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We study static spherically symmetric solutions to the vacuum field equations of quadratic gravity in the
presence of a cosmological constant A. Motivated by the trace no-hair theorem, we assume the Ricci scalar
to be constant throughout a spacetime. Furthermore, we employ the conformal-to-Kundt metric ansatz
that is valid for all static spherically symmetric spacetimes and leads to a considerable simplification of the
field equations. We arrive at a set of two ordinary differential equations and study its solutions using the
Frobenius-like approach of (infinite) power series expansions. While the indicial equations considerably
restrict the set of possible leading powers, careful analysis of higher-order terms is necessary to establish
the existence of the corresponding classes of solutions. We thus obtain various non-Einstein generalizations
of the Schwarzschild, (anti-)de Sitter [or (A)dS for short], Nariai, and Plebanski-Hacyan spacetimes.
Interestingly, some classes of solutions allow for an arbitrary value of A, while other classes admit only
discrete values of A. For most of these classes, we give recurrent formulas for all series coefficients.
We determine which classes contain the Schwarzschild-(A)dS black hole as a special case and briefly
discuss the physical interpretation of the spacetimes. In the discussion of physical properties, we naturally
focus on the generalization of the Schwarzschild-(A)dS black hole, namely the Schwarzschild-Bach-(A)dS
black hole, which possesses one additional Bach parameter. We also study its basic thermodynamical
properties and observable effects on test particles caused by the presence of the Bach tensor. This work is a

considerable extension of our Letter [Phys. Rev. Lett. 121, 231104 (2018)].
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I. INTRODUCTION

Despite great successes of Einstein’s theory of gravity in
giving predictions of various new physical phenomena, such
as black holes and gravitational waves, one should keep in
mind that so far this theory has been mostly tested in the
weak-field regime and that tests of strong gravity have
started to appear only recently [1-3]. Furthermore, even in
the weak-field regime, there are attempts to incorporate the
effects of dark matter and dark energy to the gravitational
side of the equations by modifying the gravitational
Lagrangian [4]. Perhaps more importantly, there are also
strong theoretical reasons to consider higher-order correc-
tions to the Einstein-Hilbert action to address the non-
renormalizability of Einstein’s gravity (see e.g., [5-8]).

Thus it is of considerable interest to study vacuum
solutions, and, in particular, black hole solutions, appearing
in theories of gravity with higher-order corrections. In this
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paper, we will focus on static spherically symmetric
solutions of quadratic gravity (QG), for which quadratic
terms in the curvature are added to the Einstein-Hilbert
action,

S = / d*x/=g(7(R = 2A) + PR? = aC ey C*?), (1)

with y = 1/G (G is the Newtonian constant), the cosmo-
logical constant A, and additional constant parameters «, 3
of the theory.

It is straightforward to show that all Einstein spaces
R., = Ag,, solve the corresponding field equations. Thus,
in particular, the Schwarzschild-(A)dS black hole is a
vacuum solution to QG. It is perhaps natural to expect
that appropriate non-Einstein generalizations of Einstein
spacetimes solving vacuum QG field equations might
exist.' Indeed, it has been recently demonstrated (in the
case of vanishing A) using in part numerical methods that

'In this paper, we arrive at such generalizations of the
Schwarzschild, (A)dS, Nariai, and Plebanski-Hacyan spacetimes.

© 2021 American Physical Society
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another spherically symmetric black hole “over and above”
the Schwarzschild solution exists in QG [9,10]. The
uniqueness of the Schwarzschild black hole in this theory
is thus lost. Nevertheless, there exist some no-hair type
theorems forcing black holes in QG to share certain
properties with the Schwarzschild black hole. In particular,
the trace no-hair theorem of [10,11] implies that static,
asymptotically flat solutions of QG with a horizon have
R = 0 throughout the spacetime. More generally, for static
spacetimes with R sufficiently quickly approaching a
constant, R = 4A throughout the spacetime [10]. These
results lead to a considerable simplification of the field
equations which, assuming R = 4A, take the form

a

R, — Ag,p, = 4kB,,, _
b Yab b Y+ 8pA

with k =

(2)

where B, is the Bach tensor defined in Eq. (4). Thus, all
non-Einsteinian terms appearing in the fourth-order field
equations of QG are combined into the Bach tensor.
This observation can be employed to simplify the field
equations of QG for static spherically symmetric space-
times. In particular, it has been pointed out that these
spacetimes are conformal to Kundt spacetimes (in fact this
applies to a larger class of the Robinson-Trautman space-
times [12]). Furthermore, the Bach tensor is well behaved
under a conformal transformation, see (6). Therefore, it is
convenient to express the Bach tensor in an appropriate
Kundt background determined only by one free function,
and then simply rescale it to obtain its expression in a
spherically symmetric spacetime. We have employed this
approach leading to a considerable simplification of the
field equations in [13—-15]. In the present work, we study
the case with a nonvanishing cosmological constant A in
detail” using the Frobenius-like approach of infinite power-
series expansions. Indicial equations significantly restrict
the set of possible leading powers. However, careful
analysis of the corresponding higher-order terms shows
that some of the classes compatible with indicial equations
are considerably restricted or empty. Taking all higher
orders into account, we arrive at eight classes of solutions in
the Kundt coordinates’ allowing for an arbitrary value of A,
and several additional classes of solutions allowing only for
a single nonzero value or a discrete set of values of A. For
most classes, we derive recurrent formulas for all series
coefficients and briefly discuss their physical interpretation.
Interestingly, several classes contain various black-hole
solutions. Three of them (namely the classes [—1,3]*®,
[0, 1], and [0, O], corresponding to power-series expansions
in the vicinity of the origin, the horizon, and an arbitrary

*Thus extending considerably the Letter [14].

*Out of these eight classes, seven (cf. Tables VIII and IX) can
be transformed to the standard spherically symmetric coordinates
and lead to twelve (cf. Table X) distinct classes of solutions in
these coordinates with a continuous value of A.

finite point, respectively) describe (possibly distinct) gen-
eralizations of the Schwarzschild-(A)dS black hole with a
nonvanishing Bach tensor and an arbitrary cosmological
constant A. We call them the Schwarzschild-Bach-(A)dS
black holes. Furthermore, two other classes contain three
QG generalizations of the Schwarzschild-(A)dS black hole
with a nonvanishing Bach tensor and discrete values of A,
called the higher-order discrete Schwarzschild-Bach-(A)dS
black holes (class [—1,0]), the extreme higher-order dis-
crete Schwarzschild-Bach-dS black holes (a subcase of
class [0, 2]), and the extreme Bachian-dS black hole
(subcase of class [0, 2]). All the above solutions admit
the Schwarzschild-(A)dS limit. In contrast, several addi-
tional classes, e.g., Bachian singularity [1, 0] and Bachian
vacuum [—1, 2]®, do not contain the Schwarzschild-(A)dS
as a special case. Note also that some of the solutions found
in this paper, such as the Nariai spacetime, its Bachian
generalization [0,2]®, and Plebarnski-Hacyan solutions
[0,0]®, [0,1]*, are Kundt spacetimes which cannot be
transformed into the standard static spherically symmetric
coordinates.

Physical properties of the Schwarzschild-Bach-(A)dS
black hole, which is a generalization of the classic
Schwarzschild-(A)dS black hole possessing one additional
(Bach) parameter, are discussed in more detail. In particu-
lar, we study basic thermodynamical properties of this
black hole and observable effects on test particles caused by
the presence of the Bach tensor.

Our paper is organized as follows. Section II focuses on
the preliminary material, in particular the discussion of the
field equations of QG, the conformal-to-Kundt ansatz for
static spherical spacetimes, and curvature invariants for these
spacetimes. Field equations of QG in the conformal-to-
Kundt coordinates are presented in Sec. III. In addition, the
classes compatible with indicial equations of the Frobenius-
like analysis are summarized therein. In Sec. IV, these classes
are derived for the expansion in powers of A = r — r), around
a fixed point r(, and in Sec. V, they are analyzed in detail.
Similarly, Secs. VI and VII are devoted to the derivation and
discussion of the classes obtained by the expansion in powers
of r~! as r — oo, respectively. In Sec. VIII, all solutions
found in this paper that can be transformed into the standard
spherically symmetric coordinates are classified in the
notation used in the literature. In concluding Sec. IX, we
give lists of all solutions sorted by (both Kundt and physical)
regions in which the solutions are expanded. Finally, we
review the derivation of the field equations in the Appendix.

II. PRELIMINARIES: QUADRATIC GRAVITY,
CONFORMAL-TO-KUNDT METRIC ANSATZ,
AND INVARIANTS

A. Quadratic gravity

Quadratic gravity is a generalization of Einstein’s theory
whose action contains additional terms which are quadratic
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in curvature. Since in four dimensions the Gauss-Bonnet
term does not contribute to the field equations,4 the action
of QG in vacuum can be expressed in full generality by (1).
The corresponding vacuum field equations are

1
14 (Rab - ERgab + Agab) —4aB,,

1
+2p (Rah - ZRgah + gapJ — vhva> R=0, (3)
where B, is the Bach tensor
— wd 1 ! ped
Bab =|VV + ERL Cacbd’ (4)
or equivalently

1 1 1 1
Bub = EDRah - 6 <vavb + EgabD>R - §RRab

1/1 )
+ RucpaR + 1 (g R? - RcdRLd) Yab- (5)

It is traceless, symmetric, conserved, and well behaved
under a conformal transformation g,;, = Q%7,,:

gabBab =0,
VbBab — 0,

Bab = Bbav
Bab = Q_ZBab- (6)

Furthermore, from (5) it can be seen that the Bach tensor
vanishes for Einstein spacetimes, i.e., for spacetimes
obeying Rab:iRgab, where R is constant. Consequently,
in four dimensions, all vacuum solutions to the Einstein
theory (including solutions with a cosmological constant)
solve also the vacuum equations of QG (3).

The trace no-hair theorem of [10] implies that for static
spacetimes with R sufficiently quickly approaching a
constant,

R = 4A (7)

throughout the spacetime. Then the vacuum QG field
equations (3) simplify to (2). For k = 0, the field equations (2)
reduce to vacuum Einstein’s field equations of general
relativity. Another special case k — oo, i.e., y = —8fA,
was discussed in [12].

*However, let us remark that recently the specific regulariza-
tion method taking the Gauss-Bonnet term into account even
in four dimensions has been proposed in [16]. This has been
immediately followed by various explicit examples of such an
approach as well as many doubts about its mathematical and
physical relevance. However, here we stay on a classic level
considering the Gauss-Bonnet term being irrelevant in a four-
dimensional theory.

B. Static spherically symmetric metrics
For our study of static spherically symmetric solutions to
QG, instead of employing the standard metric

]% + P2(d6% + sin 6dg?),  (8)

we use the conformal-to-Kundt ansatz [13—15]

ds? = —h(F)d2 +

ds? = Qz(r)dszKundt

= Q?(r)[d0? + sin? d¢p? — 2dudr + H(r)du?],  (9)

related to (8) by the transformation

dr
F=Q(r), t=u-— —’H(r)’ (10)
with
QN2
h=-QH, f=—<§> H. (11)

Prime denotes the derivative with respect to r, and the
argument 7 of both € and H must be expressed in terms of 7
using the inverse of the relation 7 = Q(r).

In (9), the seed metric dsi, is of Petrov type D
[consequently, also the full metric (9) is of type D] and it is
a direct product [12,17] of two 2-spaces. It belongs to the
Kundt class, admitting nonexpanding, shear-free, and
twist-free null congruence, see [17,18]. The first spacelike
part, spanned by 6, ¢, is a round 2-sphere of Gaussian
curvature K = 1, while the second part, spanned by u, r, is
a two-dimensional Lorentzian spacetime. Using the stereo-
graphic representation of a 2-sphere given by x + iy =
2tan(0/2) exp(i¢), the Kundt seed metric takes the form

ds2 _ dx? + dy?
Kundt (1 +%(x2+y2))

5 —2dudr + H(r)du?.  (12)

The metric (9) admits a gauge freedom given by a
constant rescaling and a shift of r,
r—Ar+o, u—A"u. (13)

Note that for the classic Schwarzschild-(A)dS metric

Ny 1 A
f(r)=h(F) =1 Y (14)
the relations (10), (11) imply
F=Q(r) :—l, H(r) :%—rZ—ZmP. (15)
r
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The horizon is located at the zeros of the metric function H,
where h(7) and f(7) also vanish by (11).

Similarly, in a general case, a horizon can be defined as
the Killing horizon associated with the vector field 9,
which coincides with 0,, i.e., located at r = r;, satisfying

Hl,, =0, (16)

since Q is everywhere nonvanishing. Using (11), this
condition corresponds to h(7),) = 0 = f(7,).
Note that a time-scaling freedom of the metric (8)

t—>t/o, (17)

where ¢ # 0 is any constant, can be used to adjust a value of
h at a chosen radius 7 since h — ho.

C. Curvature invariants and geometric classification

In [15], we have observed that for a geometrical
and physical interpretation of solutions to the QG field
equations, the scalar curvature invariants constructed
from the Ricci, Bach, and Weyl tensors play an important
role.

For the static spherically symmetric metric (9), we get

R,,R = 4A? + 16k*B,, B, (18)
1
BB = ﬁ9-8[(81)2 +2(B, + By,  (19)
1
Cabcdcahcd — §Q_4 (H// + 2)2’ (20)

where the functions 5;(r) and B,(r) denote two indepen-
dent components of the Bach tensor,

Bl = HHIW, (21)
1
32 =HH" - E7_{//2 + 2. (22)

To derive (18)-(22), we have used expressions for the
Ricci, Bach, and Weyl tensors given in Appendix A
and Appendix B of [15] and the invariance of the Weyl
tensor under conformal transformations, C,.,C%¢¢ =
Qi cKmicyped

Note that the Bach component B, = HH"” vanishes on
the horizon where H = 0, see (16). Similarly as in [15], one
can show that

B,, =0 if, and only if, B,,B =0, (23)
and
Cahcdcath =0

implies B, =0. (24)

There are two geometrically distinct classes of solutions
to QG field equations, depending on the Bach tensor B,
namely a simple case corresponding to B,,;, = 0, and a case
with B,, # 0, not allowed in general relativity. Later we
will see that the Bach tensor influences various physical
aspects of the solutions, such as the geodesic deviation
equation for test particles and entropy of black holes.

III. THE FIELD EQUATIONS

To derive an explicit form of the field equations, we
proceed as in [15] using the conformal-to-Kundt metric
ansatz (9), with the Ricci and Bach tensors for the Kundt
seed metric gfl‘)‘“d‘ and a spherically symmetric metric (9)
given in Appendixes A and B of [I5], respectively.
Employing also the Bianchi identities, the QG field
equations (2) reduce to an autonomous system of two
compact ordinary differential equations for the two metric

functions Q(r) and H(r), see Appendix A, herein

1
QQ' -20% = kB/H. (25)

QQH +3Q7H + Q2 — AQ* = %kBZ, (26)

where the functions B;(r) and B,(r) denote two indepen-
dent components of the Bach tensor, (21) and (22),
respectively.

The trace (7) of the field equations (2) takes the form

1 2
HQ + H'Q + G (H'+2)Q = 5[\93. (27)

In fact, (27) can be obtained by subtracting (25) multiplied
by H’' from the derivative of (26) and dividing the result
by 6.

Note that similarly as in [15], vanishing of the Bach
tensor implies the Schwarzschild-(A)dS solution (15) with
the following scalar invariants (18)—(20):

R,R =4A*, B B =0,
CapeaCPe! = 48m*r°. (28)

For m # 0, there is a curvature singularity at r — oo
corresponding to 7 = Q(r) = 0.’

In the rest of this paper, we concentrate on solutions with
a nontrivial Bach tensor. In this case, the system (25), (26)
is coupled in a complicated way and it seems hopeless to
find explicit solutions in a closed form. Thus we focus on
studying these solutions in terms of (infinite) power series.
Since the system (25), (26) is autonomous, there are only
two natural possibilities—the expansion in powers of the

>For brevity, in this paper the symbol r — oo means |r| — oo,
unless the sign of r is explicitly specified.
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parameter A = r — r,, which expresses the solution around
any finite value r,, and the expansion in powers of r~!,
which is applicable for sufficiently large values of r.

A. Expansion in powers of A =r-r,

We search for solutions of (25), (26) in the form of an
expansion in powers’ of r — r, around any fixed value ro,

Q(r)= A" a;Al, (29)
i=0
H(r) =AY Al (30)
i=0
where
A=r—ry, (31)

ro is a real constant, and i = 0, 1,2, ... are integers, so that
the metric functions are expanded in integer steps of
A = r —ry. On the other hand, the dominant real powers
n and p in the expansions (29) and (30) need not be
integers. We only assume that ay # 0 and ¢, # 0, so that
the coefficients n and p are the leading powers.

By inserting (29)—(31) into the field equations (25) and
(26), we will show in Sec. IV that only the following eight
classes of solutions are compatible with the leading orders
of the expansion in A:

[, p] = [-1.2],
[1,0],

[0,1],
[0,>2],

0,0, [0.2, [-10]
[<0,2(n+1)<0].  (32)

Section V contains more detailed analysis of these

solutions, namely,

(i) Sec. VA: class [—1,2], already discussed in [15],
contains only the Schwarzchild black hole for which
the Bach tensor vanishes;

(i) Sec. V B: class [0, 1] contains the Schwarzschild-
Bach-(anti-)de Sitter black hole (abbreviated as
Schwarzschild-Bach-(A)dS, or even shorter as
Schwa-Bach-(A)dS) with a nonvanishing Bach
tensor;

(iii) Sec. V D: class [0, 0] describes all other discussed
solutions at generic points;

(iv) Sec. VE: class [0, 2], apart from the extreme
Schwarzschild-dS solution with a generic A, in-
cludes also the extreme higher-order (discrete)
Schwarzschild-Bach-dS black holes with restricted
values of A, and the extreme Bachian black hole
with A = 3/(8k);

®Note that other solutions containing for example log(r — r()
terms may also exist.

(v) Sec.V F:class [—1, 0], apart from the Schwarzschild-
(A)dS black hole for a generic A, contains also the
higher-order (discrete) Schwarzschild-Bach-(A)dS
black holes admitting only special values of A;

(vi) Sec.V G: class [1, 0] describes a Bachian singularity
at the origin;

(vii) Sec. V H: class [0, >2] is, in fact, empty;

(viii) Sec. VI: classes [<0,2n + 2|, requiring discrete
values of n and A, describe asymptotic regions of
solutions with a strictly nonvanishing Bach tensor.

