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Jan Dvořák ,1 Miloš Ranković ,2 Karel Houfek ,1 Pamir Nag ,2 Roman Čurík ,2

Juraj Fedor ,2,* and Martin Čížek 1,†
1Charles University, Faculty of Mathematics and Physics, Institute of Theoretical Physics,

V Holešovičkách 2, 180 00 Prague 8, Czech Republic
2J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences,

Dolejškova 2155/3, 182 23 Prague 8, Czech Republic

(Received 11 February 2022; revised 20 April 2022; accepted 20 May 2022; published 27 June 2022)

We report two-dimensional electron energy-loss spectra of CO2. The high-resolution experiment reveals
a counterintuitive fine structure at energy losses where CO2 states form a vibrational pseudocontinuum.
Guided by the symmetry of the system, we constructed a four-dimensional nonlocal model for the vibronic
dynamics involving two shape resonances (forming a Renner-Teller Πu doublet at the equilibrium
geometry) coupled to a virtual Σþ

g state. The model elucidates the extremely non-Born-Oppenheimer
dynamics of the coupled nuclear motion and explains the origin of the observed structures. It is a prototype
of the vibronic coupling of metastable states in continuum.
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The most striking phenomena in the electron-molecule
scattering are often related to the formation of compound
anionic states [1,2]. These states can have a mixed character
combining bound states with resonances or virtual states
[3]. The vibrational dynamics of such states can be
represented by the familiar motion of nuclei on a potential
energy surface (PES). The resonant PESs have, however, an
imaginary component due to the embedding in the con-
tinuum and become nonlocal and energy dependent in the
full form. This approach is well established for the
theoretical treatment of the electron scattering from
diatomic molecules including the understanding of the
importance of the nonlocality for reproduction of many
features observed in the cross sections [2,3]. In polyatomic
molecules a local complex potential approximation has
almost exclusively been applied [4–7]. The intersection of
multiple electronic states in the continuum has a specific
topology due to the presence of the imaginary part [8–11].
Unlike in the case of bound states [12], the vibronic
interaction of short-lived states is relatively unexplored.
Estrada et al. [13] performed a full nonlocal dynamical
calculation for a model system with two vibrational degrees
of freedom and two states vibronically coupled (pseudo-
Jahn-Teller effect). Their model assumes discrete-state-
continuum amplitudes independent of vibrational coordi-
nates, which prohibits an indirect coupling of electronic

states of different symmetries through the continuum. We
extend this approach by considering the indirect coupling
in a model for multiple discrete states and up to four
vibrational degrees of freedom, which opens the possibility
to treat the nonlocal dynamics of metastable states for a
larger class of polyatomic molecular anions.
The eþ CO2 system is well suited to test the theoretical

approach. First, the neutral molecule has an intriguing
vibrational-level structure. Those ðν1; νl2 ; ν3Þ harmonic
levels that are nearly degenerate and have the same
symmetry are strongly Fermi-coupled and distributed in
polyads [14]. Second, there are many experimental data
available [15]. Several aspects of the system are already
well understood including the boomerang oscillations [16],
threshold peaks in vibrational excitation [17], and sharing
of excitation between members of the Fermi dyad [4,18].
On the other hand, some experimental data are still
puzzling, especially those related to high vibrational
excitation. Allan [19] reported a reappearance of structure
in the spectra (with ∼160 meV spacing) at nearly complete
energy losses where Fermi-coupled polyads overlap and
should form a dense structureless continuum (he termed it
“spectroscopic order out of spectroscopic chaos”). Currell
and Comer explained their data [14,20,21] as a result of
excitation of very high bending modes and hypothesized
that it is a signature of the quantum friction [22] in the CO−

