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Vibrational excitation in the e+CO2 system: Nonlocal model of �� vibronic coupling through
the continuum
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We present our model of the e+CO2 system that has been used to calculate the two-dimensional electron
energy-loss spectrum of CO2 for incoming electron energies up to 5 eV reported in our Letter [Phys. Rev. Lett.
129, 013401 (2022)]. We derive the effective Hamiltonian that describes the nonlocal dynamics of CO −

2 within
the full vibrational space and in the presence of the 2�+

g virtual state and the Renner-Teller coupled 2�u shape
resonance. The electronic states are represented by three discrete states that interact directly with each other and
also indirectly through the electronic continuum that consists of s and p partial waves. Based on our ab initio
fixed-nuclei R-matrix calculations, parameters of the model are determined using a fitting procedure that utilizes
the high symmetry of the system. The topology of the resulting complex potential energy surfaces is discussed.
The model is constructed in such a way that the Hamiltonian expressed in a harmonic vibrational basis of the
neutral molecule is a sparse matrix which enabled us to solve the multidimensional dynamics of vibrational
excitation using iterative methods based on Krylov subspaces.
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I. INTRODUCTION

The model of the discrete state in continuum has been used
for the description of inelastic electron-molecule collisions for
a long time [1]. The most natural application of the model is
to narrow resonances where the finite lifetime of a compound
electron-molecule state is directly related to the negative
imaginary part of the potential [2]. In such cases, the model
is known as the local-complex-potential (LCP) approxima-
tion or the boomerang model [3]. However, a more elaborate
form of the theory with a nonlocal and energy-dependent
effective potential is necessary in systems where a bound
anionic state disappears in the continuum when the molecular
geometry is deformed without becoming a clear resonance
[4]. The importance of nonlocal effects has been recognized
by Cederbaum and Domcke [5], who were also the first to
solve the full nonlocal version of the dynamics for harmonic
molecular potentials using the continuous fraction method [6].
Later the nonlocal dynamics was numerically solved also for
realistic ab initio potentials of diatomic molecules leading
to a good correspondence with experimental data; see, for
example, Ref. [7] and references therein.

In the application of the nonlocal approach to polyatomic
molecules, we face numerous challenges including the pres-
ence of much more parameters for the construction of such
models and a more difficult treatment of the dynamics. The
interaction of multiple anionic states is also more often in-
volved in polyatomics. Triatomic molecules already represent
a very challenging problem, for which, however, a nearly
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complete solution of the dynamics may be hoped for. A
large step in this direction within the LCP approximation has
been done for the electron scattering from CO2 [8,9], H2O
(see Haxton et al. [10,11] and references therein), and HCN
[12,13]. In the case of water and carbon dioxide molecules,
authors even treated the nonadiabatic coupling of multiple
metastable states. Although the LCP approximation correctly
captures many features, its limitations in the case of the H2O
molecule have been pointed out in Ref. [11]. To the best
of our knowledge only two works extend the calculations
for polyatomic molecules beyond the LCP approximation
and take into account more than one vibrational degree of
freedom. Recently, Abalampitiya and Fabrikant [14] treated
the dissociative attachment to the CF3Cl molecule through a
single discrete anionic state within the nonlocal theory with
two relevant vibrational degrees of freedom. The full nonlocal
vibronic dynamics of two discrete states and two vibrational
modes was discussed for a model Hamiltonian by Estrada
et al. [15]. Further generalization of this model with exam-
ples for specific molecules were discussed by Feuerbacher
et al. [16,17], but they focused on only static aspects of
the potential energy surfaces and made no attempts to solve
the dynamics.

We extend the approach of Estrada et al. [15] to the case of
three electronic states of a linear triatomic molecule and four
vibrational coordinates. We apply it to vibrational excitation
of the CO2 molecule by slow electrons. Since our work is
rather extensive, we discuss it in three papers. Main results
of our calculations together with new experimental data mea-
sured by our colleagues are presented in Ref. [18], where
we propose our interpretation of the two-dimensional electron
energy-loss spectrum of CO2. Here we describe the theoretical
model, its construction from ab initio data, and a procedure
how to solve the dynamics. The third paper (a follow-up to
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this one) will focus on a detailed comparison and discussion
of the theoretical and experimental results.

There is an extensive literature on theoretical description
of vibrational excitation of the CO2 molecule. We will review
the previous works in more detail in a follow-up to this pa-
per. Here we would like to mention few works that affected
our choice of the particular form of the model. The electron
scattering off CO2 up to about 2 eV is dominated by the 2�+

g
virtual state [19–21]. For energies around 4 eV Boness and
Schulz [22] observed a boomerang structure in their vibra-
tional excitation cross sections, which they attributed to a 2�u

shape resonance.
The near-threshold region was studied by Whitten and

Lane [23] and Mazevet et al. [24]. Estrada and Domcke
[25] performed one-dimensional (1D) calculations in sym-
metric stretching using the discrete-state-in-continuum model
to study the effect of the virtual state. The most advanced
treatment of the near threshold region so far has been the
effective-range-potential model of combined excitation of
symmetric stretching and bending by Vanroose et al. [26]. The
theoretical treatment of the 2�u shape resonance also involves
works of different complexity. We would like to mention
the 1D description of the origin of boomerang oscillations
by Čadež et al. [27] and 2D LCP studies by Kazansky and
Sergeeva [28,29] and Rescigno et al. [8] who included both
the symmetric stretching and bending, even based on ab initio
fixed-nuclei data in the latter case. Finally, McCurdy et al.
[9] improved the description even further by considering the
Renner-Teller splitting of the 2�u resonance.

The 2�+
g and 2�u states have been treated separately in all

previous theoretical works. It is well known that the potential
of the ground state of CO −

2 possesses a minimum in C2v

geometry [30,31] and ab initio calculations of Resigno et al.
[32] indicated that the minimum is connected to the 2�u shape
resonance through the lower Renner-Teller component. On the
other hand, R-matrix calculations of Morgan et al. [21,33]
showed that the virtual state becomes bound upon bending
too; see also the discussion in the introduction of Vanroose
et al. [34], who tried to provide an insight into this problem
using an analytically solvable scattering model. Sommerfeld
[35] reported that when a very diffuse basis is used, the poten-
tial energy of the ground state of CO −

2 behaves qualitatively
differently than the earlier calculations [30,31] had shown.
The potential does not monotonically rise along the trajectory
from the minimum to the autodetachment region but it drops
before reaching the crossing point with the neutral potential,
and then it crosses or rather merges with the neutral poten-
tial. On top of that, Sommerfeld et al. [36] argued that the
minimum is connected to the virtual state which mixes with
the lower Renner-Teller component as the molecule bends
[37]. Hence, they suggested that the low-energy scattering off
CO2 should be treated as a coupled nonlocal problem of the
2�+

g and 2�u states. In this paper we present our attempt to
construct such a model.

The paper is organized as follows. In Sec. II we review
basic ideas of the nonlocal model for the description of vi-
brational excitation by electron impact in the case of multiple
interacting discrete states and several vibrational degrees of
freedom. Then we apply the approach to the 2�+

g and 2�u

states of CO −
2 taking into account all vibrational modes. We

show how the D∞h symmetry of the system restricts the model
structure. Section III represents a preparation stage for the
model construction from ab initio data. We describe there
the relation of diabatic and adiabatic representations within
the model and the effect of gradual lowering of the molecular
symmetry on fixed-nuclei scattering quantities. In Sec. IV we
first describe our ab initio fixed-nuclei R-matrix calculations
and then we focus on obtaining model parameters from these
data using a least-squares fitting procedure. The quality and
interpretation of the resulting model is discussed in Sec. V.
Finally, Sec. VI is devoted to numerical details considering
the evaluation of the nonlocal Hamiltonian and solution of
the dynamics. We conclude in Sec. VII by summarizing the
results and discussing possible future improvements of the
present concept for the application to other molecular systems.

II. VIBRONIC COUPLING MODEL

The model is based on work by Estrada et al. [15] who
generalized the original vibronic coupling model for bound
states [38] to the case of short-lived states. They described a
polyatomic system with two anionic discrete states of differ-
ent symmetries and two vibrational degrees of freedom. The
discrete states were coupled only directly through a nontotally
symmetric vibrational mode since the coupling with the elec-
tronic continuum was considered independent of vibrational
coordinates. Here we extend their approach in two ways.
The general vibronic coupling scheme in linear molecules as
discussed by Köppel et al. [37] is used for the direct coupling
of three discrete electronic states considering all vibrational
modes of a linear triatomic molecule. Moreover, we apply the
same scheme to the vibronic coupling of the discrete states
with the continuum.

A. General discrete-states-in-continuum model

The key assumption of the model is that vibrational ex-
citation of a molecule is mediated by a small number of
metastable anionic discrete states that are formed by the at-
tachment of an incoming electron to the neutral molecule. The
effective Hamiltonian for the dynamics within the discrete-
state space is then derived using the projection-operator
formalism of Feshbach [39].

The electronic Hilbert space of the electron-molecule sys-
tem is separated into a discrete-state (or resonant)1 subspace
and a background continuum subspace. We define the projec-
tion operator on the discrete-state subspace by

Q =
∑

d

|d〉〈d|, (1)

where d runs over all included discrete states. The comple-
mentary operator

P = I − Q, (2)

1Since the discrete states involved in the context of electron-
molecule collisions are not limited to resonances, this term caused
some confusion in the past. We will mostly use the term discrete
state instead of resonance.
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where I is the identity operator, then projects on the back-
ground continuum part. The discrete states |d〉 thus form a
basis in the discrete-state part of the electronic Hilbert space.
The basis |εμ〉 of the continuum part is chosen to diagonalize
the fixed-nuclei electronic Hamiltonian Hel projected on the
background space

PHelP|εμ〉 = [V0 + ε]|εμ〉, (3)

where ε and μ denote energy and additional quantum numbers
identifying the electronic states in the continuum. As a result,
Hel can be formally written as the following infinite matrix:

Hel = V0 I +

⎛
⎜⎜⎜⎝

U Vε

. . .

V †
ε ε

. . .

⎞
⎟⎟⎟⎠, (4)

where V0 is the potential energy surface of the neutral
molecule, U = Q(Hel − V0I )Q is a matrix describing the
discrete-state energies relative to the threshold V0 (diagonal
elements) and also the direct interaction among the discrete
states (off-diagonal elements), and Vε = QHelP represents
the interaction of the discrete states with the electronic con-
tinuum states.

The potential energy V0(�q ) and all matrix elements
Udd ′ (�q ) = 〈d|U |d ′〉, V μ

dε
(�q ) = 〈d|Vε |εμ〉 depend on nuclear

coordinates �q. The vibrational motion is included into the
dynamics by adding the kinetic energy operator TN for nu-
clei to Hel. The electronic continuum is eliminated by the
projection-operator formalism of Feshbach [39], which as-
sumes the diabaticity of the full basis |d〉, |εμ〉. It means that
all sharp features in the dependence on the molecular geome-
try �q such as resonances or virtual states have to be eliminated
from the continuum |εμ〉 by the choice of the discrete states.
As a consequence of the diabaticity, the projection operators
Q and P commute with the kinetic energy operator TN . Then
the vibrational dynamics of the electron-molecule collision
process is reduced to the electronic discrete-state subspace
Q only. For details we refer the reader to reviews [40,41]
which treat the system with only one discrete state but the
generalization to more states is straightforward.

The effective Hamiltonian for the vibrational motion of the
molecular anion reads

H = H01 + U + F (E − H0), (5)

where H0 = TN + V0 is the vibrational Hamiltonian of the
neutral molecule, 1 is the unit operator in the discrete-state
subspace, U is the same matrix as in Eq. (4), F (E − H0)
is the level-shift operator resulting from the interaction with
the continuum, and E denotes total energy of the system that
is conserved during the process. Throughout this paper, we
reserve the symbol E only for the total energy. Electron energy
will be denoted by ε. The elements of the level-shift operator
matrix are defined by the integrals

Fdd ′ (E − H0) =
∑

μ

∫
V μ

dε
(E − H0 − ε + iη)−1V μ∗

d ′ε dε, (6)

where η is a positive infinitesimal. This operator is a matrix in
the discrete-state indices d , d ′ and is also a nonlocal operator
in the nuclear coordinates �q.

The discrete-state (resonant) contribution to the T matrix
for vibrational excitation from the initial vibrational state νi to
the final state ν f is given by

Tν f μ f ←νiμi = 〈ν f |V μ f †
ε f (E1 − H )−1V μi

εi
|νi〉, (7)

where μi and μ f denote the initial and final electron partial
waves. The initial εi and final ε f electron energies satisfy the
conservation law

E = Eνi + εi = Eν f + ε f (8)

with internal vibrational energies Eνi , Eν f of the neutral
molecule given by H0|ν〉 = Eν |ν〉. By solving the vibrational
dynamics of the collision we mean the application of the
matrix inversion (E1 − H )−1 on the initial state. Details are
given in Sec. VI, where the integral and differential cross
sections obtained from the T matrix are also discussed.

B. Coordinates and states for e+CO2 model

The discussion of the dynamics of the electron-molecule
collision within the framework of the nonlocal model has been
completely general so far. At this point we introduce details
specific for the low-energy e+CO2 collisions.