B. Expansion in powers of r~!

Analogously, we may study and classify all possible
solutions to the vacuum QG field equations for an asymp-
totic expansion as r — oo. Instead of (29), (30) with (31),
for very large r we can assume that the metric functions
Q(r), H(r) are expanded in negative powers of r as

Q(r) = rNZAir'i, (33)

H(r) =rP ZCir_i. (34)

By inserting the series (33), (34) into the field equa-
tions (25), (26), it can be shown that the following five
classes of solutions are compatible with the leading orders

of the expansion in r~':

IN.P]=[-1.3]°,  [-L2]*,  [0.2]*, [0,<2]>,
[>0,2N + 2], (35)

see Sec. VI. Subsequent Sec. VII contains more detailed
analysis of the above solutions, namely,

(i) Sec.VII A:class [—1, 3] describes the Schwarzschild-
Bach-(A)dS black hole near the singularity at the origin;

(i) Sec. VIIB: class [—1,2]* describes Bachian—(A)dS
vacuum near the origin—a specific Bachian gener-
alization of the (A)dS space;

(iii) Sec. VIIC: class [0,2]® contains the exact Nariai
spacetime with arbitrary A, the spherically symmet-
ric higher-order discrete Nariai-Bach solutions near
a finite point with a nonvanishing Bach tensor and
discrete spectrum of A, and another Bachian gen-
eralization of the Nariai spacetime belonging to the
Kundt class;

(iv) Sec. VIID: classes [0, < 2|® contain only exact
Plebanski-Hacyan solutions in the Kundt class
[0,1]% and [0,0]° with A = Z;

(v) Sec. VIIE: classes [N > 0,P = 2N + 2|]® contain
solutions with regular Bachinan infinity, which
require discrete values of N and A and describe
asymptotic regions of solutions with a strictly
nonvanishing Bach tensor.

064049-5
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IV. DISCUSSION OF SOLUTIONS USING THE EXPANSION IN POWERS OF A
The series (29), (30) together with the first field equation (25) yield

1-2n+2

E l E
A a;ap 2n+2

=2n-2 i=

—i—n+2)(I=3i-

while the second field equation (26) gives

oo l 2n—p+2 j
E E E a;d;_iCi_j_op— ]7+2(
[=2n+p-2 Jj=0 i=0

3n+1) :—k Z Alep (I +4)(I+3)(1+2)(I+1), (36)

I=p—4

—i+n)(l-j+3i+n+2)

0 [-2n [+ [—4n m [-m—4n
+ ZA Za idj—i-2n — AZAZZ<ZLI i m— t> ( Z ajal—m—j—4n)
=0 =0

I=4n m=0
1 00 ll—2p+4 3 3 5
:3k[2+l;_4A ; c,»cl_,-_zp+4(l+p)(l—l—p+4)(l—l—p+3)<l—2l—2p+2>} (37)

It is also useful to consider considerably simpler constraints following from the trace equation (27)

[-3n

© j
%AZN Za,al i1 j—3n-

1=3n Jj=0 i=0

Coefficients of the same powers of A/ in Eq. (36) give
expressions for the coefficients c; in terms of ;. Since the
lowest orders on the left and right sides are [ =2n — 2
and [ = p — 4, respectively, there are three cases to be
considered

(i) Case: 2n—-2<p—4,ie., p>2n+2,

(i) Case II: 2n—2>p—4,ie., p <2n+2,

(iii) Case Il: 2n —2=p —4,ie., p=2n+2.
Notice that Eq. (36) does not depend on the cosmological
constant A and thus the above cases do not differ from the
A = 0 cases discussed systematically in [15].

In what follows, we study various solutions in these
three cases.

A. Case 1

In Case I, the lowest order in (36) is on the left-hand side
(A?72) and therefore, since ay # 0,

nin+1) =0, (39)

leading to two possible cases n =0 and n = —1. The
lowest orders of Eq. (38) are

1
Coterarpea | (= 1= p 20 1) 4 g (4 )i+ p =) +

ZAIQI n

(38)

[n(n+p—1)+p(p = 1)]eeA™P™> +- - + 24" +
—4Aa3A¥ + - = 0. (40)

For n = 0, these powers are A”~2, A°, and A°, respec-
tively, but in Case I, p —2 > 2n = 0. The lowest order
(2 —4Aa3)A° thus leads to

2Aa} =1, (41)
and Eq. (37) then gives

3
A= 42

Thus such class exists only for nonvanishing A of this
special value.
For n = —1, Eq. (40) reduces to

(P=3)(p—4)coAP + - +2A7 4 -
—4ABA - =0. (43)

Since ¢y # 0 # ay, the only possibility is p =2, A =0,
with ¢ = —1.

064049-6
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To summarize, the only possible classes of solutions in
Case I are

B. Case 11

In Case II, 2n — 2 > p — 4, the lowest order in (36) is
AP~* implying

n,p] =[-1,2] with A=0, ¢o=-1, (44) p(p=1)(p—2)(p—3) =0. (46)
Therefore, as in [15], there are four possible cases p = 0,

n,p] = [0,p>2] with A= 83_](, a(z) _ % (45) fz);eslt, gr;rg, [22;1 &():)]3 Equation (38) has the following

|

for p=0: [6n(n—1)]coA"™? + -+ = =2A" + - + 4AalA¥ + --- necessarily n =0, 1, (47)

for p=1: [6n*]coA™ 1 4 -+ = =2A" + .- + 4AajA*" + .-+ necessarily n = 0, (48)

for p=2: [6n(n+1)+2]coA" + -+ = =2A" + -+ +4Aa3A" + -+ (3n* +3n+ 1)¢y = -1, (49)

for p =3: [6n(n+2) + 6]coA™ ™ + -+ = =2A" + .- + 4Aa}A¥ + -+ not compatible. (50)

The lowest orders in (37) for p = 2, implying n > 0, are

3a3[n(3n+2)co+ 1]A%" +2k(c3 — 1) —=3AagA* +--- =0,
(51)

and thus c¢o= +£1; however, the constraint (49),
3n®2 +3n+ 1 = +1, is in a contradiction with n > 0 and
therefore, the p = 2 case is not allowed.
To summarize, the only three possible classes of sol-
utions in Case II are given by
[n.p] =[0.1],

[2.p]=10.0].  [n.p]=[1.0]. (52)

C. Case II1

In Case IIl, 2n —2 = p — 4, i.e., p = 2n + 2. Then the
lowest order A?~* in (36) implies

p(p —2)Bag + 4keo(p —1)(p —3)] = 0. (53)

Therefore, as in [15], there are three subcases p =0,
p =2, and 3aj = —4dkcy(p—1)(p—3) with p#0, 1,
2, 3, corresponding to n=-1, n=0, and 3a% =
—dkco(4n? — 1) with n# —1,-1/2,0,1/2, respectively.
The leading orders of (38) read

(11n% +6n+ 1)coA¥ + -+ = =A" + - + 2Aa3AY - - -
(54)

which implies n < 0 and

forn=-1p=0: 6c)A +---==A"" 4.  +2Aa3A3 + - écozga%, (55)
forn=0ep=2:cy+-=-1+-+2Aa}--+ = cy=2Ad}—1, (56)
for 3aj = 4kco(1 —4n?): (11n> +6n+1)co + -+ =2Aak+ - --. (57)
I
In the case [0, 2], Eq. (37) implies or
3a3(1 —Aa%) + Zk(C% -1)=0, (58) A % . ﬂa% L (60)

that gives either

Aaj=1= ¢y =1, (59)

In the case 3a3 = 4kcy(1 — 4n?), with p # 0, 1,2, 3, and
thus n # —1,—1/2,0,1/2, respectively, Eq. (57) with
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p#0, 1 (n#—1,-1/2, respectively, p, n <0), using
aj = Ykeo(1 —4n?), gives

3 1n*t6n+1l
S8k 1 —4n?

_3 4
OT M —ant

(61)

Equation (37) is then identically satisfied.
To summarize, in Case III, there are three possible
classes of solutions

A
[n,p] = [-1,0] with ¢y = ga(z), (62)
_ . 2 _ _
) — 5 — 1, o — 1
[n,p] =1[0,2] with either Aag =1, c¢o=1, or
3 3
:g, Cozﬂaé—l, (63)

311n%> +6n+1

3 a4
_— : 64
O kT —4n2 (64)

V. DESCRIPTION AND STUDY OF ALL
POSSIBLE SOLUTIONS IN POWERS OF A

In this section, we will investigate all the solutions
contained in Cases I, II, and III, namely, eight classes (44),
(45) (52), (62), (63), and (64).

A. Uniqueness of the Schwarzschild black hole
in the class [r,p]=[-1,2]

The class [n, p] = [-1,2] in Case I, see (44), necessarily
has A = 0 and therefore it has been already studied in detail
in [15]. Therein, we have shown that the only solution in
this class is the Schwarzschild solution given by

H(r) = —r* = 2mr, (65)

see (15).

B. Schwarzschild-Bach-(A)dS black hole in the class
[n.p]=[0,1]: Near the horizon

In this section, we will present a detailed derivation of
the metric of the class [0, 1] that represents a spherically
symmetric non-Schwarzschild solution to QG, the
Schwarzschild-Bach-(A)dS black hole with a nonvanishing
Bach tensor and a cosmological constant, as we pointed out
already in [14]. The first three terms in the expansion of
such a solution read

Lyl
r pl‘h
b

7 1\ 1 r—rp\2
2 (IS .. (66
rh[ <3 3k>rﬁ+ }(ﬂrh> e (66)

2
H(r) = (r— rh){— A (r*+rr,+17)

r, 3r

r—ry, 1 1 1
3b 44— (2A+=— 3b
| () valem (8 vm) o)

() )

Q(r) =

where
A
n
and
ro=ry, (69)

is the black hole horizon since H(r;,) = 0. For a vanishing
“Bach parameter,” b = 0, the metric functions (66), (67)
immediately reduce to the Schwarzschild-(A)dS metric
functions (15) with a vanishing Bach tensor.

Let us derive the complete analytical form of this black
hole leading to (66) and (67). For [n, p] = [0, 1], Eq. (36)
reduces to

1+1

> aiap i (+2 i) (1 +1=30)
i=0

1

Skers(I+AI+3)I+2)(+1). (70)

where [ > 0. Relabeling [ — [ — 1, Eq. (70) gives

3 l
= i (I4+1=0i)(1-3i
Cry2 k(l+3)(l+2)(1+1)l;a1al+l—l( + l)( l)

Vix1, (71)

and thus all coefficients c¢;,,, starting from c;, can be
expressed in terms of ay, ..., a4 .

The lowest nontrivial order [ = 0 of the “trace equation”
(38) gives

a) = -2 DAaZ - (1 + 1)), (72)
3C0

and higher orders / = 1,2, ... read
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(I+1)*coars
:_AZZG idj-ithi-j =34
j=0 i=
I+1 1
= it {(l—i+1)(l+1)+gi(i+l). (73)
i=1
This leads (after relabeling [ — [ — 1) to
PR 1
JR— |:§A Z(Z idj—idj—1—j —ga,_l
Jj=0 i=0
L. .
—anll I(1-1) gl(l—i-]) Vi>2, (74)
which gives all the coefficients a; in terms of ay, ..., a;_;

and Cpy -ves CJ.
In addition, the lowest nontrivial order [ = 0 of (37)
gives the constraint

6kcocy = 3aglaic + ag(l - Aa(z))] + 2k(c% -1), (75)

which, using (72), becomes

~20((1- Aad) +b),
Co

a, =

1

2= 6kC0

2k(c2 = 1) +ad(2—c; — Aad)]. (76)

Therefore, this class of solutions has three free param-
eters ag, ¢, and c;. Then a;, ¢, are determined by (72),
(76), respectively, and all other coefficients a;, |, ¢;,, for all
[ =1,2,... can be obtained using the recurrent relations
(74), (71), respectively.

The Bach and Weyl invariants (19), (20) at r = r, = r
read

1_23 2 ) A22
leqm:<_jg;@2>:<ﬁ_j;@>

3ag 6ka?
b2
=—, 77
4k>a} (77)
abced 4 2
CapcaC?(ry) = 75 (1 +¢1)7, (78)

4
3ag

where we have introduced a key Bach parameter b by

1
The Bach tensor B, is in general nonvanishing. Using the
recurrent relations (74) and (71), the first few coefficients
read

do 242 7 1y, 2
=+—((1-A 2—(=A—— b+ b
+g(0-nap+ o= (Ga-g)afo+ )

a
s == (1= Adiy

€0

1 179 = 29 298 77 1
125 (A - )24+ (A2 ——— A+ — |a}|b
+9[ < 3 Sk) +< 9 YT 16k2> 0}

| 104 35 7
il DY QN iy W P PR AR D 80
9{ <3 8k>a0} 9 > (80)
01:2—Aa%—|—3b,
1 1
62:360 <(1—Aa0)(3 Aa0)+3{ (2A+2—k)a(2)]b+9b2>,
4
ag 1 1
S N (.
ST 2k < 6 +16k>
2
" 45 , 75 9\ , 39\ , )
- plo+ (12a-22 14N2 = 2N 4 316+ (7A-2)a2|b+op?),.... (81
“4 = 270kc] < +( 4k> < gkt T ) TR0 gk )%0|"* (81)

where ag, ¢, and b are free parameters.
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1. Identification of the Schwarzschild-(A)dS
black hole
To identify the Schwarzschild-(A)dS black hole, we
must set B,, = 0, i.e., we choose b = 0. Then the expan-
sion coefficients (80), (81) simplify to

1 =A@\
a; = ag (— ao) for all i > 0, (82)
€o

1

3¢, —— (1= Aaj)(3 - Agg),

¢ =2-Ad}, ) =
c;=0 foralli>3, (83)

where the first sequence is a geometrical series and the
second series is truncated to a polynomial of the third order.
Thus the metric functions take the explicit closed form

A\
—aOZ( —Aaj) >
Co
_ apCo _ apCo (84)
co+(1—Aa(2))A (l—Aa%)(r—rh)JrcO’
H(r) = co(r—ry) +ci(r—ry)* 4+ ca(r—ry)’. (85)
Using the gauge freedom (13), we can always set
1 A
ap = ——, Co="Th——» (86)
n '
so that the metric functions reduce to
1
7= Q = -,
=) = -
A, A r
=2 ==r) . 87
o =5-r-(5-7)5 (87)

Thus for b =0 we recover the Schwarzschild-(A)dS
solution (15), with the black hole horizon located at
r=ry, so that 2m = (§ - r})/r;.

2. More general Schwarzschild-Bach-(A)dS black hole

For b # 0, the solution (74), (71), that is (80), (81),
represents a generalization of the Schwarzschild-(A)dS
black hole with a nontrivial Bach tensor with the Bach
invariant B, B®® proportional to b> at the horizon (77). It

|

reduces to the Schwarzschild-(A)dS solution (87) for
b — 0. After summing the “background” terms indepen-
dent of b as in (84), and using the same gauge (86), one
obtains the explicit form of the solution (66), (67) with
r = ry, still being the horizon.

As in [15], we rewrite this class of solutions in an
alternative and more explicit form. Let us introduce
coefficients «;, y; as those parts of a;, c¢;, respectively,
that do not involve the “b = 0" Schwarzschild-(A)dS
background, i.e.,

a;=a;(b= b a .
ra(=rwp)’
wherea,-(sz)E(_ri)Hi i>0, (88)
2—£+3by1,
“ Esvﬁrh— w(1-3)E-3) vty
clESb(’%}/"j%;])i_l i>3. (89)

Then Q and H take the explicit form

Q(r :_,_72 < _r)l (90)

Prh
A
H = (r— (2 2
() = (=) =3 (Pt )
- r—r,\!
+3br i( >:|, 91
Ph;}’ or (91)

where p is given by (68) and

1 l 1

Using (74) and (71), the remaining coefficients a;, y,, for
[ > 2 are given by the recurrent relations (defining oy = 0)

1] 2A 1
azzl—z[—— Zaz 1= 4 (P71 A ba_y ) (aip’™ + aji(p! +ba))}—§az 22+ p)p(l=1)

T
j=}

for [ > 2. (93)
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Then the first few terms read

7 1\ 1
—2—(fA—— )=+,
“ (3 8k)r,3+

1 29 179 \ 1 77 298 \ 1
s (2 PA) o (o= TP A 0N
% 9[ +<8k 3 >rg+<16k2 FYT >r2}
1 35 104 \ 1], 7
S5 (2o ZEA) b e 94
+9[ +<8k 3 )rgj 9 4)
1 8k
= (1-ZA
7 961&»2( 3 )
1N 1 4 \1 1 1 75
S I (R AN S VY LYY
=18k {5+< * 15 >r}, 16027 45r;‘,( 8k )}
13 56 \ 1 1
16+ (——+2A) |0 b ... 95
+720krg[ *( K3 >r,2]  50k2 95)

leading to (66), (67).

This spherically symmetric Schwarzschild-Bach-(A)dS
black-hole spacetime (90), (91) in QG admits three
independent parameters: the cosmological constant A,
the horizon position r, [r, is a root of H(r) given by
(91)], and the dimensionless Bach parameter b, chosen in
such a way that it determines the value of the Bach tensor
(21), (22) on the horizon r;, namely,

3
Bz(rh) = —Fb

Ty

By(ry) =0, (96)

Then the invariants (19) and (20) reduce to

r_ﬁ b?
42

BabBab(rh)
A2
CaraC () = 12|71 +8) 5| 7

on the horizon.

As A =r —r, — 0, the dominant terms of the two metric
functions are Q=ao=~7- and H=coA=(r,~3)(r—r;)
[cf. (15)], in which case the relations (10), (11) give
— const,

F=ag+ - (98)

f=>AE(F-a) =0, (99)

confirming the existence of the horizon at r =ry,
1

i.e., ?h = day = e
Finally let us check that the k£ = 0 limit (corresponding
to the Einstein limit of QG) of this solution reduces to

the Schwarzschild-(A)dS solution. The condition k£ =0

implies a;cq + ag(1 — Aaj) = 0, see the constraint (75).
This, substituted into (72), yields ¢; =2 — Aa%, and thus
b = 0 due to our definition (79).

To conclude, the class [n, p] = [0, 1], expressed in terms
of the series (90), (91) around the horizon r;, represents the
spherically symmetric Schwarzschild-Bach-(A)dS black
hole generalizing the Schwarzschild-(A)dS black hole.

C. Analysis of physical properties of the
Schwarzschild-Bach-(A)dS black hole

In this section, we study various aspects of the class of
black holes found in Sec. V B.

1. Behavior of the metric functions

This part is devoted to the analysis of the Schwarzschild-
Bach-(A)dS metric functions and their comparison with the
classic Schwarzschild-(A)dS solution.

First, let us verify that the metric functions Q(r) and
H(r), represented by the power series (90) and (91), really
solve the field equations (25) and (26) in some neighbor-
hood around the horizon rj,, with a reasonable precision
depending on the assumed finite order n. To do so, the
difference between the left- and right-hand sides of the
field equations (25) and (26) is plotted in Fig. 1. It clearly
approaches zero with growing order n of the polynomial
approximation.

