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Abstract
We systematically investigate axisymmetric extremal isolated horizons (EIHs)
defined by vanishing surface gravity, corresponding to zero temperature. In the
first part, using the Newman–Penrose and GHP formalism we derive the most
general metric function for such EIHs in the Einstein–Maxwell theory, which
complements the previous result of Lewandowski and Pawlowski. We prove
that it depends on 5 independent parameters, namely deficit angles on the north
and south poles of a spherical-like section of the horizon, its radius (area), and
total electric and magnetic charges of the black hole. The deficit angles and both
charges can be separately set to zero. In the second part of our paper, we iden-
tify this general axially symmetric solution for EIH with extremal horizons in
exact electrovacuum Plebański–Demiański spacetimes, using the convenient
parameterization of this family by Griffiths and Podolský. They represent all
(double aligned) black holes of algebraic type D without a cosmological con-
stant. Apart from a conicity, they depend on 6 physical parameters (mass,
Kerr-like rotation, NUT parameter, acceleration, electric and magnetic charges)
constrained by the extremality condition. We were able to determine their rela-
tion to the EIH geometrical parameters. This explicit identification of type D
extremal black holes with a unique form of EIH includes several interesting
subclasses, such as accelerating extremely charged Reissner–Nordström black
hole (C-metric), extremal accelerating Kerr–Newman, accelerating Kerr–NUT,
or non-accelerating Kerr–Newman–NUT black holes.
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1. Introduction

The Kerr(-Newman) solution [1, 2] is a standard astrophysical model for rotating (and pos-
sibly charged) black holes. Despite several simplifying assumptions (stationarity of the full
spacetime, asymptotic flatness, absence of matter outside the black hole etc), it is an excellent
approximation for realistic black holes. Although real black holes are typically surrounded by
accreting matter and external electromagnetic fields, these can be usually treated as a test mat-
ter with negligible backreaction on the geometry. In fact, the presence of the accretion disk is
important in order to measure specific characteristics of the black hole, namely its spin, e.g. by
the iron line method [3]. Test-matter approach on the Kerr background has been also successful
in explaining jets from active galactic nuclei via the Blandford–Znajek process [4].

Yet, there are good reasons to study black holes surrounded by matter beyond the test-
field approximation. Kerr black holes comply with the no-hair theorem according to which a
black hole in Einstein’s general relativity is fully characterized by its mass, charge and angu-
lar momentum. This important theoretical result can be tested experimentally by measuring
asymptotic multipole moments of the black hole, but it is expected that the presence of a mat-
ter will induce additional multipole moments. It was shown in [5] that in the case of static
black holes, contributions to multipole moments from the accreting matter can be disentan-
gled from the contribution of the black hole and the moments coming from the black hole
coincide with those of Schwarzschild—in this sense, the no-hair theorem holds also for dis-
torted static black holes. The situation for stationary case is not yet clear. However, experiments
like Event Horizon Telescope [6] have been proposed that will test the no-hair theorem and will
be sensitive even to small deviations caused by surrounding matter. Hence, it is necessary to
understand theoretically whether possible deviations from the theorem should be attributed to
some alternative theory of gravity, or they are purely general relativistic effects.

In addition, the concept of the event horizon of a black hole is very rigid and has a teleolog-
ical nature, meaning that it can be identified only after the full spacetime is known. That is a
consequence of its global character: the event horizon is a boundary of causal past of future null
infinity. Our Universe is not asymptotically flat and, moreover, it is desirable to have a good
definition of a black hole which does not rely on the causal structure of the full spacetime, with
its horizon identified locally or quasi-locally. Furthermore, there are more fundamental ques-
tions arising from the discovery of the Bekenstein–Hawking entropy of a black hole which
is proportional to its area. Entropy in thermodynamics is related to the number of possible
microstates but it is far from being clear what these microstates should be in the case of a black
hole, which is one of the main issues of the string theory or the loop quantum gravity.

Motivated by all these reasons, the concept of an isolated horizon has been introduced, see
[7] for an extensive review. These horizons are defined quasi-locally as null hypersurfaces with
certain geometric properties (see section 2) but they do not restrict the spacetime—they do not
a priori require asymptotic flatness, and they admit the presence of radiation or other external
matter. Hence, they can be much more realistic than the original Kerr solution.

Isolated horizons have played a significant role in the loop quantum gravity studies, but they
have also found many useful applications in purely classical general relativity. For example,
using this formalism it was recently possible to analyse, in full generality, the Meissner effect
for extremal horizons [8, 9].

Extremal horizon represents a limit state of a black hole, which increases its charge, rotation,
or another parameter to such an extreme degree that the horizon degenerates—typically via a
‘coalescence’ of two initially distinct horizons. Notable and well-known exact spacetimes of
this type are extreme Reissner–Nordström, Kerr, Kerr–Newman, or Schwarzschild–de Sitter
black holes, see the corresponding sections in chapters 9 and 11 of [10]. In this limit state,
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the surface gravity of the horizon vanishes. Hence, according to black hole thermodynamics,
such a black hole has zero temperature and does not radiate [11]. From the quantum grav-
ity perspective, this scenario is expected to be simpler to handle than the fully general case.
For this reason, a considerable effort has been put into investigation of extremal black holes,
including the near-horizon limits and classification of all possible such geometries—see [12]
for a review and references (interestingly, these near-horizon geometries belong to the Kundt
family of nonexpanding metrics [13, 14]). In fact, extremality proved to be crucial in string
theory calculations of the semi-classical formula for black hole entropy.

The extremal horizons have another distinguished property that—despite possible distor-
tions caused by an external matter—assuming regularity, their intrinsic geometry is always
locally isometric to the Kerr–Newman black hole, as the remarkable theorem by Lewandowski
and Pawlowski shows [15]. In fact, here we generalize this theorem to a much wider class of
solutions, when the black holes are allowed to be penetrated by cosmic strings or struts. This
is manifested by the presence of one-dimensional topological defects extending from the poles
of black hole horizon as conical singularities that physically represent cosmic strings or struts,
which cause acceleration of the black holes. Although analogous results have been obtained and
to some extent studied in previous literature [12, 15–20] by various approaches, our systematic
derivation using the Newman–Penrose (NP) formalism provides an independent insight into
geometrical properties of such horizons. Moreover, we offer a physical interpretation of the
result in its full generality, not investigated before.

This paper is organized as follows. In section 2, we review the necessary notation and basic
definitions concerning the concept of IHs. In section 3 we specialize on extremal isolated hori-
zons (EIHs), and we explicitly solve the constraint equations for a function describing the
horizon geometry. In section 4 we derive analogous result for the most general type D black
hole in a family of exact spacetimes of Plebański–Demiański class. The last section 5 is ded-
icated to identification of the structure of these two solutions and mutual relations. Appendix
A contains a summary of the NP and GPH formalisms.

2. Isolated horizons

Isolated horizons represent a mathematical framework for describing black holes that are in
equilibrium with their neighborhood. They are quasi-local generalizations of globally defined
event horizons. Our definitions here follow that of Ashtekar and Krishnan [7].

Definition 1. A sub-manifoldH ⊂ M of a spacetime (M, gab) is said to be a non-expanding
horizon if the following conditions are satisfied:

(a) H is a null hypersurface of topology R× S2,
(b) Every null normal la has vanishing expansion on H,
(c) Einstein equations are satisfied on H and energy–momentum tensor Tab is such that for

every future normal vector la, the vector Ta
b lb is also future pointing.

The first condition implies that the horizon can be foliated by topological two-spheres inter-
preted as slices of constant time. The null normal la is tangent to the generators of the horizon
and is necessarily geodesic although not affinely parameterized. Its acceleration is the surface
gravity κ(�) defined1 via Dla = κ(�)la. Vanishing of the expansion of la means that the area of
the horizon does not change in time. Together with the energy condition (c), this is equivalent

1 For review of the Newman–Penrose formalism and notation, see appendix A.
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to zero flux of a matter through the horizon. The choice of the normal la is unique up to rescaling
by an arbitrary function. It is convenient to fix it by the following restriction:

Definition 2. An equivalence class [·] of vector fields is defined as

[va] = {Xa, ∃λ ∈ R
+ : Xa = λva}.

A weakly isolated horizon (WIH) is a pair (H, [la]), where H is a non-expanding horizon and
[la] is the equivalence class of a chosen null normal la of H such that

[£l,Da] lb
H
= 0, (1)

where
H
= denotes equality on the horizon.

Here, £l is the Lie derivative along la, while Da is the induced covariant derivative defined

by XaDa
H
= Xa∇a for every Xa tangent to H.2

The normal la can be completed to a NP null tetrad (la, na, ma, m̄a) [21], where the spatial
(complex) vectors ma, m̄a span a tangent space of a particular spherical section S2

0 of H and
are propagated onto the whole horizon by the requirement

£l ma H
= 0 ⇔ ε̄

H
= ε

H
=

1
2
κ(�), (2)

where ε is the NP spin coefficient. Fixing la and ma, the vector na is then determined by the
normalization conditions lana = 1 and mana = 0 of the NP tetrad.

The properties of thus defined WIH allow us to construct adapted coordinates (v, x1, x2) on
H such that

la
H
= ∂a

v , ma H
= ξI(xJ) ∂a

I , where I, J ∈ {1, 2}, (3)

for suitably chosen functions ξI . In order to extend these coordinates also out of the horizon
we send geodesics in the direction of na from every point of H, i.e. Δna = 0. These geodesics
might be affinely parameterized by a parameter r such that na = ∂a

r . Then the remaining vectors
and coordinates are propagated analogously,

Δla = Δma = 0, Δv = ΔxI = 0, (4)

which in turn implies

γ = τ = ν = 0, α+ β̄ = πNP.

On the horizon H, it also holds

κ
H
= ρ

H
= σ

H
= 0, μ

H
= μ̄, Ψ0

H
= φ0

H
= 0. (5)

This means that, being non-expanding, non-twisting and shear-free, its geometry must belong
to the Kundt class of geometries [10, 13, 14, 22].

Moreover, the following coefficients are time-independent in the sense of vanishing deriva-
tive along la,

DπNP
H
= Dα

H
= Dβ

H
= Dε

H
= 0, DΨ2

H
= Dφ1

H
= 0. (6)

2 Namely, in NP formalism Da
H
= naD − ma δ̄ − m̄aδ, cf (146).
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The condition (1) gives δε
H
= 0 which, using (2), implies that the surface gravityκ(�) is constant

across the horizon. This result is also known as the zeroth law of black hole thermodynamics.
The gauge freedom in the choice of la implies that κ(�) does not acquire a unique value for a
given WIH, but in our case that poses no problem since we will concentrate on the study of
extremal horizons for which unambiguously κ(�) = 0.

As we have already mentioned, WIH admits the presence of a matter or even radiation out-
side the horizon and therefore represent a black hole horizon much more generally than event
horizons or the particular Kerr solution. Although WIHs characterize equilibrium situation by
definition, they admit a certain degree of time dependence [23]. Unfortunately, this is still not
fully suitable for our purpose. We need to introduce a stronger notion of an ‘isolation’:

Definition 3. An isolated horizon (IH) is a WIH such that for every vector Xa tangent to H
the following condition holds

[£l,Da]Xb H
= 0. (7)

As a consequence of the definition (7) we also obtain

Dλ
H
= Dμ

H
= 0. (8)

Hence, all the initial data onH are time-independent. While the condition (1) for WIH is merely
a gauge fixing [8], the condition (7) for IH puts the direct restriction on admitted geometry.

Although IH is naturally imposed in the context of stationarity, it might be too restrictive
within the current setting in particular applications. For instance, in order to prove the Meissner
effect in a greater generality, the definition of the IH had to be further generalized in [9] to the
concept of an almost isolated horizon (AIH). The authors showed that the whole construction
is valid even under assumption of topology R×K, where K is a compact two-manifold.3

For the purpose of this article, we will similarly assume that K has topology of a two-
sphere possibly pierced by strings (or struts) on the two poles, which produce deficit angles
δ±, respectively4. In addition, we will impose the axial symmetry in the sense of [9], which is
a generalization of the approach of [24]:

Definition 4. A horizon section K with the topology Sδ+
δ− equipped with a spatial metric qab

is said to be axially symmetric if there exists a Killing vector field φa with closed orbits, which
vanishes exactly at two points of K. These points are called poles.

Such a horizon section K can be coordinatized by two functions ζ and φ, which take the
values ζ ∈ [−1, 1] and φ ∈ [0, 2π). In these coordinates, the induced (negative definite) metric
qab on the sections of H of constant time v acquires the canonical form

qab dxa dxb ≡ −R2

(
1

f (ζ)
dζ2 + f (ζ) dφ2

)
, (9)

where R is ‘Euclidean’ radius defined by the area A of K via the relation 4πR2 = A. Because
of condition (2), this metric is Lie-constant along la.5

3 The definition of the almost isolated horizon again allows certain amount of time-dependence of the initial data.
Instead of (8) one assumes only Dλ

H
= 0. Here, however, we need both conditions.

4 We assume that K has the structure of a differentiable two-manifold, except in small neighbourhoods around its poles
which do not have this structure because of the conical singularities. Then K is not compact, just bounded. However,
this rather technical issue does not affect our investigation.
5 In NP formalism the metric of H is qab = −mam̄b − mbm̄a. Notice the degeneracy of qab following from the null
character of H.
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In particular, for f = 1 − ζ2 with ζ = cos θ, the metric (9) takes the standard form

qab dxa dxb ≡ −R2
(

dθ2 + sin2 θ dφ2
)
. (10)

Consequently, f
′
= −2ζ = −2 cos θ which yields f ′ = −2 for θ = 0 and f ′ = 2 for θ = π.

