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We present an improved metric form of the complete family of exact black hole spacetimes of algebraic
type D, including any cosmological constant. This class was found by Debever in 1971, Plebański and
Demiański in 1976, and conveniently reformulated by Griffiths and Podolský in 2005. In our new form
of this metric the key functions are simplified, partially factorized, and fully explicit. They depend on
seven parameters with direct physical meanings, namely m; a; l; α; e; g;Λ which characterize mass, Kerr-
like rotation, NUT parameter, acceleration, electric and magnetic charges of the black hole, and the
cosmological constant, respectively. Moreover, this general metric reduces directly to the familiar forms of
(possibly accelerating) Kerr-Newman–(anti–)de Sitter spacetime, charged Taub-NUT–(anti–)de Sitter
solution, or (possibly rotating and charged) C-metric with a cosmological constant by simply setting the
corresponding parameters to zero. In addition, it shows that the Plebański-Demiański family does not
involve accelerating NUT black holes without the Kerr-like rotation. The new improved metric also enables
us to study various physical and geometrical properties, namely the character of singularities, two black
hole and two cosmo-acceleration horizons (in a generic situation), the related ergoregions, global structure
including the Penrose conformal diagrams, parameters of cosmic strings causing the acceleration of the
black holes, their rotation, pathological regions with closed timelike curves, or thermodynamic quantities.
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I. INTRODUCTION

Black holes belong to the most remarkable predictions of
Einstein’s general relativity. Although their existence had
been doubted for many decades, it is now widely accepted
that such totaly gravitationally collapsed “objects” indeed
exist in our Universe. Recent (and spectacular) observa-
tional proofs of this fact are the detections of gravitational
waves emitted from binary black hole coalescences,
achieved by the LIGO Scientific Collaboration-Virgo
Collaboration [1,2], and also the first direct image of a
shadow of a supermassive black hole in M87* and in
Sgr A*, obtained by the Event Horizon Telescope
Collaboration [3,4].
First exact spacetimes representing black holes were

found very soon after the final formulation of Einstein’s
field equations of general relativity in November 1915.
Namely, it is the important solution of Schwarzschild
(1916), Reissner-Nordström solution with an electric
charge (1916–1918), and Kottler-Weyl-Trefftz solution
with a cosmological constant Λ (1918–1922). These were
followed in 1960s by rotating Kerr (1963), twisting Taub-
NUT (1963) or Kerr-Newman charged black holes (1965),
and also the so called C-metric (1918, 1962), physically

interpreted by Kinnersley-Walker (1970) as uniformly
accelerating pair of black holes.
All these fundamental exact solutions are spherically/

axially symmetric, and are of algebraic type D. In fact, they
belong to a general family of type D spacetimes with any Λ
and an aligned electromagnetic field. Nonaccelerating sol-
utions of this family were obtained in 1968 by Carter [5].
In the vacuum Λ ¼ 0 case, they include all the particular
subclasses identified by Kinnersley [6]. Debever [7] in 1971
found a wider class of such black holes which also admit
acceleration. In 1976 a better metric representation of this
complete class of type D exact solutions to Einstein-
Maxwell equations with double-aligned non-null electro-
magnetic field and Λ was found in a seminal work [8] by
Plebański and Demiański (for more details and further
references see [9,10], in particular Chap. 16).
Unfortunately, the familiar forms of the well-known

black holes were not included explicitly in the original
Plebański-Demiański metric (specific degenerate transfor-
mations had to be applied), and the physical interpretation
of its seven free parameters was not clear. Both these
drawbacks were overcome in 2006 in the works of Griffiths
and Podolský [11–13], see also [10], enabling easier
analysis of physical and geometrical properties of these
exact black holes.
In our recent paper [14] we demonstrated that this

Griffiths-Podolský form of the generic black hole metric

*podolsky@mbox.troja.mff.cuni.cz
†vratny.adam@seznam.cz

PHYSICAL REVIEW D 107, 084034 (2023)

2470-0010=2023=107(8)=084034(29) 084034-1 © 2023 American Physical Society

https://orcid.org/0000-0003-2998-6830
https://orcid.org/0000-0003-1142-0177
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.084034&domain=pdf&date_stamp=2023-04-20
https://doi.org/10.1103/PhysRevD.107.084034
https://doi.org/10.1103/PhysRevD.107.084034
https://doi.org/10.1103/PhysRevD.107.084034
https://doi.org/10.1103/PhysRevD.107.084034


of type D can be further improved. This was achieved by
introducing a modified set of the mass and charge param-
eters, an appropriate conformal rescaling, and a useful
gauge choice of the twist parameter. The new improved
form of the metric is simple, fully explicit, and with
factorized metric functions. It is thus possible to investigate
and evaluate various properties of this large family of
rotating, charged, and accelerating black holes, namely
their singularities, horizons, ergoregions, infinities, cosmic
strings, or thermodynamics [14].
In such studies we restricted ourselves only to the case

Λ ¼ 0. It is the purpose of the present paper to extend the
new improved coordinate representation found in [14] to
any value of the cosmological constant, thus completing
our program to improve the metric description of the full
class of Plebański-Demiański black holes of algebraic
type D.
In Sec. II we systematically derive the new form of the

metric, with the results summarized in Sec. III. In sub-
sequent Sec. IV all the main subclasses of this large family
of type D black holes are discussed—these are obtained
by simply setting the corresponding physical parameters
Λ; α; l; a; e; g to zero. The second part of our paper, which
is contained in the long Sec. V, is devoted to the physical
and geometrical analysis of this class of black holes which
can be done fully explicitly using our improved form of
the generic metric. Such a study includes determining the
curvature of the gravitational field, evaluation of the
electromagnetic field, the structure and location of hori-
zons, finding the related ergoregions, analytic extension
and global structure, regularization of the symmetry axes,
properties of the possible cosmic strings or struts, their
rotation related to the NUT parameter, regions with closed
timelike curves in their vicinity, and calculation of the
entropy and temperature of the black hole and cosmo-
acceleration horizons. Final summary with further remarks
is contained in Sec. VI.

II. DERIVATION OF THE NEW FORM
OF THE METRIC

First, let us recall the convenient representation of the
complete class of Plebański-Demiański black holes of
algebraic type D found by Griffiths and Podolský in
2005 [11–13]. It is summarized in Eq. (16.18) of [10] as

ds̃2 ¼ 1

Ω2

�
−
Q
ρ2

�
dt− ða sin2θþ 4lsin2 1

2
θÞdφ

�
2

þ ρ2

Q
dr2

þ ρ2

P
dθ2 þ P

ρ2
sin2θ½adt− ðr2 þ ðaþ lÞ2Þdφ�2

�
; ð1Þ

where the metric functions are

Ω ¼ 1 −
α

ω
ðlþ a cos θÞr; ð2Þ

ρ2 ¼ r2 þ ðlþ a cos θÞ2; ð3Þ

PðθÞ ¼ 1 − a3 cos θ − a4 cos2 θ; ð4Þ

QðrÞ ¼ ðω2kþ ẽ2 þ g̃2Þ − 2m̃rþ ϵr2

− 2α
n
ω
r3 −

�
α2kþ Λ̃

3

�
r4: ð5Þ

The constants a3 and a4 in (4) are

a3 ¼ 2α
a
ω
m̃ − 4α2

al
ω2

ðω2kþ ẽ2 þ g̃2Þ − 4
Λ̃
3
al; ð6Þ

a4 ¼ −α2
a2

ω2
ðω2kþ ẽ2 þ g̃2Þ − Λ̃

3
a2; ð7Þ

while the coefficients ϵ, n, and k in (5)–(7) are determined
by the relations,

ϵ¼ ω2k
a2− l2

þ4α
l
ω
m̃− ða2þ3l2Þ

�
α2

ω2
ðω2kþ ẽ2þ g̃2Þþ Λ̃

3

�
;

ð8Þ

n ¼ ω2k
a2 − l2

l − α
a2 − l2

ω
m̃

þ ða2 − l2Þl
�
α2

ω2
ðω2kþ ẽ2 þ g̃2Þ þ Λ̃

3

�
; ð9Þ

and

�
ω2

a2− l2
þ3α2l2

�
k¼1þ2α

l
ω
m̃−3α2

l2

ω2
ðẽ2þ g̃2Þ− Λ̃l2;

ð10Þ

which implies

ω2k
a2 − l2

¼ 1 − Λ̃l2 þ 2α l
ω m̃ − 3α2 l2

ω2 ðẽ2 þ g̃2Þ
1þ 3α2 l2

ω2 ða2 − l2Þ ; ð11Þ

ðω2kþ ẽ2 þ g̃2Þ

¼ ð1 − Λ̃l2Þða2 − l2Þ þ ðẽ2 þ g̃2Þ þ 2α l
ω ða2 − l2Þm̃

1þ 3α2 l2

ω2 ða2 − l2Þ :

ð12Þ

The fully explicit form of the metric (1) is thus quite
complicated because substituting (6)–(12) into (4) and (5)
gives cumbersome expressions. Another fundamental prob-
lem is the actual physical meaning of the seven parameters
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m̃; a; l; ẽ; g̃; α; Λ̃. These have been clearly interpreted only
in special subcases when some of the other parameters were
set to zero. In such subcases, they represent mass, Kerr-like
rotation, NUT parameter, electric charge, magnetic
charge, acceleration, and cosmological constant, respec-
tively. Their meaning in a completely general situation is
still an open problem. Moreover, there is an additional
(auxiliary) twist parameter ω. In previous works [11–13] it
was argued that ω is related both to a and l, and in some
cases can be scaled appropriately using the remaining
coordinate freedom. A satisfactory insight into all these
problems is still missing. It is the aim of the present work to
clarify such issues. We achieve this by presenting a new
compact, explicit and considerably simplified form of the
Plebański-Demiański metric, namely (47)–(51), for a com-
plete family of black holes.
The first step in improving the form of the spacetime is to

introduce a new set of the mass and charge parameters m,
e, g. Following our previous paper [14], we define them as

m≡ Sm̃ − α
l
ω
ða2 − l2 þ e2 þ g2Þ;

e2 ≡ Sẽ2;

g2 ≡ Sg̃2; ð13Þ

where S is a specific scaling constant

S≡ a2 − l2

ω2k
: ð14Þ

Notice that

ðω2kþ ẽ2 þ g̃2Þ ¼ S−1ða2 − l2 þ e2 þ g2Þ; ð15Þ

which is a much simpler expression than (12).
In terms of these new parametersm, e, g, the coefficients

(6)–(9) take the form,

a3 ¼ S−1
a
ω

�
2αm − 2α2

l
ω
ða2 − l2 þ e2 þ g2Þ − 4

3
Λ̃Slω

�
;

ð16Þ

a4 ¼ −S−1
a2

ω2

�
α2ða2 − l2 þ e2 þ g2Þ þ 1

3
Λ̃Sω2

�
; ð17Þ

ϵ ¼ S−1
�
1þ 4α

l
ω
m − α2

a2 − l2

ω2
ða2 − l2 þ e2 þ g2Þ

−
1

3
Λ̃Sða2 þ 3l2Þ

�
; ð18Þ

n ¼ S−1
�
l − α

a2 − l2

ω
mþ 1

3
Λ̃Sða2 − l2Þl

�
: ð19Þ

The key metric functions (4), (5) thus nicely simplify to

PðθÞ ¼ S−1PðθÞ; QðrÞ ¼ S−1QðrÞ; ð20Þ

where

PðθÞ ¼ 1 − 2

�
α

ω
m −

1

3
Λ̃Sl

�
ðlþ a cos θÞ þ

�
α2

ω2
ða2 − l2 þ e2 þ g2Þ þ 1

3
Λ̃S

�
ðlþ a cos θÞ2; ð21Þ

QðrÞ ¼ ½r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ�
�
1þ α

a − l
ω

r

��
1 − α

aþ l
ω

r

�
−
1

3
Λ̃Sr2

�
r2 þ 2α

l
ω
ða2 − l2Þrþ ða2 þ 3l2Þ

�
:

ð22Þ

With (20), the metric (1) now reads

ds̃2 ¼ S
Ω2

�
−
Q
ρ2

S−2
�
dt − ðasin2θ þ 4lsin2 1

2
θÞdφ

�
2

þ ρ2

Q
dr2 þ ρ2

P
dθ2

þ P
ρ2

sin2θS−2½adt − ðr2 þ ðaþ lÞ2Þdφ�2
�
: ð23Þ

Recall that it is a solution to the Einstein-Maxwell field
equations with a cosmological constant Λ̃.
As the second step, we now rescale the coordinates t and

φ by a constant scaling factor S ≠ 0. (This is possible

because their ranges have not yet been specified.) In other
words, we perform the transformation,

t → St; φ → Sφ; ð24Þ

which completely removes all the constants S from the
conformally related metric,

ds2 ≡ S−1ds̃2; ð25Þ

that is
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ds2 ¼ 1

Ω2

�
−
Q
ρ2

�
dt − ðasin2θ þ 4lsin2 1

2
θÞdφ

�
2

þ ρ2

Q
dr2 þ ρ2

P
dθ2

þ P
ρ2

sin2θ½adt − ðr2 þ ðaþ lÞ2Þdφ�2
�
: ð26Þ

Since the energy-momentum tensor of the Maxwell field
4πTab ¼ FacFb

c − 1
4
gabFcdFcd in four dimensions is trace-

free, Einstein’s equations read Rab ¼ Λgab þ 8πTab, and
the Ricci scalar is R ¼ 4Λ. Under the constant conformal
rescaling (25) of the metric, the Ricci tensor is invariant:
gab¼S−1g̃ab implies Rab¼ R̃ab and R¼ R̃S. Consequently,
the new metric (26) is a solution to the Einstein-Maxwell
field equations with a cosmological constant Λ, provided

Λ≡ Λ̃S; Fab ≡ F̃ab

ffiffiffi
S

p
: ð27Þ

The corresponding metric functions (21), (22) are thus

PðθÞ ¼ 1 − 2

�
α

ω
m −

Λ
3
l

�
ðlþ a cos θÞ þ

�
α2

ω2
ða2 − l2 þ e2 þ g2Þ þ Λ

3

�
ðlþ a cos θÞ2; ð28Þ

QðrÞ ¼ ½r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ�
�
1þ α

a − l
ω

r

��
1 − α

aþ l
ω

r

�
−
Λ
3
r2
�
r2 þ 2α

l
ω
ða2 − l2Þrþ ða2 þ 3l2Þ

�
:

