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We derive a new metric form of the complete family of black hole spacetimes (without a cosmological
constant) presented by Plebański and Demiański in 1976. It further improves the convenient representation
of this large family of exact black holes found in 2005 by Griffiths and Podolský. The main advantage of
the new metric is that the key functions are considerably simplified, fully explicit, and factorized. All four
horizons are thus clearly identified, and degenerate cases with extreme horizons can easily be discussed.
Moreover, the new metric depends only on six parameters with direct geometrical and physical meaning,
namely m; a; l; α; e; g which characterize mass, Kerr-like rotation, Newman-Unti-Tamburino (NUT)
parameter, acceleration, electric and magnetic charges of the black hole, respectively. This general metric
reduces directly to the familiar forms of either (possibly accelerating) Kerr–Newman, charged Taub–NUT
solution, or (possibly rotating and charged) C-metric by simply setting the corresponding parameters to
zero, without the need of any further transformations. In addition, it shows that the Plebański–Demiański
family does not involve accelerating black holes with just the NUT parameter, which were discovered by
Chng, Mann and Stelea in 2006. It also enables us to investigate various physical properties, such as the
character of singularities, horizons, ergoregions, global conformal structure including the Penrose
diagrams, cosmic strings causing the acceleration of the black holes, their rotation, pathological regions
with closed timelike curves, or explicit thermodynamic properties. It thus seems that our new metric is a
useful representation of this important family of black hole spacetimes of algebraic type D in the
asymptotically flat settings.
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I. INTRODUCTION

In this contribution, we derive and analyze a new
coordinate representation of the Plebański–Demiański
spacetimes [1] describing a large class of black holes
(identified also by Debever [2]). It contains, as special
cases, all the well-known simpler black holes, namely the
Schwarzschild (1915), Reissner–Nordström (1916–1918),
Kerr (1963), Taub–NUT (1963) or Kerr–Newman (1965)
black holes, and also the C-metric (1918, 1962), physically
interpreted by Kinnersley–Walker (1970) as uniformly
accelerating pair of black holes, see e.g., [3,4]. These
accelerating black holes can also be charged, rotating, and
can admit the NUT twist parameter.
The class of Plebański–Demiański spacetimes, which

includes all these famous black holes, is a family of exact
solutions to Einstein–Maxwell equations of algebraic
type D with double-aligned non-null electromagnetic field
(in the present paper we restrict ourselves only to the case
of vanishing cosmological constant)—see Chapter 16 of
the monograph [4] for the recent review and number of
related references.

Our new form of the metric, which further improves the
convenient representation of the class of Plebański–
Demiański black holes found by Griffiths and Podolský
[5–7], reads

ds2 ¼ 1

Ω2

�
−
Q
ρ2

h
dt−

�
asin2θþ 4lsin2 1

2
θ
�
dφ

i
2 þ ρ2

Q
dr2

þρ2

P
dθ2 þ P

ρ2
sin2θ

h
adt− ðr2 þ ðaþ lÞ2Þdφ

i
2
�
; ð1Þ

where

Ω ¼ 1 −
αa

a2 þ l2
rðlþ a cos θÞ; ð2Þ

ρ2 ¼ r2 þ ðlþ a cos θÞ2; ð3Þ

PðθÞ ¼
�
1 −

αa
a2 þ l2

rþðlþ a cos θÞ
�

×

�
1 −
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�
; ð4Þ*podolsky@mbox.troja.mff.cuni.cz

†vratny.adam@seznam.cz

PHYSICAL REVIEW D 104, 084078 (2021)

2470-0010=2021=104(8)=084078(26) 084078-1 © 2021 American Physical Society

https://orcid.org/0000-0003-2998-6830
https://orcid.org/0000-0003-1142-0177
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.084078&domain=pdf&date_stamp=2021-10-21
https://doi.org/10.1103/PhysRevD.104.084078
https://doi.org/10.1103/PhysRevD.104.084078
https://doi.org/10.1103/PhysRevD.104.084078
https://doi.org/10.1103/PhysRevD.104.084078


QðrÞ ¼ ðr − rþÞðr − r−Þ

×

�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
: ð5Þ

The main roots of QðrÞ, which identify the two black-hole
horizons, are (independently of α) located at

rþ ≡mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
; ð6Þ

r− ≡m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
; ð7Þ

with the (naturally positive) physical parameters

m…::mass;

a…::Kerr-like rotation;

l…::NUTparameter;

e…:: electric charge;

g…::magnetic charge;

α…:: acceleration:

This is a further simplification of the previous Griffiths–
Podolský form of the metric. The generic structure of the
metric has remained basically the same (compare (1) with
Eq. (16.18) in [4], renaming P → P, Q → Q and ϱ → ρ),
but the new metric functions PðθÞ and QðrÞ are now much
more compact and explicit than previous PðθÞ and QðrÞ.
They are nicely factorized, with P determining the deficit
angles corresponding to the cosmic strings along the axes
θ ¼ 0; π of the black holes (causing the acceleration), while
the roots of Q clearly determine the four horizons.
Moreover, the ambiguous twist parameter ω has been
removed by its most convenient fixing.
To see these improvements explicitly, let us recall the

original Griffiths–Podolský form [5] of the metric func-
tions, namely

Ω ¼ 1 − α
� l
ω
þ a
ω
cos θ

�
r;

ρ2 ¼ r2 þ ðlþ a cos θÞ2; ð8Þ

and

PðθÞ ¼ 1 − a3 cos θ − a4 cos2 θ; ð9Þ

QðrÞ ¼
�
ðω2kþ ẽ2 þ g̃2Þ

�
1þ 2α

l
ω
r

�
− 2m̃rþ ω2k

a2 − l2
r2
�

×

�
1þ α

a− l
ω

r

��
1− α

aþ l
ω

r

�
; ð10Þ

where the constants are

a3 ¼ 2α
a
ω
m̃ − 4α2

al
ω2

ðω2kþ ẽ2 þ g̃2Þ;

a4 ¼ −α2
a2

ω2
ðω2kþ ẽ2 þ g̃2Þ; ð11Þ

and ω2k is given by

ω2k
a2 − l2

¼ 1þ 2α l
ω m̃ − 3α2 l2

ω2 ðẽ2 þ g̃2Þ
1þ 3α2 l2

ω2 ða2 − l2Þ ; ð12Þ

which implies the expression

ω2kþ ẽ2 þ g̃2 ¼ ða2 − l2 þ ẽ2 þ g̃2Þ þ 2α l
ω ða2 − l2Þm̃

1þ 3α2 l2

ω2 ða2 − l2Þ :

ð13Þ

Substituting (11)–(13) into (9) and (10) gives explicit but
cumbersome expressions for the key metric functions PðθÞ
and QðrÞ. This is now simplified in the new compact form
of the metric (1)–(5).