The function f (ζ) in (9) can be chosen arbitrarily, provided it satisfies the boundary con-
ditions at the poles f (±1) = 0. In [15], another condition was imposed, namely f ′(±1) = ∓2
which makes the sphere ‘elementary flat’ [22] in the sense that there are no conical singular-
ities (deficit angles) around the poles at ζ = ±1. In order to relax the regularity in the above
sense, the values of derivatives of f are prescribed in the more general form [9]

f ′(±1) = ∓ 2

(
1 +

δ±
2π

)
, (11)

where δ± are the corresponding deficit angles at ζ = ±1. Such topological defects have non-
trivial effects on the spacetime and can be interpreted as cosmic strings (or struts) extending
through the horizon poles and causing acceleration of the black hole as in the C-metric, see
e.g. chapter 14 in [10].

A convenient choice of the spatial vector ma on H is

ma H
=

1√
2R

(√
f (ζ) ∂a

ζ +
i√
f (ζ)

∂a
φ

)
, (12)

normalized as mam̄a = −1. The only independent component of the connection on H is then
given by the coefficient a defined by (160),

a ≡ maδ̄ m̄a = α− β̄
H
= − 1

2
√

2R

f ′(ζ)√
f (ζ)

. (13)

With this choice, a is real on the horizon, ā
H
= a, as well as the derivative operator δ ≡

ma∇a
H
= δ̄ acting on a scalar function, namely

δϕ
H
=

1√
2R

√
f (ζ) ∂ζϕ, (14)

for an arbitrary function ϕ = ϕ(ζ).

3. Extremal isolated horizons (EIH)

In this section, we investigate IHs, which are extremal. Throughout the text, we denote such a
horizon by a shorthand notation EIH.

Extremal horizons are characterized by vanishing surface gravity, that is

κ(�) = 0. (15)

It puts a geometric restriction on the metric function f (ζ) in (9), in particular via the Ricci
identities, and reduces the dependence on the free data represented by the spin coefficients μ
and λ. In fact, the solution can be found explicitly, and it is unique.

Following [9], in section 3.1 we will proceed at first by solving the necessary constrains for
the electromagnetic field and the spin coefficient πNP. Then, in section 3.2 we will investigate
the equation for the metric function f (ζ) and solve it.
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3.1. Electromagnetic field

In this paper we are interested in (electro)vacuum spacetimes, assuming that the electro-
magnetic field Fab everywhere shares the axial symmetry and time-independence with the
gravitation field, see (6), namely that on the horizon

Dφ2
H
= 0. (16)

Since φ0
H
= 0 in general, see (5), the relevant Maxwell equation (156b) is thus reduced to

δφ1 + 2πNP φ1 − κ(�) φ2
H
= 0,

with φ0,φ1,φ2 being the null tetrad components of the electromagnetic field tensor Fab.
Furthermore, the spin coefficientπNP is time-independent on every (weakly) IH, cf equation

(6). Its values are constrained by the Ricci identity (153g), which on the horizon reads

ð̄πNP
H
= κ(�) λ− π2

NP,

where ð̄ is the spin lowering operator (159) (and ð its spin raising counterpart) [25].
By applying the condition (15) that the horizon is extreme, κ(�) = 0, these two equations

reduce to

ð̄πNP
H
= − π2

NP, δφ1 + 2πNP φ1
H
= 0. (17)

Using the coordinates introduced in the previous section, we obtain explicitly

∂ζ πNP −
∂ζ f
2 f

πNP +

√
2R√
f

π2
NP

H
= 0, ∂ζ φ1 +

2
√

2R√
f

πNP φ1
H
= 0.

These equations have the following simple general solutions [9]

πNP
H
=

√
f
2

1
R (ζ + cπ)

, φ1
H
=

cφ
(ζ + cπ)2

, (18)

where cπ and cφ are complex integration constants.
The physical meaning of the constant cφ can be determined using the Gauss law expressing

the total electric and magnetic charges, see [23], as

Q ≡ QE + i QM =
1

2π

∮
K
φ1 dζ ∧ dφ =

2R2

c2
π − 1

cφ. (19)

Inverting this relation gives us

cφ =
Q

2R2
(c2

π − 1). (20)

It has a well-defined limit for Q → 0. Vanishing of cφ is then equivalent to zero electromag-
netic charge Q, consistent with the vanishing electromagnetic field φ1 in (18). In this case, the
spacetime is a vacuum solution.

Notice that the electromagnetic field component φ1 does not depend on the actual metric
on H, but it depends on the topology encoded in the complex constant cπ , as will be shown
below.

7
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3.2. The horizon geometry

It has been previously shown that extremal isolated horizons EIH with regular axes have the
geometry, which is necessarily isometric to the intrinsic geometry of the Kerr–Newman black
hole [15], see also [12, 16–20] for analogous results using different methods. Here, we general-
ize the result of [15] to a wider class of solutions by admitting topological defects interpreted
as cosmic strings (or struts), which are essential part of many exact solutions of Einstein’s
equations, in particular the C-metric or the Taub–NUT solution [10].

In NP formalism, the spin coefficient πNP is subject to the Ricci identity (153g) which, in
the extremal case, yields the explicit solution (18). Using the time-independence property of
the IHs (8) we notice that in the Ricci identity (153h) the only undetermined NP quantity is
the Ψ2 component of the Weyl tensor, provided μ is a part of the free data. However, Ψ2 has to
satisfy (153q), and then the only unknown quantity in the equation remains the metric. Thus,
using the extremality condition (15), we have explicitly

ðπNP
H
= −πNPπ̄NP −Ψ2, ðπNP − ðπNP

H
= 2Ψ2 + 2a2 − 2δa + 4|φ1|2,

(21)

where the second equation is (complex) algebraic constraint for Ψ2. Combining the imaginary
parts of these equations does not contain any new information, it is always trivially satisfied.
Taking their real parts, eliminating Ψ2, and using equation (17) we arrive at

a2 − δa + 2|φ1|2 H
=

1
2

(πNP − π̄NP)2 + a(πNP + π̄NP).

The coefficient a is defined by (13), while the derivative operator δ is obtained from (14).
Hence, in our choice of the coordinates of the metric (9) and using the previous results (18),
this key equation takes the explicit form

|ζ + cπ|4 f ′′ + (2ζ + cπ + c̄π)|ζ + cπ|2 f ′ − (cπ − c̄π)2 f + 8R2|cφ|2 H
= 0,

which is a specific differential equation for the metric function f (ζ). Its general solution might
be found explicitly. After integration we obtain

f (ζ) =
4|cφ|2R2(1 − ζ2)

(|cπ|2 − 1) |ζ + cπ|2
, (22)

where we have employed the boundary conditions f (±1) = 0 to fix the integration constants.
The constant cφ is uniquely related to the electromagnetic charge Q via (20), while the value
of cπ can be found from our generalized regularity condition (11) as

cπ =
1

4π + δ− + δ+ − 4π|Q|2R−2

×
(
δ− − δ+ ± 2 i

√
(2π + δ−)(2π + δ+) − 4π2|Q|4R−4

)
.

Two solutions are possible due to the symmetry cπ ↔ c̄π in (22). After substituting into (22)
and some algebraic manipulation, we arrive at our main result:

Theorem 1. Let (H, [la]) be an axially symmetric EIH of topology Sδ+
δ− . Then the geometry

of its spherical sections is described by an induced metric qab in the form (9), where the

8
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dimensionless metric function f(ζ) explicitly reads

f (ζ) =
2
π

(2π + δ−)(2π + δ+)(1 − ζ2)
4π(1 + ζ2) + δ−(1 + ζ)2 + δ+(1 − ζ)2 + 4π|Q|2R−2(1 − ζ2)

. (23)

Moreover, f(ζ) is unique and depends on 5 independent parameters, namely δ−, δ+, R and
Q ≡ QE + iQM. It is well-behaved, and any of these parameters (except R when |Q| �= 0) can
be set to zero.

Without charges (QE = 0 = QM), the electromagnetic field vanishes and the unique vacuum
solution on the EIH is

f (ζ) =
2
π

(2π + δ−)(2π + δ+)(1 − ζ2)
4π(1 + ζ2) + δ−(1 + ζ)2 + δ+(1 − ζ)2

. (24)

In addition, without the deficit angles (δ− = 0 = δ+), both poles/axes are regular, and the
solution further simplifies to

f (ζ) = 2
1 − ζ2

1 + ζ2
. (25)

This function corresponds to extremal Kerr black hole [15], see also the review [12].
The geometry of extremal, stationary and axisymmetric isolated horizons (EIHs) is unique

in the sense that the induced canonical metric (9) must have the metric function in the form of
(23). In [15] a similar result was shown for IHs of regular spherical topology. The authors ini-
tially derived their metric function which would admit conical singularities. However, this addi-
tional freedom was removed and the corresponding parameters were not interpreted. In [12],
the conical singularities are implicitly allowed in the generic formula (80)–(82) when c1 �= 0.
The identification is obtained via the relation R2ζ = x − x0 for a suitably chosen constant x0.

Regular IH necessarily coincides with that of the Kerr–Newman black hole, and forms a
three-parameter class of solutions. By relaxing the regularity condition for the metric func-
tion f(ζ), we have now obtained a richer five-parameter class of possible geometries. The two
additional parameters δ− and δ+, introduced in (11) as the deficit angles at ζ = ±1, are usually
interpreted as the cosmic strings (or struts) causing an acceleration of the black hole. It is to be
expected intuitively that in the presence of a NUT-like parameter l, these strings/struts would
be rotating. Such a possible physical interpretation of the solution (23) will be the task of the
following section.

We have already pointed out that IHs exhibit specific behaviour, which uniquely defines
their structure when they become extremal. In the case of the Meissner effect, outer electro-
magnetic field is repulsed from the horizon. This was proven under weaker assumptions, using
the notion of the AIHs [9]. One might expect that imposing the same assumptions the geom-
etry becomes unique, but it is actually not the case. To prove theorem 1, one needs the full
time-independence of the IH expressed by (8). Thus, the Meissner effect is more general and
remains valid even when a certain time-dependence is allowed. From the physical point of
view, it might be understood as an effect emanating from a different physical feature.

For the sake of completeness, we also derive an explicit result for the Ψ2 projection of the
Weyl tensor. The first equation of (21) combined with (17) yields

Ψ2
H
= πNP (2a + πNP − π̄NP) ,

which is a simple algebraic constraint for Ψ2. When we use the previous results (13), (18)
and (20), after some manipulation we arrive at the following expression in the terms of the
integration constant cπ ,

9
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Ψ2
H
= − |Q|2(c2

π − 1)(c̄2
π − 1)(1 + cπζ)

R4(ζ + c̄π)(ζ + cπ)3(1 − cπc̄π)
= f (ζ)

1 + cπζ
R2(1 − ζ2)(ζ + cπ)2

.

Direct substitution for the constant cπ seems to give a somewhat messy formula.

With this choice of the tetrad, it may be also shown that Ψ0
H
= Ψ1

H
= 0 on every non-

expanding horizon. The projection Ψ4 of the Weyl tensor is a part of the free data, and it has
to be prescribed on a null hypersurface intersecting the horizon in the spherical-like section
K, see [23] for details. Finally, the projection Ψ3 is governed by the Ricci identity (153r) and
depends on the free data λ and μ as

Ψ3
H
=

(
ð̄+ πNP

)
μ− (ð+ π̄NP)λ+Φ21.

4. Exact type D black holes

A general class of black hole spacetimes of algebraic type D with electromagnetic field
(which is not null and is double aligned with the gravitation field) is provided by the
Plebański–Demiański solution [26], extending the previous results of Debever [27]. It includes,
as special cases, the well-known solutions such as the Kerr–Newman black hole, the C-metric
or the Taub–NUT solution. Therefore, it appears as the most suitable candidate to compare our
main result (23) with.

Let us recall the modified form of the Plebański–Demiański line element first presented in
[28] (see also [29] or equation (16.5) in the review [10]),

ds2 = − 1
(1 − αpr)2

(
− Q

r2 + ω2 p2
(dτ − ωp2dσ)2 +

r2 + ω2 p2

Q dr2

+
P

r2 + ω2 p2
(ω dτ + r2dσ)2 +

r2 + ω2 p2

P dp2

)
, (26)

where P(p) and Q(r) are polynomials of the fourth order. The metric depends on 9 free param-
eters, namely α,ω, m, n, ε, k, e, g,Λ, from which two can be, in principle, chosen arbitrarily.
Direct physical interpretation can be given only to the electric and magnetic charges e and g,
and the cosmological constant Λ. The parameter α determines the acceleration of the source,
while ω measures the twist of the (double degenerate) principal null directions.

The null tetrad adapted to these principal null directions of the Weyl tensor reads

la =
1 − αpr√

2(r2 + ω2 p2)

(
1√
Q

(
r2∂a

τ − ω∂a
σ

)
−
√
Q ∂a

r

)
,

na =
1 − αpr√

2(r2 + ω2 p2)

(
1√
Q

(
r2∂a

τ − ω∂a
σ

)
+
√
Q ∂a

r

)
,

ma =
1 − αpr√

2(r2 + ω2 p2)

(
− 1√

P
(
ωp2∂a

τ + ∂a
σ

)
+ i

√
P ∂a

p

)
.