ð29Þ

As the third step, it remains to fix the auxiliary twist
parameter ω, coupled with both the Kerr-like rotation a
and the NUT parameter l. It was found in [15] and
conveniently employed in [14,16,17] that the most suitable
gauge choice of this twist parameter is

ω≡ a2 þ l2

a
; ð30Þ

so that

a
ω
¼ a2

a2 þ l2
;

l
ω
¼ al

a2 þ l2
: ð31Þ

Substituting these expressions into (2), (28) and (29), we
obtain the explicit functions Ω, P and Q, namely

Ω ¼ 1 −
αa

a2 þ l2
rðlþ a cos θÞ; ð32Þ

PðθÞ ¼ 1 − 2

�
αa

a2 þ l2
m −

Λ
3
l

�
ðlþ a cos θÞ þ

�
α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
ðlþ a cos θÞ2; ð33Þ

QðrÞ¼ ½r2−2mrþða2− l2þe2þg2Þ�
�
1þαa

a− l
a2þ l2

r

��
1−αa

aþ l
a2þ l2

r

�
−
Λ
3
r2
�
r2þ2αal

a2− l2

a2þ l2
rþða2þ3l2Þ

�
: ð34Þ

In fact, for a generic class of black holes the metric
functions P andQ can be further simplified. To this end, let
us define convenient parameters μ, λ, and A (representing
the “modified” mass, cosmological constant, and acceler-
ation, respectively) as

μ≡m − λA ¼ m −
Λ
3
l
a2 þ l2

αa
; ð35Þ

λ≡ Λ
3

ða2 þ l2Þ2
α2a2

; ð36Þ

A≡ αal
a2 þ l2

: ð37Þ

Moreover, we introduce a pair of special constants rΛþ and
rΛ− by

rΛ� ≡ μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ l2 − a2 − e2 − g2 − λ

q
: ð38Þ

From these definitions it immediately follows that

αa
a2 þ l2

ðrΛþ þ rΛ−Þ ¼ 2

�
αa

a2 þ l2
m−

Λ
3
l

�
;

α2a2

ða2 þ l2Þ2 rΛþrΛ− ¼ α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þΛ

3
;

ð39Þ
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so that (33) can be reexpressed as

PðθÞ ¼
�
1 −

αa
a2 þ l2

rΛþðlþ a cos θÞ
��

1 −
αa

a2 þ l2
rΛ−ðlþ a cos θÞ

�
: ð40Þ

The metric function PðθÞ is thus nicely factorized.
Using (35)–(38), the expression (34) for the metric function QðrÞ is also simplified to

QðrÞ ¼ ½r2 − 2μrþ ða2 − l2 þ e2 þ g2 þ λÞ�
�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
− λ

�
1þ α2a2

ða2 þ l2Þ2 r
4

�
: ð41Þ

In the cases when μ2 þ l2 > a2 þ e2 þ g2 þ λ, the definition (38) yields two real distinct constants rΛþ and rΛ−, and (41)
takes the form,

QðrÞ ¼ ðr − rΛþÞðr − rΛ−Þ
�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
−
Λ
3

�
r4 þ ða2 þ l2Þ2

α2a2

�
: ð42Þ

Interestingly, when Λ ¼ 0, the constants rΛ� defined
by (38) reduce to

r� ≡m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
: ð43Þ

These parameters then identify (independently of the
acceleration α) the two black hole horizons because
they are also the roots of the metric functions QðrÞ given
by (42), cf. [14].
Finally, although the unique scaling constant S defined

by (14) does not enter the final form of the metric (26)
with (32)–(34), it may be useful to present its explicit form
in terms of the new parameters. Substitution from (13)
into (11) with Λ ¼ Λ̃S yields the relation,

S ¼ 1 − 2α
l
ω
mþ α2

l2

ω2
ða2 − l2 þ e2 þ g2Þ þ Λl2; ð44Þ

that is, using (30), (37)–(39),

S ¼ ð1 −ArΛþÞð1 −ArΛ−Þ: ð45Þ

The rescaling transformation (25) thus actually removes
two coordinate singularities hidden in the expression (45) at
ArΛ� ¼ 1. This fact was already observed for the Λ ¼ 0
case in our previous article [14].
Moreover, it can be seen that S ¼ 1 whenever

ArΛþ ¼ 0 ¼ ArΛ−. For Λ ¼ 0, this happens if l ¼ 0 or
α ¼ 0 or a ¼ 0, in which cases m ¼ m̃, e ¼ ẽ, g ¼ g̃.
For Λ ≠ 0, the value of the scaling factor is generically

S ≠ 1. In the case l ¼ 0 it follows from (44) that S ¼ 1, but
in the case l ≠ 0 we get S ¼ 1þ Λl2 even if α ¼ 0 or

a ¼ 0. Generally, S ¼ 1 only for a special value of the
cosmological constant,

Λ ¼ αa
a2 þ l2

�
2
m
l
−

αa
a2 þ l2

ða2 − l2 þ e2 þ g2Þ
�
: ð46Þ

III. SUMMARY OF THE NEW FORM OF A
GENERIC BLACK HOLE

It is now useful to summarize our new metric representa-
tion of the complete family of black holes contained in the
class of Plebański-Demiański spacetimes [8]. Recall that
such spacetimes are the most general exact solutions to
Einstein-Maxwell equations of algebraic type D with dou-
ble-aligned non-null electromagnetic field (see Chap. 16
of the monograph [10] for the recent review and number of
related references).
The new metric form, which improves the previous

representation found by Griffiths and Podolský [11–13],
reads

ds2 ¼ 1

Ω2

�
−
Q
ρ2

�
dt− ðasin2θþ 4lsin2 1

2
θÞdφ

�
2

þ ρ2

Q
dr2

þ ρ2

P
dθ2 þ P

ρ2
sin2θ½adt− ðr2 þ ðaþ lÞ2Þdφ�2

�
;

ð47Þ
where

Ω ¼ 1 −
αa

a2 þ l2
rðlþ a cos θÞ; ð48Þ

ρ2 ¼ r2 þ ðlþ a cos θÞ2; ð49Þ
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PðθÞ ¼ 1 − 2

�
αa

a2 þ l2
m −

Λ
3
l

�
ðlþ a cos θÞ þ

�
α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
ðlþ a cos θÞ2; ð50Þ

QðrÞ¼ ½r2−2mrþða2− l2þe2þg2Þ�
�
1þαa

a− l
a2þ l2

r

��
1−αa

aþ l
a2þ l2

r

�
−
Λ
3
r2
�
r2þ2αal

a2− l2

a2þ l2
rþða2þ3l2Þ

�
: ð51Þ

The spacetime depends on seven physical parameters,
namely

m …:: mass parameter;

a …:: Kerr-like rotation;

l …:: NUTparameter;

e …:: electric charge;

g …:: magnetic charge;

α …:: acceleration;

Λ …:: cosmological constant:

This metric is compact and fully explicit, and the
ambiguous twist parameter ω has been removed by its
most convenient choice. Moreover, the standard forms of
famous black hole spacetimes—namely Kerr-Newman–
(A)dS, charged Taub-NUT–(A)dS, their accelerated ver-
sions, and others—can easily be obtained as direct subcases
of (47)–(51) by setting the corresponding physical param-
eters to zero.
When Λ ¼ 0, both metric functions P and Q are

factorized, see [14] for more details. With Λ ≠ 0 this
cannot be in general achieved. However, it is possible to
explicitly factorize the function P and compactify the
function Q as

PðθÞ ¼
�
1 −

αa
a2 þ l2

rΛþðlþ a cos θÞ
��

1 −
αa

a2 þ l2
rΛ−ðlþ a cos θÞ

�
; ð52Þ

QðrÞ ¼ ðr − rΛþÞðr − rΛ−Þ
�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
−
Λ
3

�
r4 þ ða2 þ l2Þ2

α2a2

�
; ð53Þ

using the two specific constants,

rΛ� ≡ μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ l2 − a2 − e2 − g2 − λ

q
; ð54Þ

where

μ≡m −
Λ
3
l
a2 þ l2

αa
; λ≡ Λ

3

ða2 þ l2Þ2
α2a2

: ð55Þ

This is possible provided μ2 þ l2 > a2 þ e2 þ g2 þ λ, in
which case the expressions (54) yield two distinct real
constants (or a double root of P given by rΛþ ¼ rΛ− ¼ μ in
the specific situation when μ2 þ l2 ¼ a2 þ e2 þ g2 þ λ).
The new form of the metric (47)–(51) nicely represents the

complete family of type D black holes. Moreover, it naturally
generalizes the standard forms of the most important black

hole solutions, with two black hole horizons (outer and
inner) and two cosmological/acceleration horizons.

IV. THE MAIN SUBCLASSES OF TYPE D
BLACK HOLES

These are easily obtained by setting the appropriate
physical parameters to zero, as follows.

A. Black holes in flat universe
(Λ= 0 : No cosmological constant)

In the case Λ ¼ 0, we get μ ¼ m and λ ¼ 0. When
m2 þ l2 > a2 þ e2 þ g2 (which guarantees that two dis-
tinct roots rþ and r− exist) the metric functions (52), (53)
thus take the form,

PðθÞ ¼
�
1 −

αa
a2 þ l2

rþðlþ a cos θÞ
��

1 −
αa

a2 þ l2
r−ðlþ a cos θÞ

�
; ð56Þ

QðrÞ ¼ ðr − rþÞðr − r−Þ
�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
; ð57Þ
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where

r� ≡m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
; ð58Þ

cf. (43). The constants rþ and r− now directly identify
(independently of the acceleration α) the two black hole
horizons because they are also the roots of the metric
functions QðrÞ given by (57). This large family of black
holes was thoroughly analyzed in our previous work [14],
and it is not necessary to repeat all the arguments and
results here.

B. Kerr-Newman-NUT–(anti-)de Sitter black holes
(α= 0 : No acceleration)

By setting the acceleration parameter α to zero, the
metric function (48) reduces to Ω ¼ 1, while (49) remains
the same. Concerning the functions P and Q given by (52)
and (53), respectively, one has to be more careful in
evaluating the limits of the terms αarΛ� because the
acceleration α → 0 appears also in the denominator of
the parameters μ and λ, defined by (55), which enter rΛ�. In
this case it is more convenient to directly set α ¼ 0 in the
most general forms of these metric functions (50) and (51).
In any case, we obtain the metric,

ds2 ¼ −
Q
ρ2

�
dt − ðasin2θ þ 4lsin2 1

2
θÞdφ

�
2

þ ρ2

Q
dr2

þ ρ2

P
dθ2 þ P

ρ2
sin2θ½adt − ðr2 þ ðaþ lÞ2Þdφ�2;

ð59Þ

where

ρ2 ¼ r2 þ ðlþ a cos θÞ2: ð60Þ

PðθÞ ¼ 1þ 2
Λ
3
lðlþ a cos θÞ þ Λ

3
ðlþ a cos θÞ2; ð61Þ

QðrÞ ¼ r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ

−
Λ
3
r2ðr2 þ a2 þ 3l2Þ: ð62Þ

This result is the same as the limit α → 0 of the metric
functions (52) and (53). Indeed,

lim
α→0

αa
a2 þ l2

rΛ� ¼ −
Λ
3
l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Λ
3
l

�
2

−
Λ
3

s
≡ L�; ð63Þ

lim
α→0

ArΛ� ¼ lL�; ð64Þ

so that

Lþ þ L− ¼ −2
Λ
3
l; LþL− ¼ Λ

3
: ð65Þ

Thus limα→0PðθÞ¼ð1−LþðlþacosθÞÞð1−L−ðlþacosθÞÞ
gives (61), which can be rewritten as

PðθÞ ¼ ð1þ Λl2Þ þ 4

3
Λa l cos θ þ 1

3
Λa2cos2θ: ð66Þ

In a similar way, the limit of (53) using (39) yields (62).
Moreover, in the limit of vanishing acceleration the scaling
factor (45), using (64) and (65), becomes

lim
α→0

S ¼ 1þ Λl2: ð67Þ

We must emphasize that the forms (66) and (62) of
the metric functions PðθÞ and QðrÞ are different from
the analogous metric functions for the Kerr-Newman-
NUT–(anti-)de Sitter black holes as given by Eq. (16.23)
in [10]. In fact, they are equivalent reparametrization of
this solution. Indeed, we have to take into account the
nontrivial scaling (20), that is

PðθÞ ¼ S−1PðθÞ; QðrÞ ¼ S−1QðrÞ; ð68Þ

where S is the constant (67). Straightforward calculation
using the relations (13), (27) between the physical param-
eters then yields

PðθÞ ¼ 1þ 4

3
Λ̃ a l cos θ þ 1

3
Λ̃a2cos2θ; ð69Þ

QðrÞ ¼ ða2 − l2 þ ẽ2 þ g̃2Þ − 2m̃rþ r2

− Λ̃
�
ða2 − l2Þl2 þ

�
1

3
a2 þ 2l2

�
r2 þ 1

3
r4
�
; ð70Þ

which is exactly the form of the metric functions given by
Eq. (16.23) in [10].
All famous subcases of this general family of (nonaccel-

erating) Kerr-Newman-NUT-(anti–)de Sitter black holes,
expressed now in a compact way by the metric (59) with
(60)–(62) [or (66), equivalent to (61)], are readily obtained.
These are the black hole solutions of Kerr-Newman-(anti–)de
Sitter (l ¼ 0), charged Taub-NUT-(anti–)de Sitter (a ¼ 0),
Kerr-(anti–)de Sitter (l ¼ 0, e ¼ 0 ¼ g), Reissner-
Nordström-(anti–)de Sitter (a ¼ 0, l ¼ 0), and
Schwarzschild-(anti–)de Sitter (a ¼ 0, l ¼ 0, and
e ¼ 0 ¼ g). Of course, by setting Λ ¼ 0, the corresponding
black holes in asymptotically flat universe are obtained (the
same as in Sec. IVA).