II. DERIVATION OF THE NEW METRIC

The first step in improving the form of the spacetime
is to concentrate on the first factor of the metric function
QðrÞ given by (10), which is quadratic in r. It can be
rewritten as

�
ðω2kþ ẽ2 þ g̃2Þ

�
1þ 2α

l
ω
r

�
− 2m̃rþ ω2k

a2 − l2
r2
�

¼ ω2k
a2 − l2

�
r2 − 2m̃

a2 − l2

ω2k
rþ

�
1þ 2α

l
ω
r

��
a2 − l2 þ a2 − l2

ω2k
ðẽ2 þ g̃2Þ

��
: ð14Þ

JIřÍ PODOLSKÝ and ADAM VRÁTNÝ PHYS. REV. D 104, 084078 (2021)

084078-2



It can now be observed that this rather complicated
expression nicely simplifies if we introduce a new set of
the mass and charge parameters m, e, g in such a way that

m≡ a2 − l2

ω2k
m̃ − α

l
ω
ða2 − l2 þ e2 þ g2Þ;

e2 ≡ a2 − l2

ω2k
ẽ2;

g2 ≡ a2 − l2

ω2k
g̃2: ð15Þ

Indeed, the factor (14) then takes the explicit form

ω2k
a2 − l2

½r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ�: ð16Þ

Provided m2 þ l2 > a2 þ e2 þ g2, it has two explicit roots
rþ and r− given by (6) and (7), respectively. The metric
function (10) can thus be factorized to

QðrÞ ¼ S−1ðr − rþÞðr − r−Þ

×
�
1þ α

a − l
ω

r
��

1 − α
aþ l
ω

r
�
; ð17Þ

where the constant S is a shorthand for the inverse of (12),
namely

S−1 ≡ ω2k
a2 − l2

: ð18Þ

Substitution from (15) into (12), rewritten as

ω2k
a2 − l2

�
1þ 3α2

l2

ω2
ða2 − l2Þ

�

¼ 1þ 2α
l
ω
m̃ − 3α2

l2

ω2
ðẽ2 þ g̃2Þ; ð19Þ

yields the explicit expression for S in terms of the new
physical parameters

S ¼ 1 − 2α
l
ω
mþ α2

l2

ω2
ða2 − l2 þ e2 þ g2Þ: ð20Þ

Notice that it can also be expressed in terms of the roots rþ
and r− as

S ¼ 1 − α
l
ω
ðrþ þ r−Þ þ α2

l2

ω2
rþr−

¼
�
1 − α

l
ω
rþ

��
1 − α

l
ω
r−

�
: ð21Þ

One may be worried about the change of the “main
physical parameters” introduced by (15). However, by
inspecting the expressions (19), (20) it is immediately seen
that

α
l
ω
¼ 0 implies S ¼ a2 − l2

ω2k
¼ 1;

and consequentlym ¼ m̃; e ¼ ẽ; g ¼ g̃: ð22Þ

It means, that in all the subcases α ¼ 0 or l ¼ 0 (namely for
Schwarzschild, Reissner–Nordström, Kerr, Taub–NUT or
Kerr–Newman black holes, and also for their accelerating
generalizations with vanishing NUT parameter l) the mass
parameterm and the charges e, g actually remain the same.
And since there are no accelerating purelyNUT black holes
in the Plebański–Demiański class of type D solutions, see
[8], the difference betweenm, e, g and m̃; ẽ; g̃ occurs only if
αal ≠ 0, cf. (30). That is the most general case of accel-
erating black holes with both the rotation a and the NUT
parameter l, whose geometric and physical properties have
not yet been studied.
After factorizing the function QðrÞ, as the second step

we now turn to the metric function PðθÞ determined by the
constants a3 and a4. It is known that these two Plebański–
Demiański metric functions are related, and for vanishing
cosmological constant they share the root structure. It can
thus be expected that also the function PðθÞ could be
factorized by the suitable reparametrization (15). This is
indeed the case. Expressing (11) in terms of the new
parameters m, e, g we get

a3 ¼ 2α
a
ω

ω2k
a2 − l2

�
m − α

l
ω
ða2 − l2 þ e2 þ g2Þ

�
;

a4 ¼ −α2
a2

ω2

ω2k
a2 − l2

ða2 − l2 þ e2 þ g2Þ: ð23Þ

Using (18), (20) and substituting (23) into (9) we obtain

PðθÞ ¼ S
ω2k

a2 − l2
− a3 cos θ − a4cos2θ

¼ ω2k
a2 − l2

�
1 − 2α

lþ a cos θ
ω

mþ α2
ðlþ a cos θÞ2

ω2
ða2 − l2 þ e2 þ g2Þ

�

¼ S−1
�
1 − αrþ

lþ a cos θ
ω

��
1 − αr−

lþ a cos θ
ω

�
: ð24Þ
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The metric function PðθÞ is thus also factorized when
m2 þ l2 > a2 þ e2 þ g2, i.e., when the roots rþ and r−
exist.
To summarize, we have obtained the key expressions

(17) and (24), which can be written as

QðrÞ ¼ S−1QðrÞ; PðθÞ ¼ S−1PðθÞ; ð25Þ

where

QðrÞ ¼ ðr − rþÞðr − r−Þ
�
1þ α

a − l
ω

r

��
1 − α

aþ l
ω

r

�
;

ð26Þ

PðθÞ ¼
�
1 − αrþ

lþ a cos θ
ω

��
1 − αr−

lþ a cos θ
ω

�
:

ð27Þ

Putting these into the original metric [5–7] (which has the
same form as (1) with Q, P replaced byQ, P, respectively)
we get

ds2¼ S
Ω2

�
−
Q
ρ2
S−2

�
dt−

�
asin2θþ4lsin2 1

2
θ
�
dφ

�
2

þρ2

Q
dr2

þρ2

P
dθ2þ P

ρ2
sin2θS−2

�
adt−ðr2þðaþlÞ2Þdφ

�
2
�
:

ð28Þ

The third step in deriving the new metric is now based on
an observation (first made in [9]) that it is possible to
rescale the coordinates t and φ by a constant scaling factor
S ≠ 0 (because their range has not yet been specified). In
other words, we perform the transformation t → St and
φ → Sφwhich effectively removes the constants S from the
conformal metric dŝ2 ≡ S−1ds2. Moreover, a constant
conformal factor S−1 does not change the geometry of
the spacetime (recall also (22), according to which S ¼ 1
whenever αal ¼ 0). Therefore, the Plebański–Demiański
black-hole solutions can equivalently be represented by the
metric dŝ2. Dropping the hat, we arrive at the metric (1).
In fact, this specific rescaling procedure removes the two

coordinate singularities hidden in the expression (21) for S
at αlr� ¼ ω, making our new metric form (1)–(5) some-
what richer.
To complete the derivation, it only remains to fix the

remaining twist parameter ω. In the original Griffiths–
Podolský form of the metric [5], this was left as a free
parameter which could be set to any value (if at least one of
the parameters a or l are nonzero, otherwise ω≡ 0—see
the discussion in [5,7]) using the remaining coordinate
freedom. This ambiguity is unfortunate since the metric
explicitly contains nonunique ω coupled both to the Kerr-
like rotation a and the NUT parameter l. We can now

improve this drawback. It was found in [9], and conven-
iently employed in [10], that the most suitable gauge choice
of the twist parameter is

ω≡ a2 þ l2

a
; ð29Þ

so that

a
ω
¼ a2

a2 þ l2
;

l
ω
¼ al

a2 þ l2
: ð30Þ

Substituting this gauge into the expressions (8), (27) and
(26), we obtain the explicit metric functions Ω, P and Q
presented in (2), (4) and (5), respectively. The new form of
the metric (1)–(5), which nicely represents the large family
of type D black holes, is thus completely derived.