As a next natural step, we examine the convergence
radius of the power series (90) and (91). These radii can be
roughly deduced already from Fig. 1. However, to be more
precise we employ the standard d’Alembert ratio test for
two different sets of parameters. The ratio between two
subsequent coefficients a,,/a,_; and —y,, /7, is visualized
in Fig. 2 (this figure and some of the following figures are
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FIG. 1. The difference between the left- and right-hand side of the field equation (25) (left) and (26) (right) for the metric functions Q
and H given by (90), (91). The plotted values approach zero in a certain range of the radial coordinate r around the horizon r;, with the
growing order n. This indicates that the equations are satisfied with a reasonable precision, depending on the finite order of the
polynomial approximation in some convergence radius. Here we set r, = =1,k =0.5, b = 0.3, and A = 0.2.

taken from out letter [14]). The plots clearly indicate that
such a ratio approaches a specific constant. We may thus
conclude that the solution asymptotically approaches a
geometric series, for which the radius of convergence can
be simply estimated.

Now, let us plot the typical behavior of the metric
functions Q(r) and H(r) near the black-hole horizon ry,
see Fig. 3. The qualitative behavior of the function H
depends on the sign of the cosmological constant A. For
any value of A, the black-hole horizon separates static
(r > r;,) and nonstatic (r < r;) regions of the spacetime.
However, for positive cosmological constant A > 0, an
additional outer boundary of the static region appears,

/50 100 150 n 200 250 300

FIG. 2. The convergence radius for the power series (90) and

(91) representing the metric functions €2 and H can be estimated
using the d’Alembert ratio test demonstrating the asymptotic
behavior similar to the geometric series. Here we assume r, =
-1,k=05 with b=03,A=0.2 (bottom) and b =0.2,
A = =2 (top).

r 0.2

FIG. 3.

r-0.2

t-0.4 1

corresponding to the cosmological horizon given by the
second root of the function H, similarly as for the
Schwarzschild-de Sitter black hole. For A < 0, the outer
static region seems to be unbounded, as in the Einstein
theory.

50
40
301

20

104

[-06 -1.0 -08 -06 g -04 -0.2 0

The functions H(r) given by (91) (left) and Q(r) given by (90) (right) for two values of the cosmological constant A (with the

same parameters as in Fig. 2). The black-hole horizon r;, = —1 is located at the center of the radius of convergence. Here we plot the
functions H(r) in the regions outside the black-hole horizon up to the outer radii of convergence indicated by dashed vertical lines. For
A > 0, the function H(r) seems to have another root corresponding to the cosmological horizon, while for A < 0, it remains
nonvanishing. First 50 (red), 100 (orange), 200 (green), 300 (blue) terms in the expansions are used. The results fully agree with the
numerical solutions up to the dashed lines, where such simulations also fail. The function Q(r) grows monotonously.
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0.4
1)

0.2}

=3I

FIG. 4. The function f(7) of the standard metric form (8) related to the solution (90), (91) via the transformation (11). The positive A
case (left) indicates the presence of the cosmological horizon at the boundary of the convergence interval (the dashed line). For negative
A (right), the series converges in the whole plotted range, corresponding to a static region everywhere above the black-hole horizon.

Here we use the same values of parameters as in Figs. 2, 3.

0.08
0.06
0.04r-

0.021

r

—_

-0.9 -0.8 -0.7 -0.6 -05

FIG. 5.

05¢
04}
03f
02}

0.1}

2 3
01}

T

The Bach invariant (19) as a function of the Kundt coordinate r (left), and the metric functions f(7) and 4(7) of standard line

element (8) corresponding to the solution (90), (91) via (11) (right), with the same parameters as in Figs. 2, 3 for A = 0.2.

To give a complementary picture of the Schwarzschild-
Bach-(A)dS metric behavior, which can be more intuitively
compared with the classic Schwarzschild-(A)dS case, we
employ the standard spherically symmetric line element (8)
and plot the metric function f(7) in Fig. 4. Obviously, there
is not any significant qualitative difference with respect to
the Einstein theory. The second root for the positive value
of A again indicates the presence of the cosmological
horizon, separating static and nonstatic regions.

To clarify the difference between the Schwarzschild-(A)dS
and Schwarzschild-Bach-(A)dS solutions, in Fig. 5 we plot
the Bach invariant (19) as a function of the Kundt coordinate
r. Recall that this invariant identically vanishes for the
Schwarzschild-(A)dS black hole. In addition, we also plot
the metric functions f(7) and h(7) of standard spherically
symmetric line element (8) corresponding to the solution
(90), (91) via (11). In contrast with the Schwarzschild-(A)dS
black hole, these functions are not identical.

Finally, we can also compare the Schwarzschild-Bach-
(A)dS solution with its classic analogy on an invariant level
of spacetime geometry by plotting the dependence of the
area of a sphere with r fixed on the value of the expansion
0= %k“;a =Q73Q, of the privileged null congruence
k = 0, inducing a spacetime foliation, see Fig. 6.

Here we may identify specific quantitative differences.
Namely, any observer following the geodesics generated by
k will measure a larger spherical area when b > 0 (and
smaller for b < 0) for any fixed value of the congruence
expansion. Put it in a opposite way, on spheres of the same

40- values of parameter b

304 . X
infinity

-—

singularity
—_—

FIG. 6. Relation between the sphere area A (of constant r) and
the corresponding value of the expansion © of the privileged null
vector field k = 9,, for different values of the Bach parameter b.
The dashed line indicates the horizon area A, which is b
independent. Here r, = —1,k = 0.5, A =0.2.
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area, the expansion of k increases with b growing, and
vice versa.

2. Thermodynamic properties: Horizon area,
temperature, entropy

In this section, let us study geometrical and thermody-
namic properties of the Schwarzschild-Bach-(A)dS black
hole, extending the concise discussion in the Letter [14].

The horizon generated by the null Killing vector &=
00, = 00, [considering the time-scaling freedom (17)
represented by the parameter o] is given by vanishing of
the norm of &, i.e., by H(r) = 0 at r = r;, (16), using (91).
Integrating the angular coordinates of the metric (9), we
obtain the horizon area

4
A= 4702 (ry) = -2 = 4xF2.
n

(100)

With the only nonvanishing derivatives of & being
éu;r = _gr;u = %G(QZH),y gt = =g = Q_4§u;r’ using

(91), the surface gravity k> = — % &€ [19] takes the form

1 1
K‘/g = _E(H/ + ZHQ//Q)V:UL = _EH/(rh)
1 1
= —30r, zi?gl(l—A?ﬁ). (101)

Therefore, the temperature of the black hole horizon
T =«/(2x) [20] reads

1 1 __ -
T/oc = ~ P = — 7 (1= AF).

i (102)

Note that the Bach parameter b does not enter the
expressions (101) and (102), and thus they are the same
as for the Schwarzschild-(A)dS solution. Both are zero for
7 = 1/v/A corresponding to the extreme Schwarzschild-dS
solution with coinciding black-hole and cosmological
horizons.

To determine the black-hole horizon entropy, we employ
the generalized formula for higher-derivative theories
derived by Wald [21,22]

S:%fq
K

with the Noether-charge 2-form Q on the horizon (corre-
sponding to the Lagrangian £ of the theory) being

(103)

1
Q :E uvap Qﬂl/dxa N dxﬂ’
oL

QW =2XMPOE - 4XHP0 £, and XFT=
Hvpo

(104)

For quadratic gravity (1), we obtain

2
vpo — [0 7]
) Gl 16”[<7+3(2a+3ﬂ)R>g” g

— dagl ¢! [/’g"]’lR,d} ) (105)

A lengthy calculation for the metric (9) then gives the
Noether-charge 2-form on the horizon

QPH' [ 4 4 B +B,
=- “Ala+68) +-k
x sin 0d6 A dg. (106)

Finally, using (100), (101), and (96), the Schwarzschild-
Bach-(A)dS black hole horizon entropy (103) is given by a
simple explicit formula (cf. Eq. (6.5) of [14])

S:%A y+é—LA(a+6ﬂ)—4a% . (107)

3 7,
For A = 0, it agrees with [9] (with the identification k = «
and b = 6%), [13,15]. Therefore, the “non-Schwarzschild
parameter” 6* of [9] is the dimensionless Bach parameter b
determining the value of the Bach tensor on the horizon r,
see (96). The standard entropy expression for the
Schwarzschild black hole, S = iA, is recovered either
for b = 0, A = 0 (the Schwarzschild black hole in QG) or
for ¢ = 0 = f (the Schwarzschild black hole in Einstein’s
gravity). The result of [23], S = i/l(l —|—%kA), for the
Schwarzschild-(A)dS black hole in the Einstein-Weyl
gravity is recovered by setting b = 0 and f# = 0 in (107).
The entropy (107) for the Schwarzschild-(A)dS black hole
(b = 0) vanishes in critical gravity with =0, a = ky,
A=-— % < 0 [23]. Note also that the deviations from
S =1 Aly + % A(a + 6p)] are larger for smaller black holes
because they have smaller ?ﬁ.

3. Specific motion of test particles caused
by the Bach tensor

This section generalizes Sec. 13 of [15] to the case of a
nonvanishing cosmological constant A, and extends Sec. V.
and VI. of [14]. We will demonstrate that the effect of the
Bach tensor parts 3, B, given by (21), (22), entering the
Bach invariant (19), can be directly observed through
the relative motion of freely falling particles described
by the equation of geodesic deviation.

i. Interpreting solutions in quadratic gravity using geodesic
deviation.—Projecting the equation of geodesic deviation
onto an orthonormal frame {e(),e(),€(),€(3)} with the
timelike vector being an observer’s 4-velocity e = u and
satisfying e(,) - €(;) = 1745, We Obtain

2% = R )0, 29,

ij=1.2.3,  (108)
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where
50 = o0 D2 _
70 = ¢, 2 = Z% quu?  and
T
Ri)0)0)5) = Rapcaefyu’ ucef,. (109)

The decomposition of the Riemann tensor into the traceless
Weyl tensor, the Ricci tensor, and the scalar curvature R
gives

I 1
Riyoo = Comon +5 Rag — GRo0) — ¢ R
(110)

Furthermore, employing the vacuum field equations (2)
with (7) in (110), Eq. (108) takes the form

20 =270 + Ciyoyo( 2” + 2By 2" = Boyo) Z")-

(111)

Applying the Newman-Penrose scalar decomposition
(obtained in [24,25]) with respect to a (real) null frame
{k,l,m;} with two future-oriented null vectors k and ! and
two spatial vectors m; orthogonal to them, normalized as
k-1=—1 and m;-m; = 6;;, such that

1 1
k=—(u+eqy), l=—7%@u—ey).
\/§( 1) 2( (1))

m;=e fori=2,3,
(112)

we arrive at the equation of geodesic deviation (111) in the
QG theory in the form

A 1 ‘
Z<1> = §Z(1) + ‘PZSZ“) + ﬁ(q‘lp‘ - ‘I’:;Tj)z(j)

+ 2k[(B(1y1y = B(0y)Z" + BuypZ¥],  (113)
A o
Z(l) — gz(l) - Elpzsz(l) + 75 (lPlTi - ‘P?,Ti)Z(l)

| .
- E (lpoij + lP4ij)Z(‘]>
+ 2k[By ) ZM + B(iy(yZY) = B0 Z"],  (114)

where W, = 1W,568;, see [25]. The system (113), (114)
has a clear physical interpretation. Classical effects include
the Newtonian tidal deformations, longitudinal motions,
and the transverse effects of gravitational waves (propa-
gating in the directions e(;), —e(;)) caused by the scalar
components W5, {Ws7:,¥;7i}, and {¥4, Py}, respec-
tively, and isotropic radial motions of test particles caused
by the cosmological constant A. Apart from these classical
effects, there are additional specific effects caused by the

nonvanishing Bach tensor, encoded in the frame compo-
nents B(a)(b)-

ii. Geodesic deviation in the Schwarzschild-Bach-(A)dS
black hole spacetime.—The general results obtained in the
previous section can now be applied to the spherically
symmetric black hole metric (9). We choose an orthonor-
mal frame associated with a radially falling observer, i.e.,
x = 0 =y, namely,

8(0) =u = rar + I;tau,

ey = [(int)_l - Hu]@, —ud,,

| —

1

e =Q! [1 +Z(x2+y2)] s, (115)
where i = £ [(Q%i1)™" + Hir] due to the normalisation of an
observer’s four-velocity u -u = —1. Then the associated

null interpretation frame (112) reads
1 uH
k=———0,, l=—
V2il? V2

m; = Q! [1 + i (x? + yz)] ;.

d, +V2iid,,
(116)

Since the spherically symmetric black hole metric (9) is of
algebraic type D, there is only one nonvanishing Weyl-
tensor component with respect to (116), namely,

1
Was = Capeak 1’1k = 89—2(7{/ +2).  (117)

Using the Bach tensor projections with respect to the
orthonormal frame (115),

1

B - _1_92 " 2\2q1111
0)(0) 249%2[ (1 = Q" Hi”)"H

1

+2Q%i2 (H’H’” - EH”Z + 2)] : (118)
1 .
B<1)(1) — m |:_<1 + QZHMZ)ZH////

1
e | NI

1 .
Bloy) = ~55q0 (1 =M )M, By =0, (120)

0y 1
B(i)(j) = 12é4 (HH//// +H/HW—§H”2 +2) ’ B(l)(i) —0,

(121)

the equations of geodesics deviation (113), (114) take the
form
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Z(l):%Z(l)+ég—2(7{//+2)z<l)

1 1
_ng—zt (HH////+H/H///—2H’/2+2) Z(l), (122)
o N ] ;
70 70 __—_Q-2(H"4+2)7()
3 12 (H+2)

1 .
+§k9—4((Q2Hu2)—1+92Hi¢2)HH""z<’>. (123)

Therefore, apart from the classical effects, namely the
isotropic influence of the cosmological constant A and a
classical tidal deformation caused by the Weyl curvature
(117) proportional to Q~2(H" + 2), i.e., the square root of
the invariant (20), there are two additional effects of
quadratic gravity caused by the presence of a nonvanishing
Bach tensor. They appear in the longitudinal (122) and
transverse (123) components of the acceleration and are
proportional (up to a constant) to the square roots of the
two parts of the invariant (19), to the amplitudes B, B,,
see (21), (22).

When considering a test particle which is initially static
(7 = 0), the geodesic deviation equations simplify to

N A 1 1
70 = §z<1> +6§2‘2(H” +2)zM —ng“‘(Bl +B,)ZW,
(124)
o ANy ] | .
70 =270 - —Q2(H"4+2)Z) ——kQ~*B,Z),  (125)
3 12 6
thanks to the 4-velocity normalization Q*Hi> = —1. Note

that the first component B; of the Bach tensor can be
directly observed in the transverse components of the
acceleration (125) along e(,), e(3), i.e., dy, 0y (equivalent
to dy, 0,5), while the second component B, enters the radial
component (124) along ey =—i(9, +H0,) =-HQ' 0,
proportional to 0;. Note also that on the horizon, there is
only the radial effect given by B,(r;,) since B;(r;) = 0 due
to (21) and (16), see also (96).

As has been already argued in [15], the effects of B, BB,
can be distinguished from the Newtonian tidal effect in the
Schwarzschild solution. Thus, by observing a free fall of a
set of test particles, one can distinguish the Schwarzschild-
(A)dS black hole from the Schwarzschild-Bach-(A)dS
black hole with a nonvanishing Bach tensor.

D. Schwarzschild-Bach-(A)dS black hole in the class
[n,p]=[0,0]: Near a generic point
This class of solutions has the highest number of free
parameters (see Table X) and for a special choice of
these parameters, it represents the previously discussed
Schwarzschild-Bach-(A)dS black hole near any regular
point r = rg # r;,. The first few terms of the expansion read

Qry=—-———5———(r—ro)*+...,

A A r
H(r):§—r2— (3—ri>rz

+ (by = by)ro(r = ro) = 3by(r = ro)?
(ba = b)) (1 + v +52) —2(2 + 3v)by + 353

(126)

+
(1+3U+b1—b2)r0
X (r—rg)*+..., (127)
where
A 3
v=w-1-22 o=, (128)
37 T

and where two independent Bach parameters, denoted as
b, and b,, are proportional to the values of the two
components of the Bach tensor at r( [see (145), (146)].
For by =0=b,, the solution reduces to the Schwarzschild-
(A)dS solution.

To find the coefficients a; and c; in (29)—(31), we start
with Egs. (36) and (38) that give (after relabeling [ — [ — 1)
for [ >1

3 l
- N a1+ 1-i)(1=3i
€3 k(z+3)(z+2)(z+1)zizoa’”’“"(Jr (=30,

(129)

1 2 S 1
apy = m{gl\zzaiaj—ial—j—l ~ 341

141
=S i [ll—i+1) +éi(i - 1)]}, (130)

i=1

respectively. An additional constraint follows from the
lowest nontrivial order [ = 0 of Eq. (37),

1
€3 = gor Dateo +2K(c3 = 1) 4 3ap(ag + are) — Al
(131)

Therefore, this solution admits five free initial parame-
ters ay, ay, ¢y, 1, ¢. The remaining coefficients a;, |, ¢, 3
in (126) and (127), respectively, are given by the recurrent
relations (130), (129), respectively,

ag + 3a;c; + agey — 2a3A
600

a, =

(132)

o 6aico+ag(ag+3a,c) +agc, —2azA)
T 24cok

(133)
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Now we will show that this class of solutions contains
the Schwarzschild-(A)dS solution as a special subcase.

1. Identification of the Schwarzschild-(A)dS black hole

Let us employ the scalar invariant (19), with (21), (22),
which at r = r( read

B,,B%(ry) = [(B1)* +2(B, + B,)?].

7248
where Bl (r()) = 24COC4, Bz(ro) = 2(3C1C3 - C% + 1)
(134)
The Schwarzschild-(A)dS solution is uniquely identified by
vanishing of the Bach tensor, B, =0 B; =0=5,,
which implies ¢, =0 and 3¢ c3 — ¢3 + 1 = 0. Together
with (133), (131), this yields two necessary conditions

2
02:2—Aa%+3a—éco. (135)
ap
Then the recurrent relations (130), (129) reduce to
a;,=a (ﬂ> forall i >0,
ao

oy a% 1, _ ;
c3=—— 1+;c0—§Aao, c;=0 forall i>4, (136)
0

where the first sequence is a geometrical series, while the
second series is truncated to the third-order polynomial.
The metric functions thus take the following closed form:

o) =ay (La) = o “
r) = a _ = =
O,-:O ag ag—aiA  (ag+ayrg) —ayr’
(137)
H(r)=co+ci(r—ro)+cr(r—ro)*+c3(r—rg)*.  (138)
Using the gauge (13), we can set
1 1
=——, =—, 139
ap ro ay r(z) ( )
so that the metric functions read
1 2 oco—3A ;A
7 :Q = —_—— = —_ _ 3 3 —_
PR = M) = (o) T
(140)

Such ‘H can be rewritten as

A A r
H(r)zg_r2_<§_r%’>r_*2’ (141)
and cg, r;, are related by
A A
c0:§(1—w3)+r(2)(60—1)=V6V+§- (142)

This is the Schwarzschild-(A)dS solution (87) [see also
(15)] with the black hole horizon at r = ry,.