1. Normal vibrational coordinates

We describe nuclear configurations �q of the molecule in
terms of normal vibrational coordinates �q = {Qi}. The CO2

molecule is linear and symmetric in its equilibrium geometry.
Thus, it has four vibrational modes: symmetric stretching,
antisymmetric stretching, and two-dimensional bending. We
denote the corresponding dimensionless normal coordinates
by Qg, Qu, Qx, and Qy, respectively, which are defined in
accordance with Witteman [42] in Appendix A. It is conve-
nient to describe bending in terms of complex coordinates
Q± = Qx ± iQy. Moreover, it also becomes useful to use polar
bending coordinates (ρ, ϕ) defined by

Qx = ρ cos ϕ, Qy = ρ sin ϕ, (9)

so that Q± = ρe±iϕ and ρ2 = Q2
x + Q2

y = Q+Q−.
We prefer to use normal coordinates measured in bohrs

when we compare ab initio data with fixed-nuclei quantities
obtained within the model. These coordinates are denoted by
Sg, Su, Sx, and Sy and are also defined in Appendix A. Finally,
we denote the magnitude of bending by Sb which is defined
by S2

b = S2
x + S2

y .

2. Discrete electronic states

As discussed in the introduction, to capture the phenomena
in the low-energy electron scattering with CO2 we include
both Renner-Teller components of the 2�u shape resonance
and the 2�+

g virtual state of CO −
2 in our discrete-state space.

In the following discussion we simplify the notation and use
d ∈ {�+, �,�−} to identify the individual discrete states.
These states are eigenstates of the projection of the electronic
angular momentum operator on the molecular axis corre-
sponding to eigenvalues h̄, 0,−h̄, respectively. Sometimes it
is useful to work with real Cartesian components �x, �y,
which are given by the relations �± = (�x ± i�y)/

√
2.
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Note that there is one more state of 2�g symmetry in the
energy window of interest, which connects to the O− + CO
dissociative attachment channel [43]. We do not consider this
state for two reasons. First, it would be very difficult to include
the dissociative channel in our calculation with four vibra-
tional degrees of freedom. Second, this channel is connected
through a conical intersection that is not much permeable
since the magnitude of the dissociative attachment cross sec-
tion [44] is at least one order of magnitude smaller then the
vibrational excitation cross section even at high-energy loss
[22].

3. Continuum electronic states

In general, the projection operators Q and P defined
by Eqs. (1) and (2) are totally symmetric. The background
scattering problem Eq. (3) is therefore solved in the same
symmetry as the original neutral molecule and we can label
the background continuum states according to the irreducible
representations of the D∞h point group.

In order to describe primary features of the e+CO2 dy-
namics, we have to include at least all four components of
s and p electron partial waves. The 2�+

g virtual state at the
equilibrium molecular geometry is observed in fixed-nuclei
eigenphases of the �+

g symmetry. This includes partial waves
(l, m) for even values of l and m = 0. We consider only
the lowest partial wave of this symmetry, (l, m) = (0, 0), in
our model and we denote the respective continuum states by
|εμ〉 with μ = s. Similarly, the 2�u shape resonance at the
equilibrium geometry is observed in the �u symmetry, which
corresponds to partial waves with odd l and m = ±1. We
again limit the model to the lowest allowed l , that is l = 1, and
the continuum states are denoted by |εμ〉 with μ = p+ and
μ = p−. Finally, we want to describe excitation of one quan-
tum of asymmetric stretching, which is of the �+

u symmetry.
Since the molecule is originally in the totally symmetric state,
the product of representations of the incoming and outgoing
electrons have to contain the �+

u representation. The lowest
partial waves allowing for this possibility is the combina-
tion of an s-wave and pz-wave electron, i.e., (l, m) = (1, 0).
Therefore, we include continuum states |εμ〉 with μ = pz of
the �+

u symmetry. To summarize, the continuum coupling ma-
trix Vε = {V μ

dε
} is a 3 × 4 matrix in our model for three values

of d ∈ {�+, �,�−} and four values of μ ∈ {s, pz, p+, p−}.
Once again, we also sometimes use Cartesian components px,
py defined by the relations p± = (px ± ipy)/

√
2.

C. Symmetry restrictions on U and Vε matrices

Up to now, we have considered an arbitrary dependence
of the U and Vε matrices on the normal coordinates. At the
equilibrium geometry, the CO2 molecule has the symmetry
given by the D∞h point group, and therefore, the full Hamil-
tonian Eq. (4) and consequently also the effective Hamiltonian
Eq. (5) and the matrices U and Vε have to be invariant with re-
spect to symmetry operations of the D∞h group. This imposes
strong restrictions on the possible dependence of individual
matrix elements on the vibrational coordinates.

The discrete state �, symmetric stretching coordinate Qg,
and |εs〉 continuum states transform according to the �+

g rep-
resentation of D∞h, the antisymmetric stretching coordinate

Qu and |εpz〉 continuum states transform as �+
u , and the dis-

crete states �±, bending coordinates Q± and |εp±〉 continuum
states as �u. Let us denote either states or coordinates that
transform according to the �+

g , �+
u , and �u representations

by σg, σu, and π±, respectively. The rotation Cα by an angle α

around the molecular axis then gives [45]

Cασg = σg, Cασu = σu, Cαπ± = e±iαπ±. (10)

Similarly, the reflection σvα through the plane that contains the
molecular axis (z axis) and is inclined by angle α with respect
to the x axis acts as

σvα σg = σg, σvα σu = σu, σvα π± = e±2iαπ∓, (11)

and finally, under the inversion I the states transform in the
following way:

Iσg = σg, Iσu = −σu, Iπ± = −π±. (12)

On top of that, the D∞h group also contains rotations by 180◦
about lines that are perpendicular to the molecular axis and
improper rotations around the molecular axis, but we do not
need these operations to derive the form of the U and Vε

matrices.
We explicitly derive the dependence of the U�+� =

〈�+|U |�〉 element on the normal coordinates. Under the
rotation we get

Cα (|�+〉U�+�〈�|) = eiα|�+〉(CαU�+� )〈�|. (13)

To compensate the factor exp(iα), the U�+� element has to
transform as the Q− bending coordinate, that is U�+� = λ1Q−
where λ1 can be a function of Qg, Qu, and totally symmetric
combination Q+Q− = ρ2. Similarly, we find out that U�−� =
〈�−|U |�〉 = λ2Q+. Under the reflection we have

σvα (|�+〉U�+�〈�|) = e−2iα|�−〉(σvα U�+� )〈�|, (14)

which leads to the following condition:

e−2iα (σvα U�+� ) = U�−�, (15)

which implies λ1 = λ2 ≡ λ. Finally, the Q− coordinate also
compensates the sign change under the inversion

I (|�+〉U�+�〈�|) = −|�+〉(IU�+� )〈�|, (16)

hence, the function λ can not depend on odd powers of Qu. In
the end, we have U�+� = λQ− and U�−� = λQ+, where λ is
an arbitrary function of totally symmetric combinations of the
normal coordinates, that is, a function of Qg, Q2

u, and Q+Q−.
By performing the symmetry analysis for the remaining

elements of U , we get

U =
⎛
⎝

�+ � �−
�+ E� λQ− ξQ2

−
� λQ+ E� λQ−
�− ξQ2

+ λQ+ E�

⎞
⎠, (17)

where E�, E� , λ, and ξ are in general arbitrary functions of
Qg, Q2

u, and ρ2. We are going to discuss a different basis for
the discrete-state subspace in the next section, thus for clarity,
we label the matrix rows and columns by the corresponding
discrete states in Eq. (17) and in similar expressions that will
follow.
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The continuum coupling matrix Vε depends not only on the
vibrational coordinates but also on electron energy ε. How-
ever, the energy dependence does not change the symmetry
properties and we can derive the Vε elements in the same way
as for U . We obtain

Vε =
⎛
⎝

s pz p+ p−
�+ v�sQ− v�zQ−Qu v�p w�pQ2

−
� v�s v�zQu v�pQ+ v�pQ−
�− v�sQ+ v�zQ+Qu w�pQ2

+ v�p

⎞
⎠ (18)

where v�s, v�s, v�z, v�z, v�p, v�p, and w�p are again arbi-
trary functions of totally symmetric coordinates Qg, Q2

u, ρ2

and of the energy ε.
The nonlocal potential matrix F (ε) can be obtained di-

rectly from Eq. (6). Note that when the E -H0 operator is
substituted for the argument of F (ε), a special attention has
to be paid to the evaluation of the operator since the nor-
mal coordinates do not commute with H0. We return to this
problem in Sec. VI but for the discussion here and in the
next section it is sufficient to consider only F (ε) with ε be-
ing a positive real number (electron energy). This level-shift
potential matrix F (ε) enters the description of the electron
scattering from the molecule with fixed positions of nuclei.
Now, we can split the integral in Eq. (6) into Hermitian and
anti-Hermitian components using the well-known formula
(x + iη)−1 = v.p. x−1 − iπδ(x) from theory of distributions,
where v.p. is the Cauchy principal value and δ(x) is the Dirac
δ distribution, and we get

Fdd ′ (ε) = �dd ′ (ε) − (i/2)�dd ′ (ε), (19a)

�dd ′ (ε) = 2π
∑

μ

V μ

dε
V μ∗

d ′ε , (19b)

�dd ′ (ε) = v.p.

2π

∫
dx

�dd ′ (x)

ε − x
. (19c)

Then the nonlocal matrix F is as follows:

F (ε) =
⎛
⎝

�+ � �−
�+ F�(ε) f��(ε)Q− f�(ε)Q2

−
� f��(ε)Q+ F� (ε) f��(ε)Q−
�− f�(ε)Q2

+ f��(ε)Q+ F�(ε)

⎞
⎠,

(20a)

where imaginary parts multiplied by −2 (the widths) of the
F�, F� , f��, and f� terms are given from Eq. (19b) by

�� = 2π
(
v2

�sρ
2 + v2

�zρ
2Q2

u + v2
�p + w2

�pρ
4
)
, (20b)

�� = 2π
(
v2

�s + v2
�zQ

2
u + 2v2

�pρ
2
)
, (20c)

γ�� = 2π
[
v�sv�s + v�zv�zQ

2
u + v�p(v�p + w�pρ

2)
]
,

(20d)

γ� = 2π
(
v2

�s + v2
�zQ

2
u + 2v�pw�p

)
, (20e)

and real parts are given by the Hilbert transform Eq. (19c). In
formulas above we for simplicity assumed that functions vdμ,
w�p are real.

Before we continue to the fixed-nuclei approximation and
static properties of our model, the derived Hamiltonian de-
serves a few comments. Potential energy surfaces of the �

and �± discrete states in the diabatic representation are given

by V0 + E� and V0 + E�, respectively. The discrete states are
shifted and broadened by the electronic continuum via the
F� (ε) and F�(ε) terms, and in addition, they directly interact
with each other via off-diagonal elements of the matrix U
and also indirectly through the continuum via off-diagonal
elements of F (ε). The mutual interaction of the discrete states
vanishes not only at the equilibrium geometry, which is the
consequence of the definition of the diabatic basis we work
in, but also for any linear geometry because the asymmet-
ric stretching can not change the angular momentum of the
electronic states. The ξ and f�(ε) terms are responsible for
the Renner-Teller splitting of the shape resonance upon bend-
ing. The λ and f��(ε) terms cause the interaction of one
Renner-Teller component with the virtual state as discussed
by Sommerfeld et al. [36]. We also see that the continuum
coupling Vε Eq. (18) is consistent with our initial discussion in
Sec. IIB3, that is, at the equilibrium the virtual state is coupled
only to the s wave and the �u resonance to the p+ and p−
(or equivalently to px and py) waves (p orbitals perpendicular
to the molecular axis). However, when the molecule is bent,
the � states can interact with the s wave through the v�s

term, which as we will see is important in understanding of
a rather peculiar behavior of the lower Renner-Teller state [8].
A deformation of the geometry in Qu is necessary for the in-
teraction with the pz wave. The mentioned effects will become
more apparent in the fixed-nuclei approximation discussed in
the next section and in the discussion of the constructed model
in Sec V.

