation (7) that this is valid for e < 1,
which in astrophysical toroids (typically orbiting a massive central
body) is safely satisfied.

In fact, it is not necessary to expand the whole Green function.
In particular, the term

√
a is not problematic and it can be left

aside. There are several options. For instance, if we expand kK(k)
or K(k), the subsequent integration over θ will generate a new series
of elliptic integrals (again, see Section 12). That is not a problem
per se, but it complicates the calculations when the solid torus
is considered. Seeing that the complication can be avoided when
extracting the other factor

√
a contained in the modulus equation

(4), we finally choose to expand

K(k)

�
≡ κ (9)

as

κ = κ|
a=Rc

z=0

+ (a − Rc)
∂κ

∂a

∣∣∣∣ a=Rc

z=0

+ z
∂κ

∂z

∣∣∣∣ a=Rc

z=0

+ 1

2
(a − Rc)2 ∂2κ

∂a2

∣∣∣∣ a=Rc

z=0

+ (a − Rc)z
∂2κ

∂a∂z

∣∣∣∣ a=Rc

z=0

+ 1

2
z2 ∂2κ

∂a∂z

∣∣∣∣ a=Rc

z=0

+ . . . . (10)

Note that κ is nothing but the axisymmetric Green function,
i.e.

∮ |�r − �r ′|−1dφ. Since it is a function of a, z, R, and Z, the
infinite series is a polynomial (of ‘infinite’ degree) in a and z,
whose coefficients are functions of R and Z. This series naturally
exhibits powers of the shell parameter e, which come from the partial
derivatives and from the terms a − Rc and z as well; see equation
(7). With equation (10), equation (6) becomes, at the lowest (zeroth)
order

	(�r) ≈ −4G
0κ0b × 2πRcS0,0 ≡ 	0(�r), (11)

where

k0
2 = 4RcR

�2
0

, (12)

�2
0 = (R + Rc)2 + Z2, (13)

κ0 = K(k0)

�0
, (14)

and

S0,0 = 1

2π
0Rc

∫ 2π

0

(θ )adθ (15)

called the ‘surface factor’ in the following. In this paper, we
will consider homogeneous shells, so we set 
 = const. = 
0.
Anticipating higher orders, let us define the whole series of definite
integrals

Jn,m = 1

2π

∫ 2π

0
cosn θ sinm θdθ, (16)

where n and m are positive integers. They can all be written in terms
of the complete Beta function B( n+1

2 , m+1
2 ); see Appendix A. We

give Jn,m for the first few values of n and m in Table 1. We note in
particular that Jn,m = 0 when either m or n or m + n is odd. We have
S0,0 = J0,0 + eJ1,0 = 1 and so the zero-order approximation for the
potential of the shell is approximately given by

	0(�r) = −8πG
0bRcκ0. (17)
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Table 1. Expressions for Jn,m required when expanding the
Green function up to second order. Also given are the surface
factor Sn,m and the volume factor Vn,m.

n + m n m Jn,m Sn,m Vn,m

0 0 0 1
π

B( 1
2 , 1

2 ) = 1 1 1

1 1 0 0 1
2 e2 1

4 e2

0 1 0

2 2 0 1
π

B( 3
2 , 1

2 ) = 1
2

1
2 e2 1

4 e2

1 1 0
0 2 1

π
B( 1

2 , 3
2 ) = 1

2
1
2 e2 1

4 e2

3 3 0 0
2 1 0
1 2 0

Figure 3. The factor g0,0 given by equation (19) and representing the
deviation between the potential of a monopole and the zero-order potential
of the toroidal shell. The conditions are the same as for Fig. 2. The shell
section is indicated (thick black line). A few contour lines are given: g0,0 <

1 (blue domain), g0,0 = 1 (green line), and g0,0 > 1 (red domain).

3.1 Comparison with the potential of a point mass

It is easy to compare equation (17) to the potential of some simple
sources, like the potential of a monopole (or point mass at the
origin), which is of major interest in dynamical studies. Introducing
the mass of the homogeneous shell Mshell = 4π2
0bRc, equation
(17) writes

	0(�r) = −GMshell

r
× g0,0, (18)

where r = √
R2 + Z2 is the spherical radius, and

g0,0 = r

�0

2

π
K(k0). (19)

We see that equation (17) differs from the monopole potential only
by the quantity g0,0, which is a function of the position in space
only. In the physical space, it also depends on Rc, but not on e, i.e.
g0,0 ≡ g0,0(�r; Rc). The meridional-plane contours of g0,0 are shown
in Fig. 3 in the neighbourhood of the shell. The contours are closed,
except the g0,0 = 1 one. The region where g0,0 > 1 surrounds the shell
section, while g0,0 < 1 concerns the central region near the Z-axis.

This kind of map is helpful for dynamical studies since it indicates
very well the families of bounded and unbounded trajectories
of test particles moving with a constant angular momentum (on
equatorial or inclined toroidal orbits and on purely meridional
orbits).

3.2 Comparison with the potential of a circular loop

Let us also compare the zero-order shell potential (equation 17) and
that of a circular loop of radius Rc and mass Mloop = 2πλRc, which
writes

	 loop(�r) = −2Gλ

√
a

R
k0K(k0)

= −GMloop

r

r

�0

2

π
K(k0)︸ ︷︷ ︸

g0,0

. (20)

We see that, at the zeroth order, 	0 = 	 loop at any point P in
space, and for any value of e, provided Mshell = Mloop. According
to Kondratyev (2018) (see also below), there is no term in the
expansion led by e and, more generally, by odd powers of e (this
is not guaranteed as soon as 
 varies with θ ). This implies that
	shell = 	 loop + O(e2). We can thus conclude (similarity theorem
1) that

a homogeneous toroidal shell of main radius Rc and circular
section generates, at the first order in the e-parameter, the same
exterior potential as a circular loop of same radius Rc and same
mass.