III. MAIN SUBCLASSES OF TYPE D
BLACK HOLES

When m2 þ l2 > a2 þ e2 þ g2, the new metric (1)–(5)
naturally generalizes the standard forms of the most impor-
tant black hole solutions. These are now easily obtained by
setting the corresponding physical parameters to zero.

A. Kerr–Newman–NUT black holes
(α= 0: no acceleration)

By setting the acceleration parameter α to zero, the
functions (2), (4) reduce to Ω ¼ 1, P ¼ 1, so that the
generic metric (1) simplifies as

ds2 ¼ −
Q
ρ2

�
dt −

�
asin2θ þ 4lsin2 1

2
θ
�
dφ

�
2

þ ρ2

Q
dr2

þρ2dθ2 þ sin2θ
ρ2

�
adt − ðr2 þ ðaþ lÞ2Þdφ

�
2

;

ð31Þ

where

QðrÞ ¼ ðr − rþÞðr − r−Þ; ð32Þ

ρ2 ¼ r2 þ ðlþ a cos θÞ2: ð33Þ

The two roots of QðrÞ identify the two black-hole horizons
located at

r� ≡m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
: ð34Þ

Famous subcases are readily obtained, namely the black
holes solution of Kerr–Newman (l ¼ 0), charged Taub–
NUT (a ¼ 0), Kerr (l ¼ 0, e ¼ 0 ¼ g), Reissner–
Nordström (a ¼ 0, l ¼ 0), and Schwarzschild (a ¼ 0,
l ¼ 0, e ¼ 0 ¼ g).
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B. Accelerating Kerr–Newman black holes
(l = 0: no NUT)

Without the NUT parameter l, the new metric (1)
simplifies to

ds2 ¼ 1

Ω2

�
−
Q
ρ2

�
dt − asin2θ dφ

�
2

þ ρ2

Q
dr2

þ ρ2

P
dθ2 þ P

ρ2
sin2θ

�
adt − ðr2 þ a2Þdφ

�
2
�
; ð35Þ

where

Ω ¼ 1 − αr cos θ; ð36Þ

ρ2 ¼ r2 þ a2 cos2 θ; ð37Þ

PðθÞ ¼ ð1 − αrþ cos θÞð1 − αr− cos θÞ; ð38Þ

QðrÞ ¼ ðr − rþÞðr − r−Þð1þ αrÞð1 − αrÞ: ð39Þ

This is a compact factorized form of the class of accel-
erating, rotating, and charged black holes. The spacetime
admits 4 horizons, namely two black hole horizons at r� ¼
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − e2 − g2

p
and two acceleration horizons at

�α−1. For vanishing charges (e ¼ 0 ¼ g), it is equivalent to
the rotating C-metric identified by Hong and Teo [11]. For
vanishing acceleration (α ¼ 0), the standard form of Kerr–
Newman solution in Boyer–Lindquist coordinates is
recovered.

C. Charged Taub–NUT black holes
(a= 0: no rotation)

By setting the Kerr-like rotation parameter a to zero, the
new metric (1) considerably simplifies and becomes inde-
pendent of the acceleration α (because the metric functions
(2)–(5) depend on α only via the product αa). Indeed,
Ω ¼ 1, P ¼ 1, so that

ds2 ¼ −
Q
ρ2

�
dt − 4lsin21

2
θ dφ

�
2

þ ρ2

Q
dr2 þ ðr2 þ l2Þðdθ2 þ sin2θ dφ2Þ; ð40Þ

where

QðrÞ ¼ ðr − rþÞðr − r−Þ; ð41Þ
ρ2 ¼ r2 þ l2: ð42Þ

This explicitly demonstrates that there is no accelerating
NUT black hole in the Plebański–Demiański family of
spacetimes. This observationwasmade already in the original
works [5–7], and recently clarified. It was proven in [8] that
the metric for accelerating (nonrotating) black holes with

purely NUT parameter—which was found in 2006 by Chng,
Mann and Stelea [12] and analyzed in detail in [8]—is of
algebraic type I. Therefore, it cannot be contained in the
Plebański–Demiański class which is of type D.
The charged Taub–NUT spacetime (40) is nonsingular

(its curvature does not diverge at r ¼ 0), away from the axis
θ ¼ π (where the rotating cosmic string is located) it is
asymptotically flat as r → �∞, and the interior of the black
hole is located between the two horizons rþ > 0 and
r− > 0, where r� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2 − g2

p
.

D. Uncharged accelerating Kerr–NUT black holes
(e= 0 = g: vacuum)

Another nice feature of our new metric (1)–(5) is that it
has the same form for vacuum spacetimes without the
electromagnetic field. Indeed, the electric and magnetic
charges e and g, which generate the electromagnetic field,
enter only the expressions for r� introduced in (6), (7). In
other words, e and g just change the positions of the two
black hole horizons. In the vacuum case, these constant
parameters simplify to

r� ≡m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2

p
: ð43Þ

The metric (1)–(5) with (43) represents the full class of
accelerating Kerr–NUT black holes. It reduces to accelerat-
ing Kerr black hole when l ¼ 0, and nonaccelerating Kerr–
NUTblack holewhen α ¼ 0. For a ¼ 0 it simplifies directly
to the Taub–NUT black hole (40) without acceleration.

IV. EXTREME BLACK HOLES AND
HYPEREXTREME CASES

The new form of the generic black hole (1)—and also all
its subclasses—naturally admits a special case with a
degenerate horizon, which is the situation when the two
horizons coincide, rþ ¼ r−. In view of (6), (7), this occurs
if and only if the extremality condition

m2 þ l2 ¼ a2 þ e2 þ g2 ð44Þ

is satisfied, and in such a case the extremal horizon is
located at

r ¼ m: ð45Þ

Consequently, the metric functions take the form

PðθÞ ¼
�
1 −

αam
a2 þ l2

ðlþ a cos θÞ
�

2

; ð46Þ

QðrÞ ¼ ðr −mÞ2
�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
;

ð47Þ
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while all the remaining expressions in the metric (1) remain
the same. Apart from the degenerate black hole horizon at
r ¼ m with zero surface gravity (and thus zero tempera-
ture), there are two acceleration horizons.
This large family of extremal accelerating Kerr–