C. Accelerating Kerr-Newman-(anti–)de Sitter
black holes (l = 0 : No NUT)

Without the NUT parameter l, the new metric (47)
reduces to
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ds2 ¼ 1

Ω2

�
−
Q
ρ2

½dt − asin2θdφ�2 þ ρ2

Q
dr2

þ ρ2

P
dθ2 þ P

ρ2
sin2θ½adt − ðr2 þ a2Þdφ�2

�
; ð71Þ

where

Ω ¼ 1 − αr cos θ; ð72Þ

ρ2 ¼ r2 þ a2 cos2 θ; ð73Þ

PðθÞ ¼ ð1 − αrΛþ cos θÞð1 − αrΛ− cos θÞ; ð74Þ

QðrÞ ¼ ðr − rΛþÞðr − rΛ−Þð1þ αrÞð1 − αrÞ

−
Λ
3

�
r4 þ a2

α2

�
; ð75Þ

where the specific constants rΛ� are now simplified to

rΛ� ≡m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − e2 − g2 −

Λ
3

a2

α2

s
: ð76Þ

The metric functions PðθÞ and QðrÞ can be equivalently
rewritten as

PðθÞ ¼ 1− 2αm cos θþ
�
α2ða2 þ e2 þ g2Þ þΛ

3
a2
�
cos2θ;

ð77Þ

QðrÞ ¼ ½r2 − 2mrþ ða2 þ e2 þ g2Þ�ð1þ αrÞð1 − αrÞ

−
Λ
3
r2½r2 þ a2�: ð78Þ

In this explicit form we easily obtain all possible
subcases by simply setting the corresponding physical
parameters to zero. For vanishing acceleration (α ¼ 0),
the metric of the Kerr-Newman-(anti–)de Sitter black hole
solution is recovered, which then yields the standard form
of the Kerr-Newman solution in the Boyer-Lindquist
coordinates in the case of vanishing cosmological constant
(Λ ¼ 0). Contrarily, by setting Λ ¼ 0 first, we obtain the
general metric of accelerating Kerr-Newman black holes.
For vanishing charges (e ¼ 0 ¼ g), it is equivalent to the
rotating C-metric, first identified by Hong and Teo [18].

D. Charged Taub-NUT-(anti–)de Sitter black holes
(a= 0 : No rotation)

By setting the Kerr-like rotation parameter a to zero,
the new metric (47) considerably simplifies and becomes
independent of the acceleration α [because the metric
functions (48)–(53) depend on α only via the product αa].
Indeed, Ω ¼ 1 and P ¼ 1þ Λl2, so that

ds2 ¼ −
Q
ρ2

ðdt − 4l sin2 1
2
θdφÞ2 þ ρ2

Q
dr2

þ ρ2
�

dθ2

1þ Λl2
þ ð1þ Λl2Þ sin2 θdφ2

�
; ð79Þ

where

QðrÞ ¼ ð1 − Λl2Þr2 − 2mrþ ðe2 þ g2 − l2Þ − Λ
3
r4; ð80Þ

ρ2 ¼ r2 þ l2: ð81Þ

This explicitly demonstrates that there is no accelerating
“purely” NUT-(anti–)de Sitter black hole in the Plebański-
Demiański family of spacetimes.
For Λ ¼ 0, this observation was made already in the

original works [11–13], and recently clarified in [19]. It was
proven that the metric for accelerating (nonrotating) black
holes with purely NUT parameter—which was found by
Chng et al. [20] in 2006 and analyzed in detail in [19]—is
of algebraic type I. Therefore, it cannot be contained in the
Plebański-Demiański class which is of type D. We have just
shown that the same is true also in the case of a non-
vanishing cosmological constant Λ.
It should again be emphasized that the metric

function (80) for QðrÞ is different from the analogous
metric function for the charged Taub-NUT-(anti–)de Sitter
black hole as given by Eq. (12.19) in [10]. Actually, it is
simpler. Such a difference is caused by the nontrivial
rescaling S ¼ 1þ Λl2; see (67), (68). Considering the
relations (13), (20) and (27), we get

PðθÞ ¼ 1; ð82Þ

QðrÞ ¼ r2 − l2 − 2m̃rþ ẽ2 þ g̃2 − Λ̃
�
1

3
r4 þ 2l2r2 − l4

�
;

ð83Þ

which is the expression (70) for a ¼ 0, exactly the same as
the metric function presented in Eq. (12.19) of [10] for the
case ϵ ¼ þ1 (with g̃ ¼ 0).
It will be shown below that the charged Taub-NUT-

(anti–)de Sitter spacetime (79) is nonsingular (its curvature
does not diverge at r ¼ 0), away from the axis θ ¼ π
(where the rotating cosmic string is located) it is asymp-
totically (anti–)de Sitter, and the interior of the black hole is
located between its two horizons, that can be surrounded by
two “outer” cosmological horizons.

E. Uncharged accelerating Kerr-NUT-(anti–)de Sitter
black holes (e= 0 = g : Vacuum with Λ)

Another nice feature of our new metric (47)–(53) is that
it has the same form for vacuum spacetimes without the

JIŘÍ PODOLSKÝ and ADAM VRÁTNÝ PHYS. REV. D 107, 084034 (2023)

084034-8



electromagnetic field. Indeed, the electric and magnetic
charges e and g, which generate the electromagnetic field,
enter only the expressions for rΛ� introduced in (54).
In other words, e and g just change the values of these
two constant parameters. In such a vacuum case, they
simplify to

rΛ� ≡ μ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ l2 − a2 − λ

q
: ð84Þ

The metric (47)–(53) with (84) represents the full class of
accelerating Kerr-NUT-(anti–)de Sitter black holes. It
reduces to accelerating Kerr-(anti–)de Sitter black hole
when l ¼ 0, and nonaccelerating Kerr-NUT-(anti–)de
Sitter black hole when α ¼ 0. For a ¼ 0 it simplifies
directly to the Taub-NUT-(anti–)de Sitter black hole (79)
without acceleration and charges.

V. PHYSICAL ANALYSIS OF THE NEW METRIC

The explicit new metric form (47)–(53) [or, more
generally, (50)–(51)] of the complete class of accelerating
Kerr-Newman-NUT-(anti–)de Sitter black holes is very
convenient for investigation of geometric and physical
properties of this large family of black holes. This will
now be demonstrated by deriving and presenting some of
the key quantities and facts, namely those concerning the
global structure of the spacetime, the stringy sources of the
acceleration, and thermodynamic properties.

A. Curvature of the gravitational field
and the electromagnetic field

First, it is necessary to determine the gravitational field,
namely the specific curvature of the geometry. It is encoded
in the corresponding Newman-Penrose (NP) scalars, that is,
components of the curvature tensors with respect to the null
tetrad. Its most natural choice is

k ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi
Q

p ððr2 þ ðaþ lÞ2Þ∂t þ a∂φÞ þ
ffiffiffiffi
Q

p
∂r

�
;

l ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi
Q

p ððr2 þ ðaþ lÞ2Þ∂t þ a∂φÞ −
ffiffiffiffi
Q

p
∂r

�
;

m ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi

P
p

sin θ

�
∂φ þ ða sin2θ þ 4l sin2 1

2
θÞ∂t

�
þ i

ffiffiffiffi
P

p
∂θ

�
: ð85Þ

A direct calculation shows that the only nontrivial Newman-Penrose scalars corresponding to the Weyl tensor and the
Ricci tensor are

Ψ2 ¼
Ω3

½rþ iðlþ a cos θÞ�3
�
−ðmþ ilÞ

�
1 − iαa

a2 − l2

a2 þ l2

�
− i

Λ
3
lða2 − l2Þ

þ ðe2 þ g2Þ
r − iðlþ a cos θÞ

�
1þ αa

a2 þ l2
½ar cos θ þ ilðlþ a cos θÞ�

��
; ð86Þ

Φ11 ¼
1

2
ðe2 þ g2ÞΩ

4

ρ4
; ð87Þ

respectively, where

Ω ¼ 1 −
αa

a2 þ l2
rðlþ a cos θÞ;

ρ2 ¼ r2 þ ðlþ a cos θÞ2; ð88Þ

cf. (48), (49). The Ricci scalar is simply

R ¼ 4Λ; ð89Þ

which is the usual relation valid for any solution of Einstein-
Maxwell equations with a cosmological constant Λ. While
Φ11 is independent of Λ, the Weyl curvature component
Ψ2 contains the term proportional to Λlða2 − l2Þ. The

dependence of Ψ2 on the cosmological constant thus
disappears if (and only if) l ¼ 0 or l ¼ �a.
For an invariant identification of curvature singularities

and regions which asymptotically become conformally flat,
it is necessary to evaluate the key (second-order) scalar
invariants, namely the Kretschmann invariant K and the
Weyl invariant C,

K≡ RabcdRabcd; ð90Þ

C≡ CabcdCabcd: ð91Þ

This can be conveniently achieved in the NP formalism.
Indeed, it is well known that
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C�
abcdC

�abcd ¼ 32ðΨ0Ψ4 − 4Ψ1Ψ3 þ 3Ψ2
2Þ; ð92Þ

in which C�
abcd ≡ Cabcd þ iC∼

abcd, where C∼
abcd is the dual

tensor to Weyl, C∼
abcd ≡ 1

2
ϵcdefC

ef
ab. Since C∼

abcdC
∼abcd ¼

−CabcdCabcd, we get CabcdCabcd þ iC∼
abcdC

abcd ¼
1
2
C�
abcdC

�abcd; see e.g. [9], or Eq. (17) in [21].
Therefore, the Weyl invariant is

C ¼ 16ReðΨ0Ψ4 − 4Ψ1Ψ3 þ 3Ψ2
2Þ: ð93Þ

From the definition of the Weyl tensor it follows that the
Kretschmann invariant reads

K ¼ C þ 2RabRab −
1

3
R2; ð94Þ

where R ¼ 4Λ, while RabRab can be expressed as1

1

8
RabRab ¼ Φ00Φ22 þΦ02Φ̄02 − 2ðΦ01Φ̄12 þ Φ̄01Φ12Þ

þ 2Φ2
11 þ

1

32
R2: ð95Þ

For the black hole spacetimes (47)–(53), which are of
algebraic type D, the only nontrivial NP scalars are Ψ2 and
Φ11, as given by (86) and (87), respectively. Therefore, the
corresponding scalar curvature invariants are

C ¼ 48ReðΨ2
2Þ; ð96Þ

K ¼ C þ 32Φ2
11 þ

8

3
Λ2: ð97Þ

Interestingly the Weyl invariant takes the explicit factorized
form,

C ¼ 48
Ω6

ρ12
CþC−; ð98Þ

where

C� ¼m

�
F� � αa

a2 − l2

a2 þ l2
F∓

�
∓ l

��
1þ 1

3
Λða2 − l2Þ

�
F∓

∓ αa
a2 − l2þ e2þ g2

a2 þ l2
F�

�

− ðe2þ g2Þ
�
1þ αa

a2 þ l2
rL

�
T�; ð99Þ

in which F� ¼ ðr ∓ LÞðr2 � 4rLþ L2Þ, T� ¼ ðr2 �
2rL − L2Þ, and L ¼ lþ a cos θ.

This is a generalization of the previously known expres-
sions for the Kerr-Newman geometry; see [21,22] and
elsewhere, in which case Λ; l; g; α ¼ 0 so that Ω ¼ 1,
ρ2 ¼ r2 þ a2 cos2 θ, and C� ¼ mðr ∓ a cos θÞðr2�
4ar cos θ þ a2 cos2 θÞ − e2ðr2 � 2ar cos θ − a2 cos2 θÞ.
The spacetime also contains electromagnetic field

represented by the Maxwell tensor Fab, forming a
2-form F ¼ 1

2
Fabdxa ∧ dxb ¼ dA. Its 1-form potential

A ¼ Aadxa is

A ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
r
ρ2

�
dt − ðasin2θ þ 4lsin2 1

2
θÞdφ

�
:

ð100Þ

Therefore, the nonzero components of Fab ¼ Ab;a − Aa;b

are

Ftr ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
ρ−4ðr2 − ðlþ a cos θÞ2Þ;

Fφr ¼ −Ftrðasin2θ þ 4lsin2 1
2
θÞ;

Ftθ ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
ρ−4r sin θðlþ a cos θÞ;

Fφθ ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
ρ−4r sin θðlþ a cos θÞðr2 þ ðaþ lÞ2Þ:

ð101Þ

The corresponding Newman-Penrose scalars are Φ0 ≡
Fabkamb ¼ 0, Φ2 ≡ Fabm̄alb ¼ 0, and

Φ1≡1

2
Fabðkalbþm̄ambÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þg2

p
Ω2

ðrþ iðlþacosθÞÞ2 : ð102Þ

It follows that Φ1Φ̄1 ¼ 2Φ11, in fully agreement with (87).
The electromagnetic field thus vanishes if (and only
if) e ¼ 0 ¼ g.
Since the only nontrivial NP Weyl scalar is Ψ2, both

vectors k and l are principal null directions (PNDs). In
fact, both are double-degenerate, demonstrating that the
gravitational field is of algebraic type D. The electromag-
netic field is non-null, and double-aligned with these PNDs
because the only nonzero NP Maxwell scalar is Φ1.
Moreover, by evaluating the spin coefficients for the null

tetrad (85) one obtains

κ ¼ ν ¼ 0; σ ¼ λ ¼ 0;

ϱ ¼ μ ¼ −
ffiffiffiffi
Q

pffiffiffi
2

p
ρ3

�
1þ i

αa
a2 þ l2

ðlþ a cosθÞ2
�

× ðr− iðlþ a cosθÞÞ;

τ ¼ π ¼ −
a

ffiffiffiffi
P

p
sinθffiffiffi
2

p
ρ3

�
1− i

αa
a2 þ l2

r2
�
ðr− iðlþ a cosθÞÞ:

ð103Þ

1There are nine independent (real) quantities encoded in the
complex NP scalars ΦAB ¼ Φ̄BA. Due to their usual definition,
the projections on the null tetrad (85) of the Ricci tensor Rab and
of the related traceless Ricci tensor Sab ≡ Rab − 1

4
Rgab give the

same results. The additional tenth independent component of Rab
is given by 1

4
Rgab containing the Ricci scalar R, so that RabRab

also involves the term 1
16
R2gabgab ¼ 1

4
R2.
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Also α ¼ β and ϵ ¼ γ are nonzero, but we do not write
them here due to their complexity.
Both double-degenerate PNDs generated by k and l (85)

are thus geodetic (κ ¼ 0 ¼ ν) and shear-free (σ ¼ 0 ¼ λ).
However, they have expansion Θ and twist ω defined,
respectively, by the real and imaginary parts of
ϱ≡ −ðΘþ iωÞ≡ μ, namely

Θ ¼
ffiffiffiffi
Q

pffiffiffi
2

p
ρ3

�
rþ αa

a2 þ l2
ðlþ a cos θÞ3

�
; ð104Þ

ω ¼ −
Ω

ffiffiffiffi
Q

pffiffiffi
2

p
ρ3

ðlþ a cos θÞ: ð105Þ

It is now immediately seen from (105) that
(i) The black-hole spacetime is everywhere nontwisting

if (and only if)

a ¼ 0 ¼ l: ð106Þ

In addition, on the horizons identified by QðrÞ ¼ 0
(see below) both the expansion and the twist always
vanish (Θ ¼ 0 ¼ ω).
By inspecting the NP scalars (86)–(89) and (102),

it is also obvious that
(ii) The curvature singularities occur if (and only if)

r¼ 0 and at the same time lþacosθ¼ 0: ð107Þ

Indeed, both these conditions must be satisfied to
have rþ iðlþ a cos θÞ ¼ 0. With its complex con-
jugate, this implies

ρ2 ≡ r2 þ ðlþ a cos θÞ2 ¼ 0: ð108Þ

This agrees with the Weyl scalar (98).
(iii) The region of a generic spacetime is conformally flat

if (and only if)

Ω ¼ 0: ð109Þ

With this condition, the spacetime is also locally
vacuum, cf. (87), with a cosmological constant Λ.
The condition Ω ¼ 0 thus localizes the asymptotic
(anti–)de Sitter/Minkowski conformal infinity.