III. FIXED-NUCLEI PROBLEM

We obtain the fixed-nuclei Hamiltonian HFN by omitting
the kinetic-energy operator TN from Eq. (5)

HFN = V01 + U + F (ε), (21)

where the argument ε = E − V0 (electron energy) of the level-
shift function F is no longer an operator. It is important
to discuss the electron scattering and eigenenergies of this
operator since they will be compared to ab initio data to
fix the unknown functions Ed , λ, ξ , vdμ, w�p in the model.
While the whole vibronic dynamics of our problem respects
the full D∞h symmetry, the symmetry of the fixed-nuclei
problem is lowered by deformations of the geometry. The
full symmetry is preserved for deformations by pure symmet-
ric stretch �q = (Qg, 0, 0, 0). The addition of the asymmetric
stretch �q = (Qg, Qu, 0, 0) removes the symmetry plane per-
pendicular to the molecular z axis and reduces the symmetry
to C∞v , while pure bending deformations �q = (Qg, 0, Qx, Qy)
remove the rotational axis and restricts the symmetry to C2v .
The molecule deformed in all directions �q = (Qg, Qu, Qx, Qy)
still has one nontrivial symmetry element (reflection through
the molecular plane), i.e., Cs symmetry group. Depending
on the geometry the matrix of the fixed-nuclei Hamiltonian
Eq. (21) changes its form. As discussed above the matrix is
diagonal in the linear D∞h and C∞v cases. The structure of
the matrix is not completely general even if the molecule is
bent. To see this we have to transform the discrete states to
obtain a symmetry-adapted basis, which is the same for both
the C2v and Cs cases.
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A. Transformation to symmetry-adapted basis for deformed
geometries

In bent geometries the molecular plane is given by the
z axis and the line pointing in the direction of the bending
vector (Qx, Qy, 0) ∼ (cos ϕ, sin ϕ, 0). The symmetry-adapted
components �|| and �⊥ of the 2�u resonance are obtained by
rotating the Cartesian components �x, �y around the z axis
by angle ϕ:

�|| = cos ϕ �x + sin ϕ �y, (22a)

�⊥ = − sin ϕ �x + cos ϕ �y. (22b)

By expressing �|| and �⊥ in terms of �±, we get

�|| = (e−iϕ�+ + eiϕ�−)/
√

2, (23a)

�⊥ = (e−iϕ�+ − eiϕ�−)/
√

2. (23b)

Similarly, (e−iϕ |εp+〉 ± eiϕ |εp−〉)/
√

2 give the continuum
electron partial waves |εp||〉 and |εp⊥〉 adapted to the C2v and
Cs symmetries.

When Qu = 0, the in-plane component �|| transforms ac-
cording to the same A1 representation of the C2v group as the
� virtual state. On the other hand, the �⊥ state, which is
perpendicular to the molecular plane, transforms according
to the B1 representation. Using these new basis states the
Hamiltonian HFN Eq. (21) splits into two blocks. A 2×2 block
that consists of the � and �|| states and a 1×1 block for the
�⊥ state. The same structure is obtained in the general Cs

case. The � and �|| states transform according to the same
A′ representation and lead to a 2×2 block in HFN, while �⊥
transforms according to the A′′ representation giving a 1×1
block. We performed all ab initio calculations discussed later
in the Cs group; therefore, we use the nomenclature of the
Cs group for the decoupled problems even in the C2v case.
The same reasoning can be applied to the 3×4 discrete-state-
continuum coupling matrix Vε . It splits into a 1×1 component
V A′′

ε that couples the �⊥ state to the p⊥ partial wave and a
2×3 block V A′

ε that couples the �, �|| discrete states to the s,
pz, and p|| partial waves.

For the A′′ block describing the upper Renner-Teller com-
ponent we have

HA′′ = V0 + UA′′ + FA′′ (ε) (24a)

with

UA′′ = E� − ξρ2, (24b)

FA′′ (ε) = F�(ε) − f�(ε)ρ2. (24c)

Alternatively, we can calculate the nonlocal potential FA′′ (ε)
using Eq. (19) with the coupling amplitude

V A′′
ε = v�p − w�pρ

2. (25)

For the A′ problem comprising of the virtual state interact-
ing with the lower Renner-Teller component the Hamiltonian
reads

HA′ = V012 + UA′ + FA′ (ε), (26a)

where 12 is the 2×2 unit matrix and

UA′ =
( � �||

� E�

√
2λρ

�||
√

2λρ E� + ξρ2

)
, (26b)

FA′ (ε) =
( � �||

� F� (ε)
√

2 f��(ε)ρ
�||

√
2 f��(ε)ρ F�(ε) + f�(ε)ρ2

)
. (26c)

In this case, the coupling amplitudes are given by

V A′
ε =

( s pz p||
� v�s v�zQu

√
2v�pρ

�||
√

2v�sρ
√

2v�zρ Qu v�p + w�pρ
2

)
. (27)

The results of this section are important for the under-
standing of a very different behavior of the two Renner-Teller
components upon bending of the CO2 molecule [9]. Let us
repeat that the originally degenerate 2�u resonance splits into
2A1 and 2B1 states (in the nomenclature of the C2v group) as
the molecule bends, which are described within our model by
the diabatic discrete states �|| and �⊥, respectively. The 2A1

state (�||) is totally symmetric which has two consequences.
First, it couples to the electronic s-wave continuum through
the v�s term in the nonlocal potential F�(ε) + f�(ε)ρ2; see
Eqs. (26c), (20b), and (20e). Second, it can also interact with
the virtual state � either directly through λ [see Eq. (26b)]
or indirectly through the electronic continuum via the f��(ε)
nonlocal potential [see Eqs. (26c) and (20d)]. On the other
hand, the 2B1 (�⊥) state is not totally symmetric, and thus, it
interacts only with the p⊥ continuum in the nonlocal potential
F�(ε) − f�(ε)ρ2; see Eqs. (24c), (20b). and (20e). The low-
energy dependence of the resonance width for s and p waves
is fundamentally different [46] but we return to this problem
in Sec. V.

In the end, we should emphasize that the splitting of the
Hamiltonian into the 1×1 and 2×2 blocks occurs only in
the fixed-nuclei limit. In the vibronic dynamics the change
of the symmetry of the electronic states is compensated by
the respective change of the symmetry of the vibrational wave
function. The dynamics is truly a three-state problem. Simi-
larly, the fixed-nuclei problem depends only on ρ and not on
ϕ, which is hidden in the basis definition, but the dynamics
takes place in the full four-dimensional vibrational space.

B. Eigenphase sums

The fixed-nuclei eigenphase sums for each irreducible
representation of the symmetry group are decomposed to
background and discrete-state (resonant) contributions

δ(ε) = δbg(ε) + δdisc(ε). (28)

The background is assumed to be a slowly varying function in
both electron energy and nuclear coordinates.

The discrete-state term in the case of one discrete state,
as we have in the A′′ symmetry, is given by the generalized
Breit-Wigner formula [41]

δ
μ
disc(ε) = − arctan

(
�μ(ε)/2

ε − Uμ − �μ(ε)

)
(29a)

062821-6



VIBRATIONAL EXCITATION IN THE e+CO2 … PHYSICAL REVIEW A 105, 062821 (2022)

with

�μ(ε) = Re[Fμ(ε)], (29b)

�μ(ε) = −2 Im[Fμ(ε)], (29c)

where for the irreducible representation μ = A′′ the UA′′ and
FA′′ terms are given by Eqs. (24b) and (24c). The same formula
can be used for linear geometries (both D∞h and C∞v cases)
where the operator HFN consists only of the diagonal 1×1
blocks corresponding to �+

g and �u irreducible representa-
tions. In these cases we substitute Uμ = E� and Fμ = F�

for μ = �+
g and Uμ = E� and Fμ = F� for μ = �u; see

Eqs. (17) and (20).
In the case of the A′ symmetry, there are two nontrivial

discrete-state eigenphases. Their sum δA′
disc can be computed

using the following formula derived in Appendix B:

exp
[
2iδA′

disc(ε)
] = (ε − a∗)(ε − b∗) − c2∗

(ε − a)(ε − b) − c2
, (30)

where a = 〈�|UA′ + FA′ (ε)|�〉, b = 〈�|||UA′ + FA′ (ε)|�||〉,
c = 〈�|UA′ + FA′ (ε)|�||〉.

C. Adiabatic potential energy surfaces

Up to this point we have worked in the diabatic represen-
tation. To obtain adiabatic potential energy surfaces we need
to diagonalize the fixed-nuclei Hamiltonian HFN Eq. (21). We
have already partially diagonalized HFN by transforming it to
the symmetry-adapted basis, and thus, the adiabatic surface
of the A′′ state is directly given by Eq. (24). However, this
quantity still parametrically depends on the electron energy
ε, which has to be replaced by a function in the vibrational
coordinates εdisc(�q ). For a narrow resonance, the position
of the anionic state can be determined from K-matrix poles
[41,47]; however, as far as broad resonances or virtual states
are concerned, the position should be defined via S-matrix
poles [41], that is, by finding εdisc = ER − (i/2)�R as a com-
plex self-consistent solution of

εdisc − Uμ − �μ(εdisc) + (i/2)�μ(εdisc) = 0 (31)

for each geometry. Then the adiabatic surface is

V μ
adiab = V0 + ER − (i/2)�R. (32)

Not only for the A′′ problem but also in linear geometries
we can use the approach just described. In the case of the
A′ adiabatic surfaces, we have to first diagonalize the 2×2
Hamiltonian HA′ Eq. (26). Its eigenvalues are

V±(ε) = V0 + [Ẽ� (ε) + Ẽ�(ε)]/2

± (1/2)
√

[Ẽ� (ε) − Ẽ�(ε)]2 + 4λ̃(ε)2 (33a)

with

Ẽ� (ε) = E� + F� (ε), (33b)

Ẽ�(ε) = E� + F�(ε) + [ξ + f�(ε)]ρ2, (33c)

λ̃(ε) =
√

2[λ + f��(ε)]ρ. (33d)

Note that Ẽ� , Ẽ�, and λ̃ defined above are identical with
the constants a, b, and c in Eq. (30). Complex solutions ε

of V±(ε) = ε give the position of S-matrix poles since they

correspond to zeros of the denominator of Eq. (30) in the
complex plane.

Locating the S-matrix poles requires to analytically con-
tinue the nonlocal potential for complex-valued momenta; see
Appendix B of Berman et al. [48]. To solve the implicit equa-
tions we used Python package CXROOTS [49] that implements
methods for finding roots of complex analytical functions
described by Kravanja and Barel [50]. The calculation can be
simplified when we are interested in only the position of the
bound anionic states. Then the imaginary parts in formulas
above vanish and we can solve the equations for real (and
negative) values of εdisc by the bisection method.

IV. MODEL CONSTRUCTION FROM AB INITIO DATA

In this section, we determine the model parameters from
ab initio data. Up to now, we have considered the functions
that define the matrix elements of the effective Hamilto-
nian Eq. (5) to be arbitrary functions of totally symmetric
combinations of the normal coordinates. Because computa-
tional demands of solving the four-dimensional and nonlocal
vibronic dynamics are high, we had to make several simpli-
fications which influenced the parametrization of the model
functions. As we discuss in Sec. VI, by expressing the vibra-
tional part of the anionic wave function in a suitable basis,
we can rewrite the Schrödinger equation as a system of lin-
ear equations. If the Hamiltonian is represented by a sparse
matrix, then the linear system can be effectively solved by
iterative methods based on Krylov subspaces. By limiting
the description of the neutral molecule only to the harmonic
approximation, we can effectively evaluate the nonlocal po-
tential F (E − H0) in a four-dimensional oscillator basis. Note
that the evaluation of F (E − H0) is the most time-consuming
step of the calculation. In addition, by restricting the model
functions to low-order polynomials in the vibrational coordi-
nates, the Hamiltonian matrix is sparse in the oscillator basis.

The harmonic approximation for the neutral molecule is
rather limiting. First, it does not allow for the description of
the Fermi resonance which couples nearly degenerate vibra-
tional states of CO2 [45]. Second, we will see that it is not
sufficient for a good quantitative description of the potentials
in symmetric stretching. Therefore, our goal is to study quali-
tative features of the multidimensional and nonlocal vibronic
dynamics of the e+CO2 system. We start the model construc-
tion by discussing our ab initio calculations.

A. Ab initio data

With the above mentioned goal of our work in mind, we
approximated the ground electronic state of CO2 only within
the Hartree-Fock approximation with the cc-pVTZ basis [51].
This target description was used as a starting point for fixed-
nuclei scattering calculations which were performed using the
R-matrix method [52] implemented in the UKRmol+ suite of
codes [53]. As a scattering model we chose a static-exchange
plus polarization (SEP) model [52] in which one of target
valence electrons and an incoming electron are allowed to
occupy several lowest unoccupied orbitals above the highest-
occupied molecular orbital which are called virtual orbitals.
The number of used virtual orbitals in the final scattering SEP
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calculations was chosen in such a way to reproduce approx-
imately the autodetachment region for symmetric stretch as
was obtained by Sommerfeld et al. [36].

We tried several models with 10–20 virtual orbitals and
optimal results for symmetric stretch were obtained for 18
virtual orbitals. The L2 configurations [52] used in the final
SEP model were of the type

(core)6(valence)16(virtual)1 (34)

and

(core)6(valence)15(virtual)2. (35)

Thus, three lowest (core) molecular orbitals were kept frozen
and one of valence electrons from other eight occupied or-
bitals was allowed to excite to one of 18 virtual orbitals to
take into account polarization of the target. The R-matrix
sphere radius was set to 13 bohrs which was sufficient for the
SEP scattering calculations (all used target orbitals were well-
contained in the R-matrix sphere). The same model was also
used to calculated energies of the anionic states in the regions
where these states are bound to have additional information
for construction of the model for the nuclear dynamics. We
performed the above described fixed-nuclei calculations for
more than 2000 nuclear configurations around the equilibrium
geometry of CO2 varying all three normal coordinates.