2

nuclear motion. Up to this point, there have been no
calculations that would provide an insight into the highly
inelastic region. The Fermi coupling requires the inclusion
of at least symmetric stretching and bending modes [23]
and the most advanced treatment by McCurdy et al. [4]
focused on excitation of low-lying vibrational states. In
addition, theory has not addressed the sharing of excitation
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energies among nontotally symmetric vibrational states,
such as odd quanta of bending or asymmetric stretching,
which are clearly observed in experiments [15,24]. In this
Letter, we interpret our new and also previously unex-
plained experimental observations of the eþ CO2 system
based on nonlocal calculations of the nuclear dynamics,
demonstrating the predictive power of our theoretical
approach and at the same time the feasibility of the
calculations.
We have experimentally probed the CO2 vibrational

excitation using the 2D electron energy-loss spectroscopy
(EELS) [25,26] [Fig. 1(a)]. The incident electron energy
(vertical axis) covers the region of the 2Πu resonance. The
spectrum agrees well with previous reports, both classical
1D EELS studies [16,19,27–29] and early variants of 2D
EELS [14,20,21]. However, the improved characteristics of
the current experiment (energy resolution of 18 meV,
sensitivity to electrons with residual energies down to
20 meV, high dynamic range) reveal new aspects. First,
the “reappearing order” in 1D EELS spectra [19] corre-
sponds to the lowest diagonal ray, which extends to
complete energy losses. Second, the broad peaks in the
high energy-loss region show a previously unreported fine
structure [inset in Fig. 1(a)]. The spacing of this progres-
sion [empirically determined from 1D EELS spectrum,
Fig. 2(a)] is ∼29 meV. Such a progression is surprising
since first it is very different from the fundamental vibra-
tional frequencies [30] (168 meV, 83 meV, and 297 meV
for symmetric stretching, bending, and asymmetric

stretching, respectively), and second, it appears in the
region with a high vibrational level density. Therefore,
there has to be some kind of selective mechanism. These
results create an additional need for a proper multidimen-
sional model of the vibrational excitation.
Our model is described in the companion paper [31].

Briefly, we consider three electronic states of CO−
2 : the

2Σþ
g

virtual state and the 2Πu shape resonance, which splits due
to the Renner-Teller effect into 22A1 and 2B1 states as the
molecule bends [32]. The 2Σþ

g and 2Πu states were pre-
viously treated separately [4,18] and the topology of the
PESs was unclear [33,34]. Sommerfeld et al. [34] argued
that the virtual state and the 22A1 Renner-Teller component
mix upon bending, which couples all the three states
together. We represent them by three diabatic discrete
states jdi that are coupled directly through a potential
matrix Vd1d2 ¼ hd1jHeljd2i, where Hel is the electronic
Hamiltonian, and indirectly through the continuum by
matrix elements Vμ

dϵ ¼ hdjHeljϵμi, which depend on elec-
tron energy ϵ. We consider the coupling to four electron
partial waves μ≡ ðl; mÞ with l ¼ 0, 1 for s, p waves,
respectively. The coupling elements are functions of vibra-
tional normal coordinatesQ of all the modes but their form
is restricted by the molecular symmetry [13,35]. To
determine the model parameters we performed ab initio
fixed-nuclei R-matrix calculations of eigenphase sums and
PESs for thousands of molecular geometries using the
UKRmol+ [36] suite of codes. The cuts of adiabatic PESs
obtained within our model are shown in Fig. 3. All the

FIG. 1. (a) Experimental and (b) calculated 2D electron energy-loss spectra of CO2 at a scattering angle of 135°. The main plots have
the same logarithmic color scale shown at the top. The insets are in a linear scale from 0 to 1.
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anionic states come close together and become bound as the
molecule symmetrically stretches. The 2B1 component is
not much affected by the bending whereas the 22A1

component rapidly moves to the threshold and its width
significantly increases due to a strong coupling to the s
wave. On top of that, this s-wave coupling gives rise to the
local minimum in the 12A1 potential but the minimum is
connected with the 2Σþ

g virtual state while the 22A1 state
remains unbound.
The dynamics of CO−

2 for total energy E is described by
the inhomogeneous Schrödinger equation ½E − T − V−
FðEÞ�jΨi ¼ Vμi

ϵi jνii, where T is the kinetic energy of the
vibrations, V is the potential matrix Vd1d2 , and the nonlocal
level-shift operator matrix FðEÞ is calculated by an integral
transformation from Vμ

dϵ [3]. The scattering wave function
jΨi has three vibrational components ΨdðQÞ, which are
expressed in a four-dimensional oscillator basis. This
transforms the Schrödinger equation into a (large) system
of linear equations, which we solved by the iterative

conjugate orthogonal conjugate gradient (COCG) method
[37] based on Krylov subspaces. Finally, the vibrational
excitation cross sections are calculated from T-matrix

elements Tνfμf←νiμi ¼
P

dhνfjVμf†
dϵf

jΨdi, where ϵi and ϵf
are the initial and final electron energies, μi and μf the
incoming and outgoing electron partial waves, and νi and
νf the initial and final vibrational states, respectively.
Although anharmonic terms are included for the dynam-

ics of the anion, the neutral molecule is only approximated
by harmonic vibrations in order to keep the multidimen-
sional calculations feasible. Thus, the dynamics does not
include the Fermi resonance effect. Employing the anhar-
monic potential of Chedin [38], we calculated the expan-
sion jνFRi ¼