Therefore, for vanishing Bach tensor, the class [n, p] =
[0, 0] corresponds to the Schwarzschild-(A)dS black hole
solution.

2. More general solution with nontrivial Bach tensor

Now, let us return to the generic case of [n, p] = [0, 0]
with a nonvanishing Bach tensor (129)—(133) with the free
parameters ag, a;, ¢y, €1, 3. To simplify the two compo-
nents B, (rq) and B,(ry) of the Bach tensor (21) and (22)
evaluated at ry, we introduce new more physical dimen-
sionless Bach parameters b; and b,, corresponding to
Bi(rg) and B,(ry), respectively,

1 1
bi=3 (—1 —6u—c2+3ﬁ), by=-(2+3v—c,), (143)
ro 3

so that

c1:(1+31/—|—b1—b2)r0, C2:2+31/—3b2, (144)
where v has been introduced in (128) and the gauge (139)
has been used. Then using (133) and (131), B;(rq) and

B,(ry) are related to the Bach parameters by, b, by

1 1
b, ngr(z)Bl(”o), by ngr%(51(70)+32(70))’ (145)
and the Bach invariant at rq is
4
p
BuyB(ro) = 575 (b1 +203). (146)
The coefficients a;, ¢; now take the form
1 1 1 by
- __ =—, =——- Lo (147
o ro @ rs = re 2corg (147)
, 1
co=vrgtz A cr=(143)ro+ (b =ba)ro,

Ch :2+3I/—3b2,
(1+0)(1+30) =22+ 3v)by + 3b3 + (by = by) 5
0
(143v+Dby —by)ry

C3 =

9’

 8keord

cy (148)
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For b; = 0 = b,, the Bach tensor vanishes and thus the
solution reduces to the Schwarzschild-(A)dS solution (see
Sec. VD 1). Thus the more general solution (129) and
(130) includes a modification of the Schwarzschild-(A)dS
solution admitting a nonvanishing Bach tensor [see also
(147), (148) or (126), (127)].

Notice that as A — 0, the functions 7, f, and & approach
constants [cf. (10), (11)].

3. Identification of the Schwa-Bach-(A)dS black hole
[0, 1] in the class [0, 0]

Since the generic class [0, O] contains also the
Schwarzschild-Bach-(A)dS black hole solution (90),
(91), expressed around the horizon r; in the class [0, 1],
one should be able to express the five free parameters a),
ai, co, 1, co of the [0, O] class in terms of the free
parameters of the [0, 1] class. This can be done [within
the convergence radius of (90), (91)] by evaluating the
functions (90), (91) and their derivatives at r = ry, and
comparing them with the expansions (29) and (30) with
n=0,p=0:

1 b rh—ro)’
ay=————>) @ 149
0 o rh; <Prh (149)
1 b gl . rh—r0>’_1
a, =—=+— ia; , 150
A DIl (150)
P?oA
Co—(ro—rh)[r—z 3_2(r2+r0rh+rh)
T
+3bpry Y v ro_rh”, (151)
i=1 Py

A —r\i
cl—(3r0—2rh)—h—j+3bprhz i+1 (M> ,

1 Prh
(152)
A 3 & i—1
)= (3r0—rh) ﬂ—I—EbZzl—l—l (pm) )
i=1
(153)

Thus we obtain an expansion of the Schwarzschild-Bach-
(A)dS black hole around any point ry in terms of just
one Bach parameter b (which determines the value of the
Bach tensor on the horizon r,) in the recurrent relations
(129)-(131).

4. Formal limit ry — ry,

Finally, let us perform a “consistency check” between
the two series corresponding to the Schwarzschild-Bach-
(A)dS black hole solution in the class [0, 1] [see (66), (67)]

and in the class [0, O] [see (126), (127)]. Here we
temporarily denote the coefficients in the class [0, 0] by
¢; and @;. In the limit ry — r;, in (149)—(153), using also
(86) and the first relations in (80), (81), we obtain the
following relations

. 1 . 1 b\ _
aOZ——zao, a1=—2 1+— =a1,
I'p r, P

(154)

. A _
C\=TI,——=Tryp=Cyp,
Ty

A
6‘2—2——+3b Ci.

>

0=0,
(155)

Since ¢j,; and c; satisfy the same recurrent relations
[cf. (71) and (129)], the functions H agree. In addition,
the condition ¢, = 0 in (130) implies

1+1

1
A 2 A j:
0—§a,_1+l cla,

1
aper_ { (I+1=i)+2ili=1)
=2

2 J
g/\ Zaiaj_ial_j_l, (156)
Jj=0 i=0
1.€.,
. 11, A .
al:_lz’él gal_] +;C,~+lal_i l(l—l)+—l(l+1)
2 -1 j
_gA Zaial_,al_,_l], (157)
Jj=0 i=0

which is the same as (74) for a;,; (with the identification
¢;+1 = ¢;) and thus the functions € also agree. Therefore,
in the limit r, — r, we obtain

¢o—=0, ¢ —c,  aj—a; forallj>0, (158)
which shows the consistency of the two expressions for
the Schwarzschild-Bach-(A)dS black hole in the [0, 0] and
[0, 1] classes.

To conclude, the class [0, 0], expressed in terms of
the series (126) and (127) around an arbitrary point r,
represents the spherically symmetric Schwarzschild-Bach-
(A)dS black hole. However, without using the specific
choice of parameters (139), it may represent any of the
other spherical solutions as well.

E. Solutions with extreme double horizon
in the class [0, 2]

The [n, p] =10,2] class of solutions corresponds to
an expansion around an extreme (double degenerate)
horizon r since for p = 2 the key metric function reads
H(r) = (r —ro)*[co + ¢y (r — ry) + - --]. For a generic A,
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it contains only the extreme Schwarzschild-de Sitter

spacetime. However, for certain special values of A, other

solutions with a nonvanishing Bach tensor also exist.
Indeed, for [ > 0, Eq. (36) gives

%kc,(l+2)(l+ DI(l=1)

-1

= (1= Dlaga;+ Y _aja,_i(1-i)(I-3i—1), (159)
i=1
while Eq. (38) yields
=M -1, @y = ——NC (160
o e ' T 2(3-4Aad)’

and

4 1
a; |:l(l + 1)(20(2)/\ - 1) —ga%A} +6a0cl(l + ])(l + 2)

-1
+ Zcial_i [(l— N(+1) +é(i+ 1)(i+2)]

= =1
:§A|:Z apa;a_; + Zaiaj_ial_/} . (161)
i=1 j=1i=0
Interestingly, Eq. (37) implies
either a)Aa} =1, A >0, (162)
or b)A= El (163)
8k

Let us discuss these two distinct cases separately.

1. Case a) Aaﬁ =1: Extreme Schwarzschild(-Bach)-dS
black hole

In this case, it follows from (160) that ¢, = 1 while ¢, is
arbitrary. From (159) and (161), we infer that for the first

coefficients a; = ag(—3¢,)' = j:\/LK(—%cl)i and ¢; =0

for j> 1. Let us thus assume that a; = ag(—3c¢;)' =

+2(=3¢))" for all 0<i<l-1, and ¢;=0 for

2 <j<1l—1. Then Eq. (159) gives

k 3 \!/
61123—01(14‘2)(“' 1) +aqg (—501>

ao

E:t(%k\/Xc,(H—Z)(H— 1) +% (—%q)l), (164)

and Eq. (161) implies (note that this relation is valid even
for [ = 2)

[ 2kABI(1+ 1) — 4] 4 3] = 0. (165)

Now we have to distinguish two subcases:

(i) Using the mathematical induction, the only solution
of this system with a generic value of A > 0 is

3 i 1 3 i
a;, = a _561 E:l:\/—K —ECI s

Vi>0, and ¢;=0, Vj>2, (166)
with a free parameter c;. Thus
H(r) = A% + ¢, A%, (167)

and Q is a sum of a geometric series (166) which can
be expressed in the closed form as

+2

Qr) =——"—. 168
) VA2 +3c,A) (168)
Using the gauge
+ VA, (169)
c=F——=, rog = ,
1 3\/K 0
the metric functions are simplified to
1
Q=——,
r
(r£vVA)*(VAF2r)
H=A2(1+cA)= : 170
(1+ca) i (170)

It is the extreme Schwarzschild-de Sitter black hole
(15) characterized by the condition 9Am? = 1 (see
e.g., Sec. 9.4.2 in [17]). The double degenerate
Killing horizon is located at r), = FV/A, that is at
7n=Q(r,) = £1/VA = 3m.

To conclude, the class [0, 2] with Aa% =1 and
arbitrary A > 0, with the metric functions ex-
pressed in terms of (170), represents the extreme
Schwarzschild-de Sitter black hole solution.

(ii)) The second branch of the [0, 2] class of solutions
obeying (162) exists only for discrete values of the
cosmological constant A > 0, restricted by (165) as

3
T T2BL(L+1)—4]

where LeN, L>2, k<0, (171)
or equivalently
3
A=-— ! (172)

[6L(L + 1) — 8Ja+ 244"
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In this class, all ¢; vanish for 2 <i < L — 1, while
a; are determined by (166) for 0 <j<L —1.
Equation (159) implies

aL:j:<;k\//_\l~)L(L+1)(L+2)+\/1X<—ZC1>L>,

(173)
|

cf. (164), where
b; =cp (174)

is a new free “Bach” parameter. The remaining
coefficients ¢;, a; (for i > L) are obtained from
(159) and (161) by the recurrent relations’

[3[([ + 1)(2&%/\ - 1) - 4G%A]U1_1 - 3(10[([ - 1>Vl—1

DU DI+ D)+ 2)[BaE — 8kaZA + 6ki(I + 1)(2a2A - 1)]°

Cll:—3

aOU,_l + 2kl(l — l)V,_l

(I=1)l[3a3 — 8ka3A + 6kI(l + 1)(2a3A - 1)]’

(175)

|
where

-1

Ut = Y aa (1= i)(1=3i— 1),

i=1

o+na+m}

O\I'—*

Vi 1—anl,[l—l)(1+ 1)+

) - -1

——A<Za0aial ; Za,al a )

3 i=1 j=1 i=0
(176)

Recall that in this case

L I (177)

ay =t ——, co=1,

0 \/K 0

see (162), (160), respectively. Therefore, in general
the metric functions take the form

"Since these relations are valid also in the Case b), see
Sec. VE2, we do not use (162) to simplify them.

064049-20

The corresponding leading terms in the Bach and
Weyl invariants (19), (20) read

(3L2 + 8L +8)(L — 1)3(L + 1)?(L 4 2)2

B,, B =
ab 7248
xl;%(r—ro)ﬂ—f—---, (180)
16
CopeaCP = —+---. 181
abcd 3a3+ ( )

Interestingly, unlike for the Schwarzschild-Bach-(A)
dS black hole discussed in Sec. VB, for these
black holes the (in general nonzero) Bach tensor
vanishes on the extreme horizon localized at r(, since
(r—ry)*t = 0.

Close to this extreme horizon, that is for r — ry,
Egs. (10), (11) imply that in the standard spherically
symmetric coordinates

F—ay, h~(F—ay)? f~(F—ap)? (182)

where a, = +1/+/A = 7, denotes the position of the
extreme horizon.

These solutions exist only for £ <0 and A > 0,
coupled by (171), and represent a new family of
black holes with an extreme horizon and nonvanish-
ing Bach tensor, with the physical Bach parameter
b, and two gauge parameters c;, ry. The Bach tensor
vanishes only in the case of the extreme Schwarzs-
child-de Sitter black hole, see (170), which
can be obtained by setting b, = 0 (in the L — o
limit, the solution approaches Schwarzschild with
A = 0). Therefore, we may call these solutions
extreme higher-order (discrete) Schwarzschild-
Bach-de Sitter black holes. Typical behavior of
the metric functions is shown in Fig. 7.

The first representative of this new class is
given by L =2. Its initial coefficients in (178)
and (179) read
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FIG. 7.
[0,2] with L =2, k= —1/2, A =3/14, ¢, =

0 . . . . .
-1.6 -1.4 -1.2 r -1.0 -0.8 -0.6

The metric functions H(r) (left) and Q(r) (right) for the extreme higher-order (discrete) Schwarzschild-Bach-de Sitter solution
—1,b, =1, ry = —1 and ay = 1/+/A. First 10 (red), 20 (orange), 50 (green), and 100

(blue) terms in the expansions are used. Furthermore, the corresponding Schwarzschild-de Sitter solution obtained by setting b, = 0 is
shown (brown). A numerical solution with initial values taken from the first 100 terms of the metric functions at » = —1.15 and
r = —0.85 is also given (black). The numerics breaks down on the extreme horizon. Vertical dashed lines indicate the radius of the

convergence obtained using the same method as in Fig. 3.

3 2 [k
612—(1()(—56'1) =16 | |b2,

3 3 k
a3—a0(—§c1> =429 ‘—1|C1b2,...,

C2:b2, C3:—2C1b2,....

(183)

With the natural gauge choice (169), the explicit
solution takes the form

Q(r):—1+52(ri VA)?

[ N%—gk(ri\/_) }
H@):(dﬂ)ﬂl%@(riﬁ)
+1~92(ri\/K)2<1i§\/%(rﬂ:\/x)m>}

(184)

It reduces to the extreme Schwarzschild-de Sitter
black hole (170) when the Bach tensor vanishes, that
is for b, = 0.

To conclude, the class [0, 2] with Aa% = 1 and the
discrete values of A > 0 given by (171), with the
metric functions expressed in terms of the series
(178), (179) around the horizon at r, represents the
extreme higher-order (discrete) Schwarzschild-
Bach-de Sitter black holes with vanishing Bach
tensor on the horizon.

2. Case b) A= k = 8(a 3ﬂ) : Another extreme
Bachian-dS black hole

In a given QG theory with fixed values of the parameters
a, p, and y, there exists a unique value of the cosmological

constant such that A = 2, that is A = T 3ﬁ) 8

In this case, ag, ¢, are free parameters. The coefficients
cp, a; are given by (160), while the remaining coefficients
¢;, a; for all [ > 2 are again determined by the recurrent
relations (175) with (176). The first few such coefficients

explicitly read

3a0 _q _ajei(3af — 8k)k
co = s ¢y = 2 2 2
4k 24(3a2 — 4k) (a2 — 2K)
2 _ 12 2 _ 2
o = _a0c1(7a02 k2(3;10 8k2k - (185)
60(3a2 — 4k)2(aZ — 2k)°
apcrk apct(21ad — 32k)k?
a) = — 5 ay = ’
! — 2k > 6(3a3 — 4k) (a2 — 2k)?
3(231ag — 724akk + 576k*)k?
4y — - G01(231ay = T2Aack + STORNKT g
18(3a2 — 4k)2(a2 — 2K)
The metric functions thus take the form
cik
(1) = an| 1= 225 =)
0
ik \? 3a3 — 8k )
1420 % V(= o],
- <ag - 2k) ( T isaz 2k )T
(187)

*In the particular theory with @ = 3§, necessarily y = 0 but A
remains arbitrary.
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H(r)=(r—ro)?*|2a3A—=1+c,(r—ry)

ajclk(3al —8k)

— )2 ...
4@~ 2k (3 —a) T

(188)

Note that for a special case a; = 0, it follows that ¢; = 0
and subsequently a», as, ¢,, c3, Uy, Uy, Us, Vi, V,, V3
also vanish [see (185), (186), (176)]. The relations (175)
with (176) then determine ay = ¢, =0 which implies
U,=V,=0, etc. Thus, all a; =0 and ¢; =0, i > 1,
and the metric functions reduce to Q =a, and H =
(r—r)?(2Aa3 —1). This Kundt metric is a Bachian
generalization of the Nariai spacetime (342), cf. (358),
with an extreme horizon.

In the limit » — rg, the relations (182) hold, and the
values of the Bach and Weyl invariants (19), (20) on the
horizon are

y 1 /3 1)\
B,,B (ro)zm sk a2)
0
3

Cabcdcade(r0> = W . (189)

Therefore, the Bach tensor is nonvanishing on the horizon,
unless af = 3k.

The extreme Schwarzschild-de Sitter black hole (170) is
recovered for B,,B* = 0, i.e., for

8k 1

3 (190)

Thus a(Z)A =1 as in Case a), cf. (162). Moreover, cy = 1,
¢; =0foralli >2,and a; = (—3 ¢;)’ay, so that Eqs. (166)
hold, leading to the solution (170).

In general, it is natural to introduce a dimensionless Bach
parameter b, by

3a? 8k
bezﬁ—l, sothata(z):?(be—kl) and
3 b 2
B,,B* =|—5—2 191
wB00) = (foms) (191)

which vanishes for the extreme Schwarzschild-de Sitter
black hole. The metric function € can then be rewritten as

Q(r)zaog(—a%“jk(r—ro))i

Clk 2 8]{610 2
b (r—
+<a(2)—2k) 182 — 24k eV o)

The first term in Q(r) is a geometric series which can by
summed up to

(192)

- cik i ag(al — 2k)
a0 ;( al — 2k (r rO)) " (ad =2k = cikry) + cikr
1
=—-—, 193
; (193)
when the unique gauge
1 1 — 2kr3
= -, == 194
do 7 €1 kr(3) (194)
is used, so that
3 A
=———-1=5-1 195
¢ 8kr} r3 (195)
The explicit solution thus reads
1 4kb
Qr)=——-———(r—ry)*+ ..., 196
()=~ 5r 3=y 7= 7O+ (196)
1
H(r) = (r=ro)| (1+2b,) + (2 +8b,)(r = 1r9)
0
b, 5
+ (r—ro)*+...|. (197)

3r3(3 — 4kr)

Note that this solution has only one free parameter since r;,
and b, are related via (195).

This class of spacetimes describes a black hole with the
(double degenerate) extreme horizon located at r = ry and
a nonvanishing Bach tensor. Its value on the horizon is
given by the invariant (191),

ab _ r_(2) :
BabB (r()) = 2kbe . (198)

Forb, =0,ie.,ry = FVA= ¢\/;%', this solution reduces

to the extreme Schwarzschild-de Sitter solution (170).

To conclude, the class [0, 2] with A = 3/(8k), expressed
in terms of the series (196), (197) around the double
degenerate horizon at ry, represents another extreme
Bachian-de Sitter black hole generalizing the extreme
Schwarzschild-dS black hole with nonvanishing Bach
tensor on the horizon.