B. Parametrization of the model functions

Our model is determined if we know twelve functions
V0, Ed , λ, ξ , vdμ, w�p of totally symmetric combinations of
the normal coordinates, i.e., the potential energy surface of
the neutral molecule and the functions entering the matrices
U and Vε . Considering the simplifications discussed at the
beginning of this section, we use

V0 = 1
2ωgQ2

g + 1
2ωbρ

2 + 1
2ωuQ2

u, (36)

where ωg, ωb, and ωu are vibrational angular frequencies of
symmetric stretching, bending and asymmetric stretching of
CO2, respectively. We specify their numerical values based
on our quantum chemical calculations later. The other model
functions were chosen as low-order polynomials in Qg, Q2

u,
and ρ2 and the number of terms in each polynomial was care-
fully chosen to get a reasonable agreement with the ab initio
data. We explicitly show only the expansion of the functions
into Q2

u and ρ2. The remaining parameters are polynomials in
Qg up to the fourth order.

The parameters E� and E� on the diagonal of the matrix
U [see Eq. (17)] are the most important. They describe the
energy of the discrete states relative to the threshold V0. Thus,
we included more terms than in other cases, and we have

E� = E0
� + E2b

� ρ2 + E2u
� Q2

u + E4b
� ρ4, (37)

E� = E0
� + E2b

� ρ2 + E2u
� Q2

u + E4b
� ρ4

+ E4u
� Q4

u + E4bu
� ρ2Q2

u. (38)

In the case of the Renner-Teller coupling ξ , which is mul-
tiplied by Q2

± in the matrix U , we added one extra term in
bending

ξ = g + κρ2. (39)

The �� coupling λ is assumed to be only a polynomial in Qg.
In the case of the continuum coupling Vε given by Eq. (18),

we parametrized the coupling between the �± discrete states
and the p± partial waves in the following way:

v�p = v0
�p + v2b

�pρ
2 + v2u

�pQ2
u (40)

and similarly for the coupling of the � discrete state to the s
wave:

v�s = v0
�s + v2b

�sρ
2 + v2u

�sQ
2
u. (41)

We can expect that these terms are going to be the most impor-
tant since only these couplings are nonzero at the equilibrium
geometry and the incoming electron is captured to the CO2

molecule in its ground vibrational state. For the coupling of
the �± states to the s wave, we used

v�s = v0
�s + v2u

�sQ
2
u. (42)

The remaining terms

v�z, v�p, v�z,w�p (43)

are assumed to be only polynomials in Qg.
The continuum coupling terms depend not only on the

normal coordinates but primarily on electron energy. Each
coefficient in Eqs. (40)–(43) is independently parametrized by
the Wigner threshold law [46] multiplied by an exponential
cutoff function [41]

v(ε) = a(βε)(2l+1)/4e−βε, (44)

where l = 0 for the s-wave coupling, l = 1 for pz or p±
waves, a is a polynomial in Qg, and β is a constant. Using
the parametrization above, we can calculate the integral that
appears in the shift operator �dd ′ (ε) Eq. (19c) in terms of
the incomplete Gamma function and confluent hypergeomet-
ric function; see Eq. (24) in Ref. [54]. By considering the
threshold exponent (2l + 1)/4 and the β parameter constant,
v(ε) is separable in the energy and normal coordinates which
simplifies the evaluation of F (E − H0). However, a constant
threshold exponent prevents the description of a geometry-
dependent dipole moment [55]. The CO2 molecule does not
possess any dipole moment in its equilibrium geometry but it
acquires one in bent or asymmetrically stretched geometries.
This deficiency of our model may be important especially in
the threshold region.

Finally, we used the following parametrization of the back-
ground eigenphase sums

δA′′
bg (ε) = abgε + bbg + b2b

bgρ
2 + b2u

bgQ2
u, (45)

δA′
bg(ε) = (

cbg + c1b
bgρ + c2u

bgQ2
u

)
ε + dbg + d1b

bgρ

+ d2u
bg Q2

u + d3bu
bg ρ Q2

u (46)

in fitting the ab initio fixed nuclei data.

C. Fitting procedure

In the case of the neutral potential V0, our original idea
was to use experimental values of the vibrational frequen-
cies, which are [56] ω

exp
b = 83.3 meV, ω

exp
g = 167.5 meV,

and ω
exp
u = 297.1 meV. However, we found out that the de-

scription of the neutral molecule within our R-matrix model
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FIG. 1. Illustration of the construction of the model from ab initio R-matrix eigenphase sums and potential energies.

is not ideal in comparison with the spectroscopic data. In
order to have the consistent description of the potentials and
eigenphase sums, we decided to determine the vibrational
frequencies by fitting the quadratic form to the potential
energies of the CO2 target obtained within the R-matrix scat-
tering calculations; see Sec. IV A. The fit of the data close
to the equilibrium geometry provided ωb = 110 meV and
ωu = 308 meV. The agreement on the asymmetric stretching
is reasonable but the bending frequency in our model is about
30% higher than the experimental value. In the case of the
symmetric stretching we obtained 196 meV from the fit, but
we decided to use ωg = 2 ωb = 220 meV instead to preserve
the ω

exp
b /ω

exp
g ratio important for the Fermi resonance [45].

We determined numerical values of the model functions
Ed , λ, ξ , vdμ, w�p by a least-squares fit to the ab initio
eigenphase sums and potential energy surfaces for electron
energies up to about 5 eV relative to the minimum of the neu-
tral potential. Although the number of parameters is large, the
splitting into the A′ and A′′ symmetries and gradual lowering
of the molecular symmetry make the fitting feasible because
only subsets of parameters contribute at different molecular
symmetries.

The construction process illustrated in Fig. 1 has three
main steps. In step I, we performed separate fits to the R-
matrix eigenphase sums in the A′′ symmetry for symmetric
stretches Sg ∈ {0.0,±0.2,±0.4, 0.6} bohrs. The fitting was
divided into the D∞h, C∞v , and C2v symmetries as it is indi-
cated in the top right-hand part of Fig. 1, where the sequence
in which the parameters are obtained is also shown. We did
not consider Cs geometries in the A′′ case since there are no

parameters appearing exclusively in this symmetry and the
prediction of the model constructed in other symmetries was
good enough. For each symmetry we included the eigenphase
sums for several geometries at the same time. The A′′ results
depend on E2b

� − g, that is we can not obtain values for the
individual terms E2b

� and g. On the other hand, the A′ results
depend on their sum; therefore, we can obtain values of E2b

�

and g afterwards. We dealt with E4b
� , κ , v2b

�p, and w�p in the
same way.

The result of step I is the Sg dependence of the parame-
ters given by series of six values. We approximated them by
polynomials up to the fourth order in step II. We performed
the fitting procedure from step I once again to improve the
polynomial coefficients and the β parameters in step III, but
this time we included data for all the values of Sg at the
same moment. We did not include the position of the 2B1

state where it is bound since its energy in this region is too
high.

We repeated the three steps for the A′ symmetry. The fit-
ting procedure is more elaborate (see bottom right-hand part
of Fig. 1) because there are two A′ states. We included the
R-matrix position of the 1 2A1 bound state in the fitting of
the C2v symmetry. We also performed a fit of Cs geometries
since there are parameters that appear exclusively for these
configurations in this case. The model constructed from these
fits did not reproduce the eigenphase sums sufficiently well.
To improve the agreement further, we performed one more fit
where we varied all parameters that depend either on bending
or asymmetric stretch for the C∞v , C2v , and Cs geometries
used in the previous fits.
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FIG. 2. Eigenphase sums in the A′′ symmetry; solid lines, model; dashed lines, R-matrix data. (a) Symmetrically stretched geometries for
Sb = 0, Su = 0, and Sg = −0.6, −0.4, −0.2, 0.0, 0.2, 0.4, 0.6, and 0.8 bohrs (from right to left). (b) Bent geometries for Sg = 0, Su = 0, and
Sb = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 bohrs (from right to left). (c) Asymmetrically stretched geometries for Sg = 0, Sb = 0, and Su = 0.0,
0.1, 0.2, 0.3, 0.4, and 0.5 bohrs (from left to right). (d) Bent and asymmetrically stretched geometries for Sg = 0, Su = 0.2, and Sb = 0.2, 0.4,
and 0.6 bohr (from right to left).

We list the resulting values of all parameters in
Appendix C. A comparison of the ab initio eigenphase sums
of the A′′ symmetry with their reproduction by our model
is shown in Fig. 2 for a selected set of geometries. The
moderately wide resonance corresponds to the 2A′′ Renner-
Teller component of the 2�u shape resonance (2B1 in the
C2v nomenclature). It moves closer to the threshold and its
width decreases as the molecule symmetrically stretches and it
eventually becomes bound; see Fig. 2(a). Although the eigen-
phase sums for Sg = −0.6 and 0.8 bohrs were not included
into the fitting process, the agreement with the R-matrix data
is very good even for these geometries. The resonance also
becomes bound upon bending; see Fig. 2(b). Note that upon
change of Sb, the angle changes simultaneously with the bond
length. This does not allow for the direct comparison with
eigenphase sums of Morgan [21]. However, our results are in
agreement with hers when recalculated for varying only the
bending angle. Our model reproduces the resonance position
well but there is some disagreement in its width. The width
is described by the v2b

�p − w�p parameter, which depends on
ρ2. Adding another term of the fourth order in ρ did not
significantly improved the agreement and we were reluctant to
increase the complexity of the model even more with regard to
the feasibility of the dynamics. For asymmetric stretches the
resonance moves further from the threshold [see Fig. 2(c)],
and finally, Fig. 2(d) shows the data for general, both bent
and asymmetrically stretched, geometries. The results shown
in Fig. 2(d) are solely predictions of the model since the Cs

geometries were not included to the fitting process.
Figure 3 shows the A′ model eigenphase sums in com-

parison with the R-matrix data. The Renner-Teller states are

degenerate for symmetrically stretched geometries, thus, the
eigenphase sums exhibit the same resonance behavior as in
the A′′ symmetry; compare Fig. 3(a) with Fig. 2(a). The virtual
state manifests itself in the behavior near the threshold and
it also becomes bound for Sg between 0.6 and 0.8 bohrs.
The data for Sg = 0.8 bohrs were not included into the fit-
ting procedure again, but the agreement is still reasonable.
A dramatically different behavior of the A′ Renner-Teller
component in contrast to the A′′ component is observed upon
bending; see Fig. 3(b). The A′ state moves towards the thresh-
old and its width is substantially increased, which agrees with
Morgan [21]. For Sb > 0.35 bohrs the state becomes so wide
that it is not observable in the eigenphases any more. More-
over, the threshold region and the resonance are not separated
as for pure symmetric stretches since the states interact with
each other.

For asymmetric stretches the model is not able to repro-
duce the low-energy behavior well; see Fig. 3(c). The CO2

molecule acquires a dipole moment which becomes supercrit-
ical for Su > 0.22 bohrs. As a result, the eigenphase sums
logarithmically diverge at the threshold for these geometries
[57]. The threshold behavior is controlled by the threshold
exponent that becomes geometry dependent [55] and vanishes
at the critical value of the dipole moment. Such behavior is
not reflected in our model where the threshold exponent is
given by the pure s- and p-wave behavior; see Eq. (44). In
addition, the fact that the exponential parameters β in Eq. (44)
are kept independent of the vibrational coordinates reduces
the flexibility of the model as well. We expect that this model
limitation will influence the low-energy behavior of the cross
sections. The CO2 molecule also acquires a dipole moment
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FIG. 3. Eigenphase sums in the A′ symmetry; solid lines, model; dashed lines, R-matrix data. (a) Symmetrically stretched geometries for
Sb = 0, Su = 0, and Sg = −0.2, 0.0, 0.2, 0.4, 0.6, and 0.8 bohrs (from right to left). (b) Bent geometries for Sg = 0, Su = 0, and for Sb from
0.0 to 0.45 bohrs with step 0.05 bohr (from right to left). (c) Asymmetrically stretched geometries for Sg = 0, Sb = 0, and Su = 0.0, 0.1, 0.2,
0.3, and 0.4 bohrs (from left to right). The inset shows a detail of the threshold region. (d) Bent and asymmetrically stretched geometries for
Sg = 0, values of Sb and Su are in the figure.

upon bending, but it becomes critical for very large deviations
(Sb = 1.0 bohrs) from the equilibrium geometries. Finally, the
agreement for geometries that are simultaneously bent and
asymmetrically stretched is reasonable; see Fig. 3(d).

We showed only the comparison of the R-matrix and model
eigenphase sums for a relatively small subset of calculated
geometries. In total, R-matrix data for about 400 geometries
were used to construct the model, which overall reproduces
the data well.

V. DISCUSSION OF THE RESULTING MODEL

The fitting process described above is ambiguous in de-
termination of the parameters. Since the model construction
involves nonlinear least-squares fits with many parameters,
we have no guarantee that the resulting parameters correspond
to the global minimum of the least-squares cost function.
Furthermore, the cost function itself is sensitive to the exact
data set (energy and geometry ranges) included in the fitting
procedure and the relative importance of different subsets of
data (different symmetries, eigenphase sums versus poten-
tials) is not clearly given. We therefore constructed a second
model that reproduces the ab initio data with a similar accu-
racy as the model with the parameters listed in Appendix C.
Although some parameters of the second model differ quite
considerably (about up to a factor of 5), the dynamics based
on these two models lead to similar electron energy-loss
spectra which will be discussed in a follow-up to this pa-
per. In what follows we discuss the properties of the first
model. The behavior of the second model is qualitatively
the same.