(iv) In the case whenm ¼ 0 ¼ l and also e ¼ 0 ¼ g then
Ψ2 ¼ 0 ¼ Φ11, so that

the space time is everywhere

conformally flat and vacuum: ð110Þ

The metric (47)–(55) then represents de Sitter
spacetime (for Λ > 0), anti–de Sitter spacetime
(for Λ < 0), and Minkowski spacetime (for Λ ¼ 0).

Curvature of the subclasses of type D black holes,
summarized in Sec. IV, are easily obtained from the general
expression (86) by setting up the corresponding physical
parameters to zero:

(i) Kerr-Newman-NUT-(anti–)de Sitter (α ¼ 0 : No ac-
celeration)

Ψ2 ¼
1

½rþ iðlþacosθÞ�3
�
−m− il

�
1þ 1

3
Λða2− l2Þ

�

þ e2þ g2

r− iðlþacosθÞ
�
; ð111Þ

(ii) Accelerating Kerr-Newman-(anti–)de Sitter (l ¼ 0 :
No NUT)

Ψ2 ¼
ð1 − αr cos θÞ3
ðrþ ia cos θÞ3

�
−mð1 − iαaÞ

þ ðe2 þ g2Þ 1þ αr cos θ
r − ia cos θ

�
; ð112Þ

(iii) Charged Taub-NUT-(anti–)de Sitter (a ¼ 0 : No
rotation)

Ψ2 ¼ −
mþ ilð1 − 1

3
Λl2Þ

ðrþ ilÞ3 þ e2 þ g2

ðr2 þ l2Þðrþ ilÞ2 :

ð113Þ

Observe that the cosmological constant Λ appears
in the Weyl curvature scalar Ψ2 only if the NUT
parameter l is also present.

These expressions further simplify if some of the
remaining parameters are zero. In particular, the curvature
of Kerr-Newman-(anti–)de Sitter black hole is obtained
from (111) if l ¼ 0. The curvature for generalized C-metric
with Λ (accelerating charged black holes without rotation)
are obtained from (112) when a ¼ 0. The curvature of
Reissner-Nordström-(anti–)de Sitter black hole follows
from (113) when l ¼ 0. The uncharged (vacuum) black
holes are obtained for e ¼ 0 ¼ g.

B. Horizons

Next step is the investigation of horizons of the black
hole metric (47), namely their number, possible degener-
ation, and location. It is immediately seen that the “radial”
coordinate r is spatial in the regions whereQðrÞ > 0, while
it is a temporal coordinate where QðrÞ < 0. These regions
are separated by horizons H located at rh such that

QðrhÞ ¼ 0; ð114Þ

where the key metric function QðrÞ is explicitly given by
expression (51). In the particular “under-extreme” case
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μ2 þ l2 > a2 þ e2 þ g2 þ λ, the alternative form of this
function (53) with rΛþ ≠ rΛ− can be used.
These observations are in accordance with the behaviour

of the determinant of the metric (47) constrained on a
constant r which, due to the identity ρ2 ¼ r2 þ ðaþ lÞ2−
aða sin2 θ þ 4l sin2 1

2
θÞ, is simply

detðgμνjr¼constÞ ¼ −
ρ2

Ω6
Qsin2θ: ð115Þ

Such a 3-surface is thus timelike when Q > 0, while it is
spacelike when Q < 0. On any horizon the determinant
vanishes (degenerates) due to (114).
Moreover, the determinant of the complete metric (47)

reads det gμν ¼ −Ω−8ρ4sin2θ. This indicates nonregularity
only at Ω ¼ 0 (conformal infinity), ρ ¼ 0 (curvature
singularity), Q ¼ 0 (horizons), and θ ¼ 0 or θ ¼ π
(poles/axes with possible cosmic strings).
Since the function QðrÞ does not directly enter the Weyl

scalar (86) or the Ricci scalar (87)—and thus the invariants
C and K given by (96) and (97)—there is no curvature/
physical obstacle located at any of the horizons rh. Explicit
extension of the coordinate system across the horizons H
will be presented in Sec. V F.

To analyze the number, possible degeneration, and
location of the horizons, it is thus necessary to find all
root of the equation (114). Because the function (51) is a
polynomial of the fourth order, it admits up to four real
roots. In the generic black hole spacetime (47) there is thus
four possible horizons H. We can call and denote them as
follows:

(i) two black hole horizons H�
b located at r�b ,

(ii) two cosmo-acceleration horizons H�
c located at r�c .

While the terminology black hole horizon is common
and standard, we hereby introduce a new name cosmo-
acceleration horizon which combines the usual names for
cosmological and for acceleration horizons. These are
mutually combined in this family of spacetimes due to
the presence of both the acceleration α and the cosmo-
logical constant Λ.
Let us now analyze these horizons explicitly. The generic

key metric function QðrÞ is the quartic polynomial of r,
namely

QðrÞ ¼ q4r4 þ q3r3 þ q2r2 þ q1rþ q0; ð116Þ

where the coefficients are

q4 ≡ −α2a2
a2 − l2

ða2 þ l2Þ2 −
Λ
3
;

q3 ≡ 2αa

�
αam

a2 − l2

ða2 þ l2Þ2 −
l

a2 þ l2
− l

a2 − l2

a2 þ l2
Λ
3

�
;

q2 ≡ 1þ 4αam
l

a2 þ l2
− α2a2

a2 − l2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ − ða2 þ 3l2ÞΛ

3
;

q1 ≡ −2m − 2αa
l

a2 þ l2
ða2 − l2 þ e2 þ g2Þ;

q0 ≡ a2 − l2 þ e2 þ g2: ð117Þ

The quartic equation QðrÞ ¼ 0 can have from zero to
maximally four explicit real roots rh corresponding to the
horizons. In particular, we may observe that

(i) Maximally four horizons is the general case which
will be discussed in detail in subsequent Sec. V C.
Some of the roots of (114) may coincide, resulting
in degenerate horizons (doubly, triply, or even
quadruply).

(ii) Maximally three horizons occur in spacetimes with
the physical parameters related in such a way that
q4 ¼ 0, that is for

Λ
3
¼ −α2a2

a2 − l2

ða2 þ l2Þ2 : ð118Þ

For these black hole spacetimes the metric function
QðrÞ reduces to a cubic function. Notice that in the

case l ¼ 0, this condition is simply α2 ¼ −Λ=3, i.e.,
a specific relation between the acceleration of the
(rotating and charged) black hole and the negative
cosmological constant (while the complementary
case a ¼ 0 requires Λ ¼ 0). Further analysis of this
case will be presented in our subsequent paper.

(iii) Maximally two horizons occur in spacetimes with
such parameters that—in addition to the condition
(118)—also the second coefficient in (116) vanishes,
q3 ¼ 0, that is for αa ¼ 0 ⇒ Λ ¼ 0, or for

αam ¼ l

�
a2 þ l2

a2 − l2
− α2a2

a2 − l2

a2 þ l2

�
: ð119Þ

Equation (114) is then a quadratic equation
q2r2 þ q1rþ q0 ¼ 0, from which both horizons
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rh can be easily calculated. If q21 − 4q2q0 ¼ 0, these
two horizons coincide (it is double degenerate), and
for q21 − 4q2q0 < 0 there is no horizon.

(iv) Maximally one horizon occurs when both the con-
straints (118) and (119) are satisfied, and moreover
q2 ¼ 0, that is

α2a2ðe2 þ g2Þ ¼ ða2 þ 3l2Þ
�
a2 þ l2

a2 − l2

�
2

: ð120Þ

The single horizon is then located at

rh ¼ −
q0
q1

¼ 1

4αal

�
a2 þ 3l2 þ α2a2

ða2 − l2Þ3
ða2 þ l2Þ2

�
:

ð121Þ

For q1 ¼ 0 there is no horizon.
These three conditions (118), (119), and (120) character-

ize very special black hole spacetimes in which the physical
parameters Λ, m, and e2 þ g2 have particular values in
terms of the Kerr-like rotational parameter a, NUT param-
eter l, and acceleration α.
It is a usual procedure that the general quartic equation

(114), (116) can be solved by first dividing it by a nonzero
prefactor q4 and then performing the substitution,

r≡ x −
q3
4q4

; ð122Þ

leading to the depressed (reduced) quartic equation with-
out the cubic term,

1

q4
QðxÞ ¼ x4 þ N

8N 2
x2 −

R
8N 3

xþ S
256N 4

¼ 0; ð123Þ

where N ≡ −q4, the coefficients are

N ≡ 8q4q2 − 3q23; ð124Þ

R≡ 8q24q1 − 4q4q3q2 þ q33; ð125Þ

S≡ 256q34q0 − 64q24q3q1 þ 16q4q23q2 − 3q43; ð126Þ

and the constants qi are explicitly defined by (117).
Moreover, the discriminant Δ of the general quartic

polynomial (116) is

Δ≡ 256q34q
3
0 − 192q24q3q1q

2
0 − 128q24q

2
2q

2
0 þ 144q24q2q

2
1q0

− 27q24q
4
1 þ 144q4q23q2q

2
0 − 6q4q23q

2
1q0

− 80q4q3q22q1q0 þ 18q4q3q2q31 þ 16q4q42q0

− 4q4q32q
2
1 − 27q43q

2
0 þ 18q33q2q1q0 − 4q33q

3
1

− 4q23q
3
2q0 þ q23q

2
2q

2
1: ð127Þ

This is simply related to the discriminant of the depressed
quartic function (123) via

Δ ¼ N 6Δdepressed;

so that the signs of Δ and Δdepressed are the same.
In terms of these key quantities Δ, N, S and R, a

complete analysis and a full description of the number and
the possible multiplicity of roots can now be performed.
Following [23], we can summarize that
For Δ > 0:
The metric function QðrÞ has either four distinct real

roots, or none, and that depends on:
(i) If N < 0 andN2 > S then all four roots are real and

distinct.
(ii) If N < 0 and N2 < S then there are two pairs of

complex conjugate nonreal roots.
(iii) If N ≥ 0 then there are also two pairs of complex

conjugate nonreal roots.
For Δ < 0:
The function QðrÞ has two distinct real roots and two

complex conjugate nonreal roots.
For Δ ¼ 0:
This is the only case when the metric function QðrÞ has

at least one multiple root.
The different cases that can occur are
(1) If N < 0 together with

(a) N2 < S: there is one real double root and two
complex conjugate roots.

(b) N2 ¼ S: there are two distinct real double
roots.

(c) N2 > S and N2 > −3S: there is one real double
root and two distinct simple real roots.

(d) N2 ¼ −3S: there is one real triple root and one
distinct simple real root.

(2) If N > 0 together with
(a) S ¼ 0: there is one real double root and two

complex conjugate roots.
(b) S > 0 and R ≠ 0: there is also one real double

root and two complex conjugate roots.
(c) S ¼ N2 and R ¼ 0: there are only two complex

conjugate double roots.
(3) If N ¼ 0 together with

(a) S > 0: there is one real double root and two
complex conjugate roots.

(b) S ¼ 0 (implying R ¼ 0): there is one real
quadruple root x ¼ 0, that is rh ¼ − q3

4q4
.

This exhausts all the possibilities.