This result has a few important consequences. First, the approx-
imation thus behaves correctly at infinity and on the Z-axis as well
(limk→0 K(k0) = π

2 and k0/
√

R is finite at the Z-axis). Second, the
gravitational acceleration inherits these properties, i.e. the similarity
theorem also applies to �g = −∇	 (see below). Third, the formula
in equation (17) does not generate any residual mass distribution in
space. This is easily verifiable by calculating the Laplacian of κ0

(see Appendix B for the demonstration), i.e.

∇2	0 = 4πGρres = 0. (21)

This property is also intrinsic to the interior solutions reported in
Huré et al. (2019).

4 NUMERI CAL TESTS. DOMAI N OF VA L IDITY

Let us now compare the expression (equation 17) to the numerical
reference (see Section 2). We quantify the relative difference
by

ε = log

∣∣∣∣	 − 	ref

	ref

∣∣∣∣ . (22)

Fig. 4 shows ε in the upper half-plane Z > 0 for e = 0.1. If
we limit the statistics to the domain exterior to the shell, the
average precision is of the order of 10−3 in the vicinity of the
shell, and it is much lower in the far field. The deviation with
respect to the reference never exceeds 1 per cent. The error is
maximal near the surface of the shell, which is not a surprise.
On the other hand, the best approximation is achieved in a narrow
domain going from the top of the shell to infinity along the line
Z ∼ 0.7R.

Our expansion is performed at the centre C of the shell section.
The expanded function thus has to be smooth enough between C
and any point P′ located at the shell surface. This, however, is not the
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Figure 4. The log of the relative deviation defined by equation (22) between
	 computed by direct integration, i.e. 	ref, and the zero-order approximation
given by equation (17), in the vicinity of the shell (top) and at longer range
(bottom). The parameter of the shell (thick black circle) is e = 0.1; see Fig. 2
for the associated potential. The numbers given at the top, from left to right,
refer to the minimal, maximal, and mean values for ε, respectively, reached
within the actual computational box (and exterior to the shell).

case for K(k)/�, which is singular for any point P(R, Z) belonging
to the line segment [CP′]. Therefore, the formula in equation (10)
and subsequently the zero-order approximation is only valid outside
the cavity, namely for

(R − Rc)2 + Z2 − b2 > 0. (23)

The comparison has been checked for different values of the
shell parameter e. The results are plotted in Fig. 5, where values of
ε have been averaged over values contained inside a squared box
[1 − 2e, 1 + 2e] × [0, 4e] (in dimensionless units) encompassing
the shell section (see Fig. 4); interior values are excluded. We see
that the smaller the shell parameter, the better the approximation.

Figure 5. Average of the log of the relative deviation defined by equation
(22) versus the shell parameter for the zeroth-order (dotted line) and
the second-order approximation (solid line). The sample gathers values
contained inside the computational box 4e × 4e around the shell section
(and exterior to it).

The precision of the zero-order approximation remains better than
1 per cent for shell parameter as large as about 0.3, which is
remarkable.

5 EX PA N S I O N U P TO SE C O N D O R D E R

Though already very good, the zero-order approximation can be
improved by considering further terms in the expansion. For order
1, we have to calculate

∫ 2π

0

⎡
⎢⎣(a − Rc)

∂κ

∂a

∣∣∣∣ a=Rc

z=0

+z
∂κ

∂z

∣∣∣∣ a=Rc

z=0

⎤
⎥⎦ abdθ, (24)

where a and z are still given by equation (7). Because the
derivatives are evaluated at a = Rc and z = 0, they are not
concerned by the integration over θ and can be carried out of the
operator. There are two new surface factors to calculate, namely
(we do not include 
 in these definitions, since we assume it is
constant)

S1,0 = 1

2πR2
c

∫ 2π

0
(a − Rc)adθ (25)

and

S0,1 = 1

2πR2
c

∫ 2π

0
zadθ, (26)

but this latter term vanishes (since J0,1 and J1,1 are zero). In the first
order, the potential writes 	 ≈ 	0 + 	1, where 	0 is given by
equation (17) and

	1 = −8πG
0bR2
c

∂κ

∂a

∣∣∣∣
Rc,0

× S1,0, (27)

where S1,0 = e(J1,0 + eJ2,0). Note that the derivative ∂κ
∂a

is analytical
(see Appendix C). Since J1,0 = 0, the first-order correction depends
on e2. As 2πJ2,0 = 2B( 3

2 , 1
2 ) = π , we have

S1,0 = 1

2
e2. (28)
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It is pertinent to account for the next term in the Taylor expansion,
which also contains a contribution varying as e2. This term is