A. Adiabatic potentials

Cuts through the model adiabatic potential energy surfaces
calculated from the S-matrix poles as described in Sec. III C
are shown in Fig. 4. Potential energies V with a nonzero
imaginary part −�/2 are plotted as shaded areas between
V ± �/2. There is no resonance width associated with the vir-
tual state since the corresponding S-matrix poles are located
on the negative real axis on the unphysical sheet in the energy
complex plane [58]. In Fig. 4 we indicate geometries where
the anionic states are not bound by dashed lines. The picture
in linear geometries is rather simple since the degenerate 2�u

shape resonance and the �+
g virtual state do not interact with

each other. The shape resonance becomes bound first at sym-
metric stretch Sg = 0.7 bohrs, which corresponds to the C–O
distance RCO = 2.55 bohrs, and the virtual state merges with
the neutral potential at Sg = 0.8 bohrs (RCO = 2.6 bohrs); see
Fig. 4(a). In the case of the asymmetric stretching, the shape
resonance is in the continuum for all relevant geometries;
see Fig. 4(c). The R-matrix calculations do not show that the
virtual state should become bound at any asymmetric stretch;
however, it becomes very weakly bound for Su > 0.37 bohrs
(R(1)

CO < 1.83 bohrs and R(2)
CO > 2.57 bohrs) in our model. The

disagreement is caused by the absence of the dipole moment
induced by deformation of the molecule in our model as
discussed in Sec. IV B.

The situation is very interesting upon bending of the
molecule; see Fig. 4(b). The upper Renner-Teller component
2B1 is not much affected by the bending, and it becomes bound
at Sb = 1.25 bohrs (RCO = 2.53 bohrs and the O–C–O angle
�OCO = 121◦). On the other hand, the lower component
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FIG. 4. Adiabatic potential energy curves of CO2 and CO −
2 within our model; solid lines, geometries where states are bound; dashed lines,

geometries where states are not bound. The shaded areas represent the resonance width of the Renner-Teller states. (a) Symmetric stretching
geometries Sg, Sb = 0, Su = 0. (b) Bending geometries Sb, Sg = 0, Su = 0. (c) Asymmetric stretching geometries Su, Sg = 0, Sb = 0.

2 2A1 quickly moves to the threshold and its width rapidly
increases. The virtual state becomes bound at Sb = 0.45 bohrs
(RCO = 2.24 bohrs, �OCO = 157◦) and possesses a mini-
mum at Sb = 0.83 bohrs (RCO = 2.35 bohrs, �OCO = 139◦),
which is in good agreement with Sommerfeld et al. [36]. The
lower Renner-Teller component gets very close to the virtual
state 1 2A1 and also crosses the neutral curve; however, it does
not become bound. This behavior is more easily understand-
able in terms of the movement of the S-matrix poles shown
in Fig. 5. The pole representing the virtual state is located

FIG. 5. Movement of S-matrix poles of the CO −
2 states in

(a) momentum and (b) energy complex planes upon bending (Sg = 0,
Su = 0). The bending normal coordinate Sb increases from the equi-
librium geometry in the direction of the arrows. Selected geometries
Sb are labeled by the numbers. Pluses, 2 2A1 Renner-Teller state;
crosses, 2B1 Renner-Teller state; circles, 1 2A1 virtual state.

at k = −0.3i a.u. at the equilibrium geometry of CO2, which
quite differs from values k = −0.16i and −0.2i reported by
Morisson [19] and Morgan [21], respectively. The pole moves
along the imaginary axis up as Sb increases, and it becomes
a bound state at Sb = 0.45 bohrs. The poles representing the
Renner-Teller components coincide at the equilibrium geom-
etry at k = (0.507 − 0.007i) a.u. The 2B1 component moves
closer to the origin, and it becomes bound at Sb = 0.7 bohrs
while the 2 2A1 component rapidly moves further away from
the real axis. It gets on the imaginary axis for geometries
Sb > 1.0 bohrs where two poles emerge. One of them moves
down along the imaginary axis and the other up and becomes
bound for Sb > 1.5 bohrs. However, the 2 2A1 state is not
controlled well in the fitting procedure for Sb � 0.35 bohrs
because the state is so wide that it does not manifest itself
in the eigenphase sums; see Fig. 3(b). Therefore, we expect
that the behavior for highly bent configurations is the result
of extrapolation of the model and probably is not physically
relevant; see below.

When we plot the poles in the energy complex plane [see
Fig. 5(b)], the 2 2A1 poles have a negative real part, which is
measured relative to the threshold, for large values of Sb. Thus,
the potential energy surface crosses the neutral surface V0 but
it does not become a true bound state. In fact, the state is so
far away in the complex plane that it should not probably be
called a resonance any more and its position is not well de-
fined. For clarity, we do not show the 1 2A1 poles in Fig. 5(b).
They move on the negative real axis on the unphysical sheet
towards the origin where they emerge on the physical sheet.

In reality, the 1 2A1 state is affected by the dipole moment
acquired upon bending [59], which is not included in our
model, and the corresponding pole moves along a parabolic
trajectory as shown in the R-matrix calculations of Morgan
[21]. Nevertheless, the avoided crossing of the 1 2A1 and 2 2A1

states within our model is in agreement with findings of
Sommerfeld et al. [35,36]; see also our discussion in the
introduction.

In Fig. 6 we compare our potentials (solid lines) with the
ab initio model of McCurdy et al. [9] (dashed lines), who
treated the nuclear dynamics of both the Renner-Teller com-
ponents upon symmetric stretching and bending in the LCP
approximation. In fact, their 2 2A1 surface was constructed in
the earlier work by Rescigno et al. [8]. Unfortunately, they do
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FIG. 6. (a) Real parts and (b) widths of the adiabatic potential
energy curves upon bending (Sg = 0, Su = 0) for the 1 2A1 virtual
state and 2 2A1 and 2B1 Renner-Teller components of the 2�u reso-
nance. Solid lines, our model; dashed lines, model of McCurdy et al.
[9]; crosses, our R-matrix data for positions of bound states. The 2B1

resonance width in (b) is multiplied by factor 5.

not report their neutral potential, and we suspect that there is
an inconsistency in the definition of the bend angle throughout
Refs. [8,9], where potential plots state that the data are shown
with respect to the bend angle θ = π − �OCO but then the
potential minimum corresponds to �OCO = 152◦ which is in
a disagreement with other works [30,31,35,36] which place
the minimum at 135◦–140◦. This notable difference is not
discussed in Refs. [8,9], and thus, we believe that their data
are actually shown with respect to θ/2 since then the mini-
mum is at 134◦, and it is consistent with their definition of
normal coordinates; see Sec. III in Ref. [8]. We took this into
considerations when we plotted their potentials with respect
to our bending normal coordinate Sb in Fig. 6. The width of
the 2B1 state in our model is somewhat smaller because of
our imperfect fit [see Fig. 2(b)], but the position agrees very
well. Since the model of McCurdy et al. [9] does not include
the virtual state, the potential minimum connects to the 2�u

resonance but the 2 2A1 widths are in a qualitative agreement.
The authors of Ref. [8] faced the same difficulties during the
construction of the model from ab initio data as we did: the
2 2A1 state gets so wide as CO2 bends that there are no longer
any observable effects in the fixed-nuclei eigenphase sums
or cross sections; see Sec. III A of Ref. [8]. They smoothly
interpolated results of their fit and energies of the ground state
of CO −

2 . In our case the decrease of the width is the result of
extrapolation of the model beyond Sb = 0.4 bohrs. Although
the topology of the anionic surfaces of CO −

2 is interesting, it
does not seem to affect the vibrational excitation of CO2 in

FIG. 7. Harmonic approximation to the neutral CO2 potential
and its influence on the adiabatic potential energy surfaces of CO −

2 ;
solid lines, our model; dashed lines, our R-matrix data; dotted lines,
data of Sommerfeld et al. [36]. The neutral potentials are shown by
thicker lines and anionic states are labeled by numbers: 1, 2�+

g ; 2,
2�u; 3, 1 2A1; 4, 2B1; 5, 2 2A1. Panels (a) and (b) show cuts through
the neutral and anionic surfaces for symmetric stretches with fixed
O-C-O angles of 180◦ and 170◦, respectively. Panels (c) and (d) show
electron attachment energies of the anionic states for the same bond
angles as above.

the energy region of the 2�u resonance (2–5 eV). Rescigno
et al. [8] reported that the cross sections are insensitive to
the interpolation of the width at highly bent geometries since
the molecular anion CO −

2 is formed by the vertical electron
attachment at the equilibrium geometry of CO2 and with high
probability the anion decays before reaching highly bent con-
figurations. Our nonlocal calculations support this conclusion
at these energies and we will discuss it more in a follow-up to
this paper.

The quantitative description of the potential energy sur-
faces is limited by the harmonic approximation of the neutral
molecule used in order to keep the dynamics feasible. The
model reproduces the R-matrix neutral potential in the direc-
tion of pure bending very well (see Fig. 6) since we fitted
the bending vibrational frequency to these data. There is a
similarly good agreement for pure antisymmetric stretches.
However, the agreement is rather poor in the symmetric
stretching direction. The ab initio neutral potential is an-
harmonic in its shape, and furthermore, we did not use the
frequency corresponding to the potential itself but we used the
double of the bending frequency in this case; see Sec. IV C.

Figure 7 shows a comparison of the model potentials
(solid lines) with our R-matrix data (dashed lines) and with
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calculations of Sommerfeld et al. [36] (dotted lines). When
comparing these three data sets, we observe a similar behav-
ior on the qualitative level but there are notable quantitative
differences. The description of the neutral molecule at the
Hartree-Fock level within our SEP scattering calculations
does not fully describe the electron correlation energy and
produces the bending vibrational frequency of CO2 about
30% larger than the experimental value; see Sec. IV C. We
therefore expect that the equation-of-motion coupled-cluster
potentials [36] are more accurate. For linear geometries the
order of states in the R-matrix calculation is reversed (2�u

state below 2�g) compared to Ref. [36], but both the calcu-
lations are consistent in this respect when the molecule is
bent, i.e., the anion states are bound in the order 1 2A1, 2B1,
2 2A1. The harmonic approximation for V0 causes the vertical
discrepancy between the model and the R-matrix potentials
but the electron attachment energy (energy difference between
anionic and neutral states) agrees well for potential energies
up to about 5 eV above the ground vibrational state of CO2.

B. Role of individual terms in the model

Let us now focus on examining the effect of model pa-
rameters on the behavior of the anionic states upon bending.
The origin of the 1 2A1 state potential minimum at nonlinear,
i.e., bent geometries (we will use the term nonlinear minimum
below for short) is related to the square root that appears in
the formula for the adiabatic surfaces in Eq. (33) since the
discrete-state potentials V0 + E� and V0 + E� do not possess
any nonlinear minima. The first term in the square root de-
pends on the Renner-Teller coupling through the ξ and f�(ε)
functions and the second on the �� coupling through λ and
f��(ε). In principle both coupling mechanisms can lead to
the formation of a nonlinear minimum; see also the discussion
of Köppel et al. [37]. We found that the direct �� coupling
given by λ has a minor effect; see Fig. 8, where dotted lines
are calculated from our model but with λ = 0. The coupling of
the 2 2A1 Renner-Teller state to the s wave represented by the
v�s function is responsible not only for the rapid broadening
of the resonance width but also for the nonlinear minimum;
see dashed lines in Fig. 8, which are calculated with v�s = 0.
Finally, dot-dashed lines in Fig. 8 show results if we set all
parameters related to the virtual state to zero. Even in this case
the minimum does not disappear. The direct Renner-Teller
term ξ affects the potential curves quite significantly (see
Fig. 9), but the nonlinear minimum still exists. On the other
hand, the indirect coupling through the w�p functions is rather
negligible.

To summarize, the twofold degenerate 2�u resonance splits
into the 2 2A1 and 2B1 states upon bending of the CO2 molecule
partly due to the Renner-Teller effect but especially because
of the coupling of the 2 2A1 component to the s wave. Be-
cause of this coupling the 2 2A1 state tends to become bound
and connect to the nonlinear minimum but the presence of
the 1 2A1 virtual state leads to the avoided crossing of the
corresponding potential energy surfaces in the adiabatic rep-
resentation. Nevertheless, we expect that the character of the
adiabatic electronic wave functions changes along the bending
coordinate. In other words, there is a diabatic electronic state
that connects the 2�u resonance with the nonlinear minimum.

FIG. 8. Effect of model parameters describing the �� coupling
on the 1 2A1 virtual state and 2 2A1 Renner-Teller component of the
2�u resonance. Solid lines, full model; dotted lines, model with
λ = 0; dashed lines, model with v�s = 0; dot-dashed lines, model
without the � state (all relevant parameters are set to zero). Panels
(a) and (b) show real part and width of the adiabatic potential energy
surfaces upon bending (Sg = 0, Su = 0). Panel (c) shows the A′

model eigenphase sums for geometries Sg = 0, Su = 0, Sb = 0.0, 0.1,
0.2, 0.3, 0.4, 0.45, and 0.5 bohrs.