F. Higher-order Schwarzschild-Bach-(A)dS
black holes in the class [-1,0]

We will now prove that for a generic value of the
cosmological constant A, the class [n, p] = [-1,0] admits
only the Schwarzschild-(A)dS solution. However, for
specific values A = —m, where L €N, L >0,
it represents “higher—order discrete Schwarzschild-Bach-
(A)dS black holes.”
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1. Uniqueness of the Schwarzschild-(A)dS black hole
for a generic value of A

For [ > 0, Eq. (36) gives

%kc,H(l LA+ +2)(1+1)

= (l + 4)(l + 5)a0a1+4
143
+Y aa (- i+3)(1-3i+4).  (199)
i=1
and
ay=a,=az3=0. (200)

Equation (38) specifies

+3

E E alaj lcl—j+4

agera(l+ 1)+ 2Aa3a; 4(1+5)

1+2 143

1
co = —Aa(z),

3 61:(),

o =—1, (201)

and
aryalco(l+2)(1+3)

1 1
—2Aag] + gdocz+4l(l +1)+ 3%+

1+3

+Y i [(z +3-0)(1+2) +éi(i - 1)]

i=1

143 I+3 j
2L D ICTUNEED ) Srstme) I

j=1 i=0

Finally, Eq. (37) implies

—i—1)(I-j+3i+1)

+ Z a;a;_i12 + 3¢ Z aiap 4 i(I+3-i)(i-1)

i=1

[+3

_lch I ,+4z(l—|—4—z)(l+3—z)(l+2(5 31)>

i=1

Therefore, the functions Q(r) and H(r) have the
form

a
QIKO+W+1AK+~',

A
H=—=aj— A>+ c3A3 + ¢, A™ + -

3 (204)

where £=[1+3 >3, m>4.
Assuming that there exists [ such that a; =0 for all

l<i<l+3andc;=0forall4 <j<1[+ 3 (the follow-

ing equations hold also for / = 0), Egs. (199) and (203)

simplify to

_(l + 1)C1+4’

2A(l + 5)a0a1+4 = (205)

(1+ S)agars = 5K+ 3)I+2)(I+ Derar (206)

For generic values of A [i.e., other than those given by
condition (208)], necessarily a;,4 =0 = ¢4 and thus
a;=0=c;3 for all i >1 [otherwise, the two equa-
tions (205), (206) are not compatible]. Thus, for a generic

[+3

1+3 m l—-m+4
2
- A[Zao E ;a4 + E < E aiam—i> < E ajal—m—j+4>:|’
i=1 m=1 \i=0 =0

[>1. (203)

A, the only free parameters are a; and c3, and the metric
functions become

A
2o H==a}-

Q=2
A 3

A% + ;A3 (207)
Using the remaining coordinate freedom, we can set
ay =—1 and ry =0 (implying A = r), which gives the
Schwarzschild-(A)dS solution (15) with the identifica-
tion ¢z = —2m.

To conclude, the class [—1, 0] with an arbitrary value of
A, expressed in terms of the metric functions (207),
represents the spherically symmetric Schwarzschild-(A)
dS black hole.

2. Higher-order Schwarzschild-Bach-(A)dS black holes
for special values of A

Interestingly, for special (discrete) values of the cosmo-
logical constant A given by

3

A= LT +3)

where L € N,  (208)
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or equivalently, using (2), by

__ 3y
A= 24p +2a(L +2)(L +3)° (209)

the system of field equations (205), (206) also admits
another class of solutions in the form

(L+1)(L+2)(L+3)
=k b LeN 210
ClL+4 3(L+5)Clo L» € 0 ( )
where
bp=cry4 (211)

is an additional free “Bach” parameter. All the other
coefficients for / > L are determined by (199) and (202) as

ks al+ (I +3) I +2) 1+ 1)

3
= (I+4)(I+5)apa; 4
1+3
3 @y (I=i+3)(1=3i+4),  (212)
i=1
and
2
apl(145) 3
—— = 2A(I+2)([+3)+~-
Ut 1 2)(113) (1+2)(1+ )+k
aol 1+3
- ar (=i [—3i+4
ST 2y a1+ 3)1=34d

1 I+3 . 1 o
~gona=Y_citon 4302+ git-1)

1+3 +3
], (213)

+§A [Z apa;ap -+ z Zaiaj—ial+4—j
i1

J=1 i=0

where A is given by (208), so that (213) gives a, 4 and then
(212) ¢j44-

In the limit A — 0, the dominant terms of the metric
functions become Q = qpA~' +--- and H=1co+ -+ =
1Ad} + - -, similarly as in (15), in which case the relations
(10), (11) give

?:@—»oo <s0 that r—>a_0+ro>» (214)
A I3
A A
I e Rt

With the natural gauge choice aq = —1, this is exactly the
asymptotic behavior of the Schwarzschild-(A)dS solution
in the canonical form (8), (14) with h=f=1-2m/F—57*

as 7 — oo. Therefore, these solutions asymptotically
approach the Schwarzschild-(A)dS solution.

In this case, the Bach and Weyl invariants (19) and (20)
read

[(L+1)(L+2)(L+3)(L+4)A)?

BahBab — 216“3 b%A2L+8 4o,

(216)

CupegC?cd = 1—2c2A6 4o (217)
abed Cl04 3 s

respectively. For b; # 0 # c;, they are both nonvanishing,
but for large values of 7, the invariants approach zero
asymptotically for ¥ — oo (that is for A — 0).

Note that the new free (non-Schwarzschild) Bach
parameter by can be chosen to be arbitrarily small and
thus (assuming analyticity) these solutions include arbi-
trarily small perturbations of the Schwarzschild-(A)dS
solution.

The presence of a horizon is indicated by numerical
calculations shown in Fig. 8 (however, note that the
numerical calculation breaks down at the horizon).
Recall that the condition H = 0 implies f(7)=0=~h(7),
see (11). This suggests that, at least for some values of b;,
these solutions represent a new family of black holes with
A. Such solutions can naturally be considered as a
generalization of the Schwarzschild-(A)dS family since,
in addition to mass encoded by the parameter ¢; and a
cosmological constant A, they contain further physical/
geometrical parameter b;. With this parameter, the Bach
tensor B,;, becomes nonzero, see (216) with (23), and due
to (2), the Ricci tensor R, is also nontrivial. Since they are
vacuum solutions, the Birkhoff theorem is clearly violated
in QG. Such solutions are not possible in the Einstein
theory since k = 0 formally corresponds to infinite value of
A in (208).

For a general value of integer L (L € N;), the metric
functions read

Qr) = L+ ap A 4 (218)

A
H(r) = =ad — A> + c3A% + cp 4AL 40

3 (219)

Let us present additional terms in the following special
cases for the lowest orders of L:
(1) For L =0, Eq. (208) gives A = —ﬁ. Then, the first
coefficients in the series (29) and (30) are

2k
611:612:03:0, a4:—b0, (15:0,
5(10
288k> 4k?
ag = —Fagbo, a; = a—(3)C3b0, ey (220)
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0r

Q(r)

10F
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-20-

The metric functions H(r) (left) and Q(r) (right) for the non-Schwarzschild (Bachian) solution [—1, 0] with the parameters

L=0,k=1/2,A=-1/2,rg=0,ay =—1,c3 = —1and by = ¢, = 1/20. First 10 (red), 20 (orange), 50 (green), 100 (blue), and 300
(purple) terms in the expansions have been used. Furthermore, we plot the corresponding Schwarzschild-AdS solution obtained by
setting by = ¢4 = 0 (brown). A numerical solution with initial values taken from the first 100 terms of the metric functions at r = —0.2 is
also plotted (black). Note that the numerics breaks down on the horizon given by H = 0. Vertical dashed lines indicate the radius of the
convergence. From the behavior of the metric function Q we can read off that, in the standard spherical coordinates 7, the metric
functions converge from 7 Z 2.63. (In contrast with the [0, 1] case, the series in the [—1,0] class do not approach geometric series
asymptotically. Thus we have estimated the radius of convergence by searching for which values of r these series can be bounded by
appropriately chosen geometric series.) All the plotted functions visually overlap within the radius of convergence, validating the results.

A
Co_ga(z), Cq —0, C2:—1, C5:0,
T2k 4k
_ ey = cbgs s 221
Co SSa% 0 C7 5a(2)03 0 (221)

with the free parameters ay, ¢3, and by = c¢4. Choos-
ing ag = —1, ry = 0 and denoting c¢; = —2m, the
metric functions become

1 2
Q=———kbyr’+---,
r 5
A, 3 4
H:§—r =2mr’ 4+ bor* + -+, (222)

which reduces to the Schwarzschild-(A)dS solution
(15) when by = 0.
(i) For L =1, Eq. (208) gives A = —ﬁ. The coeffi-

cients are
4k
ap=ay=a3=ay =0, aS_S—aObl’
400k>
ag = O, ay; = 3 b], s (223)
9a;
A
Co_gao, Cq —0, C2——1, C4:0,
80k
=0, = - by, ..., 224
Ce 7 9a% 1 ( )

with free parameters ag, c3, and b; = ¢5. Choosing
ag = —1, ry = 0 and denoting c; = —2m,

1 4
Q=————kbyr* +---,
r 3

A
H=—==r=2mr’+br+---,

3 (225)

which also reduces to the Schwarzschild-(A)dS
solution when b; = 0.

(iii) Explicit expressions for L > 2 can be obtained
analogously. Notice that as L — oo, the cosmologi-
cal constant A — 0, and the solution approaches the
Schwarzschild black hole metric.

To conclude, the class [—1, 0] with the discrete values of
A given by (208), with the metric functions expressed in
terms of the series (218) and (219) around an arbitrary point
r( corresponding to the asymptotic physical region 7 — oo,
represents the family of spherically symmetric higher-order
discrete Schwarzschild-Bach-(A)dS black holes with an
additional Bach parameter b; (where L =0,1,2,...).

G. Bachian singularity in the class [n.p|=[1,0]

Now let us investigate the case [1, 0]. Since the Bach
tensor is always nonvanishing (see below), this class does
not contain the Schwarzschild-(A)dS as a special case.
Moreover, it possesses a curvature singularity in both the
Bach and Weyl tensors at r = r, corresponding to 7 = 0.
Thus it can be nicknamed as Bachian singularity.

After relabeling [ — [ — 3, Eq. (36) for the case [n, p] =
[1,0] yields
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3
T D)I(=1)(1=2)

-3
XY aapsi(1-2-i)(1-5=3i). VI>3. (226)
i=0
The lowest order [ = 0 of (38) gives
aoC
=——, 227
ai 2¢, (227)

while higher orders imply for / > 1 (the first sum is empty
for [ =1, 2)

w

B 1 2,5 i 1
Ay = (l+l)(l—|—2 |3 a;aj_jdp_j_3 3az 1

Jj=0 i=
I+1 1
= ciain [(z —i+ 2+ 1) i - 1)”.
i=1
(228)
Finally, the lowest order / = 0 of (37) leads to
3= b 9a2cy + 2k(c3 —1)]. (229)
6kC1 0 2

All the coefficients a;,, ¢;, can be determined from the
recurrent relations (226), (228), which give

Q(r) = (r—ry) [a0+z (r—ro }

H(r) =co+ Zci(” — 1)’

i=1

(230)

where the coefficients a;, c3 are given by (229) and (227),
respectively, while

a

a, = _WOZ[CO(I + 7C2) - 6(:%],
as = 36kco ) ————[18adcy + k[4c3(c3 — 1)
—2¢oc3 (1 + 10¢;) + 9¢tl], -,
2 3 2
cp=-20 = 2% (231)

A O T d0key

Here ay, cg, ¢, ¢, are four free parameters [using the gauge
freedom (13), one can fix some of these parameters, e.g.,
ag =1 and rg = 0]. The coefficients (231) coincide with
those of [15] since the cosmological constant A enters only
the coefficients a; with i > 4 and ¢; with i > 9.

From the scalar invariants (19), (20),

3¢ 1
B, B = I — e,
ab (r) 4613]{2 (l" _ rO)S +
bed 4 (1+C2)2
CapedCl(r) = 2 4 (232)
3a0 (r—ro)*

it follows that the Bach tensor B,, cannot be set to
zero since, by definition, ¢y # 0. Consequently, the
Schwarzschild-(A)dS solution does not belong to this class
and the Bach invariant always diverges at r = r(. Notice
that there is also a Weyl curvature singularity at r = ry [in
the special case ¢, = —1, CppeqC? o (r—ry)~2].
For (230), the limit » — r, implies
F=Q(r) =0, (233)
and thus the Bach/Weyl curvature singularity is located at
the origin, which is also indicated by the behavior of the
metric functions (10), (11) in terms of the physical radial
coordinate 7,
h~—cyi? — 0, f~=a}cy(F)™? = 0. (234)
[1,0] class
(2,2) family

Notice also that in the A = 0 case, this [n, p] =
of solutions corresponds to the (s,f) =
[8,10,15,26,27].

To conclude, the class [1, 0], with the metric functions
expressed in terms of the series (230) around an arbitrary
point r, corresponding to the physical/geometrical origin
7 = 0, represents a spherically symmetric spacetime with
Bachian singularity.

H. Empty class [n,p] =[0,>2]

In what follows we show that, in fact, this class is empty.

For p € N, Eq. (36) implies ¢y = 0, which must be
nonzero by definition. For all integers p > 2 at the order
A% Egs. (37) and (38) give the conditions 3a3(1 — Aa}) =
2k and 2Aaj = 1, respectively, which together imply

(235)

First, let us discuss the case [0, 3]. At the order A,
Eq. (36) gives a, = (a? +4kc;)/ay. At the order Al,
Eq. (38) gives a; =3agcy, while Eq. (36) gives
ay = 27ayc}/8 + 6kcocy /ag + 20ke,/(3ap).  Finally, at
the order A%, Eq. (38) implies ¢, = 0, and thus this case
cannot occur.
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Let us show that this is also the case for all integers p > 3.
For p > 3atthe order A', Eq. (38) implies a; = 0. Using the
mathematical induction, we show that all a; for 1 <i <
p — 1 vanish. So let us assume that all ¢; for 1 <i < j—1,
j < p —2, vanish. Then Eq. (36) at the order A/~ gives
apa;(j— 1) = 0 which implies that also a; = 0. Thus the
second nonvanishing coefficient (after ay) is a,_, which is
determined by the order A?~* of Eq. (36) as

C
a,=kp(p—1) 3—;0 (236)

Then using (235), Egs. (36) and (38) at the orders A>”~6 and
A%P~* yield

2(2p - 5)a0a2p—4 -(p- 1)“%—2

- gkc,,_zoo ~1)(2p-3)2p-5)=0. (237)

1
—2ay,4 + coa,—5 |3(p—2)(2p - 3) +§p(p - 1)

—6Aagay,_, +agc,o(p—1)2p—3) =0, (238)
respectively. A linear combination of these two equations,
using also (235) and (236), leads to
p(p—1)(p=2)(5p*=21p+20)c3 =0. (239)
This, for integers p > 3, implies ¢y =0 which is a
contradiction.
To conclude, the class [0, > 2] is empty and thus, under our

assumptions, there are no black hole solutions to QG field
equations with a higher-than-doubly degenerate horizon.

I. Solutions with regular Bachian infinity
in the class [rn,p]=[< 0,2n +2]

Finally, we will show that there are infinitely many
vacuum solutions in the class [n, p] =[<0,2n + 2],
namely [n, p] = [-J/2,2 = J], where J € N, J > 2. Each
of these solutions contains an asymptotic region 7 — oo
where both the Bach and Weyl invariants approach a
nontrivial constant. Therefore, these solutions do not admit
the classical Schwarzschild-(A)dS limit.

In Eq. (38), the first and last terms start with the power
A", while the second one with {ayA”. Since in all sums
there are integer steps, to allow aj # 0, the expression
3n — n has to be a (negative) integer. Thus,

n=-J/2, whereJ €N, J >3, (240)
and the coefficient p is p = 2n + 2 = —J + 2. Then from
Eq. (64) we obtain a unique value of the cosmological
constant,

3 112 —12J +4 201
= Al > —— d
o aor 0 MEasgge a
3a}
=% 241
O 41 =77 (241)

The subleading terms in Egs. (36) and (38) give

3(10&1(" + 2)
¢ =- ,
YT 2k(n+1)(2n 4+ 1)(2n + 3)
0= coa;(11n*> + 18n +7) + agc; (11n* + 11n + 3)

- 6Adja, (242)
respectively. Their combination yields
a;(55J% = 33573 + 554J% —412J +120) = 0, (243)
which cannot be fulfilled for J € N, J > 2 unless
a;=0=cy. (244)

As an illustration of such solutions, let us present two
explicit examples. The highest possible value of n is
obtained for J =3, namely n=-3/2, p=—1. For
J =4, we obtain n = =2, p = -2.

(i) In the case [-3/2,—1] we get

201
A= 24
256k’ (245)
0 16kC5
a = a = a = a = s a = s
1 2 3 4 5 67(10
43520k>
g = — a; =0, ..., (246)
1171174
3a2 4
Coz—ﬁz, C1:C2:0, C3_—1—3,
16864k
- 0’ = SAnAn - 07 LR
“ 6~ 3903942 7
(247)
and thus
16kc
Q(r) = ag(r—ro)3? + 67a05 (r—ry)’?
43520k>
(r—ro)?+---, (248)

71174
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3a? 4
H(r)=- 322< —ro)” - 13<r—”0) +cs(r—ro)*
16864k 5
T 249
390302 0 (249)
with two free parameters ag, cs.
(i) In the case [-2,—2] we get
33
A=—"—", 250
40k (250)
0 20kC7
ay=a,=az=ay=as=ag =0, = ,
1 2 3 4 5 6 7 334,
400k*
8_441 (3), ag=a;=0,..., (251)
a? 1
Coz—ﬁ, C1=Cy C';—O, C4——?,
40k
C5:C6:0, Cg=—"—>, 69:C10:0,..., (252)
63ag

with two free parameters ag, c;.
For all admitted values of n, the invariants (19), (20)
approach a constant as r — r(, namely,

A
BuyB™ = p2(p —1)(p = 3)%(11p? - 32p + 24) — 0

44
o, (253)
2
C
Cabcdcade :p2(p_ 1)2_0+ (254)

4
3a;

Note that for the permitted values of p, the invariant (253)
cannot vanish, and therefore this class does not admit the
Schwazschild—(A)dS solution as a limit.
Moreover, since n < 0, it follows from (10) that
Fr=Q= - = 0

agA”" + (255)

) [+2N+P-2 j

as r — ry. Thus this limit corresponds to an asymptotic
region, where the standard metric functions (11) behave as
h = —acoA¥" 2 4 o~ P2 4 (256)

— 00,

f=-n*ceA¥ 4+ ~F 4+ > o0 (257)
Note that, in the notation of [8,10], these solutions would
be described as families (s,7) = (-2,4 — %)oo with J € N,
J >3, i.e., with the parameter 1 € [%,4).

To conclude, the class [-J/2,2 —J] with A uniquely
determined by (241) is, in fact, an infinite discrete family of
metrics parametrized by an integer J > 3. They all have a
regular Bachian infinity because both the Bach and Weyl
invariants approach a finite nonzero value (253), (254) in
the asymptotic physical region 7 — co. In particular, for
J =3 the metric functions are expressed in terms of the
series (248) and (249).

VI. DISCUSSION OF SOLUTIONS USING THE
EXPANSION IN POWERS OF r-!

Now let us study and classify all possible solutions to the
field equations of QG in the case of an asymptotic
expansion as r — oo. Here we assume that the metric
functions Q(r), H(r) of (9) can be expanded in (negative)
powers of r as (33), (34), that is

(258)

Employing these expansions in the field equation (25), we
obtain

&) [+2N-2
r Y Ao (I—i+N=2)(1=3i+3N-1)
[=—2N+2 i=0

S - 1-3)(1-2) ().