Newman–NUT black holes admits various natural
subclasses which are easily obtained by setting the corre-
sponding physical parameters α, l, a, e, g to zero. In
particular, Kerr–Newman–NUT black holes without accel-
eration (α ¼ 0) take the form

ds2 ¼ −
Q
ρ2

�
dt −

�
asin2θ þ 4lsin2 1

2
θ
�
dφ

�
2

þ ρ2

Q
dr2

þ ρ2dθ2 þ sin2θ
ρ2

½adt − ðr2 þ ðaþ lÞ2Þdφ�2; ð48Þ

where

Q
ρ2

¼ ðr −mÞ2
r2 þ ðlþ a cos θÞ2 : ð49Þ

The subcases are Kerr–Newman (l ¼ 0), charged Taub–
NUT (a ¼ 0), Kerr (l ¼ 0, e ¼ 0 ¼ g), and Reissner–
Nordström (a ¼ 0, l ¼ 0) extremal black holes, satisfying
the extremality condition (44).
Interestingly, in our recent work [10] we proved the

equivalence of degenerate horizons in this family (48), (49)
of type D black holes to a complete class of extremal
isolated horizons with axial symmetry.
Finally, if the physical parameters satisfy the relation

m2 þ l2 < a2 þ e2 þ g2; ð50Þ

the black hole horizons are absent. This case represents
hyperextreme spacetimes with very large rotation a and/or
charges e, g. The metric function QðrÞ does not admit the
real roots rþ; r−. Instead, it involves a nonfactorizable

quadratic term of the form (16). In such a case, the metric
(1) remains valid, but its metric functions P and Q are

PðθÞ ¼ 1 − 2αa
lþ a cos θ
a2 þ l2

m

þ α2a2
ðlþ a cos θÞ2
ða2 þ l2Þ2 ða2 − l2 þ e2 þ g2Þ; ð51Þ

QðrÞ ¼ ðr2 − 2mrþ ða2 − l2 þ e2 þ g2ÞÞ

×

�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
: ð52Þ

This exact spacetime represents a naked singularity of mass
mwith rotation a, NUT parameter l, electromagnetic charges
e, g, and acceleration α caused by the tension of rotating
cosmic strings attached to it along the axes. There are only
two acceleration horizons. For α ¼ 0, the metric simplifies
considerably to the form (48) with

Q
ρ2

¼ r2 − 2mrþ ða2 − l2 þ e2 þ g2Þ
r2 þ ðlþ a cos θÞ2 : ð53Þ

The new metric form (1)–(5) thus nicely describes the
complete family of black holes of type D, as well as their
extreme cases and hyperextreme spacetimes with naked
singularities.

V. PHYSICALDISCUSSIONOF THENEWMETRIC

To study the global structure of the spacetime and to
analyze its physical properties, it is first necessary to
determine the gravitational field, in particular the specific
curvature of the geometry, and the electromagnetic field.
These are encoded in the Newman–Penrose scalars—the
components of the Riemann and Maxwell tensors with
respect to the null tetrad. Its most natural choice is

k ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi
Q

p ððr2 þ ðaþ lÞ2Þ∂t þ a∂φÞ þ
ffiffiffiffi
Q

p ∂r

�
;

l ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi
Q

p ððr2 þ ðaþ lÞ2Þ∂t þ a∂φÞ −
ffiffiffiffi
Q

p ∂r

�
;

m ¼ 1ffiffiffi
2

p Ω
ρ

�
1ffiffiffiffi

P
p

sin θ

�
∂φ þ

�
asin2θ þ 4lsin2 1

2
θ
�
∂t

�
þ i

ffiffiffiffi
P

p ∂θ

�
: ð54Þ

Adirect calculation reveals that the only nontrivial Newman–Penrose scalars corresponding to theWeyl and Ricci tensors are

Ψ2 ¼
Ω3

½rþ iðlþ a cos θÞ�3
�
−ðmþ ilÞ

�
1 − iαa

a2 − l2

a2 þ l2

�

þ ðe2 þ g2Þ
r − iðlþ a cos θÞ

�
1þ αa

a2 þ l2
½ar cos θ þ ilðlþ a cos θÞ�

��
; ð55Þ
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Φ11 ¼
1

2
ðe2 þ g2ÞΩ

4

ρ4
; ð56Þ

while the Ricci scalar vanishes (indeed, R ¼ 0 for electro-
vacuum solutions with Λ ¼ 0). Recall also (2), (3), i.e.,

Ω¼ 1−
αa

a2 þ l2
rðlþ a cosθÞ; ρ2 ¼ r2 þ ðlþ acosθÞ2:

ð57Þ

The curvature for the main subclasses of type D black
holes, summarized in Sec. III, are now easily obtained by
setting up the corresponding physical parameters to zero:

(i) Kerr–Newman–NUT (α ¼ 0: no acceleration)

Ψ2 ¼
1

½rþ iðlþ a cos θÞ�3

×

�
−ðmþ ilÞ þ e2 þ g2

r − iðlþ a cos θÞ
�
; ð58Þ

(ii) Accelerating Kerr–Newman (l ¼ 0: no NUT)

Ψ2 ¼
ð1 − αr cos θÞ3
ðrþ ia cos θÞ3

×

�
−mð1 − iαaÞ þ ðe2 þ g2Þ 1þ αr cos θ

r − ia cos θ

�
;

ð59Þ

(iii) Charged Taub–NUT (a ¼ 0: no rotation)

Ψ2 ¼ −
mþ il
ðrþ ilÞ3 þ

e2 þ g2

ðr2 þ l2Þðrþ ilÞ2 : ð60Þ

Of course, these expressions further simplify if (some of)
the remaining parameters are zero. In particular, the Kerr–
Newman black hole is recovered from (58) if l ¼ 0. The
C-metric (accelerating charged black holes without rota-
tion) are obtained from (59) when a ¼ 0. The Reissner–
Nordström black hole follows from (60) when l ¼ 0. The
uncharged (vacuum) black holes are obtained for
e ¼ 0 ¼ g. Moreover, all these particular expressions for

Ψ2 agree with those presented in the corresponding
chapters of the monograph [4].
It is also useful to calculate the spin coefficients for the

null tetrad (54). It turns out that

κ¼ν¼0; σ¼λ¼0;

ϱ¼μ¼−
ffiffiffiffi
Q

p
ffiffiffi
2

p
ρ3

�
1þi

αa
a2þl2

ðlþacosθÞ2
�
ðr−iðlþacosθÞÞ;

τ¼π¼−
a

ffiffiffiffi
P

p
sinθffiffiffi
2

p
ρ3

�
1−i

αa
a2þl2

r2
�
ðr−iðlþacosθÞÞ:

ð61Þ

Also the coefficients α ¼ β and ϵ ¼ γ are nonzero (we do
not write them because they are not simple). Both double-
degenerate principal null directions generated by k and l
are thus geodetic and shear-free. However, they have
expansion and twist given by ϱ ¼ μ≡ −ðΘþ iωÞ, that is

Θ ¼
ffiffiffiffi
Q

p
ffiffiffi
2

p
ρ3

�
rþ αa

a2 þ l2
ðlþ a cos θÞ3

�
; ð62Þ

ω ¼ −
Ω

ffiffiffiffi
Q

p
ffiffiffi
2

p
ρ3

ðlþ a cos θÞ: ð63Þ

It is now explicitly seen that these black-hole spacetimes of
algebraic type D are nontwisting (for a general r, θ) if
and only if a ¼ 0 ¼ l. Moreover, on the horizons identified
by QðrÞ ¼ 0, both the expansion and the twist vanish
(Θ ¼ 0 ¼ ω).
For investigation of the curvature singularities and

asymptotically flat regions, it is also useful to evaluate
the Kretschmann scalar