C. Contribution of individual partial waves

Our R-matrix calculations include electron partial waves
up to l = 4 while the model for the dynamics takes into
account only l = 0, 1. There are no principal obstacles to
include all the partial waves into the model, but it would
immensely increase its complexity. By fitting the model to
the full eigenphase sums we also included the information on
higher partial waves into the model but the splitting of this
information into partial waves is not captured correctly. We
expect that this deficiency will have a small influence on the
integral cross sections but it may harm the differential cross
sections. To assess the possible effect of this approximation,
we here discuss individual contributions of partial waves to ab
initio K matrices. In what follows we refer to arctan[Kμμ(ε)]
where Kμμ is the diagonal K-matrix element for a partial wave
μ as to partial-wave phase.

In the A′′ contribution, the model K matrix has just one
element Kp⊥ p⊥ (ε) since the model includes only the �⊥ state
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FIG. 9. Effect of the model parameter ξ describing the Renner-
Teller coupling of the 2�u shape resonance upon bending. Solid
lines, full model; dashed lines, model with ξ = 0. Panels (a) and
(b) show the real part and the width of the adiabatic potential en-
ergy surfaces upon bending (Sg = 0, Su = 0). Panel (c) shows the
A′ model eigenphase sums for geometries Sg = 0, Su = 0, Sb = 0.0,
0.1, 0.2, 0.3, 0.4, and 0.45 bohrs. Panel (d) shows the A′′ model
eigenphase sums for geometries Sg = 0, Su = 0, Sb = 0.0, 0.2, 0.4,
0.6, 0.8, 1.0, 1.2, and 1.4 bohrs.

coupled to the p⊥ electron partial wave. On the other hand,
the ab initio K matrix contains ten contributions. The p⊥
partial-wave phase dominantly contributes to the A′′ ab initio
eigenphase sums, but there is also a considerable contribution
of one f -wave component and for nonzero bending a d wave
is involved too (see Fig. 10), which is consistent with Morgan
[21].

FIG. 10. Visualization of ab initio K-matrix elements for geome-
tries Sg = 0, Su = 0, Sb = 0 and 0.4 bohrs; solid lines, eigenphase
sums; dashed lines, contribution of the p⊥ partial wave; dotted lines,
contribution of a d wave; dot-dashed lines, contribution of a f wave
(see the text).

In the A′ problem, the discrete-state (resonant) K matrix
within our nonlocal model is a 3×3 matrix labeled by the
partial waves s, pz, p||. It can be calculated using the Cayley
transform [58] from the following T matrix:

TA′ (ε) = (
V A′

ε

)T
(ε − HA′ )−1V A′

ε , (47)

where HA′ and V A′
ε are given by Eqs. (26) and (27), respec-

tively. Upon bending, the s wave dominates and the model
partial-wave phase is in a very good agreement with the ab
initio phase; see Fig. 11(a). The discrepancy between the
p||-wave contributions is again caused by the fact that the

FIG. 11. Visualization of K-matrix elements; solid lines, our
model; dashed lines, R-matrix data. (a) s and p||-wave contributions
for geometry Sg = 0, Su = 0, Sb = 0.4 bohrs. (b) s- and pz-wave
contributions for geometry Sg = 0, Sb = 0, Su = 0.3 bohrs.
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model effectively describes also the higher partial waves. Fig-
ure 11(b) shows that the s-wave again dominates the ab initio
data in the asymmetric stretching while pz rather contributes
to the background. The model s wave is not able to describe
the ab initio data because of the limitations in our parametriza-
tion of the model; see Sec. IV B and IV C. By fitting the model
to the eigenphase sums, it is difficult to get the behavior of
the pz wave consistent with the R-matrix data because of the
background-like contribution and the model pz wave tries to
compensate the s-wave behavior. Therefore, we can not expect
a very good agreement of our cross sections with experimental
data for asymmetric stretching.

VI. VIBRONIC DYNAMICS

The final purpose of the theoretical treatment is to obtain
the cross sections that can be compared to experiments or used
in simulations of the inelastic electron scattering. The differ-
ential cross section for vibrational excitation can be computed
by averaging the T matrix over molecular orientations [9]

dσν f ←νi

d�
(ε, θ ) = 8π4

ε2
|Tν f k f ←νiki |2, (48)

where the horizontal bar denotes the averaging and θ is a
scattering angle. The T matrix Tν f μ f ←νiμi given by Eq. (7)
and the T matrix Tν f k f ←νiki are related through partial-wave
expansions

Tν f k f ←νiki =
∑
μi,μ f

Y ∗
μ f

(k̂ f )Tν f μ f ←νiμiYμi (k̂i ), (49)

where k̂i and k̂ f denote the directions of the incoming and
outgoing electrons in the molecular frame, respectively. To
calculate the cross sections we consider only the discrete-state
(resonant) T matrix, that is, we neglect the background con-
tribution to all inelastic processes.

Since most experiments are conducted at room temperature
where only the ground vibrational state of CO2 is significantly
populated, we consider only the ground state as the initial
state νi in our calculations. Then the initial state of the CO2

molecule (including the electronic degrees of freedom) is to-
tally symmetric which implies that the symmetry of the initial
asymptotic state of the e+CO2 system is solely given by the
symmetry of the incoming electron partial wave μi = (li, mi ).
Consequently, the scattering wave function |�〉, which satis-
fies the inhomogeneous Schrödinger equation

(E1 − H )|�〉 = V μi
εi

|νi〉, (50)

also has the symmetry of the incoming wave. The T matrix
Tν f μ f ←νiμi given by Eq. (7), which can be written as the fol-
lowing integral:

Tν f μ f ←νiμi = 〈ν f |V μ f †
ε f |�〉, (51)

is thus nonzero only when the product of representations of
the final vibrational state ν f and the final electron partial
wave μ f = (l f , m f ) contains the irreducible representation of
the initial partial wave, which restricts possible symmetries
of the final vibrational states. Alternatively, we can determine
the possible final states from conservation laws of angular mo-
mentum and parity. In our model, we take into account only

rotations around the molecular axis associated with bending of
the molecule. We denote the corresponding angular momen-
tum quantum number by �b. Its values are then restricted by
mi = m f + �b, and we find that vibrational states of the �+

g ,
�+

u , �g, �u, and �g symmetries can be excited in our model.
The resulting formulas for the differential cross sections are
derived in Appendix D, where the averaging of the T matrix
over molecular orientations is explicitly performed for each
symmetry of the final vibrational states.

The integral cross section for vibrational excitation is ob-
tained by integrating over the solid angle �:

σν f ←νi (ε) = 2π3

ε

∑
μi,μ f

|Tν f μ f ←νiμi |2. (52)

In our model, the vibrational states |ν f 〉 are determined
within the harmonic approximation Eq. (A8). However, an-
harmonic terms in the neutral potential of CO2 cause a strong
mixing between symmetric stretching and bending modes, the
so-called Fermi resonance effect [45]. This effect is thus not
included in our dynamics but can be incorporated to a good
approximation by replacing the T matrix in the formulas for
the cross sections by a proper linear combination of T matri-
ces obtained using harmonic states [8]; see our Letter [18]. We
will discuss this problem more in our follow-up paper.

A. Expansion of the dynamics in the oscillator basis

To obtain the T matrix given by Eq. (51) we solve the
Schrödinger Eq. (50) for each μi independently with total
energy E given by the conservation law Eq. (8). The vibronic
wave function |�〉 of the anion has three vibrational compo-
nents |ψd〉, one for each discrete electronic state � and �±,

|�〉 =
⎛
⎝|ψ�+〉

|ψ�〉
|ψ�−〉

⎞
⎠. (53)

Note that the dynamics reflects the full molecular symmetry
group D∞h. The vibrational wave functions |ψd〉 compensate
the symmetry of the discrete states so that |�〉 has the total
symmetry given by the incoming partial wave.

To solve the Schrödinger Eq. (50) we expand the com-
ponents |ψd〉 into the four-dimensional oscillator basis
that consists of eigenfunctions |νg, νb, �b, νu〉 of the neu-
tral molecule Hamiltonian H0 (the explicit form is given in
Appendix A)

|ψd〉 =
∑

νg,νb,�b,νu

ψd (νg, νb, �b, νu)|νg, νb, �b, νu〉, (54)

where ψd (νg, νb, �b, νu) are the expansion coefficients. The
basis expansion is truncated in the individual dimensions.
We have νg = 0, . . . , Ng − 1, νu = 0, . . . , Nu − 1, and νb =
0, . . . , Nb − 1 for symmetric stretching, asymmetric stretch-
ing, and bending, respectively. The incoming electron brings
utmost one quantum of the angular momentum but interme-
diate and final vibrational states can have up to �b = ±2. For
that reason, it is sufficient to consider �b = 0,±1,±2.

By expressing the effective Hamiltonian H and the right-
hand side V μi

εi
|νi〉 in Eq. (50) in the same basis, we get a
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system of linear equations Ax = b for x representing the un-
known coefficients ψd (νg, νb, �b, νu). Although the number
N ∝ NgNuNb of the unknowns is large (typically ∼106; see
below), the resulting matrix A is sparse due to the restriction
of the model functions to low-order polynomials in the normal
coordinates. Thus, the linear system is, at least in principle,
solvable by iterative matrix methods. Algorithms of these
methods depend only on matrix-vector multiplications, that
is, the explicit knowledge of the coefficient matrix A is not
necessary. Hence, we implemented only the action of the
Hamiltonian Eq. (5) on the nuclear wave function |�〉. The
action of the first term H0 is trivial since the basis functions are
the eigenstates of H0. The action of the second term U given
by Eq. (17) can be expressed in a straightforward way if we
can act with operators Qg, Qu, Q±, ρ2 on the components |ψd〉.
The first two operators are represented by tridiagonal matrices
acting only on one index νg or νu, respectively. Similarly,
operators Q± and ρ2 act in a simple manner only on indexes
νb and �b. For details see Appendix A.

On the other hand, the third term F (E − H0) is an operator
function of H0 and its action via Eq. (6) deserves to be ex-
plained in more detail. The continuum coupling elements V μ

dε

were constructed to be separable in space and energy variables

V μ

dε
(�q ) = Aμ

d (�q )ζμ

d (ε), (55)

where ζ
μ

d (ε) = (βε)(2l+1)/4 exp(−βε) depends only on en-
ergy [see Eq. (44)], Aμ

d (�q ) includes the polynomial a from
Eq. (44) and in some cases also Q± or Qu; see Eq. (18). By
substituting the separated form Eq. (55) into Eq. (19), we get

Fdd ′ (E − H0) =
∑

μ

Aμ

d (�q ) f μ

dd ′ (E − H0)Aμ

d ′ (�q ), (56a)

where

f μ

dd ′ (E − H0) = v.p.

∫ ∞

0
dε

ζ
μ

d (ε)ζμ

d ′ (ε)

E − H0 − ε

− iπζ
μ

d (E − H0)ζμ

d ′ (E − H0). (56b)

The order of the operators in the sum above is important since
the normal coordinates do not commute with H0. Some V μ

dε

terms are given by several separable terms; for example, see
Eq. (40). The generalization of the formulas above for such
cases is straightforward.

The Fdd ′ (E − H0) operators act on a vibrational wave func-
tion |ψ〉 in the oscillator basis in the following way:

〈ν|Fdd ′ (E − H0)|ψ〉 =
∑

μ,ν ′,ν ′′
〈ν|Aμ

d |ν ′′〉 f μ

dd ′ (E − Eν ′′ )

×〈ν ′′|Aμ

d ′ |ν ′〉ψ (ν ′), (57)

where ν, ν ′, and ν ′′ are multi-indices (νg, νb, �b, νu). The ac-
tion of Fdd ′ corresponds to a multiplication of a vector by three
matrices. The energy matrix f μ

dd ′ (E − Eν ′′ ) is diagonal be-
cause of the harmonic approximation for the neutral molecule
and the multiplication by matrices Aμ

d can be decomposed to
action of the coordinate operators Qg, Qu, Q± which signifi-
cantly simplifies the evaluation.

In total, the action of the sparse matrix A that represents
E1 − H on a vector v requires cN operations rather then N2

operations required for a general matrix of the same size,

where c is a small number depending on the complexity of
our model but independent of the basis size N .

B. Numerical solution

The matrix A representing the E1 − H operator is complex
symmetric but not Hermitian, and thus, the conjugate gradient
method [60] can not be used. Instead, we used its general-
ization, the conjugate orthogonal conjugate gradient method
(COCG), proposed by van der Vorst and Melissen [61].