(27)

In this tetrad, the only non-vanishing curvature scalars are theΨ2 component of the Weyl tensor,
the Φ11 component of the Ricci tensor, and the Ricci scalar R which has the value R = 4Λ,
for more details see [10]. Explicit expressions for these quantities indicate the presence of
curvature singularity at r = 0 = ωp. The function P must be positive, and P(p) = 0 identifies
the poles (axes of symmetry). The horizons are determined by a condition Q(rH) = 0.

10



Class. Quantum Grav. 38 (2021) 135032 D Matejov and J Podolský

In order to get a line element that explicitly represents the family of black holes, identifies
the physical meaning of the free parameters, and reduces to the well-known solutions by setting
these parameters to zero, the authors of [28] employed a coordinate transformation with two
additional parameters a and l, namely

τ = t − (l + a)2

a
ϕ, p =

l
ω
+

a
ω
ς , σ = −ω

a
ϕ.

The metric (26) is thus transformed into (cf [28, 29] or equation (16.12) in [10])

ds2 = − 1

Ω2

(
−Q
ρ2

(
dt −

[
a(1 − ς2) + 2l (1 − ς)

]
dϕ

)2
+

ρ2

Q dr2

+
ρ2

P̃
dς2 +

P̃
ρ2

[
a dt −

(
r2 + (a + l)2

)
dϕ

]2
)

, (28)

where

Ω = 1 − α

(
l
ω
+

a
ω
ς

)
r, ρ2 = r2 + (l + a ς)2,

P̃(ς) = a0 + a1 ς + a2 ς
2 + a3 ς

3 + a4 ς
4,

Q(r) = b0 + b1 r + b2 r2 + b3 r3 + b4 r4.

The mutually related constants ai, bi are specific combinations of the initial
Plebański–Demiański parameters (for their explicit form see [28, 29] or equations (16.12)
and (16.13) in [10]). The transformed NP tetrad (27) now reads6

la =
Ω√
2Q ρ

([
r2 + (a + l)2

]
∂a

t + a ∂a
ϕ −Q ∂a

r

)
,

na =
Ω√
2Q ρ

([
r2 + (a + l)2

]
∂a

t + a ∂a
ϕ +Q ∂a

r

)
,

ma =
Ω a√

2P ρω

(
(1 − ς) [ a(1 + ς) + 2l ] ∂a

t + ∂a
ϕ + iP ω2

a2
∂a
ς

)
.

(29)

The classic black hole solutions are identified in the large class of spacetimes (28) when the
polynomial P̃ has the particular factorized form

P̃(ς) = (1 − ς2)(1 − a3 ς − a4 ς
2) (30)

with two distinct roots (poles) at ς = ±1. Then the coordinate ϕ might be recognized as a
periodic coordinate with respect to the axes located at ς = ±1.

With this choice, it is also natural to consider

ς = cos θ, θ ∈ [0, π]. (31)

6 Notice that the vector ma involves the original polynomial P, not P̃.
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Introducing P(ς) ≡ P̃(ς)/(1 − ς2) and assuming Λ = 0,7 the metric (28) with (30) then takes
the explicit form (see the line element (14) in [28])

ds2 = − 1

Ω2

(
−Q
ρ2

[
dt −

(
a sin2 θ + 4l sin2 1

2
θ

)
dϕ

]2

+
ρ2

Q dr2

+
ρ2

P
dθ2 +

P
ρ2

sin2 θ
[
adt −

(
r2 + (a + l)2

)
dϕ

]2

)
, (32)

where

Ω = 1 − α

(
l
ω
+

a
ω

cos θ

)
r, ρ2 = r2 + (l + a cos θ)2,

P(θ) = 1 − a3 cos θ − a4 cos2 θ,

Q(r) =

[
(ω2 k + e2 + g2)

(
1 + 2α

l
ω

r

)
− 2m r +

ω2k
a2 − l2

r2

]

×
[

1 + α
a − l
ω

r

] [
1 − α

a + l
ω

r

]
, (33)

with

a3 = 2α
a
ω

m − 4α2 a l
ω2

(ω2k + e2 + g2),

a4 = −α2 a2

ω2
(ω2k + e2 + g2), (34)

and ω2k given by

ω2k
a2 − l2

=
1 + 2α l

ω m − 3α2 l2

ω2 (e2 + g2)

1 + 3α2 l2

ω2 (a2 − l2)
, (35)

so that

ω2k + e2 + g2 =
(a2 − l2 + e2 + g2) + 2α l

ω (a2 − l2) m

1 + 3α2 l2

ω2 (a2 − l2)
. (36)

The metric (32) explicitly depends on six usual physical parameters m, a, l, α, e, g which
characterize mass, Kerr-like rotation, NUT parameter, acceleration, electric and magnetic
charges of the black hole, respectively.

The additional twist parameter ω is free in the sense that the remaining coordinate freedom
can be used to set ω to any convenient value if at least one of the parameters a or l are non-zero
(otherwise ω ≡ 0), see the discussion in [28, 29]. In particular, it is natural to set ω = a when
l = 0. An interesting gauge choice of ω was recently suggested in [31], namely

ω ≡ a2 + l2

a
, (37)

7 Generalization to any value of the cosmological constant Λ was presented in [29, 30].
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so that

a
ω

=
a2

a2 + l2
,

l
ω

=
a l

a2 + l2
. (38)

With this choice, the general metric (32) reduces directly to the familiar forms of either the
Kerr–Newman, the Taub–NUT solution or the C-metric in appropriate cases, without the need
for further transformations, simply by setting the corresponding parameters to zero.

The metric (32) is also convenient for identifying the horizons. They are located at such
values of the radial coordinate r = rH which satisfy the condition

Q(rH) = 0. (39)

Since the function Q(r) given by (33) is factorized, the corresponding roots are immediately
seen. There are two acceleration horizons located at

ra+ =
a2 + l2

α a (a + l)
, ra− = − a2 + l2

α a (a − l)
, (40)

and (in general) two black hole horizons located at the roots of the first square bracket in (33),

ω2k
a2 − l2

r2
H − 2

[
m − α

l
ω

(ω2k + e2 + g2)

]
rH + (ω2k + e2 + g2) = 0. (41)

The degenerate case when the two horizons coincide, identifying the extremal black hole
horizon rH, corresponds to the vanishing discriminant. This explicitly reads

rH =

[
m − α a l

a2 + l2
(ω2k + e2 + g2)

]
a2 − l2

ω2k

⇔
[

m − α a l
a2 + l2

(ω2k + e2 + g2)

]2

=
ω2k

a2 − l2
(ω2k + e2 + g2). (42)

In the absence of accelerationα or for vanishing rotation a or for vanishing NUT parameter
l (i.e., when αal = 0), the quadratic equation (41) simplifies considerably to r2

H − 2m rH +

(a2 − l2 + e2 + g2) = 0, the roots are r± ≡ m ±
√

m2 − a2 + l2 − e2 − g2 , and the extremal
horizon is at

rH = m ⇔ m2 + l2 = a2 + e2 + g2. (43)

4.1. Calculation of the horizon geometry

The first step towards the derivation of the IH structure in the class of black hole spacetimes
(32) is to find a horizon generator laH and introduce the advanced time coordinate v in such a

way that laH
H
= ∂a

v , in agreement with (3).
Moreover, the theory of IHs requires that both v and the spatial coordinates xI, I ∈ {1, 2},

are parallelly propagated along the vector na,

Δv = ΔxI = 0, (44)

cf (4). From the expression (29) we see that the coordinate ς already satisfies this requirement
but ϕ does not. Hence, we perform the transformation of coordinates v = v(t, r), φ̃ = φ̃(ϕ, r).
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The transformation ensuring the conditions (44) may be chosen in the following way8

dv = dt − r2 + (a + l)2

Q(r)
dr, dφ̃ = dϕ− a

Q(r)
dr.

In the new coordinates {v, r, ς , φ̃}, the NP tetrad (29) reads

la =
Ω√
2Q ρ

(
2
[
r2 + (a + l)2

]
∂a
v + 2a ∂a

φ̃
−Q ∂a

r

)
,

na =
Ω
√
Q√

2 ρ
∂a

r ,

ma =
Ω a√

2P ρω

(
(1 − ς) [ a(1 + ς) + 2l ] ∂a

v + ∂a
φ̃
+ iP ω2

a2
∂a
ς

)
,

(45)

and the line element (28) becomes

ds2 =
1

Ω2ρ2

(
(Q− a2P̃)dv2 + 2ρ2dv dr + 2(ς − 1)ρ2 [ a(1 + ς) + 2l ] dr dφ̃

+ 2
[
Q(ς − 1) [ a(1 + ς) + 2l ] + aP̃

[
r2 + (a + l)2

]]
dv dφ̃− ρ4

P̃
dς2

+
[
Q(ς − 1)2[ a(1 + ς) + 2l ]2 − P̃

[
r2 + (a + l)2

]2
]

dφ̃2
)

, (46)

where P̃(ς) takes the form (30) with (34). The horizons are located at r = rH such that
Q(rH) = 0, see (39). The vector la in the transformed NP tetrad (45) thus diverges on any
horizon. To get rid of this divergence, we define a rescaled normal to the horizon as

laH ≡ ∂a
v +

a
r2 + (a + l)2

∂a
φ̃
− Q

2
[
r2 + (a + l)2

] ∂a
r

H
= ∂a

v +
a

r2
H + (a + l)2

∂a
φ̃
.

Using (46), one can easily check that laH is indeed null on the horizon. The corresponding null
vector na

H is obtained simply by the scaling9

na
H =

Ω2

ρ2

[
r2 + (a + l)2

]
∂a

r .

However, the vector laH does not yet have the required form. To achieve laH
H
= ∂a

v , we introduce
another transformation of coordinates φ̄ = φ̄(v, φ̃), which reads

dφ̄ = dφ̃− a
r2

H + (a + l)2
dv.

Notice that the value of the radial coordinate is here fixed at rH. The normal laH is thus trans-

formed into laH
H
= ∂a

v , as required, while na
H remains the same, and ma is transformed into ma

H
(which is not necessary to explicitly write here).

8 In general, one gets from (44) the relation ∂rv = −nt/nr∂tv, and we choose ∂tv = 1. The coordinate φ̃ is fixed
analogously.
9 The vector ma is fixed, so if l̃ a = c la then ña = c−1na to keep the normalization.
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Let us also observe that the line element on a section of the horizon r = rH for v = const.
reads

ds2
H = − ρ2

Ω2P̃
dς2 −

[
r2

H + (a + l)2
]2 P̃

Ω2ρ2
dφ̄2. (47)

The range of the angular coordinate φ̄ is not obvious from our construction. We will thus
generally assume that φ̄ ∈ [0, 2πC), where we have introduced a ‘conicity’ parameter C. Its
value will be determined later.

4.2. Evaluation of the surface gravity

The surface gravity κ(�) is defined as the ‘acceleration’ of the null normal of the horizon,

laH∇a(lH)b
H
= κ(�)(lH)b. (48)

The covariant form of the normal laH
H
= ∂a

v on the horizon reads

(lH)a
H
=

ρ2

Ω2[r2
H + (a + l)2]

dra.

Substitution into the equation (48) yields

κ(�)(lH)rδrb
H
= lvH∇v(lH)b

H
= ∂v(lH)b − Γc

vb(lH)c
H
= − Γr

vb(lH)r

⇒ κ(�)
H
= − Γr

vr, Γr
vb

H
= 0, ∀ b �= r.

For the metric (46), the surface gravity turns out to be

κ(�) = − Q′(rH)
2
[
r2

H + (a + l)2
] ,

where the prime denotes the derivative with respect to the argument r. The second condition

Γr
vb

H
= 0, ∀b �= r is also satisfied.

Extremal horizons are characterized by vanishing of their surface gravity. Hence, for the
extremal case we have the condition

Q′(rH) = 0. (49)

In view of the factorized form (33) of the metric function Q(r), it can be seen that the accel-
eration horizons at ra+ and ra− (which are present when α �= 0) cannot be extremal because
their surface gravity is non-zero.10 The only possibility to obtain an extremal horizon is when
the two black-hole horizons coincide. It can easily be shown that the extremality condition
(49) is fully consistent with the explicit solution (42) for the position rH of the two coinciding
black-hole horizons.

10 The hypothetical case ra+ = ra− requires a = 0, α �= 0, l �= 0, which is the accelerating NUT black hole. As shown
recently in [32], such spacetimes are algebraically general and thus do not belong to the investigated family of type D
solutions. Even in such a case, there are no extreme black hole horizons.
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4.3. Expansion and twist of the null normal

The null normal to an IH is required to be expansion-free and twist-free. Both these properties
are encoded in the spin coefficient ρ defined as (see, e.g., [33])

ρ ≡ ma δla ≡ ma mb ∇b la.

Namely, the expansion Θ1 is its real part, while the twist ω is its imaginary part,

Θ1 = 2 Re {ρ}, ω =
√

2 Im {ρ}.

Using the definition of ρ above, we calculate the expansion and twist of the vector laH on the
horizon, yielding

ρ
H
= 0.

The vector field laH is thus indeed non-expanding and has zero twist on the horizon (so it has a
Kundt-like property).

4.4. Geometry of the horizon sections

The line element on a spherical-like section of the horizonK for r = rH and v = const. is given
by (47). In order to compare this metric with (9), we first rescale the angular coordinate φ̄ as

φ̄ = Cφ,

so it acquires its values in the required range φ ∈ [0, 2π). The line element is then

ds2
H = − ρ2

Ω2P̃
dς2 − C2

[
r2

H + (a + l)2
]2 P̃

Ω2ρ2
dφ2, (50)

where C is the additional free conicity parameter. However, it still does not have the canonical
form (9). The next step towards the desired form is to calculate the horizon area A, which is
required for determining the radius R via A = 4πR2.