(259)
3 I=—P+4

The second field equation (26) gives

r! Z ZAiAj—iCl—j+2N+P—2(j —i=N)(I-j+3i-N-2)

[==2N—-P+2 Jj=0 i=0

[+2N [+4N

£y 2 Aoy = A >y

I=-2N i= I=—4N m=0
1 © 14-2P—4
I=—=2P+4 i=0

and finally, the trace equation (27) leads to

m I-m+4N
ZA A )( > AjAl_m_,,-+4N>

=0

Y C,-C,_i+2p_4(i—P)(l—i+P—4)(l—i+P—3)<l—%i+§P—§>], (260)

2 2
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o0 I+N+P-2
r—l E
[=—N-P+2 i=0
I+3N
1 & 2 -
-1 _ -1
T3> A=A Y )
I=—N I=3N =0

Expressions for the coefficients C; in terms of A;s can be
obtained by comparing coefficients appearing at the same
powers of r~! on both sides of (259). The terms with the
lowest order imply that there are three distinct cases:

(i) Case I*: —-2N+2<—-P+4,ie., P <2N+2,
(i) Case II*®*: -2N+2 > —-P+4,1ie., P> 2N +2,
(iii) Case III*®: -2N +2=—-P +4,ie., P =2N +2.

In what follows, we derive all possible solutions in
these cases.

A. Case I*®
For — 2N + 2 < —P + 4, the highest order (namely r~,
—[=2N —2)in (259) gives

N(N +1) =0, (262)

and thus only the cases N =0 and N = —1 are allowed.
Since the leading orders appearing in (261),

[6N(N +P—1)+ P(P—1)]CorN*P=2 + ...

N AT e (263)

P-2

for N = 0 are r’=2, 1, and 7, respectively, the condition

Z AiAjiA1-ji3N-
i=0

am+ww4@w4+P—au—n+éo—mu—P+n

j (261)

|
0=2(—1+AA})r°, leading to A3=1/A. Then Eq. (261)
implies A = 3/(8k).

In contrast, the case N = —1 cannot occur since the
leading powers are =3, r~!, and r~3, respectively, how-
ever, the condition P —3 <2N —1 = -3 < —1 implies

that the highest order in (263) is 0 = —2r~!, which is a
contradiction.
To summarize, the only possible solutions in Case [* are

1
NPl =[0.<2/™ with A} = = and
3 8k
A= Sk (so that A} = 3 ) (264)
B. Case II*

The condition —2N + 2 > —P + 4 implies that the high-
est order (namely 7=/, [ = —P + 4) in (259) is on the right-
hand side, which gives

P(P-1)(P-2)(P-3)=0, (265)
leading to four possible cases P =0, P =1, P =2, and
P = 3. For these four cases, the leading orders of (261),

P—-2<2N =0 implies that the highest order is i.e., (263), read
|
for P=0,N < =1:[6N(N—=1)]CorV 2+ -+ = =2rN + . +4APN + ... (266)
for P=1,N < =1/2: [6N*]CorV=t + -+ = =2rN + - +4APN 4 -+ (267)
for P=2,N <0: [6N(N + 1) +2]CorN + -+ = =2rN + - + 4APN 4 ...
= necessarily (3N? + 3N + 1)Cy = —1, (268)
for P=3,N <1/2:[6N(N +2) +6]Cor™! + - = =2/N .. 4 4APN - .
= necessarily N = —1. (269)

Equations (266), (267) do not admit solutions for N < —1
and N < —1/2, respectively. For the case P = 2, implying
N < 0, we employ the leading orders of Eq. (260),

3A3[N(3N +2)Coy + 1]r2N + 2k(C2 - 1)

—3AARAN 4. =0, (270)

[
which requires (3N? + 2N)C, = —1. In combination with

(268), we obtain N = —1, Cy = —1.
To summarize, the only possible two classes of solutions

in Case II*® are

IN.P] = [-1,3]>, (271)
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[N,P] = [-1,2]>. (272)
C. Case III®

For P =2N +2, the highest order (which is r7,
[ =2 —2N) in (259) appears on both sides and implies

leading to three possible subcases P =0, P =2, and
3A3 = —4kCy(P — 1)(P = 3) with P#0, 1, 2, 3, corre-
sponding to N = —1, N = 0, and 3A} = —4kCy(4N? — 1)
with N # —1,—1/2,0, 1/2, respectively.

For these three cases, the leading orders of (261),

[(1IN?+6N+1)Cy—2AA PN+ =—rN ..., (274)
P(P-2) [3A(2) +4kCo(P —1)(P -3)] =0, (273) read (note that necessarily N > 0):
|
for N=-1P=0: (6Cy—2AA3)r= +--- =—r~! +--- not compatible, (275)
for N=0& P=2: Co—2AA}+ - = =14+ = Cy=—1+2AA}, (276)
for 3A3 = 4kCy(1 — 4N?): (1IN? + 6N +1)Cy —2AA5+--- = 0. (277)
Equation (260) for the case (276) requires VII. DESCRIPTION AND STUDY OF ALL

3A3(1 — AA3) + 2k(C3 — 1) = 0, which after substituting
for C, from (276) gives (1 — AA3)(8kA —3) = 0. Thus,
there are two possibilities:

AA%):1:>C0:1, (278)
and
3 3 .,
A—§=>CO—HCAO—1. (279)

In the case (277), the two conditions, namely 3A7=
4kCy(1—4N?)=—4kCy(P-3)(P—1), with P #0, 1,2, 3
(and thus N = P/2 — 1 # —1,-1/2,0,1/2), and (11N> +
6N + 1)Cy = 2AA3 (for N > 0, N # 0, 1/2) imply

3 1IN? + 6N + 1 3 A2
8k 1 —4N?

wioan: (280

The highest order of Eq. (270) is then identically satisfied.
To summarize, in Case III®, there are three possible
classes of solutions

[N,P] =[0,2]° with AA} =1, Co=1, (281)
NP =[0.2]%° withA=—-, Cp=—A2—1 (282)
’ - w _Sk’ 0_4k 0 s
3 11N> 46N +1
N, P] = [>0,2N + 2|® ithA=——~ """ T~
N FI =202V +27 i 8k 1-4N?
3 A 1
= — —. 2
Zakioan V73 (283)

POSSIBLE SOLUTIONS IN POWERS OF r-!

In this section, by solving Egs. (259), (260), and the trace
(261), we will study all spherically symmetric solutions
contained in Cases I*°, II®°, III*® in the asymptotic region in
the coordinate r, i.e., as r — co. As follows from the
previous section, there are six classes of solutions to be
discussed, namely (264), (271), (272), (281), (282),
and (283).

A. Schwarzschild-Bach-(A)dS black hole in the class
[N.P]=[-1,3]°: Near the singularity
The expansions (33), (34) in negative powers of r for
N = —1, P =3, which is the class (271), give

1 B

a1=-141(

r r

2.1 11 21
9C3r  6CHrt  15Cyr°

+> (284)

A A P o1
= P2 (=2 )4+ Bl——— _
Hir) =3 -r (3 rh) At (cg 90k C3 73

11 Lo
140k Cr* 210kC3rP )7

(285)

which represents the Schwarzschild-Bach-(A)dS black hole
in QG, and for B = 0 reduces to the Schwarzschild-(A)dS
solution (87) with the horizon located at ry,.

Since in the limit r — oo we obtain 7=Q(r)~—1/r—0
and H — oo, the physical origin 7 =0 represents the
curvature singularity, cf. (304). Note also that h(F) ~
1/(r,7) = oo and f(7) ~ h(7), see (11). In what follows,
we derive this class of solutions.

Equation (259) gives (relabeling | — [+ 2) all C;; in
terms of Ao, ..., A;_,, starting from C, = 0:
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3
k(I=2)(1-DI{I+1)
-2

XY AAL (1= 1= i)(1-2=3i),
i=0

Cl+1 =

V>3
(286)

Equation (261) determines all A; in terms of Ay, ...
and Cy, ..., C,, starting from A;:

’Al—l

I—

J
1
A E AAJ lAl—j 3 — gAl 1
J i=0

w

ZZCOA[ -

Wl

\ I
=

1
—ZC,-A,_,- [l(l—i) +eili+ |, VIix>1.
i=1

(287)
Finally, the additional constraint, namely,
-1
C,=———, 288
= (28)

follows from the lowest nontrivial order / = 0 of the field
equation (260).

Thus, this class has four initial parameters A,, Cy, Cj,
C;. The constant C, is given by (288), and A,, C, 5 for all
[ > 1 by the recurrent relations (287), (286), namely,

C4:0, CSZO,
C,+1)*C, - 9C3(A3A-3C
cﬁzAg( 1+ D )+3 ol ’) . (289)
2430C3k
(Ci+1) (Cp+1)?
A = —Ag—L Ay, = Ag—L 290
1 0 3C0 2 0 96% ( )

(CL+1)2(13+7C)) +54C5C; — 18AASCT
243C3 e

(291)

1. Identification of the Schwarzschild-(A)dS black hole

For this class of solutions of the form (258), the curvature
invariants (19), (20) read

C 2
BabB“b(r - o0) = (45A_2C6> ,
0

| 2
Cuhch“b‘d(r - 00) ~ lzﬂré.
0

(292)

To identify the Schwarzschild-(A)dS solution, we have to
set the Bach tensor to zero, which is achieved by setting

Ce = 0. (293)
This is equivalent to 27C5C3=(C,+1)*(C,—2)+9AA}C3.
Then the sequence A; reduces to a geometrical series, while
the sequence C; truncates to a third-order polynomial

Ci+1\!
A; :AO<— ;go > for all i > 0, (294)
Cc?-1
Cy=———.
273G,
C.— (CL+1)%(C, —2) +9AA3C}
’ 27C3 ’

C;=0 foralli>4, (295)
and the metric functions can be expressed in the closed
form

_ A i G 1Y

r pary 3Cyr

Ag
= , 296
+(C1 +1)/(3C) (296)
c?-1
H(r) = Cor* + C1* + 31C0 r
(C,+1)%(C;-2) + 9AA2C2
297
* 27C3 (297)
Choosing a gauge (13) such that
Ay = -1, C,=-1, (298)
the metric functions simplify to
_ 1 A, ;
F=Q(r)=——, H(r)z;—r + Cor’,  (299)
r

which is the Schwarzschild-(A)dS black hole metric (15),
where C, is given by the horizon position r, and the
cosmological constant A as

1
- (300)
h

A
o= (3-0)
3)r

see (87).

2. More general Schwarzschild-Bach-(A)dS black hole

For a more general solution with a nonvanishing Bach
tensor, see (292), it is convenient to introduce a dimension-
less Bach parameter B proportional to Cg. Employing
(298), Cs = —(C3 —£)/(90kC,), and thus we choose
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(301)

A

Using (301) and the gauge (298), the recurrent relations
(287), (286) simplify to

2B B

A==l A=0. h=0. A=ga. Av=ge.
2B B(10B—9) 7B(3+40kA)
STIscy TCT T sIc 9720kCE T

(302)

T
co=2 48 Cy=0
oty T
B B
C :O’ - ) C = T A
: ° " 90kCE T 140kCE
B
= - 303
ST 210kCS (303)

giving the explicit expansions (284), (285).
Finally, the corresponding curvature invariants (292) at
7 =0 read

_ 1 BZ
a2t

CupeaC?(r — 00) ~ 12C3r% — o0,

B.,B(r - o)
(304)

To conclude, the class [—1, 3]®, with the metric functions
expressed in terms of the series (284) and (285) around the
physical origin 7 = 0, represents the Schwarzschild-Bach-
(A)dS black hole. As was already pointed out in [15] for the
A = 0 case, this metric may, in fact, represent a distinct
Schwarzschild-Bach-(A)dS black hole from the one in the
[0, 1] class discussed in Sec. V B.

B. Bachian-(A)dS vacuum in the class [NV,P]=[-1,2]®

Now we will analyze the second possibility (272) in
Case II*. Afterrelabeling [ — [ + 2, Eq. (259) for N = —1,
P =2 yields

3
k(i—2)(I=D)i(I+ 1)

-2
X A (1-1=i)(1-2=3i) V>3,
i=0

Clz

(305)

Equation (261) in its lowest orders r~!,

and C; as

r~2 determines A,

1
Al — EA()C], CO - —1, (306)
while for higher orders gives
5 I3
=3A > AALAL
j=0 i=0
I-1
=3 G (1= 1= 1)+ g =20 1)
i=1
VIi>3 (307)

There are no additional constraints following from
Eq. (260). There are thus three free parameters, Ay, Cy,
C,, and all other coefficients are determined by the
recurrent relations (305), (307), e.g.,

A 1

A 2
Ay ==2C (2420, -ZAA2),
4 3
A
Ay = ?0 [C‘; +3C3C, + C3
2

Aj
2 +4C, - 8(23C% + 12 A
+192k [CT +4C, — 8(23CF + 12C,)kA]

4

+ A—A(SkA - 1)} (308)

144k

2

240k

4
C; =0, Cy = <02 +4C, — 3AA3>,
A}

C
57 240k

4
C, <C2 +4C, - 3 AA%),

A2 32
Co=—0 |A2(3=Z2kA ) + 4k(59C2 + 26C
™ 6720042 { 0< 3 > +AK(59CT + 2)]

4

1. Identification of Minkowski and (A)dS spaces

First, let us observe that in the limit » — oo, the scalar
invariants (19), (20) remain finite,

300

B,,B?(r — ) = A8 cs,
abed 12 2
Cahcdc (7’ - 00) A4 4C4’ (310)

suggesting that there is no physical singularity there. Both
the Bach and Weyl tensor invariants vanish iff C, = 0, i.e.,
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C, = —1C} + 1 AAJ. Then all the coefficients (308), (309)
simplify to A; = Ay(5Cy)' forall i,and C; = Oforall i > 3,
respectively, so that the metric functions reduce to

H(r) 3AA2—<r——C1>2 (311)
Employing the gauge freedom (13), we may set
Ay = -1, C;=0 (312)
Then the metric functions simplify to
7:Q(r):—%, H(r):%—rz. (313)

Comparing with (15), this case C4 =0 corresponds to
Minkowski or (anti-)de Sitter space with vanishing Bach
and Weyl tensors. For A > 0, there is a cosmological

: _ /A
horizon at r5, = \/;

2. Bachian-(A)dS vacuum

Let us return to the class [N,P]=[-1,2]® with a
general Bach tensor (310). Using the gauge (312), we
introduce a dimensionless Bach parameter

A
B” = (C2 —g)k

so that C4y = (C, — %A)/(60k) = B,/(60k?), cf. (309).
The coefficients (308), (309) then take the form

(314)

Ag=-1. A =0.  A=-2 =0

Ay=—5 oo (1 8kA+48B,).  As=0.... (315)

Co=-1, ¢, =0, =200 ¢ o
k30

Co = Jegoqp O+ 24KA +104B,). .. (316)

leading to the metric functions

1 B, /1 1 /1 1
Q) =—-—t(r kA + B
) == (3+5er (48 6T )+ )

(317)

A B 1
H(r) ———r2+—”<1+—

3 k 60kr2
+ SEINLEY' (318)
700k%7* \ 8 3or) )

and the curvature invariants (310)

b B}
B, B% ,
wB(r =) =173
B}
Cabcdcade(r - 00) ~ 300](4}"4 = 0. (319)

In the limit r — oo, the metric functions behave as
Q~—1/r and H~%— 7% +2 From (10), (11) we thus
obtain

F=Q(r) -0,

hel, fel,

(320)
i.e., at the physical origin 7 = 0, both metric functions &
and f remain nonzero and finite, and there is no horizon,
nor singularity therein.

To conclude, the class [—1, 2], with the metric functions
expressed in terms of the series (317) and (318) around the
physical origin 7 = 0, describes a one-parameter Bachian
generalization of Minkowski or (A)dS spacetime with a
nonzero Bach tensor whose magnitude is determined by the
parameter B,. This Bachian-(A)dS vacuum is a “massless
limit” of the class [—1,3]®, corresponding to Cy =0 in
(299), cf. Sec. VIIB 3.

3. The class [-1,2]° as a limit of the [—1,3]® class

A limiting procedure between the class of solutions

[—1,2]®, described by (305)—(307) with the coefficients
denoted here by hats, and the class [—1, 3], described by
(286)—(288), requires
CO—)O, Ci—)éi_], 121, Ai—)Ai, lZO (321)
Then the relation (287) for [ =1, ie., 3CyA; =
—Ao(1 + Cy), gives

C, - -1, ie, Cy=-1. (322)

The relations (286) for C,,; and (305) for C‘l are the same,
and the relation (287) for A;

P 1
ZZCOAlng ZA iAl—j—?a_gAl—l
j=0 i=0
1. .
_ZCA, ,{ —i) 6(l+1)], Vi>1, (323)
for Cy =0 leads to
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(324)

which is exactly (307).
Note that the four free parameters A, Cy, C;, C; of the

[—1,3]* family reduce to three free parameters Ay, C,, C,
of the [—1,2]*® family since two parameters become fixed
(Cy—0, C, > Cy=—1) and one parameter C, = C;
becomes free (3C,C, = C? — 1 — 0).

C. Nariai-Bach solutions in the class [NV,P]=[0,2]®

In this section, we will show that the class [0,2]®
contains static spherically symmetric Nariai spacetime
and its Bachian generalizations. Only the non-Kundt
solutions with discrete values of A given by Eq. (343)
can be transformed into the standard static spherically
symmetric form (8).

For [ > 3, Eq. (259) gives

AgAro(1=2)(I - 1)

= %kC,_z(l —4)(1=3)(1=2)(1-1)
- liAiAl_i_z(l —i=2)(1=-3i=1), (325)
i=1

which for / = 3, 4 yields
(326)

respectively. For [ > 1, the trace equation (261) implies

A [2AA3<1(1— 1) —§> — (- 1)] +éC,A0(l—2)(l— 1)

-1

. o
= —;CiAl—i |:(l— l)(l— 1) —|—8(1 - 2)(1 — 1):|

2 -1
+3A [ AoAA +
i=1

=

-1 j
D AALAL j} . (327)

j=1 i=0
where we employed the relation
Cy =2AA3 -1, (328)

which follows from the leading order of Eq. (261). Finally,
the leading term of Eq. (260) gives

(AA2 —1)(8kA —3) = 0. (329)

Similarly as in the class [0, 2] investigated in Sec. V E, we
have two cases to consider, namely,
A >0,

a)AAZ =1, (330)

b)A=_,

- (331)

see Egs. (281) and (282). Let us discuss these two distinct
cases separately.