P
ν cνjνi of the Fermi-coupled vibrational

states jνFRi into harmonic states jνi. By mixing the
calculated harmonic T matrices using the coefficients cν,
we partially incorporated this (crucial) effect.
To calculate the 2D spectrum shown in Fig. 1(b), we

convoluted the cross sections with a Gaussian distribution
to simulate the finite experimental resolution. First, we
should explain a well-understood drawback of our model
that influences the direct comparison with the experiment:
the shrinking of the calculated energy-loss spectra towards
lower energies. The used R-matrix model produces the
vibrational frequencies about 30% larger than the exper-
imental ones. Therefore, when we project the calculated
population of the harmonic states after the collision to more
precise Fermi-coupled levels (with lower energies), the
spectrum shrinks towards lower energy losses. Apart
from this quantitative difference, the model qualitatively
reproduces the observed features and allows for their
interpretation:
(i) Boomerang rays. Perhaps the most visually dominant

features in the 2D spectrum are the diagonal rays. These are
the boomerang oscillations [27] that originate from inter-
ference due to the back and forth motion of the nuclei in
symmetric stretching [16]. They are known to be somewhat

FIG. 2. (a) Experimental and (b) calculated 1D electron energy-loss spectra at a scattering angle of 135° and incident electron energy
of 3.8 eV. We show the positions of the Σþ

u asymmetric stretching peak ð0; 00; 1Þ and vibrational states within Σþ
g polyads ðn; 2m0; 0Þ

and Πu polyads ½n; ð2mþ 1Þ1; 0� for nþm ¼ 0; 1;…; 6. Panel (b) also shows calculated total contributions of Σþ
g and Πu symmetries

and the ð0; 00; 1Þ peak.

FIG. 3. Adiabatic potential energy curves of CO2 (the ground
state 1Σþ

g ) and CO−
2 (2Σþ

g , 2Πu) within our model upon (a) sym-
metric stretching and (b) bending described by normal coordi-
nates. The shaded areas represent the resonance widths.
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weakened but not destroyed by the bending motion [23].
Calculated positions of boomerang peaks are also influ-
enced by the above mentioned distortion and they do not
directly correspond to the experimental data but the general
character is reproduced.
(ii) Excitation of all modes. The dependence of the

continuum coupling Vμ
dϵ on the vibrational coordinates

allows excitation of nontotally symmetric vibrational states
[39], which was not possible in previous calculations
[4,18]. The excitation of the fundamental bending mode
ð0; 11; 0Þ (marked in Fig. 2), which is of the Πu symmetry,
requires an electron that changes its angular momentum
projection on the molecular axis. In our model, the electron
has to come in as the px or py waves and leave as the swave
or vice versa, which is controlled by Vμ

dϵ proportional to the
bending coordinate. Similarly, the excitation of the asym-
metric stretching ð0; 00; 1Þ (also marked in Fig. 2) of the Σþ

u
symmetry requires a change from pz wave to s or from s
to pz.
(iii) “Spectroscopic order out of spectroscopic chaos.”

Allan [19] pointed out that the experimental 1D EELS
spectrum [such as the one in Fig. 2(a)] shows a very regular
character at low energy losses (here up to some 1.3 eV),
then the spectrum is seemingly structureless (1.3–2.5 eV),
and above 2.5 eV a new regular peak progression appears
(the resolution in [19] was insufficient to resolve the fine
structure). Our model explains this behavior by selectivity
of different polyads [Fig. 2(b)]. Overall, the dominantly
populated vibrational states jνFRi are even polyads com-
posed of harmonic basis states ν ¼ ðn; 2m0; 0Þ of the Σþ