The invariant volume element corresponding to (50) reads

vol(K) = C
r2

H + (a + l)2

Ω2 dς dφ,

and thus the area is

A≡
∮
K

vol(K) =
∫ 1

−1

∫ 2π

0
C

r2
H + (a + l)2

Ω2 dς dφ

=
4πC

[
r2

H + (a + l)2
][

1 − α rH

(
a
ω + l

ω

)] [
1 + α rH

(
a
ω − l

ω

)] . (51)

By comparing (50) with (9), we infer that the azimuthal coordinates on the horizon are
related by a coordinate transformation ζ = ζ(ς) such that

dζ =
4πC

A
r2

H + (a + l)2

Ω2 dς where Ω(ς) = 1 − α rH

(
l
ω
+

a
ω
ς

)
. (52)
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Moreover, the azimuthal coordinate ζ adapted to an axially symmetric IH has to satisfy the
condition ∮

K
ζ vol(K) = 0,

which effectively fixes the integration constant in (52). Recall that ζ is constructed as a solution
to a certain differential equation, see [24]. To obtain an unambiguous solution, one has to
employ the condition above. The range of ζ is then fixed by definition of R2 to ζ ∈ [−1, 1], cf
equation (9) and discussion therein.

After integration we obtain

ζ(ς) =
ς − α rH

(
a
ω + l

ω ς
)

1 − α rH

(
a
ω ς + l

ω

) ⇒ ς(ζ) =
ζ + α rH

(
a
ω − l

ω ζ
)

1 + α rH

(
a
ω ζ − l

ω

) . (53)

Both coordinates are in the required range ς , ζ ∈ [−1, 1]. Moreover, ζ(ς = ±1) = ±1.
To have a well-defined coordinate, ζ is required to be an increasing function of ς , see [24].

Therefore, the derivative has to be positive,

ζ ′(ς) > 0 ⇒ 1 − α rH

(
a
ω
+

l
ω

)
> 0, (54)

which puts a restriction on the black hole parameters. For a given Kerr parameter a and the NUT
parameter l, the acceleration α cannot be too large. In fact, since the acceleration horizon ra+

is defined by the condition α ra+( a
ω
+ l

ω
) = 1, see (33), the constraint (54) can be rewritten

simply as rH < ra+, which is naturally always satisfied.
Let us also remark that the acceleration horizons (40) are related as

ra+ =
l − a
l + a

ra−.

In the case when a = 0 these horizons coincide, while in the l = 0 case they differ by a sign,
ra+ = −ra−. Depending on the particular values of a and l, their signs and the sign of ra−,
mutual positions of the acceleration horizons may be ra+ � ra−.

After the transformation of coordinates (53), the line element (50) is recast into the canonical
form (9), and we thus arrive at our another key result:

Theorem 2. The specific metric function fD(ζ), which describes the geometry of the horizon
in a complete family of type D black holes (32), is given by

f D(ζ) =
4πC2

A

[
r2

H + (a + l)2
]2 P̃(ζ)

Ω2(ζ) ρ2(ζ)
, (55)

where the functions P̃,Ω, ρ, introduced in (28) and (30), have to be regarded as functions of
the new variable ζ via (53), for example ρ(ζ) ≡ ρ (ς(ζ)). From equation (30) it follows that
fD(±1) = 0.

A direct substitution and evaluation leads, in general, to a complicated expression, which
will be discussed in the following sections.
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4.5. Deficit angles and conicity

Recall that for the metric in the form (9), one obtains the limit

lim
ζ→±1

O(ζ)
�(ζ)

= ∓π f ′(±1), (56)

where O(ζ) is the circumference of a curve defined to have the same value of the coordinate
ζ, while �(ζ) is the distance from the north or south pole, respectively, to a specific point on
this curve.11 Regular axes are clearly defined by the condition f ′(±1) = ∓2. If this is violated,
conical singularities are present, see expression (11).

Straightforward calculation using (56) for the metric function (55) for a generic type D
black hole reveals non-zero deficit angles around both poles. With the notation introduced in
(11), these deficit angles at the two poles on the horizon rH are explicitly given as

δ+ = 2π (C (1 − a3 − a4) − 1) ,

δ− = 2π

(
C (1 + a3 − a4)

r2
H + (a + l)2

r2
H + (a − l)2

− 1

)
,

(57)

where the constants a3, a4 are given by (34) and C is the free conicity parameter.
Moreover, it is now also clear that for a unique choice of the conicity parameter C we can

always achieve a vanishing deficit angle at one of the poles. For example,

δ+ = 0 ⇔ C = (1 − a3 − a4)−1, (58)

in which case (generically) δ− �= 0.
It is also possible to achieve δ− = 0 but, in this case, one has to be more careful. When

l �= 0, the metric (28) is not regular at ς = −1 (since gϕϕ �= 0). It is necessary to regularize this
axis/pole, and it is first achieved be changing the time coordinate appropriately. In particular,
by performing the transformation t → t̄ such that

t = t̄ + 4lϕ, (59)

the metric (28) becomes

ds2 = − 1

Ω2

(
−Q
ρ2

(
d̄t −

[
a(1 − ς2) − 2l (1 + ς)

]
dϕ

)2
+

ρ2

Q dr2.

+
ρ2

P̃
dς2 +

P̃
ρ2

[
a d̄t −

(
r2 + (a − l)2

)
dϕ

]2
)

, (60)

which admits a regular axis at ς = −1.
Repeating now the same arguments and calculations as before, we obtain expressions

analogous to (55) and (52), namely

f̄ D(ζ) =
4πC2

A

[
r2

H + (a − l)2
]2 P̃(ζ)

Ω2(ζ) ρ2(ζ)
, (61)

11 Since we deal with axially symmetric spacetimes, there is no difference in the proper length of ‘radius’ � according
to different choice of a point on the curve. But we assume that the difference between ρ and the geodesic ‘radius’,
which should have been used, is of a higher order and disappears in the limit.
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and

dζ =
4πC

A
r2

H + (a − l)2

Ω2 dς. (62)

The corresponding deficit angles at the two poles on the horizon rH are now given by

δ̄+ = 2π

(
C (1 − a3 − a4)

r2
H + (a − l)2

r2
H + (a + l)2

− 1

)
,

δ̄− = 2π (C (1 + a3 − a4) − 1) ,

(63)

so that

δ̄− = 0 ⇔ C = (1 + a3 − a4)−1, (64)

in which case (generically) δ̄+ �= 0.
These results fully agree with those obtained in [28, 29] for the regularity of the poles/axes

at θ = 0 and θ = π, respectively, using the metric form (32).

5. Comparison of the results on EIH with the family of type D black holes

For a general axially symmetric EIH we have derived in section 3 the explicit formula (23) for
the metric function f(ζ) in the canonical coordinates (ζ,φ). We will denote it here by fEIH(ζ).
It reads

f EIH(ζ) =
2
π

(2π + δ−)(2π + δ+)(1 − ζ2)
4π(1 + ζ2) + δ−(1 + ζ)2 + δ+(1 − ζ)2 + q2(1 − ζ2)

, (65)

where δ± are the deficit angles on the horizon poles at ζ = ±1. Recall that, due to (53), these
correspond to ς = ±1 in the Plebański–Demiański metric (28), or equivalently to the poles at
θ = 0 and π, see (31). Here we have also introduced a shorthand notation for the dimensionless
combination of charges

q2 ≡ (4π)2

A
(Q2

E + Q2
M), (66)

where QE and QM are the electric and magnetic charges, respectively. We also prefer to use the
area A = 4πR2 instead of the ‘Euclidean’ radius R.

Our aim now is to compare this general result with the family of extremal black holes,
which are exact spacetimes of type D, namely with the metric function fD(ζ) given in (55). We
wish to clarify the relation between the geometrical (or topological) features and the physical
parameters.

The metric function fEIH given by (65) depends on 5 independent parameters, namely
(A, QE, QM, δ−, δ+), while the family of algebraic type D black holes (32) is characterized by
6 physical parameters (m, e, g, a, l,α). However, one of these parameters is fixed by the con-
dition of extremality of the horizon. Thus, both generic solutions contain the same number of
independent parameters. At least at first glance, they should match.

First, the deficit angles δ+ and δ−, being defined geometrically, are the same both in the
metric function (65) and in the type D metric (32), explicitly determined by the physical param-
eters via (57) or (63). Recall also that there is an additional free conicity parameter C, which
can be used to prescribe either the deficit angle δ+ or the deficit angle δ− to any value, in
particular δ+ = 0 or δ− = 0, see expressions (58) or (64).
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The mass parameter m is related to the value of the radial coordinate rH which defines the
horizon, via the condition (39), leading to (42) and (43). On the other hand, the area of the
horizon A depends on rH, see (51), so the mass parameter m is related to the area A. Moreover,
we naturally assume that both the electric and magnetic charges QE, QM are related to their
counterparts e, g (via the relations yet to be determined).

Generally, it is natural to make the following assumptions and restrictions on these
parameters, namely:

(a) The horizon area A and the mass parameter m are non-negative (A � 0, m � 0).
(b) The charges QE, QM are determined by the Gauss law.
(c) The deficit angles are in the range δ± ∈ (−2π,∞). This constraint follows from (11).

Physically, one might consider a black hole metric (32) with an increasing rotation param-
eter a, until extremality of the horizon is achieved. In such a scenario, the horizon extremality
is associated with the rotation. However, non-rotating charged black holes might be extremal
as well. In this case, the electric (magnetic) charge takes the role of the extremal parameter.

The situation is different with EIHs, since its five parameters can be chosen arbitrarily. The
extremality is already assumed in our result (65), and therefore it cannot be associated with
just the electric charge.

In order to systematically analyze specific mutual relations between the two forms of the
extremal black hole horizons, we will investigate three distinct subcases, namely:

(a) Non-twisting black holes: a = 0, l = 0,
(b) Non-rotating black holes: a = 0, l �= 0,
(c) General rotating black holes: a �= 0 (with subcases l = 0, α = 0, and e = 0 = g).

Each of these important cases will now be investigated in the following sections.

5.1. Non-twisting black holes: a = 0, l = 0

By setting both the rotation parameter a and the NUT parameter l to zero, the null congruences
corresponding to the (double degenerate) principal null directions (27) become non-twisting,
see [10, 28]. In such a case, the metric (32) considerably simplifies (setting l = 0 at first, then
fixing the twist parameter ω = a, and finally setting a = 0) to

ds2 = − 1

Ω2

(
−Q

r2
dt2 +

r2

Q dr2 + r2

(
dθ2

P
+ P sin2 θ dϕ2

))
, (67)

where

Ω(r, θ) = 1 − α r cos θ,

P(θ) = (1 − αm cos θ)2,

Q(r) = (r − m)2(1 − α r)(1 + α r). (68)

In addition to two acceleration horizons at ra± = ± 1
α

, there is obviously the extremal black
hole horizon located at

rH = m, where m2 = e2 + g2, (69)

see (43). Its area (51) reads

A =
4πC m2

1 − α2m2
. (70)
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The explicit metric (67) and (68) describes extremely charged black holes which uniformly
accelerate. It is a generalization of extremal Reissner–Nordström spacetime to admit acceler-
ation α, and also the special (extremal) case e2 = m2 of the charged C-metric (i.e. the acceler-
ation extension of the metric (9.14), and the special extremal subcase of the metric (14.41) in
[10]).

Since the constants defined by (34) are now a3 = 2αm and a4 = −α2m2, the deficit angles
(57) at the two poles on the extremal horizon are simply

δ+ = 2πC(1 − αm)2 − 2π,

δ− = 2πC(1 + αm)2 − 2π.
(71)

By choosing the conicity parameter C = (1 − αm)−2 we can always achieve δ+ = 0, while by
C = (1 + αm)−2 we obtain δ− = 0. However, it is physically more important to evaluate the
difference of these two deficit angles at opposite poles of the extremal horizon,

Δ ≡ δ− − δ+ = 8πC αm. (72)

It exactly agrees with the interpretation of δ± as parameters characterizing cosmic strings (or
struts) with a tension (or compression) force resulting in the acceleration α to one side. If
α = 0, there is an equilibrium between the tensions excerted by the two opposite strings and
the black hole is static. Introduction of a Newtonian force

FN ≡ δ− − δ+
8πC

= αm, (73)

makes this relation manifest. For α = 0, C = 1 we recover from (67) the usual extremal
Reissner–Nordström spacetime without the conical singularities.

Now we employ the general expression (55) valid for all type D black holes at their extremal
horizon. For the particular metric (67) and (68) we obtain, using the relations ρ2 = r2, Ω =
1 − αrς and P̃ = (1 − ς2)(1 − a3 ς − a4 ς

2) = (1 − ς2)(1 − αm ς)2, evaluated at r = rH = m,
that

f D(ς) =
4πC2 m2

A
(1 − ς2).