1. Case a) AAﬁ = 1: Nariai(-Bach) spacetime
Recall that A; = 0 = A,, see (326), and from (328) with
(330) we obtain
Co=1. (332)
Assuming A; =0 for all 1 <i</[-1, and C; =0 for
3<i<li-1,1>4, Egs. (325) and (327) give (also for
[ = 3) the relations

Ay — C%k(l _1)(1=2)=0, (333)
A [2AA5(1(1_ 0 —é) — (- 1)}
+CA, é (I-1)(1-2)=0. (334)

This is a system of two linear equations for two unknowns
A,;, C; with the determinant

é(l—l)(l—2) [A3+2k[zmg<z(z—1)—§> ~1(1- 1)H,
(335)

which, after substituting from (330), reduces to

(I=1)(1-2) Ll\+2k<1(1— 1)—2)], 1>3. (336)

AN =

Therefore, we have to distinguish two subcases:
(1) For a generic value of A > 0 this determinant is
nonvanishing, and necessarily
Cl = 0 =A i

for all /> 3. (337)

The only such solution is thus

1
Q:Aozﬁ,

so that the metric (9) reads

H(r)=r*+Cir+C,, (338)
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(ii)

ds? = A}(d6? + sin® 0d¢?)
+ A3[(r* 4+ Cyr + Cy)du? — 2dudr].  (339)
After performing the transformation

1

1
r:1(4c2 —C%+A2172)?+5(Aﬁ—cl), (340)
4 At
U = ——arctan | ———— 341
V4G, — C? <\/4C2 - C%) (341)

(and dropping tilde symbols), or for C} = 4C, using
the gauge freedom (13) and the scaling Aju — u, the
solution reduces to

1

ds? = — (d6#? + sin® d¢?) — 2dudr + Ar*du®.

>

(342)

This is the metric of the Nariai spacetime [28]
which in Einstein’s theory is a vacuum solution of
algebraic type D. In fact, it belongs to the class of
direct-product geometries, see Chapter 7 of [17]. In
particular, it has the Kundt form (18.49) fora = A/2
therein (see also [29-31]). It is a nonsingular,
homogeneous and spherically symmetric Einstein
space. Interestingly, since the conformal factor
Q = A, is constant, and thus 7 = Q = const., this
solution cannot be transformed into the standard
static spherically symmetric coordinates (8).

To conclude, the class [0, 2]® with AAZ =1 and
arbitrary A > 0, with the metric functions expressed
in terms of (338), represents the direct-product
(5% x dS,) Nariai solution (342).

The second branch of the [0,2]*® class of solutions
obeying (330) exists only for special discrete values
of the cosmological constant A > 0, such that

3
T 2kBL(L-1)-4]
L>3 k<0. (343)

where L € N,

The determinant (336) vanishes, in which case C|,
C,, together with a new Bach parameter

B, =C;, (344)

are three free parameters. Recall that
Ay =—F4= Cy=1, (345)
but A; =0 for 1 <i<L -1, and also C; =0 for

3 <i < L —1. The first nontrivial coefficient A; is
given by (333),

064049-35

AL = %k\/X(L —1)(L-2)B;.  (346)

and all the subsequent coefficients C;, A; for i > L
are determined by (325), (327) as

BI(I=1)=4U,_, —3Al(I+ 1)V,
(I+1)I(1=1)(1-2)[BA2 =8k + 6kI(I—1)]’
AUy +2kI(1+ 1)V,

A==307 1){[3A2 — 8k + 6kI(I—1)]° (347)

1=

where

-1
Ui =Y Adi(I=i)(1=3i+ 1),
i=1

-1

. 1. :
Vier =3 G| (1= )= 1)+ 0= )i -2
i=1
2 -1 -1 j
—3A <Z AVAAL + ) ) T AA AL j>.
i=1 j=1 i=0
(348)

Thus, the metric functions take the explicit form

1 © .
Q(r) = =t Aprt+ ) A (349)
i=L+1

H(r) =r> 4+ Cyr+Cy + By r* ™t + Z C;r*i,
i=L+1

(350)

where, A; and A;, C; are determined by (346) and
(347).

This is clearly a Bachian generalization of the
Nariai metric (339), to which it reduces when
B, = 0. Since now 7 = Q(r) is not a constant, it
is possible to transform these Nariai-Bach space-
times to standard static spherically symmetric coor-
dinates (8).

For r — oo, the leading terms of the curvature
invariants (19) and (20) read

1
BB (r—00) = (312 ~8L+8)(L—2)(L~1)*
X (L+1)*A*BF r=2k 4.,
(351)

16
Cabch”th(r e OO) = ?Az + LR (352)

Also, from (10), (11) we obtain
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1
Fr=Q(r) > Ay = —, 353
(1) = 4o = —= (353)
(AL)Z/L 20 (7 2
he AT S LA -4 =0,

(354)

Although the discrete-A spectrum of possible
solutions (343) in this case [0,2]* is the same as
the spectrum (171) in the case [0, 2], these two
metrics do not describe the same solution since only
the [0, 2] case [the extreme higher-order (discrete)
Schwarzschild-Bach-dS black holes] contains the
Schwarzschild-de Sitter limit for vanishing Bach
parameter. The Robinson-Trautman-type metric
[0,2]* given by (349), (350) is a generalization
of the Nariai metric (of the Kundt type) to a
nonvanishing Bach tensor.

To conclude, the class [0, 2] with AA% =1 and
the discrete values of A given by (343), for which the
metric functions are expressed in terms of the series
(349), (350) around a finite point 7 = \/LX represents
a spherically symmetric generalization of the Nariai
metric to a nonzero Bach tensor, which can be called
Nariai-Bach spacetimes.

2. Case b) A= 8ik = ﬁ: Another Bachian

generalization of the Nariai solution
Let us now investigate the second distinct case of
possible solutions in the class [0,2]®, namely (331).
Equations (325) and (327) lead, as in previous Case a), to
the system (333), (334) with the determinant (335), which
for (331) is proportional to

343 — 4k. (355)

Therefore, either the determinant vanishes for A2 =
1k & 2AA3 = 1, which using (328) implies Cy = 0, i.e.,
a contradiction with our assumptions, or the determinant is
nonvanishing, leading to trivial solutions C; = 0 for all
i>3,and A; = 0 for all i > 1. This solution thus has only
three free parameters A, C;, C,, while C is determined as

3
Co=2045 1= AF-1.

see (328) and (282). The explicit metric functions read

(356)

Q=A, H(r) = Cor* + Cir + C,,  (357)
and lead to a direct-product metric
ds? =A3(d6? +sin’0de?)
+A3[((2AA3=1)r* 4+ Cr+Cy)du? —2dudr],  (358)

whose invariants (19), (20) are constants

4A 2 (Bk—3A%\?
BabBab = (3_14(2) (1 - AA(Z))) = < 16k2A(2)0> s (359)
16 3

Cabcdcade = ?Az =7 (360)

4K*”
Clearly, the Bach tensor vanishes and the solution (358)
becomes the Nariai spacetime (342), which is an Einstein
space (with B, = 0), if and only if A = 1/A & Aj =%k

The direct-product solution (358) is of the Kundt type,
and cannot be transformed into the standard static spheri-
cally symmetric coordinates (8) since 7 = £ = const.

To conclude, the class [0,2]® with A = 3/(8k) neces-
sarily leads to the metric (358). It represents another
Bachian generalization of the Nariai solution (342) which
belongs to the Kundt family.

D. Plebanski-Hacyan spacetime in the
class [N,P]=[0,<2]|®

In what follows we will show that, in fact, this class
admits only the Kundt-type spacetimes [0, 1]® and [0, 0]*.

First, for P ¢ N, Eq. (259) implies Cy, = 0 which must
be nonzero by definition. Therefore, P is necessarily an
integer.

For all P < 2, Egs. (260) and (261) at the order r° give
the conditions 343(1 — AA3) — 2k = 0 and 2AA} — 1 =0,
respectively, which imply

3 4k 1
A=2>0, and Ag=+\|o=+—o. (361
gk e Ao 3 —t 5y G

Let us now investigate the following three distinct pos-

sibilities, namely P =1, P =0, and P < 0.
(i) In the case [0, 1]®, Eq. (259) at the orders r~3 and
r~* gives A; = A, = 0, respectively, while at the

-5 -6 I B _ 2kCy _ 2kCy
orders r—>, r~° and r~' it yields A; = 30 Ay = Ao
_ 4Gy - 4
and A5 = Ao respectively. At the order r™,

Eq. (261) implies C, = 0. Let us use the mathemati-
cal induction to prove that all C,,A,_; vanish for
£ >2. So, let us assume that A, =A, = ... =

AJ:(), C2:C3:...: j—l:()’ and Al+]:
ﬁ(l —1)IC, for l € {j, j + 1}. We prove that then

C;=0=A;,, and also that Aj+3:ﬁ(j+l)(j+2)
C;,». Indeed, Eq. (259) at the order r~U*5) gives

k. .
Az =7+ 1) +2)Cjrn,  (362)
34,
while (261) at the order »~U+2), using (361) and also
the expressions for A jH,A 425 yields

CoC; =0, (363)
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(i)

which implies C; =0=A;,,, and thus C,,A,_;
vanish for all £ > 2. Therefore,

7= Q = Ao, 'H(r) = Cor + C]. (364)
The metric (9) with such functions can further be
simplified using the coordinate transformation

2 (@ i (o, 1) _Ci
u—=— — | r=-—5\—<7r N —
Co "\A2 2\2""¢) ¢

(365)
to the form

ds? = A}(d6* + sin” d¢p*) — 2dudr. (366)
This is a simple direct-product S* x M, geometry.
Actually, this is the Plebariski-Hacyan spacetime
with A > 0, see the metric (7.19) in [17]. Interest-
ingly, it is a type D electrovacuum spacetime in
Einstein’s theory, while here it is a spherically
symmetric vacuum solution to QG, with the radius
A, of the sphere S? given by

== (367)
The curvature invariants are
R,, R = 8A2, CypegCoed = ]3_6 A2,
B,,B® = %A“, (368)

i.e., the curvature invariants are constant, and the
nonvanishing Bach tensor is uniform. Notice again
that, due to 7 = A, this Kundt-type solution cannot
be put into the standard static spherically symmetric
coordinates.

In the case [0,0]%°, Eq. (259) at the orders r— and
r~* again gives A; = A, = 0, respectively, while at

5 -6 -7 _2%C _ %C

the orders >, r° and r/, Ay = 3701, Ay = AOZ’
4 . _ _

and As = ﬁ?, respectively. At the orders r~>, 75,

r~7, Eq. (261) implies C, = C, = C; = 0, respec-
tively. Using the mathematical induction we again
prove that all C, =0 = A, for £ > 1. We assume
that Al :Az = ... :Aj—H :0, C1 = C2 = ... =
Cj—] = O, andAHQ = ﬁ(l-‘— 1)lCl forl e {J,J+ 1,
j+2} and prove that then C;=0=A;,, and
Ajs =54 (j+4)(j +3)Cjy3. Indeed, Eq. (259)
at the order r~U+7) gives

(iii)

To

S x M,

064049-37

k. .
Ajps = 3Tq)<J +3)(j +4)Cjy3,

(369)
while (261) at the order r~U+%), using (361) and the
expressions for A j+2’A s yields
CoC; =0, (370)
which implies C; =0=A;,, and thus C,, A,
vanish for all # > 1. Therefore,
;‘:Q:Ao, H(r) = Co, (371)
which is the special case of (364). With the coor-
dinate transformation

oG

r:A—%—I——u, (372)

2

we again obtain the metric (366) of the Plebanski-
Hacyan direct-product spacetime.

Finally, the case [0, < 0]® with P <0 is, in fact,
empty. Indeed, using the mathematical induction we
show that A, for 1 <i <1 — P vanish. Forall P < 0,
Eq. (259) at the order r—3 implies A; = 0. Let us
assume that all A; for 1 <i<j—-1, j<2-P,
vanish. Then Eq. (259) at the order r~/=2 gives
ApA;(j+1) =0, which implies that also A; = 0.
Thus the second nonvanishing coefficient (after A,)
is A,_p which is determined by the order r’~* of
Eq. (259),

C
As_p = kP(P — 1)3%0.

(373)

Then, using (361), Egs. (259) and (261) at the orders
r?P=6 and r?’~* yield

2(5-2P)AgAs0p +(P—1)A7_,

_%‘kcz_m _P)(3=2P)(5-2P) =0,

1
~2445p+Colap |3(2= P)(3-2P) +P(P~1)
—6AA0A%_P +A0C2—P(1 —P)(3 —2P) :O,

respectively. A linear combination of these two
equations, using also (361) and (373), leads to

P(P—-1)(P—-2)(5P>-21P+20)C3 =0, (374)
which for integers P < 0 would imply Cy =0, a
contradiction. Therefore, this class is indeed empty.
conclude, the class [0,<2]® includes only the
direct-product Plebanski-Hacyan spacetime
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(366), (367) which is the spherically symmetric vacuum
solution to QG with A = 3/(8k) > 0 and a nonvanishing
Bach tensor. As in the previous case, this Kundt metric
cannot be put into the standard static spherically symmetric
coordinates.

E. Solutions with regular Bachian infinity
in the class [N,P]=[>0,2N +2|®

Let us investigate the last possible class (283). Similarly
asin Sec. V I, in Eq. (261) the first and last terms start with
the power ", while the second one with §Ayr". Since in
all sums there are integer steps, to allow Ay # 0, the
expression 3N — N has to be a positive integer. Thus, N
must have the form

N=1J/2, where J €N, J>2 (375)
[recall that N =1/2 is not admitted, see (283)].
Consequently, N>1 and P=2N+2=J+22>4.

Then from Eq. (280) we obtain discrete values of the
cosmological constant A for J =2,3,... as

3 11J24+12J +4

32k 1-J2 '
9 33
hat A -] f
so that € a7 32k> or k> 0,
33 9
d A —— ——| fork<O 7
an € (32|k ’4|k|] or k <0, (376)
3 A%
=— . 377
0" 4k1-2 (377)

Notice that the product kA is always negative. From the

subleading term of (261) we get

2N(2N +1)2N - 1) C,
3(N+1) Ay’

A =-— (378)

and similarly we can express further coefficients for
any N = J/2. Let us present two examples for J = 2 and
J=3.
(i) In the case [1,4]®, there are three free parameters
Ay, Cy, Cs with the remaining coefficients deter-
mined by Egs. (259)—(261) as

9
Ai__a
4k
Cl 2C5
Al=—k—, Ay=A3=A,=0, As=k—>, ..,
1 AO 2 3 4 5 9A0
S SR e SR (TR e
4k 7 2A% 1A AL
32k kK*C} KBt
Cy - 1 (379)

T 147427 7AL T 448

and thus the metric functions take the form

C, . 2Cs
Q=Agr—k— +k=—2r44...
ol AO + 9A0 r + .
A3, 1 21kC?
—__-0 C 3_ - 1 1 2
H 4kr+ W r 7<+2A(2) r
2kC, TkC?
1 380
+7A(2)<+2A% r+ (380)
(i1) In the case [%,5]‘”, there are three free parameters
Ao, Cl’ C7, and
Y
256k’
16kC, 128k2C}
Al = - s 2 = 3
5A, 75A}
pe 2048k C3  8192k*C}
P 337543 t 1687547
_1310726°C3
> 25312549 T
343 _ 64kC?
0732k 2T 15A7
Cy = ————(225A% — 25088k2C3),
’ 11025Ag( 0 !
256kC
4= ———— (225A% — 6272k2C3),
165375A5
4096k2C?
Cs=———— "L _(1125A% — 12544k2C3),
: 12403125Ag( 0 !
8480k
6= o e (381)
38073A2

with C; appearing in A5, Ag, ... and Cg, Co, ....
For all allowed values of N, the curvature invariants (19),
(20) approach a constant as r — oo,

B,,B(r > ) = P2(P —1)?(P - 3)?
2 G
x (11P? = 32P 4 24)

Ak
(382)

: Cj
CoapeaC?d(r — o0) = P2(P —1)? 3_08 +o (383)

For all the permitted values of P =4,5,..., the Bach
invariant (382) cannot vanish, and therefore this class does
not include the Schwazschild-(A)dS solution as a special
subcase or a limit.
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Since

F=Q(r)=AgrN + -+ > o0, (384)
cf. (10), the limit » — oo corresponds to an asymptotic
region far away from the origin at 7 = 0. In this asymptotic
region, the metric functions (11) behave as

h = _A%COr4N+2 4o~ 7.4+2/N R

— 00,

(385)

f==-NCor*N +-- - ~F 4.+ > 0. (386)

Finally, let us observe that in the notation of [8-10],
these solutions correspond to the families (s,7) = (2,4 +
4/J) withJ € N, J > 2, i.e., with the parameter ¢ € (4, 6].
Interestingly, together with the case of Sec. VI with the
same spectrum of A [cf. (241) and (376)], they both
describe solutions with regular Bachian infinity and
together correspond to families (s,7) = (=2,4+4/J) ;.U
(=2.4=4/J) 53> i, (5.1) =(=2,1),, where t€
[%4) U (4,6].

To conclude, the class [J/2,J +2]* with A uniquely
determined by (376) is, in fact, an infinite discrete family of
metrics parameterized by an integer J > 2. They all have a
regular Bachian infinity since both the Bach and Weyl
invariants approach finite nonzero values (382), (383) in the
asymptotic physical region 7 — oo. In particular, for J = 2, the
metric functions are expressed in terms of the series (380).

VIIL. IDENTIFYING THE CLASSES IN THE
SPHERICALLY SYMMETRIC COORDINATES

Up to now, we mostly used the Kundt coordinates to
derive and analyze the vacuum spherically symmetric
solutions to QG with a nonvanishing cosmological con-
stant, found in this paper as power series in powers of
A=r—ry and r~'. In this section, we identify them in
terms of the standard notation used in the literature in the
spherically symmetric coordinates. This allows us to
establish the connection with the previously known classes
for A =0.

In Table I, solutions with A = 0 found in [8,10] near the
origin, and in [10,27] near a finite point 7 — 7y # 0 are
listed with (s, 7) and (w = —s, r) denoting the powers of the
leading terms of a Laurent expansion of the two metric
functions in the standard spherically symmetric form (8),
respectively,9

(387)
(388)

°Here, the arguments of the metric functions A(r), B(r) of [10]
are relabeled to 7.

TABLE I. Families of spherically symmetric solutions to QG
with A = 0 near the origin found in [8,10], and near a finite point
7 — ¥y # 0 found in [10,27]. The subscripts *“(” and **;,” indicate
an expansion around 7 = 0 and 7 = 7, respectively.

Family (s, 1), near the origin Family (w,1); near 7,
(0.0), (1.1,
(1. =1) (0.0);,
(2.2), (1.0),
TABLE II. The correspondence between the points around

which expansions are being performed in the Kundt coordinate r
and the spherically symmetric radial coordinate 7 = Q(r).

Corresponding n Corresponding N

F— for r — ry for r - o0
0 >0 <0
7'0 :0 :O
0 <0 >0

Since our calculations are performed in the “nonphysi-
cal” Kundt coordinates, for the physical interpretation, it is
important to identify the corresponding points in the
spherically symmetric coordinates, around which expan-
sions are taken. This can be obtained using (10), (29), and
(33), and is summarized in Table II.