K≡ RabcdRabcd ¼ 48ReðΨ2
2Þ; ð64Þ

for type D spacetimes. Interestingly, it takes the factorized
form

K ¼ 48
Ω6

ρ12
KþK−; ð65Þ

where

K� ¼ m

�
F� � αa

a2 − l2

a2 þ l2
F∓

�
∓ l

�
F∓ ∓ αa

a2 − l2 þ e2 þ g2

a2 þ l2
F�

�
− ðe2 þ g2Þ

�
1þ αa

a2 þ l2
rL

�
T�;

F� ¼ ðr ∓ LÞðr2 � 4rLþ L2Þ; T� ¼ ðr2 � 2rL − L2Þ; L ¼ lþ a cos θ: ð66Þ
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These expressions characterize the gravitational field.
When e, g are not zero, the black-hole spacetime also

contains a specific electromagnetic field represented by the
Maxwell 2-form F ¼ 1

2
Fabdxa ∧ dxb ¼ dA. Its 1-form

potential A ¼ Aadxa is

A¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2þg2

q
r
ρ2

h
dt−

�
asin2θþ4lsin2 1

2
θ
�
dφ

i
: ð67Þ

Therefore, the nonzero components of Fab ¼ Ab;a − Aa;b

are

Ftr ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
ρ−4ðr2 − ðlþ a cos θÞ2Þ;

Fφr ¼ −Ftr

�
a sin2 θ þ 4l sin2 1

2
θ
�
;

Ftθ ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
ρ−4r sin θðlþ a cos θÞ;

Fφθ ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

q
ρ−4r sin θðlþ a cos θÞðr2 þ ðaþ lÞ2Þ:

ð68Þ

The corresponding Newman–Penrose scalars are
Φ0 ≡ Fabkamb ¼ 0, Φ2 ≡ Fabm̄alb ¼ 0, and

Φ1 ≡ 1

2
Fabðkalb þ m̄ambÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ g2

p
Ω2

ðrþ iðlþ a cos θÞÞ2 : ð69Þ

It follows that Φ1Φ̄1 ¼ 2Φ11, in fully agreement with (56).

A. Position of the horizons

The new metric form (1) is very convenient for inves-
tigation of horizons. Clearly, the “radial” coordinate r is
spatial in the regions whereQðrÞ > 0, while it is a temporal
coordinate where QðrÞ < 0. These regions are separated
by horizons localized at QðrÞ ¼ 0. In the case when
m2 þ l2 > a2 þ e2 þ g2, the metric function Q is given
by (5),

QðrÞ ¼ ðr − rþÞðr − r−Þ

×

�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
: ð70Þ

It is a quartic expression explicitly factorized into four real
roots, so that there are four horizons, namely

Hþ
b at rþb ≡ rþ ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
;

ð71Þ

H−
b at r−b ≡ r− ¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
;

ð72Þ

Hþ
a at rþa≡þ 1

α

a2 þ l2

a2 þ al
; ð73Þ

H−
a at r−a≡ −

1

α

a2 þ l2

a2 − al
; ð74Þ

see the definitions of r� introduced in (6), (7). It is clear that
rþ > 0 for an arbitrary choice of the physical parameters
(assuming m > 0), but r− can take any sign. In particular,

r− > 0 ⇔ l2 < a2 þ e2 þ g2; ð75Þ

r− < 0 ⇔ l2 > a2 þ e2 þ g2; ð76Þ

r− ¼ 0 ⇔ l2 ¼ a2 þ e2 þ g2: ð77Þ

The horizons H�
b at r�b are two black-hole horizons.

Interestingly, in our new metric form these are independent
of the acceleration parameter α. In fact, they are located at
the same values rþ; r− as the two horizons in the class of
standard (nonaccelerating) Kerr–Newman–NUT black
holes given by α ¼ 0, see [4].
The horizons H�

a at r�a are two acceleration horizons.
Their presence is the consequence of the fact that the black
holes accelerate whenever the parameter α is nonzero. It is
interesting that their location is now independent of massm
and charges e, g of the black holes. The values of r�a depend
only on the acceleration α and the specific combination of
the twist parameters a, l. Moreover, when l ¼ 0 these are
simply given just by the acceleration parameter as
r�a ¼ �α−1. They retain the same values as in the C-metric
[4] even if it is generalized to include the charges
and rotation, that is for accelerating Kerr–Newman
black holes.
Of course, there may be less than 4 horizons. As

already discussed in Sec. IV, when the physical parameters
satisfy the extremality relation m2 þ l2 ¼ a2 þ e2 þ g2 the
two black-hole horizons Hþ

b ;H
−
b coincide because

rþ ¼ r−. In such a degenerate case the extremal horizon
is located at

rþb ¼ r−b ¼ m; ð78Þ

see (44) and (45), while the two distinct acceleration
horizons H�

a given by (73) and (74) remain the same.
This is the horizon structure for the family of extremal
accelerating Kerr–Newman–NUT black holes, recently
studied in [10]. If the parameters satisfy m2 þ l2 < a2 þ
e2 þ g2 the black-hole horizons Hþ

b ;H
−
b are absent. Such

hyperextreme spacetimes involve accelerating naked sin-
gularities with just two acceleration horizons H�

a .
In the limit α → 0 of vanishing acceleration, from (73),

(74) we formally obtain r�a → �∞ which is consistent
with the fact that the two horizons H�

a disappear for
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nonaccelerating Kerr–Newman–NUT black holes. In the
complementary limit a → 0 of vanishing Kerr-like rotation,
we also obtain r�a → ∞. This explicitly confirms that
there are no accelerating purely NUT black holes in the
Plebański–Demiański family of type D spacetimes. Indeed,
by setting a ¼ 0 the metric (1) becomes independent of α,
and the metric reduces to (40) representing charged Taub–
NUT black holes without acceleration. Nevertheless, accel-
erating black holes with purely NUT parameter exist
outside the Plebański–Demiański family [12]—they are
of algebraic type I, and have been recently analyzed in
detail in [8].
Returning now to the generic case with four distinct

horizons, it immediately follows from (71)–(74) that
(assuming non-negative parameters α, a, and l)

r−b < rþb always; while r−a < rþa for 0 ≤ l < a:

ð79Þ

In the limiting case l → a we obtain rþa ¼ α−1, r−a → −∞,
while for l > a there is 0 < rþa < r−a .
The physically most natural ordering of the horizons

r−a < r−b < rþb < rþa ; ð80Þ

in which the two black hole horizonsH�
b are surrounded by

two “outer” acceleration horizonsH�
a , requires a sufficiently

small acceleration. The condition rþb < rþa explicitly reads

α <
1

rþ

a2 þ l2

a2 þ al
; ð81Þ

while r−a < r−b for any 0 ≤ l < a because in such a case
r−a < 0 but 0 < r−b .
By evaluating Q given by (70) at r ¼ 0 we obtain

Qðr ¼ 0Þ ¼ rþr− ¼ a2 − l2 þ e2 þ g2 > 0 for l < a:

ð82Þ

Consequently, Q > 0 for any ðr−a ; r−b Þ. It follows that the
coordinate r is spatial in the regions ðr−a ; r−b Þ and ðrþb ; rþa Þ,
that is between the black-hole and acceleration horizons,
while it is temporal in the complementary three regions.
Moreover, using the condition (81) we infer that

αa
a2 þ l2

r−ðlþ a cos θÞ < αa
a2 þ l2

rþðlþ a cos θÞ

< αrþ
a2 þ al
a2 þ l2

< 1: ð83Þ

Itmeans that both brackets in themetric coefficientPðθÞ given
by (4) are positive, and thus the function P in (1) is always
positive, retaining the correct signature of the spacetime.