Substituting from (53) and (70), which simplifies to ς = (ζ + α m)/(1 + αmζ), we get

f D(ζ) = C(1 − α2m2)2 1 − ζ2

(1 + αm ζ)2
. (74)

This have to be compared with the metric function (65) for the general axisymmetric EIH,
expressed in the canonical coordinates. Using (71) we obtain the relations

(2π + δ+)(2π + δ−) = 4π2C2 (1 − α2m2)2,

4π(1 + ζ2) + δ−(1 + ζ)2 + δ+(1 − ζ)2 + q2(1 − ζ2)

= 8πC

[[
1
2

(1 + α2m2) +
1

8πC
q2

]
+ 2αm ζ +

[
1
2

(1 + α2m2) − 1
8πC

q2

]
ζ2

]
,

so that

f EIH(ζ) =
C (1 − α2m2)2 (1 − ζ2)[

1
2 (1 + α2m2) + 1

8πC q2
]
+ 2αm ζ +

[
1
2 (1 + α2m2) − 1

8πC q2
]
ζ2

. (75)
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It is obvious that f EIH = f D for all values of ζ if, and only if, 1
2 (1 + α2m2) = 1 − 1

8πC q2, or
for the unique choice of the dimensionless charge parameter

q2 = 4πC (1 − α2m2). (76)

We achieved a perfect agreement between the metric function f EIH(ζ) for the EIH and f D(ζ)
given by (74) for non-twisting type D black holes.

Moreover, by substituting (66) with (70) into (76) we obtain

Q2
E + Q2

M = C2 m2 = C2 (e2 + g2). (77)

This is an explicit relation between the total electric and magnetic charges QE and QM, deter-
mined by the Gauss law (19), and the charge parameters e and g in the black hole metric
(67)–(69), which is the special case of type D family (32). For C = 1, these parameters match,
QE = e and QM = g.

Finally, notice also that the condition (76) together with (71) gives the constant cπ real.
Consequently, the function πNP is real, as well as Ψ2. In general, an angular momentum of
an IH is determined from the imaginary part of Ψ2 [24]. It is zero in this studied case, so the
angular momentum vanishes, in agreement with our assumption of non-twisting black holes
a = 0, l = 0.

5.2. Non-rotating black holes: a = 0

For a = 0, we should obtain a non-rotating and accelerating charged black hole with the NUT
parameter l. However, it was explicitly shown in [28] that, in this setting, the acceleration
parameter α is a pure gauge and can be eliminated by a coordinate transformation.

Interestingly, accelerating NUT black holes exist [34], but they are not included in the
Plebański–Demiański family of type D metrics (26). In a recent comprehensive study [32]
it was demonstrated that these spacetimes are algebraically general (of type I), and thus do not
belong to the investigated family of type D black holes. In any case, such accelerating NUT
spacetimes do not admit extreme black hole horizons.

Hence, without loss of generality, we can set α = 0, and the only non-zero parameters
remain the mass m, the NUT parameter l, the charges e, g and the free conicity constant C.
One of these parameters is fixed by the extremality condition.

For a = 0 = α we obtain a3 = 0 = a4 and ω2k = −l2, so that the general type D black hole
metric (32) reduces to charged NUT black hole

ds2 =
Q
ρ2

(
dt − 4l sin2θ

2
dϕ

)2

− ρ2

Q dr2 − ρ2 (dθ2 + sin2 θ dϕ2), (78)

where ρ2 = r2 + l2 and Q(r) = (e2 + g2 − l2) − 2m r + r2.
It follows from (51) that the area of the corresponding horizon is

A = 4πC (r2
H + l2), (79)

so that the value rH of radial coordinate on the horizon is r2
H = 1

4πC A − l2. Substitution into
(55) (with P̃ = 1 − ς2, Ω = 1, ρ2 = r2

H + l2 and ς = ζ) reveals that

f D(ζ) = C (1 − ζ2), (80)

which (irrespective of l �= 0) agrees with the expression (74) forα = 0. This is the metric func-
tion of a quasi-regular sphere (regular provided C = 1), see equation (10). The NUT parameter,
as well as the charges, thus preserve the spherical symmetry of the horizon.
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Now we employ the extremality condition (49). In the special case of vanishing acceleration,
it leads to the relations (43), and for a = 0 we obtain

rH = m, where m2 + l2 = e2 + g2. (81)

Using (79), we can thus write

A = 4πC (m2 + l2) = 4πC (e2 + g2). (82)

Moreover, the metric function Q factorizes as

Q(r) = (r − m)2, (83)

in the same way as for the extremal Reissner–Nordström spacetime, simplifying (78) to the
metric of extremely charged NUT black holes

ds2 =
(r − m)2

r2 + l2

(
dt − 4l sin2 θ

2
dϕ

)2

− r2 + l2

(r − m)2
dr2 − (r2 + l2) (dθ2 + sin2 θ dϕ2). (84)

The deficit angles on the extremal horizon are given by expressions (57).12 As before, a3 =
0 = a4 and they reduce to

δ+ = δ− = 2π (C − 1). (85)

For C = 1, both the poles are regular (and since Δ ≡ δ− − δ+ = 0, the black hole cannot
accelerate).

In order to compare (80) with the canonical metric function f EIH(ζ) for EIHs, we substitute
(85) into (65), which yields

f EIH(ζ) =
8πC2 (1 − ζ2)

4πC (1 + ζ2) + q2 (1 − ζ2)
. (86)

This function implicitly assumes extremality, which relates the area and the charges of the type
D black holes via (82). It remains to find the unique value of q2 such that f EIH becomes the
metric function f D of the form (80). Indeed, such q2 exists, namely

q2 = 4πC ⇔ Q2
E + Q2

M = C2 (e2 + g2), (87)

in full agreement with the previous relations (76) and (77).
We have thus completely identified the metric function f EIH of EIHs with the corresponding

expression f D for extremely charged NUT black holes (84) of algebraic type D, which are the
only such non-rotating solutions (that is for a = 0). Moreover, we have clarified explicit rela-
tions between the physical parameters (m, l, e, g, C), constrained by (81), and the dimensionless
(geometric) parameters (δ+, δ−, q2) which enter the EIH metric function (65). Interestingly, in
view of (85) and (87), they are fully determined just by the single conicity parameter C.

It is also interesting to notice that the area A of the extremal horizon, given by (82), is
proportional to the ‘effective squared mass’ m2 + l2, which is equal to the ‘effective squared
charge’ e2 + g2. Considering just the induced metric of the extremal horizon, described by the
function f EIH ≡ f D, we cannot distinguish between the separate contribution from the mass
parameter m and the NUT parameter l (or, equivalently, the electric charge e and the magnetic
charge g).

12 Or by (63), yielding δ̄+ = δ̄− = 2π (C − 1) in the alternative metric form (60).
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5.3. Rotating black holes: a �= 0

Finally, let us investigate the general case of type D black holes of mass m with rotation rep-
resented by the parameter a. This is a wide family of spacetimes, which contains the Kerr
solution and its generalizations to include electromagnetic charges e, g, the NUT parameter l,
and also the acceleration α. In such a case, it is most natural to relate the extremality of the
black hole to the rotation parameter a, keeping the remaining physical parameters free.

For these generic black holes, the horizon extremality condition is (42). It is convenient to
employ the gauge (37) of the twist parameter ω which implies (38), i.e.,

a
ω

=
a2

a2 + l2
,

l
ω

=
a l

a2 + l2
. (88)

Consequently, expressions (35) and (36) can be written as

ω2 k
a2 − l2

=
1 + 2Am − 3A2(e2 + g2)

1 + 3A2(a2 − l2)
, (89)

ω2k + e2 + g2 =
(a2 − l2 + e2 + g2) + 2Am (a2 − l2)

1 + 3A2(a2 − l2)
, (90)

where we have introduced a unique combination of the three physical parameters

A ≡ α a l
a2 + l2

. (91)

Then, the generic extremality condition reads

[
m −A (ω2k + e2 + g2)

]2
=

ω2k
a2 − l2

(ω2k + e2 + g2), (92)

and the corresponding (degenerate) extreme horizon is located at

rH =
[

m −A (ω2k + e2 + g2)
] a2 − l2

ω2k
, (93)

or equivalently

rH =
(ω2k + e2 + g2)

m −A (ω2k + e2 + g2)
. (94)

By substituting from (89) and (90) we obtain explicit expressions for the horizon

rH =
m −A (a2 − l2 + e2 + g2) +A2 m (a2 − l2)

1 + 2Am − 3A2(e2 + g2)
, (95)

or equivalently

rH =
(a2 − l2 + e2 + g2) + 2Am (a2 − l2)

m −A (a2 − l2 + e2 + g2) +A2 m (a2 − l2)
, (96)

so that

r2
H =

(a2 − l2 + e2 + g2) + 2Am (a2 − l2)
1 + 2Am − 3A2(e2 + g2)

. (97)
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For A = 0, which occurs whenever α = 0 or a = 0 or l = 0, these expressions simplify
considerably to

rH = m, where m2 = a2 − l2 + e2 + g2, (98)

in full agreement with the previously investigated cases a = 0, l = 0, see (69) and (81).

5.3.1. Accelerating Kerr–Newman black holes: l = 0. In this section, we assume a vanishing
NUT parameter l, so that A given by (91) is zero. In such a case,

rH = m, where m2 = a2 + e2 + g2. (99)

see (98) and also (43). Possible values of the extremal rotation parameter are thus

a = ±
√

m2 − (e2 + g2), (100)

where the two signs describe two opposite orientations of the black hole rotation. Without loss
of generality we may choose the positive one.

Such a family of spacetimes represents accelerating extremal Kerr–Newman black holes.
Using (88)–(90) with A = 0, implying a3 = 2αm and a4 = −α2m2, its metric (32) reads

ds2 = − 1

Ω2

(
−Q
ρ2

[
dt − a sin2 θ dϕ

]2
+

ρ2

Q dr2

+
ρ2

P
dθ2 +

P
ρ2

sin2 θ
[
adt − (r2 + a2)dϕ

]2
)

, (101)

where

Ω(r, θ) = 1 − α r cos θ,

ρ2(r, θ) = r2 + a2 cos2θ,

P(θ) = (1 − αm cos θ)2,

Q(r) = (r − m)2(1 − α r)(1 + α r).

(102)

For a = 0 we recover equations (67) and (68).
The corresponding metric function f D(ζ) given by (55) describes the geometry of the

extremal horizon located at rH = m with the area

A = 4πC
r2

H + a2

1 − α2m2
= 4πC

2m2 − (e2 + g2)
(1 + αm) (1 − αm)

. (103)

In terms of the coordinate ς , the metric function of the horizon reads

f D(ς) = C (1 − α2m2)(m2 + a2)
1 − ς2

m2 + a2 ς2
.

The transformation (53) is ς = (ζ + αm)/(1 + αmζ), so that

f D(ζ) = C (1 − α2m2)2 (m2 + a2)(1 − ζ2)
m2(1 + αm ζ)2 + a2 (ζ + αm)2

, (104)
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which is equivalent to

f D(ζ) =
C (1 − α2m2)2 (2m2 − e2 − g2)(1 − ζ2)

m2(1 + α2 m2)(1 + ζ2) + 4αm3 ζ − (e2 + g2)(ζ + αm)2
.

Now, the deficit angles (57) at the two poles of the horizon are

δ+ = 2πC(1 − αm)2 − 2π,

δ− = 2πC(1 + αm)2 − 2π,
(105)

which are the same relations as in the non-twisting case (71). Therefore, the metric function
(65) for the EIH in the canonical coordinates must have the same form as (75), i.e.

f EIH(ζ) =
C (1 − α2m2)2 (1 − ζ2)[

1
2 (1 + α2m2) + 1

8πC q2
]
+ 2αm ζ +

[
1
2 (1 + α2m2) − 1

8πC q2
]
ζ2

. (106)

We achieve an agreement between the results (104) and (106) by a unique choice of the
dimensionless charge parameter q as

q2 = 4πC (1 − α2m2)
r2

H − a2

r2
H + a2

= 4πC (1 − α2m2)
e2 + g2

2m2 − e2 − g2
. (107)

Interestingly, it is formally possible to set a = 0, recovering the previous relation (76).
Again, we have achieved a perfect agreement between the metric function f EIH(ζ) for the

EIH and f D(ζ) given by (104) for type D black holes without the NUT parameter l, that is for
the whole family of accelerating Kerr–Newman black holes.

Finally, by substituting (66) with (103) into (107) we obtain the same simple expression as
in the non-rotating and non-twisting cases

Q2
E + Q2

M = C2 (m2 − a2) = C2 (e2 + g2), (108)

relating the total (physically defined) electric and magnetic charges QE and QM and the
charge parameters e and g in the metric (67)–(69). Clearly, QE = e and QM = g for C = 1,
in which case the acceleration is caused by the two cosmic strings with the deficit angles
δ+ = 2παm(αm − 2), δ− = 2παm(αm + 2). For α = 0, there is no acceleration and we
recover the stationary extreme Kerr–Newman black hole.

5.3.2. Kerr–Newman–NUT black holes: α = 0. For vanishing acceleration α = 0, which
implies A = 0, a3 = 0 = a4, Ω = 1, P = 1, the position of the extremal horizon and the
corresponding extremality condition have the form (98), namely

rH = m, where m2 = a2 − l2 + e2 + g2. (109)

Its area (51) is

A = 4πC [r2
H + (a + l)2]. (110)
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In this case, the generic black hole metric (32) simplifies to

ds2 =
Q
ρ2

[
dt −

(
a sin2 θ + 4l sin2 θ

2

)
dϕ

]2

− ρ2

Q dr2

− ρ2dθ2 − sin2 θ

ρ2

[
adt −

(
r2 + (a + l)2

)
dϕ

]2
, (111)

where

ρ2(r, θ) = r2 + (l + a cos θ)2,

Q(r) = (r − m)2.
(112)

This is a family of stationary (non-accelerating) extremal Kerr–Newman–NUT black holes. In
a correspondence with the previous results, the metric of extremely charged NUT black holes
(84) is obtained by setting a = 0.