Now, let us study the relation between the families (s, 7)
or (w, 1), and [n, p] and [N, P]®. The cases with n = 0 in
(32) or N=0 in (35) have to be treated separately.
Moreover, they contain special subcases that in the notation
(w, t) represent new classes with noninteger steps in

A:?_?O'

A. Classes [r # 0,p] and [N # 0,P]®
Using the expressions (11) with 7 = Q(r) and (29), (30)
for r - ry when n # 0, and (33), (34) for r - co when

N # 0, we obtain the relations between (s, ), introduced by
(387), (388), and [n, p|, [N, P]® as

(5.1) = (2_7’) 2+ 5) , (389)
(s.1) = (Z_TP,2+§>, (390)

respectively. For the solutions found in this paper, these are
summarized in Table III.

Note that power series expansions with integer steps in
the powers of A in [n, p] with n # 0, and in the powers of
r~Vin [N, P]*® with N # 0 correspond to integer steps in A
since A o« A and r o« A™!, respectively.
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TABLE III.  Values of (s, 7) for all solutions [n, p] with n # 0,
and [N, P]® with N # 0 found in this paper. The subscripts “ " and
“ & indicate the expansion for 7 — 0 and 7 — oo, respectwely.

Class [n, p] Class [N, P]® Corresponding family (s, 7)
[n. p] (E2,2+2)
[1, O] e (2,2)
[-1.2] (0,0),
[=1,0] (=2.2)q
[-3.2-J] (=2.457h,
[N, P]*® &GE.2+%)
[=1.3]* (1,=1),
[—1,2]® (0,0),
5.7 +2]° (-2.45)

Additional information about the cases discussed in this
section is summarized in subsequent Tables VIII, IX,
and X.

B. Classes [0.,p] and [0,P]®

When n = 0 or N = 0, there are the following subcases
(recall that in the class [0,2]%, necessarily A = A, =0,
see Sec. VII C):

1. Classes [0.p] with a; # 0

In the generic case with a; # 0, using (11), (29), (30), the
relations are

(w.1) =

These solutions are summarized in Table IV.
Similarly as in the previous case, integer steps in A
correspond to integer steps in A since A =7 — 7y ~ a;A.

(PP, (391)

2. Classes [0.p] with a; =0 # a,

p+2p
(W, t) B (—’_>
2 2 70,1/2

and these solutions are summarized in Table V.
Integer steps in A lead to half integer steps in A since
A ~ dy A2

In this case,

(392)

TABLE IV. Values of (w, t) for all solutions [0, p] with a; # 0.

Class [n =0, p] Corresponding family (w, t) for 7 — 7
(0. p] (P, P)s,
[0, 0] (0.0)5,
[0, 1] (L. 1)y,
[0, 2] (2,2);,

TABLE V. Values of (w,7) for all solutions [0, p] with
ay = 0 ?é aj.

Class [n =0, p] Corresponding family (w, ) for ¥ — 7y
p+2

[0, pla,—o (5= 5)5 102

[0,0],, o (1.0)5,.1/2

[07 l]a|:0 (%’%)70,1/2

3. Classes [0.p] with a; =a, =0 # a3, and [0,P]®
with Al =A2 =0 ?é A3

In this case, using also (33), (34),

(393)

(394)

and these solutions are summarized in Table VL.
Integer steps in A and r~! lead to steps in A!/3 since
A ~a;A’ and A ~ Ayr—3, respectively.

4. Classes [0,P]®

In this case,

2L+2-P P
(W’t): - 5 T )
L L)L

see Table VII.

WithAl =A2=... =AL—1 =0 ?EAL,L > 4

(395)

TABLE VI. Values of (w, t) for all solutions [0, p] with a; =
ar =0# a3 and [0, P]® with A} = A, =0 # A;.

Class Class Corresponding family (w, t)
[n=0,p] [N=0,P] for 7 — 7y
0. Play—aro X
[07 O]aI:aZZO (3 )ro 1/3
[O’ 1]al:a2:0 (% % 70.1/3

[0, PI% —a,=0 el

[0’ 2}3\01:Az:0 (2’ - %)?0.1/3
TABLE VII. Values of (w,t) for the solutions [0,2]® with
Al:AZZ ":AL—l:O?éAL'

Corresponding family (w, t)
Class [N=0,P|F_ _. o for 7 — 7

0,215 —a,_ =0 (2,-

2
Z)?O.I/L
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TABLE VIII. All solutions to QG that can be written as the power series (29)—(30), expanded in the Kundt coordinates around any
constant value r(. For some solutions, only specific discrete values of A are allowed (indicated by “disc.”). The symbols “(S)” and “(nS)”
indicate that a class contains or does not contain the Schwarzschild-(A)dS black hole as a special case. Note that the second and fourth
columns apply only to the generic cases with a; # 0 (see Sec. VIII B for the special subcases of the cases with n = 0).

Class [n, p] Family (s, ) A Interpretation Section
-1,2] (0,0)4 0 Schwarzschild black hole (S) VA
[0, 1] (-1, l);[) Any Schwarzschild-Bach-(A)dS black hole (near the horizon) (S) VB, VC
[0, 0] (0, O);(J Any Generic solution, including the Schwa-Bach-(A)dS black hole (S) VD
[0, 2] (-2, 2);0 Any Extreme Schwarzschild-dS black hole (near the horizon) (S) VEI1
[0, 2] (-2, 2);0 Disc. Extreme higher-order discrete Schwa-Bach-dS black holes (S) VEI1
[0, 2] (=2,2);, % Extreme Bachian-dS black hole (S) VE2
[-1,0] (-2.2) Any Schwarzschild-(A)dS black hole (S) VF1
[-1,0] (=2,2), Disc. Higher-order discrete Schwa-Bach-(A)dS black holes (S) VF2
[1, 0] (2,2), Any Bachian singularity (near the singularity) (nS) VG
[0,> 2] Empty VH
-4.2-J], (-2.8.4)), Disc. Solutions with regular Bachian infinity (nS) \2!
JeN, J>3

Integer steps in r~' lead to steps in A~/ since the family (1,0); ,/, of [10,27] with A # 0. Itis the

A~Apr Tt only family that describes a wormhole since f = 0
and h # 0 at 7y (H # 0, Q' =0 implies n = 0 = p,
a; = 0), see [10]. In particular, it corresponds to a

5. Physical interpretation of classes [0.p] and [0.P| wormhole with two different patches (half-integer

Apart from the generic cases [0, 0], [0, 1], [0, 2], [0, 2], wormhole), see [27];
discussed in Secs. VD, VB, VE, VII C, respectively, only (iii) family [0,0], _o, (only even powers in A are
the special case [0,2], _, has been studied so far, see considered, this is indicated by the subscript “g”),
Sec. VES5. For completeness, let us briefly discuss both for which the Bach invariant (19) is always non-
generic and also special cases in the [0, p| and [0, P]® vanishing, is a generalization of the family (1,0);, of
classes. Recall that the classes with [n = 0, p > 0] contain [10,27] for A # 0 and describes a wormhole with
horizons at r = ry = r,. two same patches (integer wormhole), see [27];
(i) Generic family [n, p] = [0, 0] has the highest number (iv) family [0,0], _o_,, Which can be denoted as
of free parameters, and it seems that it can be (%17())_ 13 in the notation of [10], is a generalization
connected to all the other solutions. It represents an w

expansion around a generic point in these spacetimes; of the family found in [15] in the case A = 0;
’ famil 1] = (1,1); is th h hild-Bach-
(i) family [0, 0],, o, for which the Bach invariant (19) is ) (iglésy b[?a:ck] hol(e ’ sgé“ Slzct {c]gc warzschild-Bac

always nonvanishing, represents a generalization of

TABLE IX. All solutions to QG that can be written as the power series (33)—(34), expanded in the Kundt coordinates as r — oo. For
some solutions only discrete values of A are allowed (indicated by “disc.”). The symbols “(S)”” and “(nS)” indicate that the class contains
or does not contain the Schwarzschild-(A)dS black hole as a special case. Note that some of these solutions are written only in the Kundt
form [indicated by*“(K)”] and cannot be transformed to the standard spherically symmetric coordinates.

Class [N, P]® Family (s, ?) A Interpretation Section
[-1,3]® (1,-1), Any Schwa-Bach-(A)dS black hole (near the singularity) (S) VIIA
[-1,2]® (0,0), Any Bachian (A)dS vacuum (near the origin) (nS) VIIB
[0,2]® e Any Nariai spacetime (K, nS) VIIC 1
[0,2]® (=2,=2/L);, Disc. Higher-order discrete Nariai-Bach solutions (nS) VIIC 1
[0,2]® e &= Bachian generalization of the Nariai spacetime (K, nS) VIIC2
[0,1]® ;—k Plebariski-Hacyan spacetime (K, nS) VIID
[0,0]® e & Plebanski-Hacyan spacetime (K, nS) VIID
5.J+2] (-2,(4,6]), Disc. Solutions with regular Bachian infinity (nS) VIIE
JeN,J>2
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TABLE X. All non-Kundt solutions, found and analyzed in this paper, sorted according to the physical regions in which the

[TEEIENT]

expansions are taken in the standard spherically symmetric coordinates. Subscripts “”, ““7,”, and “,,” denote solutions (s, ) or (w, )
[cf. (387), (388)] near ¥ =0, ¥ = Fy, and 7 — oo, respectively. Subscript “” indicates that only even powers are present in the
expansion, while “;,”, and “, 37, and “ ;. ” indicate that fractional powers are present. The number of free parameters is given before
and after removing two parameters by the gauge freedom (13) in the Kundt coordinates. In usual coordinates, only one parameter can be

removed by rescaling (17). The symbols “(S)” or “(nS)” indicate that a class of solutions contains or does not contain the Schwarzschild-

(A)dS black hole as a special case, respectively. “h-0” stands for the abbreviation of “higher-order.”

Family [n, p] or [N, P]® Parameters Free parameters Interpretation
(s,1) F—0
(2,2) [1, 0] ag, Co» Cps Cay 1o 6—4 Bachian singularity
AeR (nS)
(2.2)0 [1,0]¢ ag, ¢o, o 452 Bachian singularity
c;=0=c; AeER (nS)
(1,=1), [-1,3]® Ay, Cp, Cy, Cs 5-3 Schwa-Bach-(A)dS black hole
AER )
(0,0), [-1,2]® Ap, Cp, Cy 4 -2 Bachian-(A)dS vacuum
AER (nS)
(w, 1) F— Ty
(1, 1);U [0, 1] ag, Cos €15 T, 553 Schwa-Bach-(A)dS black hole
AER )
3, %);0. 12 [0, 1] ag, Co» To 42 “Unusual” horizon
a =0 AER (nS)
(0,0)5, [0, 0] ag, ay, Co, C1s Ca, Iy 7-5 Generic solution
AER )
(1,0);0.1/2 [0, 0] ag, Co» Cps Cay T 64 Half-integer wormhole
a; =0 AER (nS)
(1,0)5, ¢ [0, 0] ag, Cos To 42 Symmetric wormhole
a;=0=c; =c; AeR (nS)
(;-‘,0)7&1/3 [0, 0] ag, Cos C1s T 553 Not known
a=0=a AER (nS)
(2,2);, [0, 2] c1, 1y 351 Extreme Schwarzschild-dS black hole
A>20 S)
(2, 2);0 [0, 2] Ci,CL, Ty 351 h-o discrete extreme Schwa-Bach-dS
A > 0 disc. S)
(2, 2)70 [0, 2] ag, C1, T 351 Extreme Bachian-dS black hole
A =3/(8k) (nS/S)
(2, —%);0‘1 /L [0,2]® Ci,Cyr,ry 31 h-o discrete Nariai-Bach solutions
Al=..=A4,_,=0 A > 0 disc. (nS)
(s,1) 7= 00
(0,0), [-1,2] ag, ¢, ro 351 Schwarzschild black hole
A=0 S
(-2,2) [-1,0] ag, €3, Ty 42 Schwarzschild-(A)dS black hole
AER )
(-2,2), [-1,0] ag, €3, Cr 435 T 42 h-o discrete Schwa-Bach-(A)dS
A disc. (S)
(-2.(454) [—-4.2-1J] ag, Cay_1, 1o 31 Solutions with regular Bachian infinity
re3.4) J>3 A disc. (nS)
(=2.(454) 5.J+2]* Ao, C, Cyyyy 351 Solutions with regular Bachian infinity
t € (4,6 J>2 A disc. (nS)
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(vi) family [0,1], o= (3.3 7,12 18 a generalization
of the black hole found in ﬁS] in the case A = 0;

(vii) family [0,2] = (2,2); represents extreme black
holes (for generic A the extreme Schwarzschild-
dS black hole, for discrete values of A the extreme
higher-order discrete Schwarzschild-Bach-dS black
holes, for A = ;—k the extreme Bachian-dS black
hole), see Sec. VE;

(viii) family [0,2], _o with A = g represents the Bachian
generalization of the Nariai spacetime with an
extreme horizon, belonging to the Kundt class,
see Sec. VE 2;

(ix) family [0,2]® with a generic A (necessarily A; = 0
for all i > 1) represents the Nariai spacetime belong-
ing to the Kundt family, see Sec. VIIC 1;

(x) families [0,2]_ _, =0 = (2, —)_ 1/p> Starting
with L = 3, and A given by (343) represent the
higher-order discrete Nariai-Bach spacetimes with
steps in 7~1/E, see Sec. VIIC I;

(xi) family [0,2]* with A = £ (necessarily A; = 0 for all
i > 1) represents another Bachian generalization of
the Nariai spacetime belonging to the Kundt family,
see Sec. VIIC 2;

(xii) family [0, < 2]*®: only the solutions [0, 0], [0, 1]®
exist, and they represent the Plebanski-Hacyan
solution belonging to the Kundt family, see
Sec. VIID.

IX. SUMMARY

To conclude, let us summarize the solutions discussed in
this paper.

First, all families compatible with the field equa-
tions (25)—(26) in the Kundt coordinates as r — ry and
r— oo, in terms of the series expansions (29)—(31)
and (33)—(34), are summarized in Tables VIII and IX,
respectively. Their physical interpretation and the reference
to the corresponding section, in which these solutions are
studied, are also indicated. Note that the special subcases of
the cases with n = 0 are not included here, and can be
found in Sec. VIII B and in Table X.

In Table X, all the classes and subclasses found and
identified in this paper, both in the standard and Kundt
coordinates, are summarized. They are arranged according
to the regions, in which the expansions are taken in the
“physical” radial coordinate 7.
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APPENDIX: DERIVATION AND
SIMPLIFICATION OF THE
FIELD EQUATIONS

To derive the QG field equations (25) and (26) [with the
condition (27)] for the static spherically symmetric metric
in the Kundt coordinates (9), we employ Appendixes A—C
of [15]. After substituting (A13)—(A16), (BS), and (B7)—
(B10) of [15] into the field equations (2),

Rap = Ngap = 4kBab7 (Al)
we obtain
1
QQ" _ 29/2 — ng////’ (AZ)
1
(erH)// _ 2/\94 E— <2HH//// + HH" — 57_[//2 + 2) ,

(A3)

1 1
(HQQ/)/ + Qz _ AQ4 — 5k (HH//// + H/H/// _ E7_(//2 + 2) ,

(A4)

which are the nontrivial components rr, ru, and xx,
respectively. The yy component is identical to the xx
one, and uu is a multiple of the ru component.

Using (B11) of [15], the trace (7) of the field
equations (A1), R = 4A, takes the form

1 2
T=HQ +HQ + (W' +2)Q = §A£23, (AS)
which indeed follows from (A2)-(A4).

In what follows, our goal is to show that the three
nontrivial field equations (A2)—(A4) for the two functions
Q(r) and H(r) can be reduced just to two equations.

Introducing a symmetric tensor J,;, as

1
- _Rgab + Agab

JabERab D)

—4kB,,, (A6)
the vacuum QG field equations (3), assuming R = const.,
take the form

=) (A7)

For the metric (9), the nontrivial components of (A6) are
J rrs J uu —

_H‘Iru’

Joo = j(r)gxx = Jyy’ (A8)

where the function 7 (r) is defined as
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J=Q7? [(HQQ’)’ + Q2+ AQY-3T7Q

1 1
—§k<HH””+H’H”’—EH”2+2>], (A9)
and

1
J,, =207 [—QQ” +2Q7 + ng”’/] , (A10)

. 3
vber = _Q_3Q/(Jijgl] + H‘]rr) - 9_2 (HJrr,r + Jru,r + EH/Jrr> = 0’

vh‘,uh = _ZQ_SQ/(Juu + HJru) - Q_z(']uu + HJru),r

VP Ty = Q72 gt

where the spatial covariant derivative | is calculated with
respect to the spatial (2-sphere) part g;; of the Kundt seed
metric (9).

Using (A8), Eqgs. (Al4) and (A15) are identically
satisfied, while (A13) is the only nontrivial one. If the
field equations J,,. = 0 and J,, = 0 hold, then from (A13)
it necessarily follows that J;g7 =J, g% +J,,¢” =
27J(r) =0 and thus J,, = 0 = J,,. Therefore, due to the
Bianchi identities, there are only two equations that have to
be satisfied, namely J,, = 0 yielding (A2), and J,, =0
implying (A3), where 7 = %AQ3 given by (AS5) has been
used. They completely determine all vacuum QG solutions
of the form (9). The remaining equations J,, = 0 = J,, are
then automatically satisfied since necessarily J = 0, i.e.,

using (A9)
(HQQ') + Q% + AQ* — 3T Q

— %k <HH//// + H/H/// _ %H/Q + 2) . (A16)

By substituting 7 =3AQ?, see (A5), into (A16) we
immediately obtain Eq. (A4).

J, =Q72 [— % (Q¥H)" — AQ* +3TQ
— %k (ZHHW + H/H/// _ %H//z + 2)] . (Al 1)

Since the Bach tensor is conserved, V’B,,;, = 0, see (6),
the contracted Bianchi identities VR, = 3 R , then yield
Vblab =0, (A12)

which is valid regardless of the form of the field equations.
For the metric (9), this leads to identities

(A13)
=0, (Al14)
=0, (A15)

Thus solving the QG field equations (2) for the metric (9)
is equivalent to solving (A2) and

(QPH)" + 2AQ* — 6TQ

—_ % k (ZHH”” +HH" ~ %H’Q + 2) - (A17)

Substituting for H”” from (A2), these two equations (A2)
and (A17) can be simplified to the final set of the field
equations (25) and (26) for the metric functions Q(r) and
H(r), namely,

1
QQ" - 202 = kM, (A18)

1 1
QQH' +3Q*H + Q* — AQ* = §k (H’H”’ - EH“Z =+ 2> .
(A19)
Let us also note that, instead of the system (A18) and

(A19), one can alternatively solve equation (A18) and any
two equations from the set (A3), (A4), (AS).
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