B. Ergoregions

With the rotation parameter a, the family of black holes
(1) contains ergoregions similar to those known from the
famous Kerr solution.
The boundary of the ergoregion is defined by the condition

gtt ¼ 0, where the corresponding metric coefficient reads

gtt ¼
1

Ω2ρ2
ðPa2 sin2 θ −QÞ: ð84Þ

The corresponding condition is thus

QðreÞ ¼ a2sin2θ PðθÞ; ð85Þ

where themetric functionsPðθÞ andQðrÞ aregivenby (4) and
(5), respectively. For a fixed value of the angular coordinate θ,
the right-hand side of (85) is some constant. And since the
functionQðrÞ is of the fourth order, it follows that there are (at
most) four distinct boundaries re of the ergoregions in the
direction of θ. These are associated with the corresponding
four horizons H�

b and H�
a , defining the surfaces of infinite

redshift, and also the stationary limit at which observers on
fixed r and θ cannot “stand still”.
Solving the Eq. (85) explicitly is generally complicated

but can be plotted using computer, see Fig. 1. It is also
obvious that the ergoregion boundary “touches” the
corresponding horizon at the poles θ ¼ 0 and θ ¼ π
because there the condition (85) reduces to QðreÞ ¼ 0.
In the case of vanishing acceleration α ¼ 0, the metric

functions (4) and (5) simplify to P ¼ 1 and Q ¼ ðr − rþÞ
ðr − r−Þ. Equation (85) reduces to r2e − 2mre þ
ða2 cos2 θ − l2 þ e2 þ g2Þ ¼ 0 which has two roots

re�ðθÞ ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2 − g2 − a2 cos2 θ

q
: ð86Þ

This explicitly localizes the two ergoregions for the
Kerr–Newman–NUT black holes. As for the standard
Kerr black hole, it extends most from the corresponding
horizon in the equatorial plane θ ¼ π=2, in which case
re� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2 − g2

p
.

On the other hand, for a ¼ 0 there are no ergoregions
because the condition (85) reduces to QðreÞ ¼ 0, i.e., the
boundaries coincide with the black hole horizons H�

b
at r� of the Taub–NUT spacetime (possibly charged).
In fact, such horizons become the Killing horizons
associated with the Killing vector field ∂t, located at
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2 − g2

p
. To summarize, the ergoregions

are related only to the Kerr-like rotation represented by the
parameter a, not to the NUT parameter l. There are no
ergoregions in the purely NUT spacetimes.

NEW IMPROVED FORM OF BLACK HOLES OF TYPE D PHYS. REV. D 104, 084078 (2021)

084078-9



C. Curvature singularities

By inspecting the Weyl NP scalar Ψ2 given explicitly by
the expression (55) we conclude that the curvature singu-
larities occur if and only if rþ iðlþ a cos θÞ ¼ 0 (or its
complex conjugate). Notice that this complex equation
implies also ρ2 ¼ r2 þ ðlþ a cos θÞ2 ¼ 0 which represents
the curvature singularity in the Ricci scalar Φ11 given by
(56) when the electric and magnetic charges e, g are
nonzero. Both the real and imaginary parts must vanish,
so that the curvature singularity condition reads

r ¼ 0 and at the same time lþ a cos θ ¼ 0: ð87Þ
The presence of the curvature singularity is confirmed by

the behavior of the Kretschmann scalar K≡ RabcdRabcd

given by (65). The second condition (87), that is L ¼ 0,
implies Ω ¼ 1, ρ2 ¼ r2, F� ¼ r3, T� ¼ r2, and

K� ¼ m

�
1� αa

a2 − l2

a2 þ l2

�
r3

∓ l

�
1 ∓ αa

a2 − l2 þ e2 þ g2

a2 þ l2

�
r3 − ðe2 þ g2Þr2:

In the limit r → 0 the Kretschmann scalar thus diverges,

K ¼ 48
KþK−

r12
→ ∞; ð88Þ

because KþK− ∼ r6 in the vacuum case, and KþK− ∼ r4 in
the electrovacuum case.
Now, the important observation is that the necessary (but

not sufficient) singularity condition lþ a cos θ ¼ 0 can
only be satisfied if jlj ≤ jaj. Otherwise, the expression lþ
a cos θ remains nonzero because cos θ is bounded to the
range ½−1; 1�.
We thus conclude that in the whole family of type D

spacetimes (1) the curvature singularity structure depends
on the relative values of the two twist parameters, i.e., the
Kerr-like rotation a versus the NUT parameter l, as follows:

l ¼ 0; a ¼ 0∶ singularity at r ¼ 0 for any θ;

l ¼ 0; a ≠ 0∶ singularity at r ¼ 0 for θ ¼ π=2;

0 < jlj < jaj∶ singularity at r ¼ 0 for cos θ ¼ −l=a;

l ¼ þa∶ singularity at r ¼ 0 for θ ¼ π;

l ¼ −a∶ singularity at r ¼ 0 for θ ¼ 0;

jlj > jaj > 0∶ no singularity;

l ≠ 0; a ¼ 0∶ no singularity: ð89Þ

Recall that throughout this paper we naturally assume
that all physical parametersm; e; g; α; a; l are non-negative.
However, for the sake of completeness, in the above table
we have admitted the situation in which a and l can be any