1

2

∫ 2π

0

⎡
⎢⎣(a − Rc)2 ∂2κ

∂a2

∣∣∣∣ Rc

0

+ 2(a − Rc)z
∂2κ

∂a∂z

∣∣∣∣ Rc

0

+ z2 ∂2κ

∂z2

∣∣∣∣ Rc

0

⎤
⎥⎦ abdθ, (29)

and so the second-order approximation is given by 	 ≈ 	0 + 	1

+ 	2, with

	2 = −8πG
0bR3
c

× 1

2

⎡
⎢⎣ ∂2κ

∂a2

∣∣∣∣ Rc

0

S2,0 + 2
∂2κ

∂a∂z

∣∣∣∣ Rc

0

S1,1 + ∂2κ

∂z2

∣∣∣∣ Rc

0

S0,2

⎤
⎥⎦ ,

(30)

where the derivatives are given in Appendix C. The new surface
factors are (again, 
 is removed from these definitions)

S2,0 = 1

2πR3
c

∫ 2π

0
(a − Rc)2adθ, (31)

S1,1 = 1

2πR3
c

∫ 2π

0
(a − Rc)zadθ, (32)

and

S0,2 = 1

2πR3
c

∫ 2π

0
z2adθ. (33)

We see that S1,1 = 0, again because of the odd power of z. The
non-zero terms are S2,0 = e2(J2,0 + eJ3,0) and S0,2 = e2(J0,2 + eJ1,2),
where J3,0 = J1,2 = 0, 2πJ2,0 = 2B( 3

2 , 1
2 ) = π . S2,0 = S0,2 = 1

2 e2.
We thus see that it is necessary to include both orders 1 and 2
simultaneously in order to obtain a consistent e2-approximation.
This new approximation can be put in the form of a modified
monopole, like we did for the zeroth-order expression. There is
one specific correction factor gn,m ≡ gn,m(�r; Rc, e) for each non-
zero surface factor Sn,m. We find

	1 = −GMshell

r
g1,0, (34)

where

g1,0 = r
2

π

∂κ

∂a

∣∣∣∣ a=Rc

z=0

RcS1,0, (35)

and

	2 = −GMshell

r

1

2

(
g2,0 + g0,2

)
, (36)

where

g2,0 = r
2

π

∂2κ

∂a2

∣∣∣∣ a=Rc

z=0

R2
c S2,0, (37)

and

g0,2 = r
2

π

∂2κ

∂z2

∣∣∣∣ a=Rc

z=0

R2
c S0,2. (38)

Because of the circular section, S2,0 = S0,2, which implies that
the partial sum 	1 + 	2 can be rewritten in a very compact form.
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Figure 6. The same legend and the same conditions as for Fig. 4, but for
the second-order approximation (i.e. e2-approximation).

We actually find

g1,0 + 1

2

(
g2,0 + g0,2

) = r
2

π
× e2

8k′2�3
0

×
{[

�2
0 − 2Rc(Rc + R)

]
E(k) − k′2�2

0K(k)
}

, (39)

which is to be multiplied by −GMshell/r.
Fig. 6 compares the second-order approximation obtained from

equations (17), (27), and (30) with the reference values (see
Section 2), as computed under the same conditions as in Fig. 4.
We notice that the e2-approximation reproduces the potential with
almost six-digit precision in the close vicinity of the shell. At
larger distances, the expansion is extremely efficient (in the present
example, the potential is known with more than 10 digits for r/Rc �
5 typically). The variation of the averaged precision as a function
of the shell parameter e is plotted in Fig. 5, in the same conditions
as for the zeroth-order approximation.
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Figure 7. Logarithm of the difference between the interior solution (Huré
et al. 2019) and the exterior solution for the zeroth-order (dotted line) and
second-order approximations (plain line). The shell parameter is e = 0.1.

6 VALUES AT THE SURFAC E. MATCH W ITH
T H E IN T E R I O R SO L U T I O N

At the surface of the shell, we have R = Rc + bcos θ and Z = bsin θ ,
or equivalently (R − Rc)2 + Z2 − b2 = 0 with R ∈ [Rc − b, Rc +
b]. If we introduce these expressions in equation (12), the modulus
k0 simplifies into

k0
2 = 4RRc

4RRc + b2
. (40)

Using these values in equations (17), (27), and (30), we get the
potential at the shell surface, which can be compared to the values
obtained from the interior solution reported in Huré et al. (2019);
see their equations (35), (36), and (39). The results are displayed
in Fig. 7, again for e = 0.1. We see that the matching is very good
at the second order (with at least four correct digits). At the zeroth
order, the interior solution reduces to a constant potential throughout
the toroidal cavity, which is quite crude while the exterior solution
already depends on the radius R.

7 G ENERALIZATION TO NT H - O R D E R
EXPANSION

It is possible to include further terms in the Taylor series. Since the
expansion writes formally

κ = κ0 +
∞∑

n=1

1

n!

n∑
m=0

(
n

m

)
(a − Rc)n−mzm

× ∂nκ

∂an−m∂zm

∣∣∣∣ a=Rc

z=0

, (41)

where
(

n

m

)
denotes the binomial coefficient, the potential can be

exactly reconstructed by multiplying equation (41) by a, followed
by the integration over the latitude angle θ . If the infinite series is
truncated at order N, the potential is of the form

	 ≈ 	0 +
N∑

n=1

	n, (42)

where the nth-order contribution 	n is made of n + 1 terms, namely

	n = −4G
0
1

n!

n∑
m=0

(
n

m

)

× ∂nκ

∂an−m∂zm

∣∣∣∣ a=Rc

z=0

× 2πbRn+1
c Sn−m,m, (43)

where we have set (still in the homogeneous case)

Sn,m = 1

2πRn+m+1
c

∫ 2π

0
(a − Rc)nzmadθ

= en+m(Jn,m + eJn+1,m). (44)

Note that 	n + 1 � 	n when e � 1, and the equality in equation
(42) is obtained in the limit N → ∞. In the form of the modified
monopole representation, the n-order correction is

	n = −GMshell

r

n∑
m=0

gn,m, (45)

where

gn,m = 2

π
r × 1

n!