C. The case with two black hole and two
cosmo-acceleration horizons

We will now concentrate on physically most interesting
case in which there are four distinct real roots. This may
appear only in the case when q4 ≠ 0 (otherwise there are
maximally three horizons), i.e., when the cosmological
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constant Λ is not “finely tuned” to acceleration α and the
two twist parameters a and l, that is for

Λ
3
≠ −α2a2

a2 − l2

ða2 þ l2Þ2 : ð128Þ

In particular, we can observe that for Λ ¼ 0 there are no
nonaccelerating or nonrotating black holes (αa ¼ 0) with
four horizons.
In such generic black hole spacetimes there are two black

hole horizonsHþ
b andH−

b and also two cosmo-acceleration
horizons Hþ

c and H−
c . With the assumption that they are

generically distinct, we can rewrite the key metric function
QðrÞ given by (116), (117) in a factorized form as

QðrÞ ¼ −N ðr − rþb Þðr − r−b Þðr − rþc Þðr − r−c Þ; ð129Þ

where N ≡ −q4 reads

N ¼ α2a2
a2 − l2

ða2 þ l2Þ2 þ
Λ
3
; ð130Þ

while the four roots rþb , r
−
b , r

þ
c , r−c localize the four distinct

horizons, namely

Hþ
b at rþb is the outer black hole horizon; ð131Þ

H−
b at r−b is the inner black hole horizon; ð132Þ

Hþ
c at rþc is the outer cosmo-acceleration horizon; ð133Þ

H−
c at r−c is the inner cosmo-acceleration horizon: ð134Þ

In view of the classification scheme summarized above,
this occurs if (and only if)

Δ > 0 and N < 0 and N2 > S: ð135Þ

Moreover, we can assume a natural ordering of these
horizons as

r−c < r−b < rþb < rþc ; ð136Þ

so that the cosmological horizons are located “outside” the
black hole horizons. BecauseQðrÞ < 0 for all r > rþc when
N > 0, such an ordering guarantees that these four
horizons separate the corresponding five regions of the
spacetime in such a way that they are, symbolically
expressed,

time-dependent < stationary < time-dependent

< stationary < time-dependent: ð137Þ

It means, for example, that in the whole range r ∈ ðrþb ; rþc Þ,
the coordinate r is spatial. Therefore, the region between
the outer black hole horizon Hþ

b and the outer cosmo-
acceleration horizon Hþ

c is stationary.
The natural ordering (136) implying (137) is present for

a large range of values of the cosmological constant Λ,
including Λ ¼ 0. In fact, it is a straightforward generali-
zation of the ordering of two black hole horizons and two
acceleration horizons in the family of type D black holes
spacetimes without the cosmological constant; see Eq. (80)
in our previous paper [14]. The ordering (137) depends on
the constraint N > 0 which, using (130), reads

α2a2
a2 − l2

ða2 þ l2Þ2 þ
Λ
3
> 0: ð138Þ

In the Λ ¼ 0 case, this condition reduces simply to
jlj < jaj, while in the case l ¼ 0 it is

Λ
3
> −α2: ð139Þ

Notice also that for jlj ≥ jaj only (a sufficiently large)Λ>0
is admitted.
An explicit evaluation of the four distinct roots of the

metric function QðrÞ in the factorized form (129) in terms
of the seven physical parameters m; a; l; e; g; α;Λ is quite
cumbersome, leading to rather complicated expressions.
Nevertheless, it may be useful to present them here. Using a
standard procedure of Wolfram Mathematica 13 one
obtains

r�b ¼ 1

2

� ffiffiffiffi
V

p
−H �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G − 2F=

ffiffiffiffi
V

pq �
; ð140Þ

r�c ¼ 1

2

�
−

ffiffiffiffi
V

p
−H �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ 2F=

ffiffiffiffi
V

pq �
; ð141Þ

where

V ¼ H2 þ 1

3N

h
2X −

�
Z þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y3 − Z2

p �1
3

−
�
Z − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y3 − Z2

p �1
3

i
; ð142Þ

H¼−
K
N

; G¼3H2þ2X
N

−V; F¼H3þ2L
N

−
KX
N 2

;

ð143Þ

and

K ¼ αa
a2 þ l2

��
αa

a2 þ l2
m −

Λ
3
l

�
ða2 − l2Þ − l

�
; ð144Þ
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L ¼ mþ αal
a2 þ l2

ða2 − l2 þ e2 þ g2Þ; ð145Þ

X ¼ 1þ 4
αal

a2 þ l2
m − α2a2

a2 − l2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ

− ða2 þ 3l2ÞΛ
3
; ð146Þ

Y ¼ X2 þ 12KL − 12ða2 − l2 þ e2 þ g2ÞN ; ð147Þ

Z ¼ X3 þ 18KLX − 54L2N þ 18ða2 − l2 þ e2 þ g2Þ
× ð3K2 þ 2NXÞ: ð148Þ

Although these expression are fully explicit, they are not
telling much, and so we prefer to postpone their discussion
to our subsequent paper. For example, it is possible to show
that the complicated discriminant (127) can be nicely
expressed as

Δ ¼ 4

27
ðY3 − Z2Þ: ð149Þ

The condition Δ ¼ 0 for the existence of multiple roots
thus simplifies to Y3 ¼ Z2.

D. Ergoregions

For the generic black hole metric (47) the condition,

gtt ≡ 1

Ω2ρ2
ðPa2 sin2 θ −QÞ ¼ 0; ð150Þ

defines the boundary of the ergoregions, that are the
surface of infinite redshift and also the stationary limit at
which observers on fixed r and θ cannot “stand still”. It can
be seen that for a vanishing Kerr-like rotation parameter a
such a boundary coincides with a horizon determined by
Q ¼ 0, but for any a ≠ 0 there exists a nontrivial ergo-
region between the gtt ¼ 0 boundary and the horizon.
Moreover, the existence of ergoregions is related only to
the Kerr-like rotation parameter a, not to the twist NUT
parameter l.
There is an ergoregion associated with any of the

four horizons H�
b and H�

c . Indeed, the ergoregion boun-
dary (150) is located at

QðreÞ ¼ a2 sin2 θPðθÞ; ð151Þ

where the metric functions PðθÞ andQðrÞ are given by (50)
and (51), or (52) and (53), respectively. For a fixed value of
the angular coordinate θ, the right-hand side of (151) is a
specific constant. Because the functionQðrÞ is of the fourth
order, it follows that there are (at most) four boundaries re
of the ergoregions in the direction of θ.

From (151) it is also obvious that the ergoregion
boundary “touches” the corresponding horizon at the
poles because for θ ¼ 0 and θ ¼ π the condition (151)
reduces to QðreÞ ¼ 0.
It is generally complicated to explicitly solve Eq. (151),

but it can be plotted using a computer. Typical results are
shown and discussed in Fig. 1.

E. Curvature singularities

By inspecting the Newman-Penrose scalars Ψ2 and Φ11

given explicitly as (86) and (87), we have already con-
cluded that the curvature singularities occur if and only if
ρ2 ¼ 0, that is when

r ¼ 0 and at the same time lþ a cos θ ¼ 0; ð152Þ

see (107). The presence of these curvature singularities
has also been confirmed by the behavior of the Weyl
invariant C≡ CabcdCabcd and the Kretschmann invariant
K≡ RabcdRabcd, evaluated in (96) and (97).
Now, the condition lþ a cos θ ¼ 0 can only be satisfied

if jaj ≥ jlj. Otherwise, lþ a cos θ remains nonzero because
cos θ is bounded to the range ½−1; 1�. Therefore, the
curvature singularity structure of the complete family of
type D spacetimes (47) depends on relative values of the
two twist parameters, that is the Kerr-like rotation param-
eter a and the NUT parameter l, as follows:

l ¼ 0; a ¼ 0∶ singularity at r ¼ 0 for any θ;

l ¼ 0; a ≠ 0∶ sin gularity at r ¼ 0 for θ ¼ π=2;

l ≠ 0; a ¼ 0∶ no singularity;

jlj > jaj > 0∶ no singularity;

l ¼ þa∶ singularity at r ¼ 0 for θ ¼ π;

l ¼ −a∶ singularity at r ¼ 0 for θ ¼ 0;

jaj > jlj > 0∶ singularity at r ¼ 0 for cos θ ¼ −l=a:

ð153Þ

These results agree with the well-known character of the
r ¼ 0 singularity of the Schwarzschild-(anti–)de Sitter,
Reissner-Nordström-(anti–)de Sitter and (possibly charged)
C-metric spacetimes (l ¼ 0, a ¼ 0, in this order), the ring
singularity structure of the Kerr-Newman-(anti–)de Sitter
black holes (l ¼ 0, α ¼ 0), and the absence of curvature
singularities in the Taub-NUT-(anti–)de Sitter spacetime
(a ¼ 0, α ¼ 0). For a recent detailed analysis of the
singular ring structure in these Kerr-like metrics see [24].
Moreover, from the generic form (51) of the metric

function QðrÞ, or equivalently (116), evaluated at r ¼ 0
we obtain

Qð0Þ ¼ q0 ≡ a2 − l2 þ e2 þ g2: ð154Þ
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FIG. 1. Plot of the metric function gtt (150) for the generic spacetime (47). The values of gtt are visualized in quasipolar coordinates
x≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðaþ lÞ2
p

sin θ, y≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðaþ lÞ2

p
cos θ for r ≥ 0. The gray annulus around the center of each figure localizes the black hole

bordered by its horizonsH�
b at rþb and r−b (0 < r−b < rþb ). The cosmo-acceleration horizonHþ

c at rþc (red circle) and the conformal infinity
I atΩ ¼ 0 are also shown. The gray curves are contour lines gttðr; θÞ ¼ const, and the values are color-coded from red (positive values) to
blue (negative values). The green curves are the isolines gtt ¼ 0 determining the boundary of the ergoregions (151) in which gtt > 0 (green
regions). All six plots are made for the same choicem ¼ 3, l ¼ 0.2, e ¼ 1.6 ¼ g, α ¼ 0.12. There are two distinct choices of the Kerr-like
rotation parameter, namely a ¼ 1.5 (left) and a ¼ 1.8 (right). The rows visualize three different signs of the cosmological constant, namely
Λ ¼ 0.003 (top),Λ ¼ 0 (middle) andΛ ¼ −0.003 (bottom). For larger values of a andΛ the ergoregions are bigger. In fact, the ergoregion
above the black hole horizonHþ

b is mergedwith the ergoregion below the cosmo-acceleration horizonHþ
c in the equatorial part near θ ¼ π

2
.
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The singularity at r ¼ 0 occurs only if a2 ≥ l2, see (153), so
that it is located only in the stationary region where Q > 0.
In fact, in view of the natural ordering (136) and the scheme
(137), the ring singularity must be contained in the region
r ∈ ðr−c ; r−b Þ between the horizons H−

c and H−
b . The

alternative possibility r ∈ ðrþb ; rþc Þ would correspond to
a naked singularity in the stationary region located outside
the horizon Hþ

b .

F. Global structure and conformal diagrams

Now we analyze the global structure and the maximal
extension of the spacetime. As in the previous parts, wewill
assume the generic case with four distinct horizons H�

b
and H�

c located at r�b and r�c , that are ordered as
r−c < r−b < rþb < rþc ; see (136).
The procedure is basically the same as in Sec. V.D of our

previous paper [14], and extends special cases of non-
accelerating black holes, see e.g. [22,25–31], or black holes
with acceleration [32,33]. First, the retarded and advanced
null coordinates are defined,

u ¼ t − r� and v ¼ tþ r�; ð155Þ

where the tortoise coordinate is

r� ¼
Z

r2 þ ðaþ lÞ2
QðrÞ dr; ð156Þ

and also the corresponding untwisted angular coordinates
are introduced by

ϕu ¼ φ − a
Z

dr
QðrÞ and ϕv ¼ φþ a

Z
dr

QðrÞ : ð157Þ

Using the advanced pair of coordinates fv;ϕvg, the
metric (47) takes the form,

ds2 ¼ 1

Ω2

�
a2P sin2 θ −Q

ρ2
ðdv − T dϕvÞ2

þ 2ðdv − T dϕvÞðdr − aP sin2 θdϕvÞ

þ ρ2
�
dθ2

P
þ P sin2 θdϕ2

v

��
; ð158Þ

where T ðθÞ≡ a sin2 θ þ 4l sin2 1
2
θ, while using the

retarded pair of coordinates fu;ϕug it reads

ds2 ¼ 1

Ω2

�
a2P sin2 θ −Q

ρ2
ðdu − T dϕuÞ2

− 2ðdu − T dϕuÞðdrþ aP sin2 θdϕuÞ

þ ρ2
�
dθ2

P
þ P sin2 θdϕ2

u

��
: ð159Þ

Both these metrics are regular at QðrÞ ¼ 0, so that the
coordinate singularities at the horizons has been removed.
The next step in construction of the maximal (analytic)

extension of the manifold is to introduce both the null
coordinates u and v simultaneously, revealing thus the
causal structure. The coordinate r is eliminated using the
relation (155) which implies

2 dr ¼ Q
r2 þ ðaþ lÞ2 ðdv − duÞ: ð160Þ

In addition, it is necessary to construct a unique angular
coordinate ϕh across the horizon ar rh using the specific
relation,

ϕh ¼ φ −Ωht; where Ωh ¼
a

r2h þ ðaþ lÞ2 : ð161Þ

The constant Ωh is the angular velocity of the horizon.
Actually, 2dϕh ¼ dϕu þ dϕv −Ωhðduþ dvÞ. This it the
unique way how to properly combine the distinct angular
coordinates ϕv and ϕu (for more details see [14]).
Unfortunately, the specific choice of the angular coor-

dinate ϕh depends on the given horizon via its value rh and
thus Ωh. For this reason, it is not possible to find a single
and simple global coordinate ϕ which would conveniently
“cover” all the four horizons. This drawback was met many
years ago already in the Kerr spacetime, so it is not
surprising that it reappears in the current context of the
complete family of type D black holes with seven physical
parameters.
An explicit general metric form of this family con-

structed in this way reads

ds2 ¼ 1

4Ω2

�
−
Q
ρ2

ðð1 − T ΩhÞðduþ dvÞ − 2T dϕhÞ2 þQρ2
ðdu − dvÞ2

½r2 þ ðaþ lÞ2�2 þ 4
ρ2

P
dθ2

þ Psin2θ
ρ2

ðða − ½r2 þ ðaþ lÞ2�ΩhÞðduþ dvÞ − 2½r2 þ ðaþ lÞ2�dϕhÞ2
�
: ð162Þ

For nontwisting black holes without the Kerr-like rotation (a ¼ 0) and the NUT parameter (l ¼ 0), the metric functions
simplify to Ω ¼ 1, P ¼ 1, ρ2 ¼ r2, T ¼ 0, Ωh ¼ 0, so that
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ds2 ¼ −
Q
r2

dudvþ r2ðdθ2 þ sin2 θdϕ2
hÞ; ð163Þ

which is the usual form of the spherically symmetric black
holes in the double-null coordinates [10].
It remains to analyze the global extension of (162) and to

study the degree of smoothness (analyticity) of the four
distinct horizonsH�

b andH�
c whereQðrhÞ ¼ 0. Restricting

to any two-dimensional section θ ¼ const and ϕh ¼ const
the general metric (162) reduces to

dσ2 ¼ 1

4Ω2

�
−
ð1 − T ΩhÞ2

ρ2
Qðduþ dvÞ2

þ ρ2

½r2 þ ðaþ lÞ2�2 Qðdu − dvÞ2

þ a2
Psin2θ
ρ2

ðrþ rhÞ2ðr − rhÞ2
½r2h þ ðaþ lÞ2�2 ðduþ dvÞ2

�
; ð164Þ

which is null at any horizon rh where QðrhÞ ¼ 0. Due to
the simple factorized form (129) of the metric function
QðrÞ, the integral (156) defining the function r�ðrÞ can be
calculated explicitly as

r�ðrÞ ¼ kþb log

				1 − r
rþb

				þ k−b log

				1 − r
r−b

				
þ kþc log

				1 − r
rþc

				þ k−c log

				1 − r
r−c

				; ð165Þ

where the auxiliary coefficients are

kþb ¼ −
ðrþb Þ2 þ ðaþ lÞ2

N ðrþb − r−b Þðrþb − rþc Þðrþb − r−c Þ
;

k−b ¼ −
ðr−b Þ2 þ ðaþ lÞ2

N ðr−b − rþb Þðr−b − rþc Þðr−b − r−c Þ
;

kþc ¼ −
ðrþc Þ2 þ ðaþ lÞ2

N ðrþc − rþb Þðrþc − r−b Þðrþc − r−c Þ
;

k−c ¼ −
ðr−c Þ2 þ ðaþ lÞ2

N ðr−c − rþb Þðr−c − r−b Þðr−c − rþc Þ
: ð166Þ

Each of these constants is associated with the correspond-
ing horizon H�

h located at r ¼ r�h , where h ¼ b (for the
black hole horizons) or h ¼ c (for the cosmo-acceleration
horizons).
We can express the metric functions QðrÞ, ρ2ðrÞ and

Ω2ðrÞ entering (164) in terms of the null coordinates
v − u instead of r by using the inversion of the relation
2r�ðrÞ ¼ v − u. Finally, we introduce the couples of new
null coordinates U�

h and V�
h , defined as

U�
h ¼ ð−1Þisignðk�h Þ exp

�
−

u
2k�h

�
; ð167Þ

V�
h ¼ð−1Þjsignðk�h Þ exp

�
þ v
2k�h

�
: ð168Þ

Each couple covers the corresponding horizon H�
h .