FIG. 1. Plot of the metric function gtt (84) for the accelerating black hole (1) with axes θ ¼ 0 and θ ¼ π. The values of gtt are
visualized in quasipolar coordinates x≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðaþ lÞ2
p

sin θ, y≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðaþ lÞ2

p
cos θ for r ≥ 0. The grey annulus in the center of

each figure localizes the black hole bordered by its horizonsH�
b at rþ and r− (0 < r− < rþ). The acceleration horizonHþ

a at rþa (big red
circle) and the conformal infinity I at Ω ¼ 0 are also shown. The grey curves are contour lines gttðr; θÞ ¼ const., and the values are
color-coded from red (positive values) to blue (negative values). The green curves are the isolines gtt ¼ 0 determining the boundary of
the ergoregions (85) in which gtt > 0 (green regions). They occur close to the horizons near the equatorial plane θ ¼ π=2. The plot is
made for the choice m ¼ 3, a ¼ 1, l ¼ 0.2, e ¼ g ¼ 1.6, α ¼ 0.12 (left) and m ¼ 3, a ¼ 1.5, l ¼ 0.6, e ¼ g ¼ 1.6, α ¼ 0.12 (right).
For larger values of a and l the ergoregions are bigger and shifted toward θ ¼ π. In fact, it can be seen that the ergoregion above the black
hole horizon at rþ is merged with the ergoregion below the acceleration horizon at rþa in the equatorial part.
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real numbers. In fact, the reflection symmetry φ → −φ of
the metric (1), or equivalently t → −t, can be used to
change a → −a or l → −l when l ¼ 0 or a ¼ 0, respec-
tively. However, in the generic case when both a and l are
nontrivial, their relative sign plays the role.
Of course, these results agree with the standard character

of the singularity r ¼ 0 of the Schwarzschild, Reissner–
Nordström and (possibly charged) C-metric spacetimes
(l ¼ 0, a ¼ 0), the ring singularity structure of the Kerr and
Kerr–Newman black holes (l ¼ 0, α ¼ 0), and the absence
of curvature singularities in (possibly charged) Taub–NUT
spacetime (a ¼ 0, α ¼ 0).
Finally, it may be useful to graphically represent the

global curvature and horizon structure of these black hole
spacetimes. On a schematic picture in Fig. 2 we depict the
section t ¼ const., φ ¼ const., taking the full range of
θ ∈ ½0; π� distinct from the specific value cos θ ¼ −l=a.
Therefore, the curvature singularity located at r ¼ 0 is not
encountered, and it is possible to consider the full range of
the coordinate r ∈ ð−∞;þ∞Þ. In the vicinity of r ¼ 0 the
curvature of the spacetime is maximal, in the region r > 0
(the right part of the surface) it decreases to zero, and
similarly in the region r < 0 (the left part of the surface)—
far away from the origin the spacetime becomes asymp-
totically flat. The angular coordinate θ ∈ ½0; π� is plotted
perpendicularly, completing the full circles r ¼ const.

(considering also the antipodal section φþ π in the second
half of the circle). The resulting “neck” or “wormhole”
connects two distinct universes. Positions of the two black
hole horizons Hþ

b at rþb ≡ rþ and H−
b at r−b ≡ r− are

indicated by red and green circles, respectively. Here we
assume 0 < l < a ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ e2 þ g2

p
, so that 0 < r− < rþ.

In this plot we also show the position of the two distinct full
axes θ ¼ 0 and θ ¼ π. These are indicated by dashed lines
on top and bottom of the surface.
It should be emphasized that this is only a schematic

picture, not an embedding and rigorous construction (it
cannot be done because the r-coordinate is temporal
between the horizons H−

b and Hþ
b , and also because the

“point” cos θ ¼ −l=a, r ¼ 0 is actually the curvature
singularity.
Using the same schematic plot of the central domain of

the black hole spacetime, we can also indicate the location
of the curvature singularity at r ¼ 0, cos θ ¼ −l=a for
various values of the NUT parameter l (assuming the same
a and other physical parameters). As in Fig. 2, the origin
r ¼ 0 is plotted in Fig. 3 as a black circle around the
“neck,” and the two axes located at θ ¼ 0 and θ ¼ π are
indicated by dashed lines on top and bottom of the surface.
There are 7 such plots in Fig. 3 corresponding to 7

specific values of l=a. When the NUT parameter vanishes,
l ¼ 0, the curvature singularity is located at r ¼ 0 for
θ ¼ π=2. In the middle plot in Fig. 2 such a singularity is
indicated by red dots. In fact, considering also the addi-
tional angular coordinate φ ∈ ½0; 2πÞ, this forms a ring
singularity of the Kerr–Newman black hole, shown here as
the red dashed circle in extra dimension. In the case when
l ¼ a the curvature singularity is located at the pole θ ¼ π
(the bottom right plot), while for l ¼ −a it is located at the
opposite pole θ ¼ 0 (the top left plot). In the generic case
jlj < jaj, the ring curvature singularity is located at specific
θ between these extremes, such that cos θ ¼ −l=a (the
bottom left and the top right plots). Finally, when jlj > jaj,
there is no curvature singularity (the top and the bot-
tom plots).
In a similar way, by the red dots and the red dashed line

we have indicated the position of the ring-like curvature
singularity at r ¼ 0 in Fig. 1.

D. Conformal diagrams: Global structure and infinities

In Sec. VAwe have already clarified that the coordinate
singularities of the metric located at r�b and r�a correspond
to four distinct horizons H�

b and H�
a (provided

m2 þ l2 ≥ a2 þ e2 þ g2). We will now explicitly construct
coordinates which cover the whole spacetime, including
these horizons given by the roots QðrÞ ¼ 0 of the quartic
function (70). They will enable us to subsequently derive
the corresponding Penrose conformal diagrams showing
the global structure of this family of type D black holes
represented by the metric (1).

FIG. 2. A schematic visualization of the curvature structure of
the generic black hole spacetime (1) using a section with fixed
coordinates t and φ. Away from the singularity located at cos θ ¼
−l=a; r ¼ 0 it is possible to cross r ¼ 0 from the asymptotically
flat universe in the region r > 0 (right part) to another universe in
the region r < 0 (left part). In this diagram we also plot the
positions of the two black hole horizonsHþ

b andH−
b at rþ and r−

(red and green circles, respectively), and the two distinct infinite
axes θ ¼ 0 and θ ¼ π (dashed lines).
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To this end, we first introduce the retarded and advanced
null coordinates

u ¼ t − r� and v ¼ tþ r�; ð90Þ

with the tortoise coordinate

r� ≡
Z

r2 þ ðaþ lÞ2
QðrÞ dr; ð91Þ

and also the corresponding untwisted angular coordinates

ϕu ≡ φ − a
Z

dr
QðrÞ and ϕv ≡ φþ a

Z
dr

QðrÞ : ð92Þ

Using the advanced pair of coordinates fv;ϕvg, the
metric (1) takes the form

ds2 ¼ 1

Ω2

�
a2Psin2θ −Q

ρ2
ðdv − T dϕvÞ2

þ 2ðdv − T dϕvÞðdr − aPsin2θ dϕvÞ

þ ρ2
�
dθ2

P
þ Psin2θ dϕ2

v

��
: ð93Þ

The function

T ðθÞ≡ a sin2 θ þ 4l sin2 1
2
θ ð94Þ

was introduced to abbreviate the expression. It also enters a
useful identity

r2 þ ðaþ lÞ2 − aT ¼ r2 þ ðlþ a cos θÞ2 ≡ ρ2: ð95Þ

Obviously, the metric (93) is regular at QðrÞ ¼ 0, so that
the coordinate singularity at the horizons has been
removed.
By employing the complementary retarded pair of

coordinates fu;ϕug, the metric (1) reads

FIG. 3. Schematic visualization of the curvature singularity located at r ¼ 0, cos θ ¼ −l=a in the black hole spacetime (1) for 7
distinct choices of the NUT parameter l. For jlj ≥ jaj such singularity is absent and it is possible to regularly cross r ¼ 0 at any θ,
entering another asymptotically flat universe.
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ds2 ¼ 1