(
n

m

)
∂nκ

∂an−m∂zm

∣∣∣∣ a=Rc

z=0

Rn
c Sn−m,m. (46)

Since the two operators ∇2
R,Z and ∂n/∂an − m∂zm act on different

spaces, we have

∇2
R,Z

(
∂nκ

∂an−m∂zm

)
= ∂n

∂an−m∂zm

(∇2
R,Zκ

) = 0 (47)

for any pair (n, m). This is expected because κ is a harmonic function
(see Section 4). We thus conclude that ∇2

R,Z	n = 0, for any n, which
means that each term of the expansion separately obeys the Laplace
equation. Therefore, expanding the Green function over a and z

induces no residual source mass in space, whatever the order of the
truncation.

8 TH E S O L I D TO RU S

The above solution for the shell can be employed to obtain the
potential of a solid toroid. This is achieved by integrating equation
(6) over b, while the surface density 
 is changed for ρdb, ρ being
the mass density. The result is

	(�r) = −4G

∫ b

0

∫ 2π

0
ρ(b′, θ )aκb′dθdb′, (48)

where κ can be replaced by its Taylor expansion, namely equation
(10). In the leading term, i.e. using just equation (17), we have

	0(�r) = −4Gκ0 × πRcb
2ρ0V0,0, (49)

where ρ0 is some typical mass density, and V0,0 is the ‘volume
factor’ defined in general by

V0,0 = 1

πρ0Rcb2

∫ b

0
b′db′

∫ 2π

0
ρ(b′, θ )adθ, (50)

where b
′ = e

′
Rc ≤ b. As quoted, the mass density ρ may vary with

both θ and b
′

(see below). In the homogeneous case, we have ρ =
const. = ρ0, and so equation (50) becomes

V0,0 = 2

ρ0e2

∫ e

0
ρ(e′)e′S0,0(e′)de′

= 2

e2

∫ e

0
e′S0,0(e′)de′, (51)
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Table 2. Expressions for the volume factor Vn,m in the
case of core-stratified toroids according to equations (58)
and (59).

n + m n m Vn,m homogeneous
Equation

(59)

0 0 0 1 α
α+1

1 1 0 1
4 e2 α

4(α+2) e
2

0 1

2 2 0 1
4 e2 α

4(α+2) e
2

1 1 0 0
0 2 1

4 e2 α
4(α+2) e

2

where the dependence of the surface factor with the shell parameter
e has been explicit. Introducing the total mass of the homogeneous
torus Msolid = 2π2ρ0b2Rc, the zero-order formula can be written in
the form

	0(�r) = −GMsolid

r
g0,0, (52)

where we have set

g0,0 = r

�0

2

π
K(k0)V0,0. (53)

Again, the difference from the point-mass potential is represented
by the term g0,0, while the deviation with respect to the potential
of a massive loop (of radius a = Rc) is given by the volume factor
V0,0. For the zero-order approximation, we have V0,0 = 1, and so
	solid = 	 loop + O(e2). We can thus conclude (similarity theorem
2) that

a solid torus of main radius Rc and circular section generates, at
the first order in the e-parameter, the same exterior potential as a
circular loop of radius Rc and same mass.

The derivation of the e2-term requires V1,0, V2,0, and V0,2, which
are listed in Table 2. These quantities happen to be equal (due to
the circular section). As a consequence, the partial sum 	1 + 	2

resembles1 the formula derived in Kondratyev (2018). We finally
find

	1 + 	2 = e2

(
−Gπρ0Rcb

2

4k′2�3
0

{ [
�2

0 − 2Rc(Rc + R)
]

E(k)

− k′2�2
0K(k)

})
. (54)

We have compared equation (49) to a reference obtained by direct
numerical integration of equation (48). As we have observed, the
error map is the same as for the shell, which is expected since the
only difference between the shell and the torus stands in the volume
factor that is analytical. This remark holds for the e2-approximation.

More terms in the expansion of κ can be accounted for. The
n-order contribution is

	n = −4G
1

n!

n∑
m=0

(
n

m

)
∂nκ

∂an−m∂zm

∣∣∣∣ a=Rc

z=0

× 2πRn+1
c ρ0

∫ b

0
Sn−m,m(b′)b′db′, (55)

1We notice two differences between equation (54) and the formula (14) by
Kondratyev (2018): the factor R3

0 should be R0r
2
0 ≡ Rcb

2 (since the φ2 term
is multiplied by e2), and the factor 16 at the denominator should be 4.

where Sn − m, m depends on b
′

as indicated. If we set the volume
factor Vn,m to

Vn,m = 1

2πRn+m+1
c

2

b2

∫ b

0
b′db′

∫ 2π

0
(a − Rc)nzmadθ

= 2

e2

∫ e

0
Sn,m(e′)e′de′, (56)

then 	n has the same form as equation (45), where Sn − m, m is just
to be replaced by Vn − m, m and Mshell by Msolid. It can be checked
that 	n is harmonic.