The deficit angles (57) at the two poles of the horizon are

δ+ = 2π (C − 1) , δ− = 2π

(
C

r2
H + (a + l)2

r2
H + (a − l)2

− 1

)
, (113)

where the values of the parameters are constrained by (109). The first pole is regular for C = 1.
The deficit angles of the alternative metric form (60) are

δ̄+ = 2π

(
C

r2
H + (a − l)2

r2
H + (a + l)2

− 1

)
, δ̄− = 2π (C − 1) , (114)

and thus the second pole is regular for C = 1.
From (55), using the relation ς = ζ which follows from (53), we now obtain

f D(ζ) = C
[
r2

H + (a + l)2
] 1 − ζ2

r2
H + (l + a ζ)2

. (115)

This should correspond to the canonical metric function f EIH(ζ) of the EIHs (65), whose
denominator can be rewritten as

4π(1 + ζ2) + δ−(1 + ζ)2 + δ+(1 − ζ)2 + q2(1 − ζ2)

= [(δ+ + δ− + 4π) + q2] + 2(δ− − δ+) ζ + [(δ+ + δ− + 4π) − q2] ζ2.

(116)

Substituting from (113), which implies

(δ+ + δ− + 4π)
[
r2

H + (a − l)2
]
= 4πC

[
r2

H + (a2 + l2)
]

,

(δ− − δ+)
[
r2

H + (a − l)2
]
= 8πC al,

we thus obtain

f EIH(ζ) = C
[
r2

H + (a + l)2
] 1 − ζ2

c0 + 2al ζ + c2 ζ2
, (117)
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where

c0 =
1
2

[
r2

H + (a2 + l2)
]
+

q2

8πC

[
r2

H + (a − l)2
]

,

c2 =
1
2

[
r2

H + (a2 + l2)
]
− q2

8πC

[
r2

H + (a − l)2
]
.

Clearly, for the unique value of the dimensionless charge parameter

q2 = 4πC
r2

H − a2 + l2

r2
H + (a − l)2

, (118)

we get c0 = r2
H + l2 and c2 = a2, so that c0 + 2al ζ + c2 ζ

2 = r2
H + (l + a ζ)2. The metric func-

tion (117) thus fully agrees with f D(ζ) given by (115) of all non-accelerating type D black
holes.

Notice that for a = 0 the function f EIH ≡ f D formally reduces to C(1 − ζ2), which is
equation (80), while (118) simplifies to q2 = 4πC, which is equation (87). Similarly, for l = 0
we obtain

f EIH ≡ f D = C
(r2

H + a2)(1 − ζ2)
r2

H + a2 ζ2
, q2 = 4πC

r2
H − a2

r2
H + a2

,

which are the expressions (104) and (107), respectively, when α = 0.
Moreover, from the relations (66) and (118), together with (110) and the extremality

condition (109), it follows that

Q2
E + Q2

M = C2 r2
H + (a + l)2

r2
H + (a − l)2

(r2
H − a2 + l2)

≡ C2 m2 + (a + l)2

m2 + (a − l)2
(e2 + g2). (119)

With this specific rescaling, the parameters e and g give the genuine physical electric and
magnetic charges QE and QM, respectively.

Interestingly, whenever either a = 0 or l = 0, this relation simplifies to

Q2
E + Q2

M = C2 (e2 + g2), (120)

recovering (77), (87) and (108).
Of course, extremal rotating vacuum black holes without the electromagnetic field are

obtained simply by setting e = 0 = g.

5.3.3. General black holes of algebraic type D with extremal horizon. A generic case contains
6 physical parameters, namely m, e, g, a, l, α, plus the conicity parameter C, which are con-
strained by the extremality condition (92) of the horizon at rH given by the formula (95). At first
glance, it seems too complicated to prove analytically the equivalence of the functions f D(ζ)
and f EIH(ζ) given by the expressions (55) and (65), respectively. We will now demonstrate that
even this most general case is explicitly solvable.

The key point is to realize that the constants a3 and a4 defined by (34)—which directly
determine the metric function P̃(ζ) via (30) and also the deficit angles (57)—are mutually
related due to the extremality condition (92) as

a2
3 = −4 a4. (121)
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Indeed,

a3 =
2αa2

a2 + l2
[

m − 2A (ω2 k + e2 + g2)
]

,

a4 = − α2a4

(a2 + l2)2
(ω2k + e2 + g2), (122)

so that

a2
3 + 4 a4 =

4α2a4

(a2 + l2)2

[
[m − 2A (ω2k + e2 + g2)]2 − (ω2k + e2 + g2)

]

≡ 4α2a4

(a2 + l2)2

[
[m −A (ω2k + e2 + g2)]2

− (ω2k + e2 + g2)[1 + 2Am − 3A2(ω2k + e2 + g2)]
]
.

Applying the extremality condition (92), we obtain

a2
3 + 4 a4 =

4α2a4

(a2 + l2)2
(ω2k + e2 + g2)

[
ω2k

a2 − l2
− (1 + 2Am) + 3A2(ω2k + e2 + g2)

]
,

(123)

and after substituting from (89) and (90) we get a2
3 + 4 a4 = 0.

This unique relation has important consequences in simplifying the key expressions. First,
the metric function P̃(ζ) given by (30) factorizes as

P̃(ς) = (1 − ς2)(1 − 1
2 a3 ς)2. (124)

Moreover,

(1 − a3 − a4) = (1 − 1
2 a3)2,

(1 + a3 − a4) = (1 + 1
2 a3)2,

(1 − a3 − a4)(1 + a3 − a4) = (1 + a4)2,

(125)

so that the explicit expressions (57) for the deficit angles also simplify. In particular,

(2π + δ−)(2π + δ+) d− = 4π2C2 (1 + a4)2 d+,

(δ+ + δ− + 4π) d− = 2πC
[
(1 + 1

2 a3)2 d+ + (1 − 1
2 a3)2 d−

]
,

(δ− − δ+) d− = 2πC
[
(1 + 1

2 a3)2 d+ − (1 − 1
2 a3)2 d−

]
,

(126)

where

d+ ≡ r2
H + (a + l)2, d− ≡ r2

H + (a − l)2. (127)
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These expressions directly determine the function f EIH(ζ) given by (65). Rewriting its
denominator as (116), with (126) we obtain

f EIH(ζ) = C d+ (1 + a4)2 1 − ζ2

c0 + c1 ζ + c2 ζ2
, (128)

in which

c0 ≡ 1
4

[
(1 + 1

2 a3)2 d+ + (1 − 1
2 a3)2 d−

]
+

d−
8πC

q2,

c1 ≡ 1
2

[
(1 + 1

2 a3)2 d+ − (1 − 1
2 a3)2 d−

]
,

c2 ≡ 1
4

[
(1 + 1

2 a3)2 d+ + (1 − 1
2 a3)2 d−

]
− d−

8πC
q2.

(129)

This should now be compared with the function f D(ζ) representing the metric on the
extremal horizon of the most general black hole of algebraic type D, as given by the equation
(55). Due to the nice factorization (124), this function takes the form

f D(ς) =
4πC2

A
d2
+

(1 − 1
2 a3 ς)2(1 − ς2)

Ω2(ς) ρ2(ς)
, (130)

where, using (88), the horizon area (51) is

A =
4πC d+ (a2 + l2)2

(a2 + l2 − α a l rH)2 − α2a4 r2
H

, (131)

and

Ω(ς) =
(a2 + l2 − α a l rH) − α a2 rH ς

a2 + l2
, ρ2(ς) = r2

H + (l + a ς)2. (132)

These functions have to be expressed in terms of the variable ζ via (53), that is

ς =
(a2 + l2 − α a l rH) ζ + α a2 rH

(a2 + l2 − α a l rH) + α a2 rH ζ
, (133)

which implies

Ω(ζ) =
1

(a2 + l2)
(a2 + l2 − α a l rH)2 − α2a4 r2

H

(a2 + l2 − α a l rH) + α a2 rH ζ
,

ρ2(ζ) =
C0 + C1 ζ + C2 ζ

2[
(a2 + l2 − α a l rH) + α a2 rH ζ

]2 ,

(1 − ς2) =
(a2 + l2 − α a l rH)2 − α2a4 r2

H[
(a2 + l2 − α a l rH) + α a2 rH ζ

]2 (1 − ζ2),

(1 − 1
2 a3 ς) =

[
(a2 + l2 − α a l rH) − 1

2 a3 α a2 rH
]
+
[
α a2 rH − 1

2 a3 (a2 + l2 − α a l rH)
]
ζ

(a2 + l2 − α a l rH) + α a2 rH ζ
,

(134)
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where

C0 ≡ (r2
H + a2 + l2)(a2 + l2 − α a l rH)2 + α2a4 r2

H(a2 + l2)

− a2(a2 + l2)2 + 4α a3l rH(a2 + l2 − α a l rH),

C1 ≡ 2a l
[
(a2 + l2 − α a l rH)2 + α2a4 r2

H

]
+ 2α a2rH(r2

H + a2 + l2)(a2 + l2 − α a l rH),

C2 ≡ a2(a2 + l2)2 + α2a4 r4
H. (135)

Moreover, the constants a3 and a4, related via (121), have to take the explicit form

a3 =
2α a2 rH

a2 + l2 − α a l rH
, a4 = − α2 a4 r2

H

(a2 + l2 − α a l rH)2
, (136)

so that the function (1 − 1
2 a3 ς) simplifies to

(1 − 1
2 a3 ς) = (1+a4)(a2+l2−α a l rH)

(a2+l2−α a l rH)+α a2 rH ζ
. (137)

Substituting (131), (134) and (137) into (130), we finally obtain

f D(ζ) = C d+ (1 + a4)2 (a2 + l2 − α a l rH)2 1 − ζ2

C0 + C1 ζ + C2 ζ2
, (138)

which is clearly of the same form as the metric function (128).
It only remains to compare the coefficients ci given by (129) with Ci given by (135). By

substituting (136), (127) into (129), a direct evaluation indeed leads to

Ci = ci (a2 + l2 − α a l rH)2, for i = 0, 1, 2, (139)

provided q2 has a unique value

q2 ≡ 4πC
d−

C0 − C2

(a2 + l2 − α a l rH)2
.

This completes the proof of the equivalence of f D(ζ) and f EIH(ζ) in a fully generic case.
Surprisingly, using (135), the expression for q2 simplifies considerably to

q2 = 4πC
r2

H − a2 + l2

r2
H + (a − l)2

[
1 −

(
α a2 rH

a2 + l2 − α a l rH

)2
]
. (140)

Notice that this formula reduces to all previous special cases, namely equation (76) for the non-
twisting black holes (at first by setting l = 0 and then a = 0, in which case rH = m), equation
(87) for the non-rotating black holes (a = 0), equation (107) for accelerating Kerr–Newman
black holes (l = 0), and equation (118) for Kerr–Newman–NUT black holes (α = 0).

Moreover, using (66) and (131) it follows that the genuine physical electric and magnetic
charges QE and QM are given by

Q2
E + Q2

M = C2 r2
H + (a + l)2

r2
H + (a − l)2

r2
H − a2 + l2

(1 −A rH)2
. (141)
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where, according to (91), the accelerationα of the extremal black hole is only involved through
the special combination of the three parameters, namely

A =
α a l

a2 + l2
.

5.3.4. Accelerating Kerr–NUT black holes: e = 0 = g. As an important special subcase of
the general family of extremal type D black holes we may finally investigate the uncharged
case, i.e., Kerr–NUT black holes which uniformly accelerate, characterized just by the rota-
tion parameter a, the NUT parameter l and the acceleration α. As shown above, these three
parameters are combined into the unique quantity A. For extremal black holes of this type,
they also fully determine the horizon position rH and the black hole mass m via (95), (96), or
(97).

Using (140) and (141) we immediately observe that there are

no charges ⇔ q2 = 0 ⇔ Q2
E + Q2

M = 0 ⇔ r2
H = a2 − l2. (142)

Interestingly, it is equivalent to the condition e = 0 = g. Indeed, substituting a2 − l2 = r2
H into

the expression (97) we obtain a condition (e2 + g2)(1 + 3A2r2
H) = 0, which necessarily implies

e = 0 = g. Thus we have proved that

no charges ⇔ r2
H = a2 − l2 ⇔ e2 + g2 = 0. (143)

Since q2 = 0 implies C0 = C2, the corresponding metric function takes an explicit form

f D(ζ) ≡ f EIH(ζ) = 2Ca(a + l) (1 + a4)2 (a2 + l2 − α a l rH)2 1 − ζ2

C1 ζ + C2 (1 + ζ2)
. (144)

6. Summary of the results and concluding remarks

The seminal concept by Ashtekar and Krishnan of IHs, reviewed in section 2, provides a prolific
mathematical framework for investigation of black holes that are in equilibrium with their
neighbourhood. The area of such horizon does not change in time, because there is no flux
of matter through it. In order to admit a certain degree of time-dependence in the initial data
and allow more general presence of matter, the concept of WIHs was introduced. Recently, it
has been further extended by Gürlebeck and Scholtz [8] to AIHs, which admit more general
topologies of the horizon sections, such as axially symmetric compact spatial manifold with
deficit angles at poles. In physical terms, such horizon can be pierced by cosmic strings or
struts. This idea was the starting point in our investigation, although we needed a stronger
notion of isolation than the AIH.