g

symmetry and odd polyads composed of ½n; ð2mþ 1Þ1; 0�
of the Πu symmetry, where nþm ¼ N ¼ constant iden-
tifies individual polyads. For example, states within the Πu

polyad with N ¼ 12 are linear combinations of ν ¼
ð12; 11; 0Þ; ð11; 31; 0Þ;…; ð0; 251; 0Þ and the corresponding
amplitudes cν are typically non-negligible for all the states.
At first, Σþ

g and Πu peaks are well distinguishable since the
Πu peaks are shifted by one bending quantum. At inter-
mediate energy losses, energy ranges of the polyads start to
overlap and create seemingly chaotic patterns because of
the similar magnitude of the excitation. In the high energy-
loss region, the Πu excitation dominates and the order is
partially restored. This behavior is related to a change of the
electron angular momentum from p to s discussed above.
The incoming electron is dominantly of the p-wave
character due to the existence of the 3.8 eV resonance.
At high electron losses, the outgoing p-wave contribution
with a small residual energy is suppressed due to the
threshold law of Wigner [40]. The electron thus preferably
leaves as an s wave forcing the change of angular
momentum in the vibrational state leading dominantly to
Πu states.
(iv) Fine structure at high energy losses. Figure 4 depicts

a detail of the 1D EELS spectra in the region dominated
by the Πu contribution as indicated by frames in Fig. 2.

From the calculation we know which individual state is
responsible for each peak in the theoretical spectrum. To
understand it more, we characterize the Fermi-coupled
states jνFRi by the mean value of number of symmetric
stretching quanta hν1i ¼

P
ν ν1jcνj2. In Fig. 4(a), the

horizontal positions of the symbols show the theoretical
energies of the states within the Πu polyads with N ¼ 12,
13, 14 and vertical positions represent the hν1i values. Even
though the polyads significantly overlap, only one polyad is
responsible for each broad peak and the fine structure is
given by the excitation of consecutive states somewhat
below the maximum of hν1i. These fairly linear states are
dominantly localized in the vibrational space along the
symmetric stretching axis. Highly bent states, which are
located at both ends of the polyads, are not significantly
populated because the rapid broadening of the 22A1 state
causes a fast decay of the anion in highly bent nuclear
configurations, see Fig. 3(b). To verify this mechanism, we
plot the same quantity hν1i for Πu polyads with N ¼ 18,
19, 20 to the experimental spectrum in Fig. 4(b). We found
out that the positions of the predicted peaks follow very
well the experimental peaks not only in the showed energy-
loss interval but also in the spectra for other incident
electron energies.
(v) Alternating excitation pattern in diagonal rays.

Currell and Comer [14,21] observed two types of excita-
tion, which they labeled by A and B, alternating in the
diagonal rays of the 2D spectrum for intermediate energy

FIG. 4. (a) Theoretical and (b) experimental fine structures at
high energy losses. The symbols represent the mean value of
number of symmetric stretching quanta hν1i, see the text, for
members of Πu polyads ½n; ð2mþ 1Þ1; 0� with nþm ¼ 12, 13,
14 for the theoretical spectrum and nþm ¼ 18, 19, 20 for the
experimental result. Panel (a) also shows contributions of Σþ

g and
Πu vibrational states and the vertical lines at the bottom indicate
energies of all relevant vibrational states included in our model.
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losses at a small scattering angle. We also observe the same
patterns in our spectra at 135°. They correctly assigned the
type A excitation to excitation of linear vibrational states of
the Σþ

g polyads ðn; 2m0; 0Þ. However, they argued that the
type B excitation is caused by decay to highly bent states of
the same polyads via the quantum friction effect [22]. Our
calculations show that this is not the case and that fairly
linear states of theΠu symmetry are responsible for the type
B excitation.
In conclusion, the present nonlocal model qualitatively

explains the observed features of the eþ CO2 system. The
high energy-loss region is primarily influenced by the
change of the incoming resonant pwave into the outgoing s
wave, which leads to excitation of vibrational states of the
Πu symmetry. The model also singles out the states that are
responsible for the emergence of the fine structure from the
pseudocontinuum of available states. The theoretical
approach, presented here on the example of the CO2

molecule, can provide the explanation of the behavior of
other polyatomic systems as well since the change of the
electron symmetry and the consequential excitation of
nontotally symmetric vibrational modes appear to be an
important phenomenon [39,41–46].
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