9 IN H O M O G E N E O U S SY S T E M S

As a matter of fact, equation (41) works for inhomogeneous
systems. Actually, the expansion depends on a and z only through
powers of cos θ and sin θ . If 
(θ ) is prescribed, the knowledge
of any term 	n just requires the calculation of the surface factors
according to

Sn,m = 1

2π
0Rn+m+1
c

∫ 2π

0

(θ )(a − Rc)nzmadθ

= em+n

2π
0

∫ 2π

0

(θ ) cosn θ sinm θ (1 + e cos θ )dθ. (57)

We see that the Sn,ms are combinations of moments of the surface
density profile, which are analytical for a wide family of 
(θ )
profiles. In a similar way for the solid torus, if ρ depends both on θ

and b
′ ≤ b, then the volume factors are calculated following

Vn,m = 1

2πρ0Rn+m+1
c

2

b2

∫ b

0
b′db′

∫ 2π

0
ρ(b′, θ )(a − Rc)nzmadθ

= em+n

πρ0

∫ 1

0
x ′n+m+1

dx ′

×
∫ 2π

0
ρ(x ′, θ ) cosn θ sinm θ (1 + bx ′ cos θ )dθ, (58)

where we have set b
′ = bx

′ ≤ b. We can go a little bit further in
the analysis by considering the case where the two variables b’ and
θ are separable, i.e. ρ(b

′
, θ ) = f(b

′
) × g(θ ). This corresponds to

toroids having a core stratification. For instance, if we assume the
θ invariance and (with 2α > −1)

ρ(b′) = ρ0

[
1 −

(
b′

b

)2α
]

, (59)

then the volume factor required at order zero (i.e. n = m = 0) is

V0,0 =
∫ 1

0
2x ′(1 − x ′2α)dx ′

= α

1 + α
. (60)

Note that V0,0 → 1 as α → ∞. Since MsolidV0,0 is just the
total mass M of the (inhomogeneous) core-stratified torus, we
have 	 = 	 loop + O(e2). We can conclude (similarity theorem 3)
that

a core-stratified torus of main radius Rc and circular section
generates, at the first order in the e-parameter, the same exterior
potential as a circular loop of radius Rc and same mass.

Table 2 lists values of Vn,m corresponding to equation (59).
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Figure 8. Square of the circular velocity in the equatorial plane of the
toroid as given by equation (63), i.e. at order zero. The curve has to be
truncated at the actual outer radius, which is 1 + e in dimensionless units.
Negative values take sense only when a massive central object is present.
The Keplerian velocity due to a point mass with the same mass is shown in
comparison.

1 0 G R AV I TAT I O NA L AC C E L E R AT I O N

For a massive loop, the non-zero components of acceleration �g =
−�∇	 are given by (Durand 1953; Huré 2005)

gR = GMloop

2πRcR

√
Rc

R

× k0

[
E(k0) − K(k0) + (Rc − R)k0

2E(k0)

2Rck
′
0

2

]
, (61)

and

gZ = − GMloopZ

4πRRc

√
RRc

k0
3E(k0)

k′
0

2 . (62)

According to the similarity theorems 1 to 3, the acceleration outside
a shell, solid torus, or core-stratified toroid is the same as for a loop
having the same mass M, and deviations are O(e2). This result is
very convenient for a study of the motion of orbiting test particles.
Several types of trajectories can be distinguished. Of particular
interest are circular trajectories tied to the equatorial plane of the
shell/torus and having R �∈[Rc − b, Rc + b]. The orbital velocity
v2

φ = R∇R	 is easily deduced from equation (61). We find

v2
φ(R) = GM

R + Rc

1

π

[
K(k0) + R + Rc

R − Rc

E(k0)

]
, (63)

where k0 = 2
√

RRc

R+Rc
follows from equation (12), where Z has been

set to 0. Fig. 8 displays equation (63) versus the radius. Note that
v2

φ(R) ≤ 0 for R ∈ [0, Rc − b], which means that orbits are in
principle forbidden in this region, unless a massive central object
is present. The Keplerian profile associated to a point mass at the
origin is shown in comparison. For R ≥ Rc + b, the velocity is super-
Keplerian. It is a decreasing function of the radius, the maximum
value being reached at the outer radius Rc + b of the toroid. To the
detriment of precision, we can replace the elliptic integrals by more
standard functions when k0 → 1, which corresponds to particles
orbiting very close to the inner/outer radius of the toroid. Within
this limit, K(k0) ∼ ln 4(R+Rc)

|R−Rc | and E(k0) ∼ 1.
Another interesting quantity is the vertical component of acceler-

ation at the surface of thin/small rings. It is a fundamental ingredient
that governs the hydrostatic equilibrium of astrophysical discs (e.g.

Figure 9. Vertical acceleration at the surface of the toroid in units of Gρb.
Paczynski’s approximation valid for geometrically thin, extended systems
is shown in comparison.

Shakura & Sunyaev 1973; Pringle 1981). By setting E(k0) ≈ 1,
which again corresponds to the vicinity of the toroid, we find

gZ = −2πGρb
sin θ√

1 + e cos θ + e2

4

, (64)

where θ ∈ [0, π ] above the equatorial plane. This quantity is plotted
in Fig. 9 for e = 0.1 as the torus parameter. It varies between 0 at
the inner/outer edges to about −2πGρb at θ = π

2 . It is interesting
to see that Paczynski’s approximation (Paczynski 1978), classically
written as −4πGρZ, overestimates the acceleration by a factor 2 in
the middle of the toroid. This observation may be of importance in
oscillation modes in planetary or other rings (Wisdom & Tremaine
1988; Lehmann et al. 2019). It also means that, in a geometrically
thin discs where Paczynski’s approximation is valid, half of the
vertical acceleration comes from the local contribution of matter,
while the other half comes from the global or long-range distribution
of matter (Trova, Huré & Hersant 2014).