The COCG method converges rather quickly for small
electron energies but not even 105 iterations were sufficient
for achieving the convergence above 2.5 eV. We found out
that the COCR [62], BiCG [63], and BiCGStab [64] methods
exhibit a similar behavior. Finding a suitable preconditioner
that improves the rate of convergence is thus necessary. Phys-
ically motivated preconditioners based on freezing some of
the vibrational modes did not turn out to be viable. In the end,
we came up with a rather standard preconditioner using the
LU decomposition which significantly improves the rate of
convergence. Let us write the matrix A in the following form:

A =
∑

d,d ′,ν,ν ′
|ν〉|d〉Adν,d ′ν ′ 〈d ′|〈ν ′|, (58)

where d , d ′ run over the discrete states, ν, ν ′ run over vibra-
tional quantum numbers νg, νb, �b, and νu. Then we consider
only diagonal blocks in the stretching modes for the matrix P
of the preconditioner

P =
∑

d,d ′,ν,ν ′
|ν〉|d〉δνgν ′

g
δνuν ′

u
Adν,d ′ν ′ 〈d ′|〈ν ′|. (59)

In the other words, P is block diagonal with the blocks in-
cluding the discrete-state space in combination with only the
bending mode. Applying the preconditioner to a vector v

corresponds to solving a linear system Py = v, which can be
done for each block separately using the LU decomposition.

The construction of the matrix P is somewhat challenging
since we have to explicitly evaluate the matrix A. The action
of A on the ith basis vector provides the ith column of A. To
act by A on all basis vectors is very time consuming; however,
it can be greatly optimized when we realize the Hamiltonian
spreads the nonzero basis component to only nearby compo-
nents because of the polynomial structure of H . Therefore, we
can act by A on a small section of basis vectors and speed up
the calculation.

In total, we solved the vibrational dynamics for each in-
coming electron partial wave for 1500 electron energies from
0.001 eV up to 5 eV. The basis size has to be increased for
larger energies since the anion can probe more of the poten-
tial energy surfaces, which is especially true in the bending
dimension; see Fig. 4. The final basis sizes used are listed in
Table I. The iterations were stopped when the ratio of norms of
the residua and right-hand side b was smaller than a tolerance
τ = 10−3. The convergence of the cross sections with respect
to both the basis size and tolerance τ was tested. The calcu-
lations can be easily parallelized over electron energies. The
calculation for 1 eV took approximately 600 seconds on one
CPU core, and the convergence without the preconditioning
was achieved after about 1000 iterations. The preconditioning
was essential above 2.5 eV. For 3 eV we needed 200 iterations
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TABLE I. Basis sizes used in the dynamics for given ranges of
electron energies; Ng, Nu, and Nb give the number of basis functions
in symmetric stretching, asymmetric stretching, and bending, respec-
tively; Ne is the number of calculated electron energies.

Energies (eV) Ng Nb Nu Ne

0.001–1.0 30 60 20 500
1.0–2.0 30 80 20 400
2.0–3.0 30 100 20 300
3.0–4.0 35 120 25 200
4.0–5.0 40 140 30 100

and an hour of computational time, and finally, 1800 iterations
were necessary for 5 eV with around 9 hours of the elapsed
time, from which the construction of the preconditioner took
a half of the time.

VII. CONCLUSION

In this paper, we have presented our nonlocal model de-
scribing the nuclear dynamics of the vibrational excitation
of the CO2 molecule by low-energy electrons. The model
includes the mutually interacting 2�+

g virtual state and the
Renner-Teller coupled 2�u shape resonance of the CO −

2
in combination with all four vibrational modes. The gen-
eral form of the direct discrete-state coupling matrix and
discrete-state-continuum coupling matrix resulting from the
D∞h symmetry group has been derived. The construction
of the model from our R-matrix eigenphase sums and po-
tential energies has been described in detail. Although the
model contains a large number of parameters, the symmetry
considerations significantly simplify the fitting process. We
have shown that the explicit inclusion of the coupling of
the lower Renner-Teller component to the electronic s-wave
continuum explains the peculiar behavior of this state. More-
over, we have discussed the origin of the nonlinear potential
minimum of the ground state of CO −

2 . We have proposed
the numerical treatment of the dynamics based on precon-
ditioned Krylov subspace methods suitable for a large class
of nonlocal discrete-state-in-continuum models and we have
demonstrated its feasibility for the four-dimensional dynamics
within the present model.

In order to be able to solve the multidimensional dynam-
ics, we have made several approximations. Most notably, we
have used only the harmonic approximation for the neutral
molecule (description of the molecular anion includes anhar-
monic terms) and constant threshold exponents, which prevent
the description of a geometry-dependent dipole moment. De-
spite the fact that the harmonic approximation leads to a
quantitative disagreement between the model and ab initio
potentials in the symmetric stretching vibrational mode, the
model captures primary features of the system and provides
an interpretation of unexplained observations in the elec-
tron scattering off CO2; see the outlined discussion in our
Letter [18]. In our follow-up to this paper, we will extend
the discussion of our results and their comparison with ex-
perimental data including also effects of model parameters
described here.

The application of the present theoretical treatment to
other polyatomic systems is rather straightforward. The model
structure is the consequence of the symmetry of the involved
discrete electronic states and vibrational modes, and the dy-
namics allows excitation of nontotally symmetric vibrations.
Such vibrations have been known to be excited by resonant
processes for a long time, at least since measurements of
Wong and Schulz [65], who also formulated selection rules
based on symmetry considerations. These rules were later
thoroughly discussed by Gallup [66,67] but actual dynamical
calculations are scarce. Čurík et al. [68,69] studied vibra-
tional excitation of diacetylene and cyclopropane molecules
using the ab initio discrete momentum representation method
and they even reported breaking of the selection rules in the
case of the cyclopropane. We thus hope that the presented
approach can bring additional insight into the multimode
vibronic dynamics and explain spectra of other polyatomic
systems. However, the model construction from ab initio data
and solution of the dynamics remain to be challenging.

Several improvements of the model are possible. First, the
approximations we have made can be lifted at the cost of a
more complicated evaluation of the nonlocal potential F (E −
H0). In the case of a geometry-dependent dipole, the Bateman
approximation [70] has been successfully used to simplify
the nonlocal dynamics [55,71]. Second, our model does not
allow for the description of the dissociative electron attach-
ment process. The form of discrete-state potentials based on
polynomials in vibrational coordinates, which is essential for
producing the sparse linear system for the dynamics, prevents
straightforward implementation of a dissociative attachment
channel. On the other hand, the incorporation of at least one
dissociative channel is desirable for future development of the
present approach.
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APPENDIX A: VIBRATIONAL COORDINATES
AND HARMONIC OSCILLATOR BASIS

Here we define normal coordinates Sg, Su, Sx, and
Sy of symmetric stretching, antisymmetric stretching, and
two-dimensional bending, respectively. We used Witteman’s
definition [42] with one minor modification. We changed the
sign of Sg so that positive values correspond to the lengthening
of the C–O bond and not to its shortening. The molecular axis
at the equilibrium geometry coincides with the z axis with the
carbon atom being at the origin. The Cartesian coordinates of
the atoms expressed in terms of the normal coordinates are

�RC ≡ (xC, yC, zC) = −2mO

M
(Sx, Sy, Su), (A1)

�RO1 =
[Sg

2
+ RCO

]
(0, 0,−1) + mC

M
(Sx, Sy, Su), (A2)

�RO2 =
[Sg

2
+ RCO

]
(0, 0, 1) + mC

M
(Sx, Sy, Su), (A3)
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where mC = 21 874.66 me is the mass of the carbon atom in
the electron mass, mO = 29 156.95 me is the oxygen mass,
M = mC + 2mO is the total mass of CO2, and RCO = 2.1961
bohr is the experimental equilibrium distance of the carbon-
oxygen bond. The dimensionless normal coordinates are given
by [42]

Qg =
√

μ1ωg

h̄
Sg, Qu =

√
μ2ωu

h̄
Su, (A4)

Qx =
√

μ2ωb

h̄
Sx, Qy =

√
μ2ωb

h̄
Sy, (A5)

where ωg, ωu, and ωb are the angular frequencies of the
symmetric stretching, antisymmetric stretching and bending,
respectively, μ1 = mO/2, and μ2 = 2mOmC/M.

The neutral molecule Hamiltonian in the harmonic approx-
imation is then written as H0 = TN + V0 with

TN = −1

2
ωg

∂2

∂Q2
g

− 1

2
ωu

∂2

∂Q2
u

−1

2
ωb

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂ϕ2

)
, (A6a)

V0 = 1

2
ωgQ2

g + 1

2
ωbρ

2 + 1

2
ωuQ2

u, (A6b)

where polar coordinates ρ and ϕ are defined in Eq. (9).
To solve the vibronic dynamics we expand each discrete-

state component ψd (�q ) in the basis of vibrational eigenfunc-
tions of the neutral molecule [see Eq. (54)] and implement
the action of the Hamiltonian Eq. (5) on the expansion coef-
ficients. The basis is thus defined by relation H0|ν〉 = Eν |ν〉
with

Eν = ωg(νg + 1/2) + ωb(νb + 1) + ωu(νu + 1/2), (A7)

where we use a shorthand notation ν ≡ (νg, νb, �b, νu). The
basis wave functions 〈 �q |ν〉 are given by the product of
wave functions of one-dimensional harmonic oscillators in the
stretching modes and two-dimensional harmonic oscillator in
the bending motion which read in x representation [72]

〈 �q |νg, νb, �b, νu〉 = φνg (Qg)�νb�b (ρ, ϕ)φνu (Qu) (A8a)

with

φn(q) =
(√

2nn!
√

π

)−1

Hn(q)e−q2/2, (A8b)

�n�(ρ, ϕ) = 1√
2π

√
2nr!

(nr + |�|)!ρ
|�|L|�|

nr
(ρ2)ei�ϕe−ρ2/2,

(A8c)

where n = νg or νu, q = Qg or Qu, Hn(q) are the Hermite poly-
nomials, L|�|

nr
(ρ2) are the generalized Laguerre polynomials,

nr = 1
2 (n − |�|), and � = −n,−n + 2, . . . , n.

For evaluation of the action of operators U and F we
need to act with operators of the normal coordinates Qg, Qu,
and Q± on the wave functions. The coordinates Qg and Qu

are represented in the one-dimensional oscillator basis by the
well-known matrix

〈n′|Qg,u|n〉 = (√
n δn′n−1 + √

n + 1 δn′n+1
)
/
√

2, (A9)

where n = νg and νu, respectively. For the coordinates Q± and
ρ2 = Q+Q−, we have in the two-dimensional basis [37]

〈n′, �′|Q±|n, �〉 = ± 1√
2
δ�′�±1s±(�)

× [√
n ± � + 2 δn′n+1 − √

n ∓ � δn′n−1
]
,

(A10)

where

s+(�) =
{+1 for � � 0
−1 for � < 0 , s−(�) =

{+1 for � > 0
−1 for � � 0 ,

(A11)

〈n′, �′|ρ2|n, �〉 = δ�′�(n + 1) δn′n − 1
2δ�′�

[√
n2 − �2 δn′n−2

+
√

(n + 2)2 − �2 δn′n+2
]
. (A12)

The formulas above can be derived using creation and annihi-
lation operators for right and left circular quanta [72]. Higher
powers of the coordinates are obtained in terms of matrix
multiplication.

APPENDIX B: EIGENPHASE SUM FOR TWO-STATE
PROBLEM

Let us consider two discrete states that belong to the same
irreducible representation of a molecular point group and are
coupled to an arbitrary number of electron partial waves.
In general, the fixed-nuclei Hamiltonian within the discrete-
states-in-continuum model then reads

H = U + F (ε) =
(

U11 + F11(ε) U12 + F12(ε)
U12 + F12(ε) U22 + F22(ε)

)
, (B1)

where Fdd ′ (ε) are calculated analogically to Eq. (6). Note
that we shifted the Hamiltonian with respect to, for example,
Eq. (26) by subtracting V0 so that it corresponds to the electron
energy ε = E − V0 relative to threshold at given geometry.
The fixed-nuclei T -matrix element for incoming μi and out-
going μ f partial waves is given by

Tμ f ←μi =
2∑

d,d ′=1

V
μ f ∗

dε f
(ε12 − H )−1

dd ′V
μi

d ′εi
. (B2)

We observe that T matrix is a rank-two operator in the space
of partial waves μ. By denoting the vector of V μ

dε
amplitudes

in the partial wave index μ by |vd〉, we can write the S matrix
in the form

S = I − 2π i
2∑

d,d ′=1

|vd〉(ε12 − H )−1
dd ′ 〈vd ′ |, (B3)

which implies that the S matrix has only two nontrivial eigen-
values s = e2iδ �= 1, that is, there are only two nontrivial
eigenphases δ �= 0. Thus, we can write eigenvectors as a linear
combination of vectors |vd〉, |s〉 = ∑

d cd |vd〉. By projecting
〈vd | on the eigenproblem

S|s〉 = s|s〉, (B4)
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TABLE II. Obtained values of the parameters of the matrix U . The parameters are polynomials
∑4

i=0 ciQi
g in the symmetric stretching

normal coordinate Qg. The notation x(y) means x × 10y, and values are in the hartree unit of energy Eh.

c0 (Eh) c1 (Eh) c2 (Eh) c3 (Eh) c4 (Eh)