Moreover, it is characterized by a particular choice of
two integers ði; jÞ which specify a certain region in the
manifold. Generally, there are five types of regions which
are separated by the four types of horizons H�

h , namely

Region Description Specification of ði; jÞ
I∶ asymptotic time-dependent domain betweenHþ

c and Iþ ðn − 2mþ 1; nþ 2m − 1Þ
II∶ stationary region betweenHþ

b andHþ
c ð2n −m; 2nþm − 1Þ

III∶ time-dependent domain between the black-hole horizons ðn − 2m; nþ 2mÞ
IV∶ stationary region betweenH−

c andH−
b ð2n −mþ 1; 2nþmÞ

V∶ asymptotic time-dependent domain betweenI− andH−
c ðn − 2mþ 1; nþ 2m − 1Þ

where m, n are arbitrary integers. The corresponding
Kruskal–Szekeres-type dimensionless coordinates for every
distinct region are

T�
h ¼ 1

2
ðV�

h þ U�
h Þ; R�

h ¼ 1

2
ðV�

h − U�
h Þ: ð169Þ

[The presence of the curvature singularity at r ¼ 0 (imply-
ing r� ¼ 0) for certain values of θ restricts the range of the
coordinates U−

b and V−
b in the region IV to the domain

outside U−
bV

−
b ¼ �1.]

In terms of these coordinates, the extension across the
horizon is regular (in fact, analytic). Indeed, by multiplying
and dividing the null coordinates (167) and (168) we obtain
the relations,

U�
h V

�
h ¼

�
1 −

r
rþb

�kþ
b
k�
h

�
1 −

r
r−b

�k−
b

k�
h

�
1 −

r
rþc

�kþc
k�
h

�
1 −

r
r−c

�k−c
k�
h ;

ð170Þ

JIŘÍ PODOLSKÝ and ADAM VRÁTNÝ PHYS. REV. D 107, 084034 (2023)

084034-18



U�
h

V�
h

¼ð−1Þiþj exp

�
−

t
k�h

�
; ð171Þ

while the terms ðdu� dvÞ2 in the metric (164) become

ðdu� dvÞ2 ¼ 4ðk�h Þ2
U�

h V
�
h

�
V�
h

U�
h

ðdU�
h Þ2 ∓ 2dU�

h dV
�
h

þ U�
h

V�
h

ðdV�
h Þ2

�
: ð172Þ

A nonanalytic behavior across the horizon rh may thus
occur only at zeros of the product U�

h V
�
h . However, they

exactly cancel the zeros of the functions QðrÞ in the metric
(164). For example, by choosing the black hole horizon
rh ¼ rþb , we get Uþ

b V
þ
b ∝ ðr − rþb Þ which obviously com-

pensates the corresponding root Q ∝ ðr − rþb Þ in (129).
Notice also that the last term in (164) actually vanishes.
Therefore, the metric (164) remains finite at rþb . Of course,
the same argument applies to the remaining three horizons.
Maximal extension (the complete atlas) of the black hole

manifold represented by (47) is obtained by ‘gluing
together” the different “coordinate patches” crossing all
the horizons, until a curvature singularity or conformal
infinity (the scri I) is reached. Such an extension has to be
performed both along the advanced null coordinate v and
the retarded null coordinate u, using the corresponding
coordinatesU�

h and V�
h . By this step-by-step procedure, the

coordinate singularities at all the horizonsH�
h are removed.

Finally, we construct the Penrose conformal diagrams
visualizing the global structure of this extended manifold.
This is achieved by a suitable conformal rescaling of U�

h
and V�

h to the compactified null coordinates ũ�h and ṽ�h
defined as

tan
ũ�h
2

¼ −signðk�h ÞðU�
h Þ−signðk

�
h Þ; ð173Þ

tan
ṽ�h
2

¼ − signðk�h ÞðV�
h Þ−signðk

�
h Þ: ð174Þ

Consequently, for T̃�
h ¼ 1

2
ðṽ�h þ ũ�h Þ and R̃�

h ¼ 1
2
ðṽ�h − ũ�h Þ

we obtain the following explicit expressions in terms of the
original coordinates t, r of the metric (47):

T̃�
h ¼

8>>>>>>>>><
>>>>>>>>>:

ð−1Þjþ1 arctan
cosh t

2jk�
h
j

sinh r�
2jk�

h
j

for iþ j even;

ð−1Þj arctan
sinh t

2jk�
h
j

cosh r�
2jk�

h
j

for iþ j odd; r� < 0;

ð−1Þj arctan
sinh t

2jk�
h
j

cosh r�
2jk�

h
j
þ π for iþ j odd; r� ≥ 0;

ð175Þ

and

R̃�
h ¼

8>>>>>>>>><
>>>>>>>>>:

ð−1Þj arctan
sinh t

2jk�
h
j

cosh r�
2jk�

h
j

for iþ j even;

ð−1Þjþ1 arctan
cosh t

2jk�
h
j

sinh r�
2jk�

h
j

for iþ j odd; r� < 0;

ð−1Þjþ1 arctan
cosh t

2jk�
h
j

sinh r�
2jk�

h
j
þ π for iþ j odd; r� ≥ 0:

ð176Þ

Recall that the function r�ðrÞ is given by (165) and the
coefficients k�h by (166). In particular, the lines of constant
r thus coincide with the lines of constant r�. For every
single region the coordinate r� spans the whole range
ð−∞;þ∞Þ, and similarly the coordinate t.
These explicit relations between the compactified coor-

dinates fT̃�
h ; R̃

�
h g and the original coordinates ft; rg of the

metric (47) for all ði; jÞ can be used for graphical
construction of the Penrose diagram, composed of various
“diamond” regions. The resulting picture is shown in Fig. 2
for the special value of θ such that cos θ ¼ −l=a which
contains the curvature singularity at r ¼ 0 in all its
regions IV (see Sec. V E). In particular, for vanishing
NUT parameter l ¼ 0 this is the equatorial plane θ ¼ π

2
.

The complete manifold consists of an infinite number of
the regions I, II, III, IVand V, each identified by the specific
pair of integers ði; jÞ. These regions are separated by the
corresponding horizons. Namely, the regions I and II are
separated by the cosmo-acceleration horizon Hþ

c at rþc ,
with the asymptotic region I also bounded by the conformal
infinity I (the scri) for very large values of r. The regions II
and III are separated by the black hole horizon Hþ

b at rþb ,
while the regions III and IVare separated by the inner black
hole horizon H−

b at r−b . Finally, the regions IV and V are
separated by the cosmo-acceleration horizonH−

c at r−c , with
the asymptotic region V bounded by the conformal infinity
I with negative values of r. The curves in each region
represent the lines of constant t and r (dashed or solid,
respectively).
In the “diagonal” null directions of these Penrose

diagrams we can identify the particular coordinate patches
covered by the “advanced” metric form (158), extending
from the bottom left I− to the top right Iþ [for example the
pink regions I–V between ð1;−1Þ and (1,3)], and also the
complementary “retarded” metric form (159), extending
from the bottom right I− to the top left Iþ [these are not
colored but also contain the regions I–V, for example
between ð−1; 1Þ and (3,1)]. These patches “share” the
“central regions” III [for example (1,1)]. Each of such
central region III is bounded by the inner and outer black
hole horizons at r−b and rþb , localizing thus the interior of
the corresponding black hole. In the whole extended
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universe, there are thus infinitely many black holes—they
are identified by the different regions III.
Provided jlj ≤ jaj, such black hole has the curvature

singularity at r ¼ 0 in the region IV bounded by the inner
black hole horizon H−

b at r−b (and also the inner cosmo-
acceleration horizon H−

c at r−c ). In the section given by the
special value of θ such that cos θ ¼ −l=a it is not possible
to cross from the values r > 0 to r < 0. This is indicated by
the vertical zigzag lines in the regions IV. However, as
recently pointed out by MacCallum [34] in his interesting
revisit of the maximal extension of the Kerr black hole
spacetime, there is a “missing triangle” in usual plots (such
as in [10]). Although it is not possible to cross the curvature
singularity r ¼ 0 on this specific section, due to its ring
structure there exist curves that decrease from r > 0 to
r ¼ 0 and continue to r < 0, provided their value of θ is
different form cos θ ¼ −l=a. On such a section there is no
curvature singularity, so that the coordinate boundary r ¼ 0
is no obstacle for continuation of the curve. The same
argument is valid not only for the Kerr black hole but also
for the whole family of rotating black hole spacetimes (such
that jlj ≤ jaj) investigated here. Therefore, in Fig. 2 we
represent the curvature singularity in (any) region IV

simply by a vertical zigzag line. The “missing triangle”
on the left of r ¼ 0 is the extension of the “present triangle”
on the right, continuing from positive to negative values
of the coordinate r, and vice versa, because the curvature
singularity can be “bypassed” on any section such
that cos θ ≠ −l=a.
Each of these black holes, identified by the specific

region III, is associated with four asymptotic regions,
namely the pair of the regions I with future conformal
infinity Iþ and a pair of the regions V with past conformal
infinity I−. Moreover, each asymptotically conformally flat
region bounded by I is “shared” by two distinct black
holes. For example, the conformal infinities Iþ of the
“infinite horizontal chain” of black holes (regions III)
given by …, ð3;−1Þ, (1,1), ð−1; 3Þ, … are located in the
“future universes” (regions I) …, ð5;−1Þ, (3,1), (1,3),
ð−1; 5Þ, …, while their “past universes” (regions V)
are …, ð3;−3Þ, ð1;−1Þ, ð−1; 1Þ, ð−3; 3Þ, …, respectively.
However, these “past universes” need not be the same.
Therefore, we inserted the double dashed vertical parallel
lines in them to indicate their separation. Of course, it is
possible to “artificially” identify (some of) them—both
the black hole regions III and/or their asymptotic regions

FIG. 2. Penrose conformal diagram of the completely extended spacetime (47) showing the global structure of this family of
accelerating and rotating charged NUT black holes with a cosmological constant. We assume the ordering of the four distinct horizons as
r−c < r−b < rþb < rþc ; see (136). Here we show a two-dimensional section θ;ϕh ¼ const with the curvature singularity at r ¼ 0, i.e., for
θ ¼ const such that cos θ ¼ −l=a. In such a section, the corresponding regions IVare “cut in half” by this curvature singularity at r ¼ 0,
indicated by the vertical zigzag lines. The double dashed vertical parallel lines indicate a separation of distinct asymptotically flat regions
close to I� (different “parallel universes” that are not necessarily identified).
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I and V. An infinite plethora of various topologically
complicated manifolds can thus be constructed.
Let us emphasize that the Penrose conformal diagram

shown in Fig. 2 represents the global structure of a generic
black hole spacetime of type D (47) with four distinct
horizons. It remains to investigate a great number of other
special situations for particular choices of the physical
parameters with degenerate (multiple) horizons or with a
reduced number of horizons, as identified in Sec. V B and
Sec. V C. Other specific situations also occur, for example
jaj ¼ jlj. In all these cases the Penrose diagram will have
different forms.