11 MAGNETI C POTENTI AL AND FI ELD FO R
P U R E LY A Z I M U T H A L C U R R E N T S (I N
S U R FAC E A N D VO L U M E )

The method presented in this paper can also be applied to the
determination of the vector potential of electromagnetism. Toroidal
currents are met in both terrestrial and astrophysical plasmas (Dini
et al. 2009; Trova et al. 2018). The magnetic potential A = Aφeφ

of a toroidal shell carrying a purely azimuthal electric current σ �eφ

is obtained by summing over the contribution of individual current
loops (Jackson 1998; Cohl et al. 2001), namely

Aφ(�r) = μ0

2π

∫ 2π

0
σ (θ )

√
a

R

(2 − k2)K(k) − 2E(k)

k
bdθ, (65)

where I = b
∮

σ (θ )dθ is the total current. Similarly as for the
gravitational problem, we have to select some part of the Green
function. A convenient choice appears to be

1

�

{
2

k2
[K(k) − E(k)] − K(k)

}
≡ κ ′. (66)

By expanding κ
′
over a and z at the centre C of the shell, i.e. at a =

Rc and z = 0, and integrating over the latitude θ (see Section 3), we
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get the leading term

Aφ(�r) = μ0b

π
× κ ′

0

∫ 2π

0
σadθ

= 2μ0σbRcκ
′
0S0,0, (67)

where κ ′
0 stands for κ

′
evaluated at C, σ = const. is assumed, and

S0,0 is given by equation (15). A θ -dependent surface density of
current would lead to a different surface factor. Again, we notice
that equation (67) formally differs from the expression for a current
loop only by the term S0,0, which is unity in the homogeneous case.
We thus state (similarity theorem 4) that

a toroidal shell of main radius Rc and circular section carrying
a uniform surface current generates, at the first order in the e-
parameter, the same exterior magnetic potential as a circular loop
of radius Rc carrying the same current.

The theorem holds in the O(e2) order. It applies likewise to the
magnetic field B = ∇ × A. The e2-approximations for the poloidal
components BR and BZ of the shell are then given by

BR = μ0I

2π

Z

R�0

[
R2 + R2

c + Z2

(R − Rc)2 + Z2
E(k0) − K(k0)

]
, (68)

BZ = μ0I

2π

1

�0

[
− R2 − R2

c + Z2

(R − Rc)2 + Z2
E(k0) + K(k0)

]
. (69)

We can deduce the magnetic potential and field of a solid
torus carrying a uniform current density J = Jφeφ , following the
procedure given in Section 8. The e2-approximation for the vector
potential is obtained from equation (67), where S0,0 is to be replaced
by V0,0 (which is also unity in the present case). So, we can state
(similarity theorem 5) that

a toroid of main radius Rc and circular section carrying a
uniform volume current density generates, at the first order in the
e-parameter, the same exterior magnetic potential (and the field) as
a circular loop of radius Rc carrying the same current.

The reader can verify that this theorem also works for a core-
stratified current, as for the gravitational problem.

1 2 G E N E R A L C O M M E N T S

The paper resides on the expansion of K(k)/�. Other options are
possible as quoted before. If we expand kK(k) instead of K(k)/� in
the Green function, it can be shown that g0,0 is changed for

g0,0 = r

�0

2

π
K(k0) × S0,0, (70)

where

S0,0 = 2

π
E(p)

√
1 + e, (71)

E(k) =
∫ π/2

0

√
1 − k2 sin2 ϑdϑ (72)

is the complete elliptic integral of the second kind, and

p2 = 2e

1 + e
∈ [0, 1]. (73)

With this approach, again, S0,0 still does not depend on R and Z,
but solely on e. It is plotted in Fig. 10. As we can see, its range
of variation, namely [ 2

√
2

π
, 1], is very small. As a consequence,

equations (19) and (70) are very close, and Fig. 3 is almost
unchanged. Besides, we have

S0,0 = 1 − e2

16
− 15e4

1024
+ . . . (74)

Figure 10. The quantity S0,0 given by equation (71).

for e ≤ 1. Since S0,0 = 1 for e = 0, we still have lime → 0	0 = 	 loop.
The similarity theorem 1 reads in this case as
a homogeneous toroidal shell of mass M, main radius Rc, and

circular section of radius b = eRc generates, at the second order
in the e-parameter, the same exterior potential as a circular loop of
radius Rc and mass MS0,0, where S0,0 is given by equation (71).