E 0
� 0.13229(0) −0.20130(−1) 0.40310(−3) 0 0

E 2b
� −0.37108(−3) 0.39684(−3) 0.23170(−4) 0 0

E 2u
� 0.12675(−2) −0.31060(−5) 0.22870(−6) 0 0

E 4b
� 0.17624(−4) 0.12929(−4) 0.42013(−5) 0 0

E 0
� 0.40000(0) 0 0 0 0

E 2b
� 0.88740(−2) −0.22622(−2) 0.75278(−3) −0.18248(−3) 0.14277(−4)

E 2u
� 0.46670(−1) −0.66847(−2) 0.19314(−3) −0.17239(−3) 0.15079(−4)

E 4b
� −0.31629(−4) 0.11550(−4) −0.86640(−6) 0 0

E 4u
� 0.19697(−2) −0.67839(−3) 0.62488(−4) 0 0

E 4bu
� 0.39880(−2) −0.44038(−5) −0.42582(−4) 0 0

λ −0.77277(−2) −0.80054(−5) −0.59084(−3) 0 0

g 0.14523(−2) 0.28492(−3) 0.23170(−4) 0 0

κ 0.12134(−4) 0.13003(−4) 0.42013(−5) 0 0

we get the following equation for the coefficients cd :

2∑
d ′=1

(S̃dd ′ − s�dd ′ )cd ′ = 0, (B5)

where �dd ′ = −2 Im Fdd ′ = 2π
∑

μ V μ

dε
V μ

d ′ε = 2π〈vd |vd ′ 〉 and
(after some algebraic manipulations and realization that
Hd p + i�d p = H∗

d p)

S̃dd ′ =
2∑

p,q=1

(εδd p − H∗
d p)(ε12 − H )−1

pq �qd ′ . (B6)

The condition for the existence of a nontrivial solution of
Eq. (B5) is

det(S̃ − s�) = 0, (B7)

which leads to a quadratic equation for the eigenvalues s1 and
s2, and we can obtain the eigenphase sum δ1 + δ2 from the
constant coefficient of the quadratic equation

s1s2 = e2i(δ1+δ2 ) = (ε − H∗
11)(ε − H∗

22) − (H∗
12)2

(ε − H11)(ε − H22) − H2
12

, (B8)

which is equivalent to Eq. (30).

APPENDIX C: MODEL PARAMETERS

Here we list numerical values of the model parameters
obtained from our fitting of the model to the R-matrix data.
The parameter values of the matrix U , which is given by
Eqs. (17), (37)–(39), are listed in Table II.

The continuum-coupling matrix Vε is given by Eqs. (18),
(40)–(42) and the parameters are of the form v(ε) Eq. (44).
Actually, the parameter v2b

�p that appears in Eq. (40) is given
by the sum of two terms v(ε), v2b

�p = v2b1
�p + v2b2

�p , and sim-
ilarly, w�p in Eq. (18) is given by w�p = w1

�p + w2
�p. The

reason is the following. The model was constructed in the

A′′ and A′ symmetries which depend on v2b
�p − w�p and

v2b
�p + w�p, respectively. These terms were independently

parametrized by functions of the form v(ε). Thus, when we
express v2b

�p and w�p, we get two v(ε) terms. The obtained
parameter values of the Vε matrix are listed in Table III.

Finally, the parameter values of the background eigenphase
sums, which are given by Eqs. (45) and (46), are listed in
Table IV.

APPENDIX D: DIFFERENTIAL CROSS SECTIONS

The differential cross section for vibrational excitation of a
molecule from the initial vibrational state νi to final state ν f

by an electron with the initial ki and final k f momenta is given
by averaging the T matrix over molecular orientations [9]

dσν f ←νi

d�
(ε, θ ) = 8π4

ε2
|Tν f k f ←νiki |2, (D1)

where the discrete-state (resonant) contribution to the T ma-
trix within the nonlocal model reads [15]

Tν f k f ←νiki = 〈ν f |V †
k f

(E1 − H )−1Vki |νi〉. (D2)

The discrete-state-continuum coupling Vk is a vector in the
discrete-state index d . By expanding its elements into partial
waves μ = (l, m)

Vdk =
∑

μ

V μ

dε
Yμ(k̂), (D3)

we get

Tν f k f ←νiki =
∑
μi,μ f

Y ∗
μ f

(k̂ f )Tν f μ f ←νiμiYμi (k̂i ) (D4)

with

Tν f μ f ←νiμi = 〈ν f |V μ f †
ε f (E1 − H )−1V μi

εi
|νi〉. (D5)
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TABLE III. Obtained values of the parameters of the continuum-coupling matrix Vε . The parameters has the form of Eq. (44) with the
parameter a being a polynomial

∑2
i=0 ciQi

g in the symmetric stretching normal coordinate Qg. The notation x(y) means x × 10y, and Eh is the
hartree unit of energy.

c0 (E 1/2
h ) c1 (E 1/2

h ) c2 (E 1/2
h ) l β (E−1

h )

v0
�s 0.15505(0) 0.40072(−1) 0.88177(−3) 0 0.14586(2)

v2b
�s 0.86210(−2) −0.25939(−2) 0.17858(−3) 0 0.28841(2)

v2u
�s 0.50983(−1) −0.85719(−2) 0.17197(−3) 0 0.20000(3)

v0
�s

a 0.62981(−1) 0.27292(−2) −0.18793(−3) 0 0.88654(0)

v2u
�s −0.24927(−3) 0.53192(−4) 0.12654(−4) 0 0.40101(2)

v0
�p 0.10265(0) −0.11894(−1) 0.57839(−3) 1 0.29575(1)

v2b1
�p −0.44586(−2) −0.27871(−2) −0.14301(−5) 1 0.21098(0)

v2b2
�p 0.91958(−4) 0.24018(−4) 0.11016(−5) 1 0.33418(2)

v2u
�p 0.16151(−2) −0.32262(−4) −0.86390(−6) 1 0.33815(1)

w1
�p −0.44586(−2) −0.27871(−2) −0.14301(−5) 1 0.21098(0)

w2
�p −0.91958(−4) −0.24018(−4) −0.11016(−5) 1 0.33418(2)

v�z 0.10947(−1) 0.14344(−2) −0.24540(−3) 1 0.15189(2)

v�p 0.29400(−1) −0.11984(−2) −0.24803(−2) 1 0.19498(2)

v�z 0.22929(0) −0.11758(−1) −0.34163(−2) 1 0.41721(2)

aThe v0
�s parameter has also terms of the third and fourth order with coefficients c3 = −0.42421(−4) E 1/2

h and c4 = −0.51748(−5) E 1/2
h .

Then we can perform the averaging over the molecular orientations using Euler angles α, β, γ :

dσν f ←νi

d�
(ε, θ ) = f (ε)

8π2

∫ 2π

0
dα

∫ 2π

0
dγ

∫ π

0
dβ sin β

∣∣∣R(α, β, γ )
∑
li,mi

∑
l f ,m f

Y ∗
l f m f

(k̂ f )Tν f l f m f ←νi limi
Ylimi

(k̂i )
∣∣∣2

, (D6)

where R(α, β, γ ) is the corresponding rotational operator and f (ε) = π2/(2ε). The rotational operator R acts on the direction
vectors k̂i and k̂ f of the initial and final electron momenta via the rotational matrix R:

R(α, β, γ ) =
⎛
⎝ cos α sin α 0

− sin α cos α 0
0 0 1

⎞
⎠

⎛
⎝ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞
⎠

⎛
⎝ cos γ sin γ 0

− sin γ cos γ 0
0 0 1

⎞
⎠, (D7)

TABLE IV. Obtained values of the parameters of the background eigenphase sums. The parameters are polynomials
∑4

i=0 ciQi
g in the

symmetric stretching normal coordinate Qg. The coefficients of the abg, cbg, c1b
bg, and c2u

bg parameters are in units of E−1
h , where Eh is the hartree

unit of energy, and the rest of the parameters are dimensionless. The notation x(y) means x × 10y.

c0 c1 c2 c3 c4

abg −0.11585(1) 0.20994(−1) 0.36453(−3) 0 0

bbg 0.10443(0) −0.10081(−2) −0.11098(−3) 0 0

b2b
bg −0.90841(−3) 0.12924(−6) 0.19154(−7) 0 0

b2u
bg 0.15270(−2) −0.16398(−3) 0 0 0

cbg −0.63794(1) 0.61145(0) 0.83917(−1) 0

c1b
bg −0.11542(−1) −0.62076(−1) −0.16750(−1) 0.46431(−3) 0.49201(−3)

c2u
bg 0.72745(−1) 0.50706(−2) −0.78337(−3) 0 0

dbg −0.35235(−1) 0.77574(−2) 0.91983(−3) 0 0

d1b
bg 0.16629(−1) −0.51348(−2) 0.11835(−2) 0.27039(−3) −0.567215(−6)

d2u
bg −0.16497(−2) 0.61585(−3) 0.17584(−3) 0 0

d3bu
bg 0.90811(−3) 0.73771(−6) 0.49481(−6) −0.12696(−7) 0
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that is, we have

dσν f ←νi

d�
(ε, θ ) = f (ε)

8π2

∫ 2π

0
dα

∫ 2π

0
dγ

∫ π

0
dβ sin β

∑
li,mi

∑
l f ,m f

Y ∗
l f m f

(Rk̂ f )Tν f l f m f ←νi limi
Ylimi (Rk̂i )

×
∑
l ′i ,m

′
i

∑
l ′f ,m

′
f

Yl ′f m′
f
(Rk̂ f )T ∗

ν f l ′f m′
f ←νi l ′i m

′
i
Y ∗

l ′i m
′
i
(Rk̂i ). (D8)

In our model of the e+CO2 system, we consider electron partial waves μ = (l, m) = (0, 0), (1,0), and (1,±1) for the s, pz,
and p± partial waves in the expansion Eq. (D3). The corresponding spherical harmonic functions Yμ are

Y00 = 1/
√

4π, Y10 =
√

3/(4π )kz, Y1±1 = ∓
√

3/(8π )(kx ± iky), (D9)

where kx, ky, kz are the Cartesian components of the electron momentum direction vector. In addition, we consider only the initial
vibrational state νi to be the ground vibrational state of CO2, and thus, the symmetry of the final vibrational state ν f restricts
possible combinations of the incoming and outgoing partial waves; see Sec. VI. Without loss of generality, we set k̂i = (0, 0, 1)T

and k̂ f = (sin θ, 0, cos θ )T , where θ is a scattering angle. The integration over the Euler angles results in the following formulas
for �+

g , �+
u , �g, �u, and �g final vibrational states:

dσ

d�
(ε, θ )

∣∣∣∣
�+

g

= f (ε)

{
|Tss|2 + 3

5
(1 + 2 cos2 θ )|Tzz|2 + 3

10
(3 + cos2 θ )(|T++|2 + |T−−|2) + 2 cos θ Re [Tss (T ∗

++ + T ∗
−− + T ∗

zz )]

− 3

5
(1 − 3 cos2 θ )[2 Re (T++T ∗

−−) + Re (Tzz[T ∗
++ + T ∗

−−])]

}
, (D10)

dσ

d�
(ε, θ )

∣∣∣∣
�+

u

= f (ε)[|Tsz|2 + |Tzs|2 + 2 cos θ Re (TszT ∗
zs )], (D11)

dσ

d�
(ε, θ )

∣∣∣∣
�g

= f (ε)
3

5
[(2 − cos2 θ )(|Tz+|2 + |T−z|2 + |Tz−|2 + |T+z|2) + (1 − 3 cos2 θ ) Re(Tz+T ∗

−z + Tz−T ∗
+z )], (D12)

dσ

d�
(ε, θ )

∣∣∣∣
�u

= f (ε)
[|Ts+|2 + |T−s|2 + |Ts−|2 + |T+s|2 − 2 cos θ Re (Ts+T ∗

−s + Ts−T ∗
+s)

]
, (D13)

dσ

d�
(ε, θ )

∣∣∣∣
�g

= f (ε)
3

10
(3 + cos θ )(|T−+|2 + |T+−|2), (D14)

where we suppressed the νi and ν f indices and used a shorthand notation for partial waves (l, m): s corresponds to (0,0), z to
(1,0), and ± to (1,±1).

Alternatively, we can calculate the differential cross sections by extending the derivation of McCurdy et al. [9], which leads
to the following formula:

dσν f ←νi

d�
(ε, θ ) = 8π4

ε

∑
li,mi

∑
l ′i ,m

′
i

∑
l f ,m f

∑
l ′f ,m

′
f

√
(2li + 1)(2l ′

i + 1)

4π
Tν f l f m f ←νi limi

T ∗
ν f l ′f m′

f ←νi l ′i m
′
i

l f∑
M=−l f

Y ∗
l f M (k̂ f )Yl ′f M (k̂ f )

×
l f +l ′i∑

j=|l f −l ′i |

j∑
m=− j

(2 j + 1)

(
l f l ′

i j
M 0 −M

)(
l ′

f li j
M 0 −M

)(
l f l ′

i j
m f m′

i m

)(
l ′

f li j
m′

f mi m

)
, (D15)

where the matrices are the Wigner 3- j symbols. We tested that both the approaches provide the same results.
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