G. Regularization of the axes of symmetry θ= 0
and θ= π

As shown in previous works [11,13,14], the metric (47)
is convenient for explicit analysis of the regularity of the
poles/axes located at θ ¼ 0 and θ ¼ π, respectively, which
are the boundaries of the range θ ∈ ½0; π�.2 This is now
further improved with the new metric functions (48)–(53).
Recall that there are seven physical parameters in the

metric (47), namely m; a; l; e; g; α;Λ, which represent
mass, Kerr-like rotation, NUT parameter, electric and
magnetic charges, acceleration, and cosmological constant
of the black hole, respectively. But it should be emphasized

that, in fact, there is also the eighth free parameter—the
conicity C hidden in the range of the angular coordinate,

φ ∈ ½0; 2πCÞ; ð177Þ

which has not yet been specified. It is directly related to the
deficit (or excess) angles of the cosmic strings (or struts)
located along the axes. The tension associated with these
topological defects is the physical source of the acceler-
ation of the black holes.
First, let us consider a small circle around the first axis of

symmetry θ ¼ 0 in the metric (47) given by θ ¼ const, with
the range of φ given by (177), assuming fixed t and r. The
invariant length of its circumference is

R
2πC
0

ffiffiffiffiffiffiffigφφ
p dφ, while

its radius is
R
θ
0

ffiffiffiffiffiffi
gθθ

p
dθ, so that

f0 ≡ lim
θ→0

circumference
radius

¼ lim
θ→0

2πC ffiffiffiffiffiffiffigφφ
p

θ
ffiffiffiffiffiffi
gθθ

p : ð178Þ

For the metric (47) near the axis θ ¼ 0 we get

gφφ ≈
P

Ω2ρ2
ðr2 þ ðaþ lÞ2Þ2θ2; gθθ ¼

ρ2

Ω2P
; ð179Þ

and thus, using (50),

f0 ¼ 2πCPð0Þ

¼ 2πC

�
1 − 2

�
αam

a2 þ l2
−
Λ
3
l

�
ðaþ lÞ þ

�
α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
ðaþ lÞ2

�
: ð180Þ

Therefore, the axis θ ¼ 0 in the metric (47) can always be made regular by the unique choice of C ¼ C0 such that

C0 ≡
�
1 − 2

�
αam

a2 þ l2
−
Λ
3
l

�
ðaþ lÞ þ

�
α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
ðaþ lÞ2

�
−1
: ð181Þ

Notice that for l ¼ −a, this is simply C0 ¼ 1.
Analogously, we can regularize the second axis of symmetry θ ¼ π. By applying the transformation of the time

coordinate,

tπ ≡ t − 4lφ; ð182Þ

the metric (47) becomes

ds2 ¼ 1

Ω2

�
−
Q
ρ2

�
dtπ − ðasin2θ − 4lcos2 1

2
θÞdφ

�
2

þ ρ2

Q
dr2 þ ρ2

P
dθ2 þ P

ρ2
sin2θ½adtπ − ðr2 þ ða − lÞ2Þdφ�2

�
; ð183Þ

2Usually, θ ¼ 0 and θ ¼ π are considered as two semiaxes of the same axis of rotation (a single symmetry axis). This is natural in the
simplest spacetimes for which the coordinates ðr; θ;φÞ represent spherical(like) symmetry with r > 0 only. However, in the present
context of generic black hole spacetimes with the Kerr parameter a and the NUT parameter l, the range of the “radial coordinate” is
r ∈ ð−∞;þ∞Þ. In such a case, both the axes given by θ ¼ 0 and θ ¼ π have this full range of r, and thus they are not the same (unless
they are “artificially” identified, which would lead to nontrivial topologies). Therefore, they form two distinct infinite axes connecting
two different asymptotically flat regions in the whole spacetime. This fact is explained in more detail in our previous papers, in particular
see Fig. 4 of [19] and Fig. 2 of [14].
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Now, for θ → π the radius of a small circle around the axis
θ ¼ π is

R
π
θ

ffiffiffiffiffiffi
gθθ

p
dθ, so that

fπ ≡ lim
θ→π

circumference
radius

¼ lim
θ→π

2πC ffiffiffiffiffiffiffigφφ
p

ðπ − θÞ ffiffiffiffiffiffi
gθθ

p ; ð184Þ

where for the metric (183) now

gφφ≈
P

Ω2ρ2
ðr2þða− lÞ2Þ2ðπ−θÞ2; gθθ¼

ρ2

Ω2P
: ð185Þ

Using (50) we obtain

fπ ¼ 2πCPðπÞ

¼ 2πC

�
1þ 2

�
αam

a2 þ l2
−
Λ
3
l

�
ða − lÞ þ

�
α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
ða − lÞ2

�
: ð186Þ

The axis θ ¼ π in the metric (183) can always be made regular by the unique choice C ¼ Cπ where

Cπ ≡
�
1þ 2

�
αam

a2 þ l2
−
Λ
3
l

�
ða − lÞ þ

�
α2a2

ða2 þ l2Þ2 ða
2 − l2 þ e2 þ g2Þ þ Λ

3

�
ða − lÞ2

�
−1
: ð187Þ

Notice that for l ¼ a, this is simply Cπ ¼ 1.

H. Cosmic strings (or struts) and deficit (or excess) angles

Regularizing the second axis θ ¼ π by the choice (187) there remains a deficit/excess angle δ0 ≡ 2π − f0 (conical
singularity representing a cosmic string/strut) along the first axis θ ¼ 0, namely

δ0 ¼
8πa½αa½mða2 þ l2Þ − αalða2 − l2 þ e2 þ g2Þ� − 2

3
Λlða2 þ l2Þ2�

½1þ 1
3
Λða − lÞða − 3lÞ�ða2 þ l2Þ2 þ 2αamða − lÞða2 þ l2Þ þ α2a2ða − lÞ2ða2 − l2 þ e2 þ g2Þ :

For nonrotating black holes (a ¼ 0) we immediately
obtain δ0¼0 which means that both axes θ¼0 and θ¼π
are regular. In such a case, the possible cosmic strings are
absent, so that there is no source of acceleration. This is fully
consistent with our previous observation made in Sec. IVD
that there is no accelerating “purely” NUT-(anti–)de Sitter
black hole in the Plebański-Demiański family of spacetimes.
Indeed, by setting the Kerr-like rotation parameter a to zero,
the metric (47) becomes independent of the acceleration α,
and simplifies directly to (79).
For black holes without the NUT parameter (l ¼ 0) this

expression simplifies to

δ0 ¼
8παm

1þ 2αmþ α2ða2 þ e2 þ g2Þ þ 1
3
Λa2

; ð188Þ

recovering the previous results for rotating charged
C-metric with a cosmological constant; see Chap. 14
in [10] [and generalizing Eq. (132) of [14] to any Λ].
The tension in the cosmic string along θ ¼ 0 characterized
by δ0 > 0 pulls the black hole, causing its uniform
acceleration. Such a string extends to the full range of
the radial coordinate r ∈ ð−∞;þ∞Þ, connecting “our
Universe” with the “parallel universe” through the non-
singular black hole interior close to r ¼ 0.
Complementarily, when the first axis of symmetry θ ¼ 0

is made regular by the choice (181), there is necessarily an
excess/deficit angle δπ ≡ 2π − fπ along the second axis
θ ¼ π, namely

δπ ¼
−8πa½αa½mða2 þ l2Þ − αalða2 − l2 þ e2 þ g2Þ� − 2

3
Λlða2 þ l2Þ2�

½1þ 1
3
Λðaþ lÞðaþ 3lÞ�ða2 þ l2Þ2 − 2αamðaþ lÞða2 þ l2Þ þ α2a2ðaþ lÞ2ða2 − l2 þ e2 þ g2Þ :

For a ¼ 0 it gives δπ ¼ 0, while for l ¼ 0 it simplifies to

δπ ¼
−8παm

1 − 2αmþ α2ða2 þ e2 þ g2Þ þ 1
3
Λa2

; ð189Þ

[generalizing Eq. (134) of [14] to any Λ]. This represents
the cosmic strut characterized by δπ < 0 located along
θ ¼ π between the pair of black holes, pushing them away
from each other in opposite spatial directions.
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Interestingly, both axes θ ¼ 0 and θ ¼ π can be made
simultaneously regular (δ0 ¼ 0 ¼ δπ) if (and only if) seven
physical parameters of the black hole spacetime satisfy the
special constraint,

2

3
Λlða2 þ l2Þ2 ¼ αa½mða2 þ l2Þ − αalða2 − l2 þ e2 þ g2Þ�:

ð190Þ
For such a special value of the cosmological constant Λ, the
rotating charged black holes with the NUT parameter l ≠ 0
accelerate without the presence of the cosmic strings or
struts. In the Λ ¼ 0 case the simpler condition given by
Eq. (135) of [14] is recovered. The condition (190) also
corrects the wrong sign of the Λ-term in the corresponding
unnumbered equation on p. 313 of [10].

I. Rotation of the cosmic strings (or struts)

With a NUT parameter l ≠ 0 these cosmic strings (or
struts) are rotating. The angular velocity parameter ωθ of
the metric (47) is

ωθ ≡ gtφ
gtt

¼ −
Qða sin2 θþ 4l sin2 1

2
θÞ− aðr2 þ ðaþ lÞ2ÞP sin2 θ

Q− a2P sin2 θ
:

ð191Þ
Now we consider any fixed value of r away from the
horizons (so that Q ≠ 0 is a constant). Then the limits
θ → 0 and θ → π near the two different axes θ ¼ 0 and
θ ¼ π give

ω0 ¼ 0 and ωπ ¼ −4l; ð192Þ
respectively. The first axis θ ¼ 0 is thus nonrotating, while
the second axis θ ¼ π rotates, and its angular velocity is
directly (and solely) determined by the NUT parameter l.
Indeed, ωπ does not depend on the Kerr-like parameter a,
nor the conicity parameterC. The rotational character of the
axis is thus a specific feature related to the NUT parameter
l, which is independent of the possible deficit angles
defining the cosmic string/strut along the same axis.
By changing the time coordinate as in (182), we obtain

the alternative metric (183) for which

ωθ ≡ gtπφ
gtπtπ

¼ −
Qða sin2 θ− 4l cos2 1

2
θÞ− aðr2 þ ða− lÞ2ÞP sin2 θ

Q− a2P sin2 θ
:

ð193Þ
The corresponding angular velocities of the two axes
are thus

ω0 ¼ 4l and ωπ ¼ 0: ð194Þ

In this case, the situation is complementary to (192): the
axis θ ¼ 0 rotates, while the axis θ ¼ π does not rotate.
Interestingly, there is a constant difference,

Δω≡ ω0 − ωπ ¼ 4l; ð195Þ

between the angular velocities of the two cosmic strings
or struts given by l (irrespective of the value of a or the
choice of C). The NUT parameter l is thus responsible for
the difference between the magnitude of rotation of the two
axes θ ¼ 0 and θ ¼ π.

J. Pathological regions with closed timelike curves
near the rotating strings (or struts)

In the close vicinity of the rotating cosmic strings or
struts located along θ ¼ 0 or θ ¼ π, the black hole
spacetime can serve as a time machine because there are
closed timelike curves. To identify such “pathological”
causality-violating regions, let us consider circles around
the axes of symmetry θ ¼ 0 or θ ¼ π such that only the
periodic angular coordinate φ ∈ ½0; 2πCÞ changes, while
the remaining coordinates t, r and θ are constant. The
corresponding velocity vectors are thus proportional to
the Killing vector field ∂φ whose norm is determined just by
the metric coefficient gφφ of the general metric (47). There
exist regions with

gφφ < 0; ð196Þ

in which the circles (orbits of the axial symmetry) are
closed timelike curves. Such pathological regions are given
by the condition,

PðθÞðr2 þ ðaþ lÞ2Þ2 sin2 θ < QðrÞða sin2 θ þ 4l sin2
1

2
θÞ2;

ð197Þ

where the functions PðθÞ, QðrÞ are explicitly given
by (50), (51).
Since PðθÞ > 0, this condition can only be satisfied in

the regions where QðrÞ > 0. In the generic case admitting
four distinct horizons (129), with N > 0, ordered as
r−c < r−b < rþb < rþc , the pathological regions with closed
timelike curves can only appear in the stationary region
r ∈ ðrþb ; rþc Þ between the outer black hole horizon Hþ

b and
the outer cosmo-acceleration horizon Hþ

c , or in the sta-
tionary region r ∈ ðr−c ; r−b Þ between the inner cosmo-
acceleration horizon H−

c and the inner black hole horizon
H−

b containing the curvature singularity at r ¼ 0; see the
scheme (137). These are, respectively, the regions II and
the regions IV in the Penrose conformal diagram shown
in Fig. 2.
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Moreover, it can be proven analytically that these
pathological regions with closed timelike curves do not
intersect with the ergoregions (shown in Fig. 1), although
they are both in the same domains II and IV. Indeed, the
ergoregions are identified by the condition gtt > 0 (together
with grr > 0), that is

Q < Pa2 sin2 θ; ð198Þ

see Eq. (150). Substituting this inequality into (197)
we obtain

r2 þ ðaþ lÞ2 < a2 sin2 θ þ 4al sin2 1
2
θ: ð199Þ

This is the same relation as r2 þ a2 cos2 θ þ 2al cos θþ
l2 < 0, and in view of (49) it reads

ρ2 ≡ r2 þ ðlþ a cos θÞ2 < 0; ð200Þ

which is a contradiction.
The pathological regions with closed timelike curves are

indicated in Fig. 3 for several choices of the cosmological
constant. They are the purple regions near the rotating
cosmic string (strut) at θ ¼ π.

K. Thermodynamic quantities

In this final section we evaluate some basic thermody-
namic quantities of the large class of black holes (47),
namely the entropy,

S≡ 1

4
A; ð201Þ

given by the horizon area A, and the temperature,

T ≡ 1

2π
κ; ð202Þ

given by the corresponding horizon surface gravity κ;
see [35].
The horizon area is obtained easily by integrating both

angular coordinates of the metric (47) for fixed values of t
and r ¼ rh,

AðrhÞ ¼
Z

2πC

0

Z
θmax

θmin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgφφ

p
dθdφ: ð203Þ

Because QðrhÞ ¼ 0 on any horizon, this expression sim-
plifies to

A ¼ 2πCðr2h þ ðaþ lÞ2Þ
Z

θmax

θmin

sin θ
Ω2ðrhÞ

dθ: ð204Þ

Applying the explicit form of the conformal factor (48),
that is

ΩðrhÞ ¼ 1 −
αarh
a2 þ l2

ðlþ a cos θÞ; ð205Þ

a simple integration leads to

A ¼ 2πCðr2h þ ðaþ lÞ2Þ a
2 þ l2

αa2rh

�
−1

ΩðrhÞ
�
θmax

θmin

: ð206Þ

Let us now assume the generic case of four distinct
horizons H introduced in (131)–(134). For the black hole
horizons H�

b the integration range is a full spherical angle,
½θmin; θmax� ¼ ½0; π�, and this leads to the following result:

area ofH�
b is Ab

� ¼ 4πC½ðr�b Þ2 þ ðaþ lÞ2�
ð1 − α a2þal

a2þl2 r
�
b Þð1þ α a2−al

a2þl2 r
�
b Þ

:

ð207Þ

For vanishing acceleration α the area of the black hole
horizons is simply

A�
b ¼ 4πCððr�b Þ2 þ ðaþ lÞ2Þ: ð208Þ

This reduces to the well-known expressions for Kerr–
Newman-NUT-(anti–)de Sitter black holes, and in particu-
lar the Schwarzschild solution with a single horizon of the
area Ab ¼ 4πr2b.
Concerning the cosmo-acceleration horizons H�

c , it is
necessary to discuss three cases depending on the sign of
the cosmological constant. In our previous work [14] we
demonstrated that for Λ ¼ 0 the area of bothHþ

a ≡Hþ
c and

H−
a ≡H−

c is infinite. The same is true for Λ < 0. In this
case the reason is that the cosmo-acceleration horizons
extend up to conformal infinity given by Ω ¼ 0. This can
be seen, e.g., from the corresponding pictures in the
bottom row of Fig. 1 and Fig. 3 in which H�

c are indicated
by big red circles. Consequently, Ωðrþc ; θminÞ ¼ 0 and
Ωðr−c ; θmaxÞ ¼ 0. In both cases, the expression (206) for
A�

c diverges.
For a positive cosmological constant Λ > 0 the integra-

tion (206) over the full admitted range ½θmin; θmax� ¼ ½0; π�
implies that

area ofH�
c is Ac

� ¼ 4πC½ðr�c Þ2 þ ðaþ lÞ2��
1 − α a2þal

a2þl2 r
�
c

��
1þ α a2−al

a2þl2 r
�
c

� :