It can be shown after some algebra that the next three surface
factors are respectively

S1,0 = 2

3π

√
1 + e [E(p) − (1 − e)K(p)] , (75)

S2,0 = 8

15π

√
1 + e

[(
9

2
e2 − 1

)
E(p) + (1 − e)K(p)

]
, (76)

and

S0,2 = 4

15π

√
1 + e

[
(3e2 + 1)E(p) − (1 − e)K(p)

]
, (77)

and the corresponding error map is, as verified, similar to Fig. 6.
Another important comment concerns the point where the expan-

sion is performed. In Huré et al. (2019), the choice for the expansion
at the focal ring a = Rp was strategical: this is the only point in space
that makes the modulus k of the elliptic integral constant all along
the circular section of the shell. The motivation for choosing the
centre of the circular section here (instead of the focal ring) is
similar: the calculation of the integral in equation (6) is facilitated,
in particular through the expression for d� = bdθ . If we use for
instance the toroidal coordinates (η, ζ ) ∈ [0, ∞] × [−π , π ], the
integral over θ in equation (6) can be converted into an integral over
ζ . We have in this case

a = Rp
sinh η

cosh η − cos ζ
, z = Rp

sin ζ

cosh η − cos ζ
, (78)

where Rp is the radius of the pole (or focal ring), and the line element
is d� = Rp

dζ

cosh η−cos ζ
. As a consequence, the potential writes

	(�r) = −4GRp
2
∫ π

−π

K(k)

�
sinh η


(ζ )dζ

(cosh η − cos ζ )2
, (79)

where the modulus k and � depend on ζ . The expansion of κ in
x0 = Rp (and y0 = 0 still; see Sections 3 and 7) generates, for the
homogeneous shell, integrals of the form

Rp
n+m+2

∫
(cosh η − cos ζ − sinh η)n

(cosh η − cos ζ )n+m+2
sinm ζdζ . (80)

At order zero (i.e. for n = m = 0), we find

	(�r) ≈ −8GRp
2
0κ0S0,0, (81)
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where

S0,0 = 2 sinh η0

∫ π

−π

dζ

(cosh η0 − cos ζ )2

= cosh η0

sinh2 η0
= bRc

Rp
2 , (82)

and so we recover equation (17). For higher terms, (80) have to
be calculated analytically for all pairs (n, m), and this manifestly
requires more effort than for the Jnms.

13 CONCLUSION AND PERSPECTIVES

The exterior potential of a static thin toroidal shell, as given by
the Laplace equation, is obtained from a double Taylor expansion
of the axisymmetric Green function. Each term is then integrated
over the source, as in the multipole theory. Here, the expansion is
performed at the centre of the circular section instead of the origin of
coordinates. The series converges very well and provides a solution
that satisfies the Laplace equation in every order, so no ‘ghost’
sources are induced by truncation. In practice, the efficiency of the
method is remarkable, with already three correct digits at order zero
for toroids having an axial ratio of 0.1. At order 2, this precision is
almost doubled (to six digits), which should be sufficient for most
applications.

At order 2 in the shell parameter (minor-to-major radius ratio),
a shellular, solid, or core-stratified toroid generates an exterior
potential (and field) similar to that of a thin circular loop having
same main radius and same mass. We meet the results by Bannikova
et al. (2011) and Kondratyev (2018). A few similarity theorems,
which all resemble the Gauss theorem, have been proposed. The
approximations for the exterior potential reported here together
with the interior solutions reported in Huré et al. (2019) yield a
complete description of the potential of a toroidal shell of circular
section, at any point of space. It then becomes possible to deduce the
interior solution for the solid torus, since both interior and exterior
shell solutions are required in this operation. Next, the energy for
the formation of a solid torus becomes accessible. It would be worth
to generalize the method to any kind of source shape, not limited to
circular section, through specific prescriptions for a(θ ) and z(θ ), or
z(a). This would open exciting perspectives, in particular for oblate
structures such as geometrically thin discs.
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APPENDIX A : INTEGRALS Jn,m

From Gradshteyn & Ryzhik (2007), we have∫ π/2

0
cosn θ sinm θdθ = 1

2
B

(
n + 1

2
,
m + 1

2

)
, (A1)

where B(x, y) = �(x)�(y)
�(x+y) is the complete Beta function, and �(x) is the Gamma function. From this expression, we can easily deduce Jn,m

(integral bounds 0 and 2π ). We find

Jn,m = 1

2
B

(
n + 1

2
,
m + 1

2

)[
1 + (−1)n

] [
1 + (−1)n+m

]
. (A2)

It follows that Jn,m = 0 when n is even or when n + m is even (n and m have different parity). The expressions for Jn,m are given in Table 1
for n = {0, 1, 2, 3, 4} and m = {0, 1, 2, 3, 4}.

APPENDIX B: R ESIDUA L MASS D ENSITY

The residual density is found from the Poisson equation, i.e.

∇2

[
K(k)√

(a + R)2 + Z2

]
= k0K(k0)

4R2
+
[

∂2k

∂R2
+ ∂k2

∂Z2

]
E(k0)

k′
0

2 +
[(

∂k

∂R

)2

+
(

∂k

∂Z

)2
]

(1 + k0
2)E(k0) − k′

0
2K(k0)

kk′
0

4 , (B1)

where the partial derivatives of K(k) and E(k) with respect to the modulus k are found in mathematical textbooks (Gradshteyn & Ryzhik
2007). By expanding all the terms inside the curly brackets, this quantity is strictly zero provided a − R �= 0 and Z �= 0, which never occurs
in free space.