In their previous work [15], Lewandowski and Pawlowski considered EIHs, for which they
proved uniqueness and local isometry with the Kerr–Newman solution under a strong natural
assumption of complete regularity, which excludes the topological defects on the horizon char-
acterized by deficit angles δ+ and δ−. Study of near-horizon geometries of extremal black holes
in [12, 16, 17] provided equivalent results with a possible non-zero cosmological constant. In
this paper, our aim was to extend these results by relaxing the regularity in the above sense,
and investigate in detail its physical consequences. As we have already pointed out, topological
defects of this kind are inherent feature of many exact spacetimes.

Using the NP formalism, we systematically studied the complete class of axially symmetric
EIHs with zero cosmological constant. They are defined geometrically by vanishing surface
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gravity everywhere on the horizon. In canonical coordinates ζ,φ, introduced in equation (9),
the metric of spatial sections of the axisymmetric EIH reads

−R2

(
dζ2

f (ζ)
+ f (ζ) dφ2

)
.

It involves a single dimensionless function f (ζ) and the radius R defined by the horizon area
A ≡ 4πR2.

In section 3, we completely integrated the corresponding constraint equations following
from the NP formalism (see appendix A). Our main result is summarized in theorem 1. In
particular, the metric function f (ζ) must necessarily have the form (23), see also (65), (66),
which can be rewritten as

f EIH(ζ) =
2
π

(2π + δ−)(2π + δ+)(1 − ζ2)
[(δ+ + δ− + 4π) + q2] + 2(δ− − δ+) ζ + [(δ+ + δ− + 4π) − q2] ζ2

.

The deficit angles δ± are located at the horizon poles corresponding to ζ = ±1, and the
dimensionless charge parameter is

q2 ≡ (4π)2

A
(Q2

E + Q2
M),

where QE and QM are the total electric and magnetic charges, while A is the horizon area.
The function f EIH thus depends on 5 independent parameters (A, QE, QM, δ−, δ+). Without the
strings or struts (δ− = 0 = δ+) both poles are regular, and our solution simplifies to

f EIH(ζ) =
8π (1 − ζ2)

(4π + q2) + (4π − q2) ζ2
,

recovering the result of [15] for uniqueness of the extremal Kerr–Newman black hole under
the assumption of regular spherical topology.

Our second main aim was to compare this locally defined general result with the horizon
geometries of a large family of extremal black holes, which are exact spacetimes of alge-
braic type D. As summarized in section 4, they belong to the Plebański–Demiański family
of electrovacuum solutions (without cosmological constant) such that the Maxwell field is
double aligned with the gravitational field. We employed the convenient parameterization (32)
of this family, found by Griffiths and Podolský [29], which apart from the conicity C (see
section 4.5) includes 6 usual physical parameters (m, e, g, a, l,α) representing the mass, elec-
tric and magnetic charges, Kerr-like rotation, NUT parameter, and acceleration of the black
hole, respectively. These parameters are here constrained by the horizon extremality condition
Q(rH) = 0 = Q′(rH). The horizon is located at a specific value of the radial coordinate

rH =
m −A (a2 − l2 + e2 + g2) +A2 m (a2 − l2)

1 + 2Am − 3A2(e2 + g2)
,

where A is a unique combination of the parameters α, a, l, namely

A ≡ α a l
a2 + l2

,

see (42) and (91)–(97). Whenever α = 0 or a = 0 or l = 0, it simplifies to rH = m with m2 =
a2 − l2 + e2 + g2. Only 5 physical parameters of the extremal black hole are thus independent.
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We also derived that the horizon area of these extremal black holes has the value

A =
4πC [r2

H + (a + l)2] (a2 + l2)2

(a2 + l2 − α a l rH)2 − α2a4 r2
H

.

Contrarily, the area of the two acceleration horizons (40) located at ra+ and ra− is infinite.
Theorem 2 summarizes the main result of section 4, that is our derivation of a specific metric

function f D(ζ), which describes the geometry of the horizon in the complete family of type D
black holes (32). It is given by equation (55),

f D(ζ) =
4πC2

A

[
r2

H + (a + l)2
]2 P̃(ζ)

Ω2(ζ) ρ2(ζ)
,

where P̃,Ω, ρ, introduced in (28) and (30), have to be expressed in terms of ζ via (53).
In the last section 5, we were able to show that the function f D(ζ) has the same form as

f EIH(ζ) for every combination of the physical parameters. Moreover, we found specific rela-
tions between the geometrical and physical parameters of the class of type D black holes, see
section 5.3.3. In particular, we derived an explicit formula for the dimensionless geometrical
quantity q2.

The key observation, involved in the comparison of the metric functions f D and f EIH, was
the mutual relation between the constants a3 and a4, which are unique combinations of the
physical parameters. In the case of extremal black holes, they have to satisfy the relation a2

3 =
−4 a4, see (121). This implies factorization of the functions P̃,Ω, ρ and further simplifications
of the coefficients, see (124)–(127). Putting it together, this yields the metric function in the
form

f D(ζ) = C [r2
H + (a + l)2](a2 + l2 − α a l rH)2 (1 + a4)2 (1 − ζ2)

C0 + C1 ζ + C2 ζ2
,

where a4 is given by (136) and the constants Ci by (135). This function is equivalent to f EIH(ζ),
expressed via the physical parameters (128), provided we choose the dimensionless charge
parameter q2 as

q2 = 4πC
r2

H − a2 + l2

r2
H + (a − l)2

[
1 −

(
α a2 rH

a2 + l2 − α a l rH

)2
]

,

see (140). The reason why we had to find such q2 is that the physical parameters of f D have
well-understood meaning only in particular special cases, as we have demonstrated in the case
of electric and magnetic charges. With this choice, the total electric and magnetic charges of
such extremal black holes are

Q2
E + Q2

M = C2 r2
H + (a + l)2

r2
H + (a − l)2

r2
H − a2 + l2

(1 −A rH)2
.

It seems that only in the case of non-rotating black holes (a = 0) or black holes without the
NUT parameter (l = 0) this formula reduces to a simple relation

Q2
E + Q2

M = C2 (r2
H − a2 + l2) = C2 (e2 + g2),

and the genuine electromagnetic charges QE, QM are then proportional to the electromagnetic
parameters in the type D metric just via the conicity C,

QE = Ce, QM = Cg.
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We thus clarified how different physical parameters influence the geometry of extremal
black hole horizon. From our discussion of the individual subcases it also follows that different
extremal black holes might have the same horizon structure represented by f EIH. For instance,
extremal Reissner–Nordström black hole has the horizon geometry isometric to the one of
extremal charged NUT solution, see section 5.2. Hence, we cannot distinguish between the
spacetimes just from the knowledge of the horizon geometry.

The general expressions for extremal black holes considerably simplify in various interest-
ing subclasses, such as for non-twisting black holes investigated in section 5.1 (these are accel-
erating extremely charged Reissner–Nordström black holes, i.e. the C-metric with e2 = m2),
extremely charged NUT black holes (section 5.2), extremal accelerating Kerr–Newman black
holes (section 5.3.1), non-accelerating Kerr–Newman–NUT black holes (section 5.3.2), or
accelerating Kerr–NUT black holes (section 5.3.4).

As a natural extension of the present work, a non-zero value of cosmological constant Λ
could be considered. Previously, analogous solutions of this kind were obtained, see the review
[12] and the recent article [35]. These, however, did not analyze the most general solution with
clearly identified parameters and their physical interpretation. Another interesting question is
whether the axial symmetry of the EIH could be relaxed. It was already shown that extremality
implies axial symmetry in asymptotically flat spacetimes [20, 36, 37].

Finally, we would also like to point the reader to recently published works [38–41] in which
a different (complementary) approach to regularity was adopted.
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Appendix A. Newman–Penrose formalism

For the convenience of the reader, we offer here a brief summary of definitions and equations
of the NP formalism.

A.1. Gravitational field

Directional derivatives:

D = �a ∇a, Δ = na ∇a, δ = ma ∇a, δ̄ = m̄a ∇a. (145)

Decomposition of the covariant derivative:

∇a = ga
b ∇b = �a Δ+ na D − ma δ̄ − m̄a δ. (146)

Spin coefficients:

κ = maD�a, τ = maΔ�a,

σ = maδ�a, ρ = maδ̄�a,
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πNP = naDm̄a, ν = naΔm̄a,

λ = naδ̄m̄a, μ = naδm̄a,

ε =
1
2

(naD�a − m̄aDma) , β =
1
2

(naδ�a − m̄aδma) ,

γ =
1
2

(naΔ�a − m̄aΔma) , α =
1
2

(
naδ̄�a − m̄aδ̄ma

)
, (147a)

The operators (145) acting on a scalar function obey this commutation relations:

Dδ − δD = (π̄NP − ᾱ− β)D − κΔ+ (ρ̄− ε̄+ ε)δ + σδ̄, (148a)

ΔD − DΔ = (γ + γ̄)D + (ε+ ε̄)Δ− (τ̄ + πNP)δ − (τ + π̄NP)δ̄, (148b)

Δδ − δΔ = ν̄D + (ᾱ+ β − τ )Δ+ (γ − γ̄ − μ)δ − λ̄δ̄, (148c)

δδ̄ − δ̄δ = (μ− μ̄)D + (ρ− ρ̄)Δ+ (ᾱ− β)δ̄ − (α− β̄)δ. (148d)

Transport equations:

D�a = (ε+ ε̄) �a − κ̄ma − κ m̄a, (149a)

Δ�a = (γ + γ̄) �a − τ̄ ma − τ m̄a, (149b)

δ�a = (ᾱ+ β) �a − ρ̄ma − σ m̄a, (149c)

Dna = − (ε+ ε̄) na + πNP ma + π̄NP m̄a, (149d)

Δna = − (γ + γ̄) na + ν ma + ν̄ m̄a, (149e)

δna = −(ᾱ+ β)na + μma + λ̄ m̄a, (149f)

Dma = π̄NP �
a − κ na + (ε− ε̄) ma, (149g)

Δma = ν̄ �a − τ na + (γ − γ̄) ma, (149h)

δma = λ̄ �a − σ na + (β − ᾱ) ma, (149i)

δ̄ma = μ̄ �a − ρ na +
(
α− β̄

)
ma. (149j)

The Riemann tensor can be decomposed into the Weyl tensor Cabcd, the trace-free part of the
Ricci tensor, and the scalar Λ related to the scalar curvature R by

Λ =
1

24
R. (150)

The five (complex) tetrad components of the Weyl spinor are

Ψ0 = Cabcd lamblcmd, (151a)

Ψ1 = Cabcd lanblcmd, (151b)

Ψ2 = Cabcd lambm̄cnd, (151c)

Ψ3 = Cabcd lanbm̄cnd, (151d)

Ψ4 = Cabcd m̄anbm̄cnd. (151e)
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The traceless Ricci tensor (equal to Rab when Λ = 0) has the following components, from
which are 3 real and 3 are complex:

Φ00 = −1
2

Rab lalb, (152a)

Φ01 = −1
2

Rab lamb, (152b)

Φ02 = −1
2

Rab mamb, (152c)

Φ11 = −1
4

Rab

(
lanb + mam̄b

)
, (152d)

Φ12 = −1
2

Rab namb, (152e)

Φ22 = −1
2

Rab nanb. (152f)

The three remaining components can be obtained via the symmetry Φi j = Φ̄ ji.
The Ricci identities read:

Dρ− δ̄κ = ρ2 + (ε+ ε̄) ρ− κ
(
3α+ β̄ − πNP

)
− τκ̄+ σσ̄ +Φ00, (153a)

Dσ − δκ = (ρ+ ρ̄+ 3ε− ε̄)σ − (τ − π̄NP + ᾱ+ 3β)κ+Ψ0, (153b)

Dτ −Δκ = ρ(τ + π̄NP) + σ(τ̄ + πNP) + (ε− ε̄)τ − (3γ + γ̄)κ+Ψ1 +Φ01, (153c)

Dα− δ̄ε = (ρ+ ε̄− 2ε)α+ βσ̄ − β̄ε− κλ− κ̄γ + (ε+ ρ)πNP +Φ10, (153d)

Dβ − δε = (α+ πNP)σ + (ρ̄− ε̄)β − (μ+ γ)κ− (ᾱ− π̄NP)ε+Ψ1, (153e)

Dγ −Δε = (τ + π̄NP)α+ (τ̄ + πNP)β − (ε+ ε̄)γ − (γ + γ̄)ε

+ τπNP − νκ+Ψ2 − Λ + Φ11, (153f)

Dλ− δ̄πNP = (ρ− 3ε+ ε̄)λ+ σ̄μ+ (πNP + α− β̄)πNP − νκ̄+Φ20, (153g)

Dμ− δπNP = (ρ̄− ε− ε̄)μ+ σλ + (π̄NP − ᾱ+ β)πNP − νκ+Ψ2 + 2Λ, (153h)

Dν −ΔπNP = (πNP + τ̄ )μ+ (π̄NP + τ )λ+ (γ − γ̄)πNP − (3ε+ ε̄)ν +Ψ3 +Φ21, (153i)

Δλ− δ̄ν = −(μ+ μ̄+ 3γ − γ̄)λ+ (3α+ β̄ + πNP − τ̄ )ν −Ψ4, (153j)

Δμ− δν = −(μ+ γ + γ̄)μ− λλ̄+ ν̄πNP + (ᾱ+ 3β − τ )ν − Φ22, (153k)

Δβ − δγ = (ᾱ+ β − τ )γ − μτ + σν + εν̄ + (γ − γ̄ − μ)β − αλ̄− Φ12, (153l)