ð209Þ
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FIG. 3. Plot of the metric function gφφ for the accelerating black hole (47) with a regular axis θ ¼ 0 and rotating cosmic string (strut)
along the axis θ ¼ π. The values of gφφ are visualized in quasipolar coordinates x≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðaþ lÞ2

p
sin θ, y≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðaþ lÞ2
p

cos θ for
r ≥ 0 (left) and r ≤ 0 (right). The gray annulus in the center of the left figure localizes the black hole bordered by its horizonsHþ

b at rþb
and H−

b at r−b (0 < r−b < rþb ). The cosmo-acceleration horizons H�
c at rþc and r−c (big red circles) and the conformal infinity I at Ω ¼ 0

are also shown. The gray curves are contour lines gφφðr; θÞ ¼ const, and the values are color-coded from red (positive values) to blue
(negative values); extremely large values are cut. The purple curves are the isolines gφφ ¼ 0 determining the boundary of the
pathological regions (197) with closed timelike curves. They occur close to the axis θ ¼ π (purple regions where gφφ < 0). This plot is
for the choice m ¼ 3, a ¼ 1.5, l ¼ 0.2, e ¼ 1.6 ¼ g, and α ¼ 0.12. The top row is plotted for positive values of the cosmological
constant (Λ ¼ 0.003 on the left for r ≥ 0, Λ ¼ 0.005 on the right for r ≤ 0), the middle row is for Λ ¼ 0, while the bottom row is plotted
for negative values of the cosmological constant (Λ ¼ −0.003 on the left for r ≥ 0, Λ ¼ −0.005 on the right for r ≤ 0).
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Interestingly, these areas of cosmo-acceleration horizons H�
c are finite.

Indeed, from the general form (51) of the metric function QðrÞ, namely

QðrÞ ¼ ½r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ�
�
1þ αa

a− l
a2 þ l2

r

��
1− αa

aþ l
a2 þ l2

r

�
−
Λ
3
r2
�
r2 þ 2αal

a2 − l2

a2 þ l2
rþ ða2 þ 3l2Þ

�
;

ð210Þ

evaluated at the horizons r�c [which are defined as the two
roots of QðrcÞ ¼ 0], it follows that

�
1 − α

a2 þ al
a2 þ l2

rc

��
1þ α

a2 − al
a2 þ l2

rc

�

¼ Λ
3
r2c

r2c þ 2αal a
2−l2

a2þl2 rc þ ða2 þ 3l2Þ
r2c − 2mrc þ ða2 − l2 þ e2 þ g2Þ ; ð211Þ

An infinite value of A�
c given by (209) would require

the left-hand side of (211) to be zero, implying its
roots rc ¼ � 1

α
a2þl2

a2�al. By substituting such values into
the numerator of the right-hand side of (211) we get

r2cþ 2αal a
2−l2

a2þl2 rcþða2þ 3l2Þ ¼ ða2þl2Þ2
α2a2ða�lÞ2 þða� lÞ2 which

is strictly positive. For Λ > 0 we thus get a contradiction,
so that A�

c must be finite.

For m ¼ a ¼ l ¼ e ¼ g ¼ α ¼ 0 (so that C ¼ 1) the
function reduces to QðrÞ ¼ r2ð1 − Λ

3
r2Þ. The cosmological

horizons are thus located at r2c ¼ 3
Λ, and their areas given

by (209) areAc ¼ 4πr2c ¼ 12π=Λwhich is the well-known
result for the de Sitter space.
The temperature of the horizon is determined by its

surface gravity κ. In [14,16] we showed that for the general
metric form (47) this can be expressed as

κ ¼ 1

2

Q0ðrhÞ
r2h þ ðaþ lÞ2 ; ð212Þ

where the prime denotes the derivative with respect to r.
With the factorized form (129) of the metric function QðrÞ,
using the constant parameters (166), this can be easily
evaluated as

surface gravity ofHþ
b is κþb ¼ 1

2kþb
¼ −

N
2

ðrþb − r−b Þðrþb − rþc Þðrþb − r−c Þ
ðrþb Þ2 þ ðaþ lÞ2 ; ð213Þ

surface gravity ofH−
b is κ−b ¼ 1

2k−b
¼ −

N
2

ðr−b − rþb Þðr−b − rþc Þðr−b − r−c Þ
ðr−b Þ2 þ ðaþ lÞ2 ; ð214Þ

surface gravity ofHþ
c is κþc ¼ 1

2kþc
¼ −

N
2

ðrþc − rþb Þðrþc − r−b Þðrþc − r−c Þ
ðrþc Þ2 þ ðaþ lÞ2 ; ð215Þ

surface gravity ofH−
c is κ−c ¼ 1

2k−c
¼ −

N
2

ðr−c − rþb Þðr−c − r−b Þðr−c − rþc Þ
ðr−c Þ2 þ ðaþ lÞ2 : ð216Þ

It can now be seen from (213) and (214) that

κþb ¼ 0 ¼ κ−b if rþb ¼ r−b ; ð217Þ

and from (213) and (215) that

κþb ¼ 0 ¼ κþc if rþb ¼ rþc : ð218Þ

This confirms that extremal horizons have vanishing sur-
face gravity, and thus zero thermodynamic tempera-
ture T ¼ 1

2π κ.

VI. SUMMARY

We presented a new metric form (47)–(51) of the large
family of exact black holes of algebraic type D, initially
found by Debever (1971) and by Plebański and Demiański
(1976). It generalizes our previous paper on this topic [14]
to any value of the cosmological constant Λ. We also
demonstrated that this improved metric representation
simplify the investigation of various geometrical and
physical properties. In particular:

(i) In Sec. II we recalled the Griffiths–Podolský (2005,
2006) form of this class of spacetimes, and we
further improved it by introducing a modified set of
the mass and charge parameters m, e, g, applying a

JIŘÍ PODOLSKÝ and ADAM VRÁTNÝ PHYS. REV. D 107, 084034 (2023)

084034-26



conformal rescaling S, and choosing a gauge of the
twist parameter ω.

(ii) As summarized in Sec. III, the metric (47) and its
functions (48)–(51) are simple, depending only on
the radial coordinate r and the angular coordinate θ.
Moreover, the key functions PðθÞ and QðrÞ can be
further compactified to (52)–(53). In particular, PðθÞ
is factorized.

(iii) The metric depends on seven parameters m; a; l;
e; g; α;Λ with direct physical meaning. They re-
present the mass parameter, Kerr-like rotation, NUT
parameter, electric and magnetic charges, acceler-
ation of the black hole, and the cosmological
constant, respectively.

(iv) Another nice feature of the new metric form
(47)–(51) is that any of its seven physical parameters
can be independently set to zero (and this can be
done in any order). As shown in Sec. IV, specific
subclasses of type D black holes are thus easily
obtained. These are the black holes with Λ ¼ 0,
obtained and analyzed previously in [14], Kerr-
Newman-NUT-(anti–)de Sitter black holes without
acceleration (α ¼ 0), accelerating Kerr-Newman-
(anti–)de Sitter black holes without NUT (l ¼ 0),
charged Taub-NUT-(anti–)de Sitter black holes
without rotation (a ¼ 0), and accelerating Kerr-
NUT-(anti–)de Sitter black holes without electric
or magnetic charges (e ¼ 0 or g ¼ 0).

(v) All the metric functions (48)–(51) depend on the
acceleration α only via the product αa. Conse-
quently, by setting the Kerr-like rotation a to zero,
the new metric (47) always becomes independent of
α, and simplifies directly to the charged Taub-NUT-
(anti–)de Sitter black holes. This explicitly confirms
the previous observation made by Griffiths and
Podolský that there is no accelerating purely NUT
black hole in the Plebański–Demiański family of
type D spacetimes. Quite surprisingly, such a sol-
ution for accelerating nonrotating black hole with
just the NUT parameter and Λ ¼ 0 exists [19,20],
but it is of distinct algebraic type I. Its possible
generalization to any cosmological constant Λ re-
mains an open problem.

(vi) The simplest subcases of the metric (47) with just the
mass parameterm and a cosmological constantΛ, plus
one additional physical parameter, give famous black
holes, namely the Schwarzschild-(anti–)de Sitter,
Reissner-Nordström-(anti–)de Sitter, Kerr-(anti–)de
Sitter, Taub-NUT-(anti–)de Sitter black holes, or black
holes accelerating in de Sitter or anti–de Sitter
universes—all in their usual coordinate forms.

(vii) As shown in Sec. V, our convenient metric (47)–(51)
considerably simplifies the study of physical and

geometrical properties of this large family of black
holes. First of all, the Weyl and Ricci curvature
tensors, expressed as the Newman-Penrose scalarsΨ2

and Φ11 [with respect to the natural tetrad (85)
adapted to the double-degenerate principal null di-
rections] can be evaluated, confirming the type D
algebraic structure of the gravitational field, aligned
with the non-null electromagnetic field (100)–(102).

(viii) Their form (86) and (87), together with the explicit
expressions (96) and (97) for the Kretschmann
scalar K≡ RabcdRabcd and the Weyl scalar
C≡ CabcdCabcd, clarifies the presence and the struc-
ture of the curvature singularity. It is located at
ρ2 ¼ 0, i.e., at r ¼ 0, but only if also lþ a cos θ ¼ 0,
which requires jlj ≤ jaj. There is no curvature
singularity in the black hole spacetimes with large
NUT parameter jlj > jaj ≥ 0.

(ix) Both the double-degenerate principal null directions
k and l given by (85) are geodetic, shear-free, and
expanding. They are twisting if and only if a ¼ 0 ¼ l.

(x) The generic black hole spacetime becomes asymp-
totically conformally flat at the conformal infinity
localized by the condition Ω ¼ 0.

(xi) In general, there are four distinct horizons identified
by the roots QðrhÞ ¼ 0 of the metric function
QðrÞ—which is explicitly given by (51)—a pair
of black hole horizons H�

b at r�b , and a pair of
cosmo-acceleration horizons H�

c at r�c . The posi-
tions of these four horizons are explicitly given by
expressions (140) and (141), respectively. Their
natural ordering is r−c < r−b < rþb < rþc .

(xii) Of course, there may be less then four horizons, and
they can be degenerate (corresponding to multiple
roots of QðrhÞ ¼ 0), as explicitly listed in Sec. V B.

(xiii) Whenever the Kerr-like rotation parameter a is
nonzero, each of these four horizons is accompanied
by the corresponding ergoregion; see Sec. V D
and Fig. 1.

(xiv) The ringlike curvature singularity at r ¼ 0 such that
cos θ ¼ −l=a (requiring a2 ≥ l2) is, for the black
hole solution, located in the stationary region IV
between the inner cosmo-acceleration horizon H−

c
and the inner black hole horizon H−

b (assuming the
natural ordering r−c < r−b < rþb < rþc ).

(xv) in Sec. V F we analyzed the global causal structure
of the generic family of black hole spacetimes (47)
by constructing the Kruskal–Szekeres-type coordi-
nates which enabled us to perform the maximal
analytic extension across all the horizons. It revealed
an infinite number of time-dependent regions (of
type I, III, V) and stationary regions (of type II, IV)
which are separated by the black hole and cosmo-
acceleration horizons H�

b and H�
c .
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(xvi) This global structure is visualized in the Penrose
diagrams obtained by a suitable conformal
compactification, drawn in Fig. 2. The complete
manifold contains an infinite number of black holes
in various universes identified by distinct (future and
past) conformal infinities I .

(xvii) In Sec. V G we investigated the regularization of the
two axes of axial symmetry θ ¼ 0 and θ ¼ π by an
appropriate setting of the conicity parameter C in the
range φ ∈ ½0; 2πCÞ. The first axis θ ¼ 0 is regular in
the metric form (47) with the choice (181), while the
second axis θ ¼ π is regular in the metric form (183)
with the choice (187).

(xviii) Both these choices lead to the existence of a cosmic
string or a strut identified by the deficit or excess angle
on the complementary axis, see the expressions for δ0
and δπ in Sec. V H. Such topological defects are the
physical source of acceleration of the black holes.

(xix) Interestingly, both the axes of symmetry can be
made regular simultaneously for the particular
choice (190) of the physical parameters.

(xx) In addition to such deficit/excess angles, the cosmic
strings/struts are characterized by their rotation ω
(angular velocity). In Sec. V I we demonstrated that
their values are directly related to theNUTparameter l,
see the expressions (192) and (194). There is always a
constant difference Δω ¼ 4l between the angular
velocities of the two rotating cosmic strings or struts.

(xxi) In the vicinity of these rotating strings/struts there
are pathological regions with closed timelike curves;
see Sec. V J and Fig. 3.

(xxii) Although the pathological regions with closed time-
like curves are located in the same domains as the

ergoregions, they do not overlap with each other, see
the end of Sec. V J.

(xxiii) The new metric form (47) is also convenient for
the investigation of thermodynamic quantities. In
Sec. V K we evaluated the area and the surface
gravity of the black hole and cosmo-acceleration
horizons, simply related to their entropy and
temperature.

All this demonstrates the usefulness of the new
improved metric of the complete family of type D
accelerating and rotating black holes with charges and
the NUT parameter in (anti–)de Sitter universe. Various
other investigations can now be performed. Among them
is a systematic analysis of the degenerate cases with
smaller number of horizons, and with multiple horizons.
Recently, such extremal isolated horizons have been
studied, for example in the works [16,17,36–40]. Also,
extension of the Plebański-Demiański solutions (includ-
ing a cosmological constant) to the framework of the
metric-affine gravity (MAG) theory was constructed
in [41]. It would be nice to see if the new and more
explicit metric (47)–(51) simplifies such investigations.
To this end, the Wolfram Mathematica Notebook, see
Ref. [42], with the new form of the metric and some other
key expressions may be helpful.
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