APPENDIX C : PARTIAL D ERIVATIVES

There are different ways to calculate the partial derivatives of κ with respect to a and z. We find convenient to rewrite K(k) as the definite
integral over the azimuth, i.e. equation (3). The denominator is then expanded and rearranged so that the n-order derivative with respect to a
and z writes

∂nκ

∂an−m∂zm
= ∂n

∂an−m∂zm

∫ π
2

0

dφ√
�2 − 4aR sin2 φ

=
∫ π

2

0
dφ

∂n

∂an−m∂zm

{
[a + R cos(2φ)]2 + [R sin(2φ)]2 + ζ 2

}−1/2
. (C1)

Denoting D = [a + Rcos (2φ)]2 + [Rsin (2φ)]2 + ζ 2, we have

∂D−1/2

∂a
= − [a + R cos(2φ)] D−3/2 (C2)

and

∂2D−1/2

∂a2
= −D−3/2 + 3 [a + R cos(2φ)]2 D−5/2. (C3)

It follows that

∂κ

∂a
=
∫ π

2

0

∂D−1/2

∂a
dφ = −(a + R)�−3 E(k)

k′2 + 2R�−3 E(k) − k′2K(k)

k2k′2 (C4)

and

∂2κ

∂a2
=
∫ π

2

0

∂2D−1/2

∂a2
dφ

= −�−3 E(k)

k′2 + 3�−3 E(k)

k′2 − 3ζ 2�−5 2(1 + k′2)E(k) − k′2K(k)

3k′4 − 12R2�−5 (1 + k′2)E(k) − 2k′2K(k)

3k4k′2

= 2�−3 E(k)

k′2 − ζ 2�−5 2(1 + k′2)E(k) − k′2K(k)

k′4 − 4R2�−5 (1 + k′2)E(k) − 2k′2K(k)

k4k′2 . (C5)

For the z-derivatives, we have

∂D−1/2

∂z
= ζD−3/2,

∂2D−1/2

∂z2
= −D−3/2 + 3ζ 2D−5/2 (C6)

and, consequently,

∂κ

∂z
= ζ

∫ π
2

0

∂D−1/2

∂z
dφ = ζ�−3 E(k)

k′2 (C7)
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and

∂2κ

∂z2
=
∫ π

2

0

∂2D−1/2

∂z2
dφ = −�−3 E(k)

k′2 + ζ 2�−5 2(1 + k′2)E(k) − k′2K(k)

k′4 . (C8)

A P P E N D I X D : F9 0 P RO G R A M F O R TH E E X T E R I O R P OT E N T I A L

Program F90drivercode3
! ’’The exterior gravitational potential of toroids’’
! Hure, Basillais, Karas, Trova & Semerak (2019), MNRAS
! gfortran F90drivercode3.f90; ./a.out
! not optimized
Implicit None
Integer,Parameter::AP = Kind(1.00D + 00)
Real(Kind=AP),Parameter::PI = ATAN(1. AP)∗4
Real(KIND = AP)::B,RC,MASS,E ! core radius, main radius and mass of the shell, and ax-

ial ratio
Real(KIND = AP)::KMOD,KMOD2,KPRIM,KPRIM2 ! moduli
Real(KIND = AP)::R,Z,PSI ! cylindrical coordinates and potential value where it is esti-

mated
Real(KIND = AP)::Z2,VAL,DELTA,DELTA2,DELTA3,DELTA4,DELTA5 ! misc
Real(KIND = AP)::KMOD4,KPRIM4,S0,S10,S20,S02,D32,S2D32,D52,S2C2D52 ! misc
Real(KIND = AP)::ELLIPTICK,ELLIPTICE ! complete elliptic integrals
! ? input parameters (properties of the shell)
B = 0.1 AP
RC = 1. AP
E = B/RC
MASS = B∗RC∗PI∗∗2∗4
print∗,’’Mass of the shell’’,MASS
! ? values of R and Z where the potential is requested (must be outside the cavity!)
R = RC∗2
Z = RC∗2
Z2 = Z∗∗2
If ((R-RC)∗∗2 + Z2-B∗∗2<0. AP) Then

! approximation not valid inside the shell
PSI = 0. AP

Else
DELTA2 = (R+RC)∗∗2 + Z2
KMOD2 = RC∗R∗4/DELTA2
DELTA = Sqrt(DELTA2)
KPRIM2 = ((R-RC)∗∗2 + Z2)/DELTA2
! values of K(k) and E(k) to be set here !
! ELLIPTICE =
! ELLIPTICK =
!misc.
DELTA3 = DELTA2∗DELTA
DELTA5 = DELTA3∗DELTA2
KMOD4 = KMOD2∗∗2
KPRIM4 = KPRIM2∗∗2
! surface factors
S0 = 1. AP
S10 = E∗∗2/2
S20 = E∗∗2/2
S02 = S20
! coefficients
D32 = ELLIPTICE/KPRIM2
S2D32 = (ELLIPTICE-KPRIM2∗ELLIPTICK)/KPRIM2/KMOD2
D52 = ((1. AP + KPRIM2)∗ELLIPTICE∗2-KPRIM2∗ELLIPTICK)/KPRIM4/3
S2C2D52 = ((1. AP + KPRIM2)/KPRIM2∗ELLIPTICE-ELLIPTICK∗2)/KMOD4/3
! order 0
VAL = ELLIPTICK/DELTA∗S0
! order 1
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VAL = VAL+RC∗(-(R+RC)∗D32/DELTA3 + S2D32/DELTA3∗R∗2)∗S10
! order 2
VAL = VAL+RC∗∗2∗((-D32/DELTA3 + D32/DELTA3∗3-D52∗Z2/DELTA5∗3-S2C2D52/DELTA5∗R∗∗2∗12)∗S20&

&+(-D32/DELTA3 + D52∗Z2/DELTA5∗3)∗S02)/2
PSI = -VAL∗B∗RC∗PI∗8
Print ∗,’’Potential value (2nd-order)’’,PSI,PSI/MASS∗RC

Endif
End Program F90drivercode3

This paper has been typeset from a TEX/LATEX file prepared by the author.
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