Δσ − δτ = −(μ− 3γ + γ̄)σ − λ̄ρ− (τ + β − ᾱ)τ + κν̄ − Φ02, (153m)

Δρ− δ̄τ = (γ + γ̄ − μ̄)ρ− σλ+ (β̄ − α− τ̄ )τ + νκ−Ψ2 − 2Λ, (153n)

Δα− δ̄γ = (ρ+ ε)ν − (τ + β)λ+ (γ̄ − μ̄)α+ (β̄ − τ̄ )γ −Ψ3, (153o)

δρ− δ̄σ = (ᾱ+ β)ρ− (3α− β̄)σ + (ρ− ρ̄)τ + (μ− μ̄)κ−Ψ1 +Φ01, (153p)

δα− δ̄β = μρ− λσ + αᾱ+ ββ̄ − 2αβ + (ρ− ρ̄)γ + (μ− μ̄)ε

−Ψ2 + Λ+ Φ11, (153q)

δλ− δ̄μ = (ρ− ρ̄)ν + (μ− μ̄)πNP + (α+ β̄)μ+ (ᾱ− 3β)λ− Ψ3 +Φ21. (153r)
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The Bianchi identities in the NP formalism are:

DΨ1 − δ̄Ψ0 − DΦ01 + δΦ00 = (πNP − 4α)Ψ0 + 2(2ρ+ ε)Ψ1 − 3κΨ2

+ 2κΦ11 − (π̄NP − 2ᾱ− 2β)Φ00

− 2σΦ10 − 2(ρ̄+ ε)Φ01 + κ̄Φ02, (154a)

DΨ2 − δ̄Ψ1 +ΔΦ00 − δ̄Φ01 + 2DΛ = −λΨ0 + 2(πNP − α)Ψ1 + 3ρΨ2

− 2κΨ3 + 2ρΦ11 + σ̄Φ02

+ (2γ + 2γ̄ − μ̄)Φ00

− 2(α+ τ̄ )Φ01 − 2τΦ10, (154b)

DΨ3 − δ̄Ψ2 − DΦ21 + δΦ20 − 2δ̄Λ = −2λΨ1 + 3πNPΨ2 + 2(ρ− ε)Ψ3

− κΨ4 + 2μΦ10 − 2πNPΦ11

− (2β + π̄NP − 2ᾱ)Φ20 − 2(ρ̄− ε)Φ21 + κ̄Φ22,

(154c)

DΨ4 − δ̄Ψ3 +ΔΦ20 − δ̄Φ21 = −3λΨ2 + 2(α+ 2πNP)Ψ3 + (ρ− 4ε)Ψ4

+ 2νΦ10 − 2λΦ11 − (2γ − 2γ̄ + μ̄)Φ20

− 2(τ̄ − α)Φ21 + σ̄Φ22, (154d)

ΔΨ0 − δΨ1 + DΦ02 − δΦ01 = (4γ − μ)Ψ0 − 2(2τ + β)Ψ1 + 3σΨ2

+ (ρ̄+ 2ε− 2ε̄)Φ02 + 2σΦ11 − 2κΦ12

− λ̄Φ00 + 2(π̄NP − β)Φ01, (154e)

ΔΨ1 − δΨ2 −ΔΦ01 + δ̄Φ02 − 2δΛ = νΨ0 + 2(γ − μ)Ψ1 − 3τΨ2 + 2σΨ3

− ν̄Φ00 + 2(μ̄− γ)Φ01

+ (2α+ τ̄ − 2β̄)Φ02 + 2τΦ11 − 2ρΦ12, (154f)

ΔΨ2 − δΨ3 + DΦ22 − δΦ21 + 2ΔΛ = 2νΨ1 − 3μΨ2 + 2(β − τ )Ψ3 + σΨ4

− 2μΦ11 − λ̄Φ20 + 2πNPΦ12

+ 2(β + π̄NP)Φ21 + (ρ̄− 2ε− 2ε̄)Φ22, (154g)

ΔΨ3 − δΨ4 −ΔΦ21 + δ̄Φ22 = 3νΨ2 − 2(γ + 2μ)Ψ3 + (4β − τ )Ψ4 − 2νΦ11

− ν̄Φ20 + 2λΦ12 + 2(γ + μ̄)Φ21 + (τ̄ − 2β̄ − 2α)Φ22,

(154h)

DΦ11 − δΦ10 +ΔΦ00 − δ̄Φ01 + 3DΛ = (2γ + 2γ̄ − μ− μ̄)Φ00 + (πNP − 2α− 2τ̄ )Φ01

+ (π̄NP − 2ᾱ− 2τ )Φ10 + 2(ρ+ ρ̄)Φ11

+ σ̄Φ02 + σΦ20 − κ̄Φ12 − κΦ21, (154i)

DΦ12 − δΦ11 +ΔΦ01 − δ̄Φ02 + 3δΛ = (2γ − μ− 2μ̄)Φ01 + ν̄Φ00 − λ̄Φ10

+ 2(π̄NP − τ )Φ11 + (πNP + 2β̄ − 2α− τ̄ )Φ02

+ (2ρ+ ρ̄− 2ε̄)Φ12 + σΦ21 − κΦ22, (154j)
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DΦ22 − δΦ21 +ΔΦ11 − δ̄Φ12 + 3ΔΛ = νΦ01 + ν̄Φ10 − 2(μ+ μ̄)Φ11 − λΦ02 − λ̄Φ20

+ (2πNP − τ̄ + 2β̄)Φ12 + (2β − τ + 2π̄NP)Φ21

+ (ρ+ ρ̄− 2ε− 2ε̄)Φ22. (154k)

A.2. Electromagnetic field

Electromagnetic field is described by the antisymmetric electromagnetic tensor Fab. Its
projections onto a NP tetrad are

φ0 ≡ Fab lamb, (155a)

φ1 ≡ 1
2

Fab

(
lanb + mam̄b

)
, (155b)

φ2 ≡ Fab m̄anb, (155c)

The source free Maxwell equations in the NP formalism read

Dφ1 − δ̄φ0 = (πNP − 2α)φ0 + 2ρφ1 − κφ2, (156a)

Dφ2 − δ̄φ1 = −λφ0 + 2πNPφ1 + (ρ− 2ε)φ2, (156b)

Δφ0 − δφ1 = (2γ − μ)φ0 − 2τφ1 + σφ2, (156c)

Δφ1 − δφ2 = νφ0 − 2μφ1 + (2β − τ )φ2. (156d)

The Ricci tensor in electrovacuum spacetimes is given by

Φmn = 2φm φ̄n, Λ = 0, (157)

due to the Einstein equations in the case of vanishing cosmological constant.

A.3. Spin transformation

The spin transformation is defined as rotation in the plane spanned by ma, ma,

ma �→ ei χ ma, m̄a �→ e−i χ m̄a, (158)

where χ is arbitrary real function. The scalar quantity η is said to have the spin weight s
provided

η′ = ei s χ η.

under transformation (158). The NP operators δ and δ̄ contain vectors ma, ma and do not
preserve the spin weight. If η has spin weight s, we obtain

δ′η′ = ei(s+1)χ (δη + i s η δχ) .

The prefactor suggests that δη could have the weight s + 1, but there is an inhomogeneous
term proportional to δχ. However, this term can be eliminated defining a new operator ð by

ðη ≡ δη + s(ᾱ− β) η = δη + s ā η, (159)
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Table 1. Spin weights of the Newman–Penrose scalars.

−2 −1 0 1 2

λ ν ρ κ σ
πNP μ τ
φ2 φ1 φ0

Ψ4 Ψ3 Ψ2 Ψ1 Ψ0

where

a ≡ α− β̄, (160)

which transforms homogeneously:

ðη �→ ei(s+1)χ
ðη.

So if η has the spin weight s thenðη has the spin weight s + 1. Therefore,ð acts as a spin-raising
operator. Analogously we define

ð̄η = δ̄η − s(α− β̄) η = δη − s a η. (161)

The spin weights of the NP quantities are summarized in table 1.

A.4. Lorentz transformations

Let us recall the transformation properties of the NP spin coefficients under a particular Lorentz
transformation of the null tetrad, namely the null rotation about la:

l′a = la, m′a = ma + c la, n′a = na + c ma + c ma + cc la,

for other transformations see [22] and appendix B in [21]. They transform as

κ′ = κ,

ε′ = ε+ cκ,

σ′ = σ + cκ,

ρ′ = ρ+ cκ,

τ ′ = τ + cσ + cρ+ ccκ,

α′ = cαε+ cρ+ c2κ,

β′ = β + cσ + cε+ ccκ,

π′
NP = πNP + 2cε+ c2κ+ Dc,

γ ′ = γ + cα+ c(τ + β) + cc(ρ+ ε) + c2σ + c2cκ,

λ′ = λ+ cπNP + 2cα+ c2(ρ+ 2ε) + c3κ+ cDc + δc,

μ′ = μ+ 2cβ + cπNP + c2σ + 2ccε+ c2cκ+ cDc + δc,

ν ′ = ν + c(2γ + μ) + cλ+ c2(τ + 2β) + cc(πNP + 2α)

+ c3σ + c2c(ρ+ 2ε) + c3cκ+Δc + cδc + cδc + ccDc.

(162)

For transformations of the Weyl, Riemann and Ricci tensor components see [21, 22].
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[19] Hájíček P 1974 Three remarks on axisymmetric stationary horizons Commun. Math. Phys. 36 305
[20] Amsel A J, Horowitz G T, Marolf D and Roberts M M 2010 Uniqueness of extremal Kerr and

Kerr–Newman black holes Phys. Rev. D 81 024033
[21] Stewart J 1993 Advanced General Relativity (Cambridge: Cambridge University Press)
[22] Stephani H, Kramer D, MacCallum M, Hoenselaers C and Herlt E 2003 Exact Solutions of Einstein’s

Field Equations (Cambridge: Cambridge University Press)
[23] Krishnan B 2012 The spacetime in the neighbourhood of a general isolated black hole Class.

Quantum Grav. 29 205006
[24] Ashtekar A, Engle J, Pawlowski T and Broeck C V D 2004 Multipole moments of isolated horizons

Class. Quantum Grav. 21 2549
[25] Goldberg J N, MacFarlane A J, Newman E T, Rohrlich F and Sudarshan E C G 1967 Spin-s spherical

Harmonics and ð J. Math. Phys. 8 2155

41

https://orcid.org/0000-0001-6997-2973
https://orcid.org/0000-0001-6997-2973
https://orcid.org/0000-0003-2998-6830
https://orcid.org/0000-0003-2998-6830
https://doi.org/10.1103/physrevlett.11.237
https://doi.org/10.1103/physrevlett.11.237
https://doi.org/10.1063/1.1704351
https://doi.org/10.1063/1.1704351
https://doi.org/10.1038/nature13031
https://doi.org/10.1038/nature13031
https://doi.org/10.1093/mnras/179.3.433
https://doi.org/10.1093/mnras/179.3.433
https://doi.org/10.1103/physrevlett.114.151102
https://doi.org/10.1103/physrevlett.114.151102
https://doi.org/10.3847/0004-637x/818/2/121
https://doi.org/10.3847/0004-637x/818/2/121
https://doi.org/10.12942/lrr-2004-10
https://doi.org/10.12942/lrr-2004-10
https://doi.org/10.1103/physrevd.95.064010
https://doi.org/10.1103/physrevd.95.064010
https://doi.org/10.1103/physrevd.97.084042
https://doi.org/10.1103/physrevd.97.084042
https://doi.org/10.1007/bf01645742
https://doi.org/10.1007/bf01645742
https://doi.org/10.12942/lrr-2013-8
https://doi.org/10.12942/lrr-2013-8
https://doi.org/10.1088/0264-9381/30/12/125007
https://doi.org/10.1088/0264-9381/30/12/125007
https://doi.org/10.1088/0264-9381/30/20/205016
https://doi.org/10.1088/0264-9381/30/20/205016
https://doi.org/10.1088/0264-9381/20/4/303
https://doi.org/10.1088/0264-9381/20/4/303
https://doi.org/10.1063/1.3190480
https://doi.org/10.1063/1.3190480
https://doi.org/10.1088/0264-9381/26/5/055019
https://doi.org/10.1088/0264-9381/26/5/055019
https://doi.org/10.1088/0264-9381/30/9/095017
https://doi.org/10.1088/0264-9381/30/9/095017
https://doi.org/10.1007/bf01646202
https://doi.org/10.1007/bf01646202
https://doi.org/10.1103/physrevd.81.024033
https://doi.org/10.1103/physrevd.81.024033
https://doi.org/10.1088/0264-9381/29/20/205006
https://doi.org/10.1088/0264-9381/29/20/205006
https://doi.org/10.1088/0264-9381/21/11/003
https://doi.org/10.1088/0264-9381/21/11/003
https://doi.org/10.1063/1.1705135
https://doi.org/10.1063/1.1705135


Class. Quantum Grav. 38 (2021) 135032 D Matejov and J Podolský

[26] Plebanski J F and Demianski M 1976 Rotating, charged, and uniformly accelerating mass in general
relativity Ann. Phys. 98 98

[27] Debever R 1971 On type D expanding solutions of Einstein–Maxwell equations Bull. Soc. Math.
Belg. 23 360

[28] Griffiths J B and Podolský J 2005 Accelerating and rotating black holes Class. Quantum Grav. 22
3467

[29] Griffiths J B and Podolský J 2006 A new look at the Plebański–Demiański family of solutions Int.
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