Ω2

�
a2Psin2θ −Q

ρ2
ðdu − T dϕuÞ2

− 2ðdu − T dϕuÞðdrþ aPsin2θ dϕuÞ

þ ρ2
�
dθ2

P
þ Psin2θ dϕ2

u

��
; ð96Þ

which is also regular at QðrÞ ¼ 0.
Actually, these metrics are a considerable generalization

of the original coordinate forms of the rotating Kerr–
Newman black hole solutions, see Eq. (1) in [13],
Eq. (5.31) in [14], or Eq. (11.4) in [4]. Now it includes
not only the usual physical parameters m, a, e (and/or g),
but also the NUT parameter l and the acceleration param-
eter α.
As usual, the next step in construction of the maximal

analytic extension of the manifold is to introduce both the
null coordinates u and v simultaneously (dropping r as a
coordinate). Clearly, for fixed values of ϕv and θ the radial
null geodesics are simply given by v ¼ const., while for
fixed values of ϕu and θ the complementary radial null
geodesics are given by u ¼ const. Therefore, by employing
both the coordinates u and v, the causal structure of the

spacetime is naturally revealed. Using the relation (90) we
immediately obtain

v − u ¼ 2r�ðrÞ; ð97Þ

so that

2dr ¼ Q
r2 þ ðaþ lÞ2 ðdv − duÞ: ð98Þ

This relation can be used to eliminate the dr-term either
from the metric (93) or (96).
Moreover, due to the simple factorized form (70) of the

metric functionQðrÞ, the integral (91) defining the function
r�ðrÞ in (97) can be calculated explicitly as

r�ðrÞ ¼ kþb log

				1 − r
rþb

				þ k−b log

				1 − r
r−b

				
þ kþa log

				1 − r
rþa

				þ k−a log

				1 − r
r−a

				; ð99Þ

where the auxiliary constant coefficients are

kþb ¼ ða2 þ l2Þ2½r2þ þ ðaþ lÞ2�
2mða2 þ l2 þ αaða − lÞrþÞða2 þ l2 − αaðaþ lÞrþÞ

;

k−b ¼ −
ða2 þ l2Þ2½r2− þ ðaþ lÞ2�

2mða2 þ l2 þ αaða − lÞr−Þða2 þ l2 − αaðaþ lÞr−Þ
;

kþa ¼ −
ða2 þ l2Þ½ða2 þ l2Þ2 þ α2a2ðaþ lÞ4�

2αa2ða2 þ l2 − αaðaþ lÞrþÞða2 þ l2 − αaðaþ lÞr−Þ
;

k−a ¼ ða2 þ l2Þ½ða2 þ l2Þ2 þ α2a2ða2 − l2Þ2�
2αa2ða2 þ l2 þ αaða − lÞrþÞða2 þ l2 þ αaða − lÞr−Þ

; ð100Þ

each associated with the corresponding horizonH�
h located

at r ¼ r�h , where h ¼ b (for the black-hole horizons) or
h ¼ a (for the acceleration horizons). Inverting the function
(99), we can express the metric functions Q, ρ2 and Ω2 in
terms of the null coordinates v − u instead of r by using the
relation (97).
To obtain the maximal extension of the black-hole

manifold represented by (1), we now “glue together”
different “coordinate patches” (charts of the complete atlas)
crossing all the horizons, until a curvature singularity or
conformal infinity (the scri I) is reached. In order to derive
the correct causal structure, it is essential to employ the null
coordinates u and v. Therefore, we apply the coordinate
patches of the metric form (93) for extending the spacetime
across the horizons in the null direction given by the
advanced coordinate v, while we apply the coordinate
patches of the metric form (96) for extending the spacetime
across the horizons in the complementary null direction

given by the retarded coordinate u. Since both these
metrics are regular for Q ¼ 0, the coordinate singularities
at all the horizons H�

h are removed, step-by-step.
However, to perform this procedure exactly and cor-

rectly, two complicated issues must also be clarified. The
first problem is the fact, that the distinct coordinate patches
(93) and (96) employ distinct angular coordinates ϕv
and ϕu, respectively. The second problem is to prove that
thus obtained maximal extension of the manifold is
analytic.
To resolve the first problem associated with distinct

angular coordinates ϕv and ϕu, we can employ the general
strategy suggested by Boyer and Lindquist [15] for the Kerr
spacetime and subsequently used also for the charged Kerr–
Newman spacetime by Carter [13]. The trick is based on
using the specific Killing vector fields which are the null
generators of the horizons. In terms of the two coordinate
patches (93) and (96), such special vector fields read
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ξa ≡ ∂u þΩh∂ϕu
; and also ξa ≡ ∂v þΩh∂ϕv

; ð101Þ

where the angular velocity of the given horizon H is

Ωh ¼
a

r2h þ ðaþ lÞ2 : ð102Þ

Indeed, using the corresponding metric coefficients of (93)
and (96), evaluated at Q ¼ 0, it is straightforward to show
that ξaξaðHÞ ¼ 0 whenever Ωh ¼ a=ðρ2h þ aT Þ. Applying
the identity (95), we obtain the expression (102) for both
the Killing vector fields (101).
Now, following [13,15] we introduce a special angular

coordinate ϕh which is constant along the trajectories of
both the Killing vector fields (101). Being the generators of
the specific bifurcate Killing horizon (a 2-dimensional
spatial intersection of the “advanced” and the “retarded”
null horizons), via such new angular coordinate ϕh a
suitable transition between the corresponding patches is
achieved. Technically, it is introduced by the 1-form
condition

2dϕh ≡ dϕu þ dϕv − Ωhðduþ dvÞ; ð103Þ

because dϕhðξaÞ ¼ 0 for both the Killing vector fields
(101). Using (90) and (92), this condition can be integrated
to

ϕh ¼ φ −Ωht: ð104Þ

Unfortunately, the specific choice of the angular coordinate
ϕh depends on the given horizon via its value rh and thus
Ωh. For this reason, it is not possible to find a single and
simple global coordinate ϕ which would conveniently
“cover” all the four horizons. This drawback was met
many years ago already in the Kerr spacetime, so it is not
surprising that it reappears in the current context of the
complete family of type D black holes.
An explicit general metric form constructed in this

way reads

ds2 ¼ 1

4Ω2

�
−
Q
ρ2

ðð1 − T ΩhÞðduþ dvÞ − 2T dϕhÞ2 þQρ2
ðdu − dvÞ2

½r2 þ ðaþ lÞ2�2 þ 4
ρ2

P
dθ2

þ Psin2θ
ρ2

ðða − ½r2 þ ðaþ lÞ2�ΩhÞðduþ dvÞ − 2½r2 þ ðaþ lÞ2�dϕhÞ2
�
: ð105Þ

For nontwisting black holes without the Kerr-like rotation
(a ¼ 0) and the NUT parameter (l ¼ 0), the metric func-
tions simplify to Ω ¼ 1, P ¼ 1, ρ2 ¼ r2, T ¼ 0, Ωh ¼ 0,
so that

ds2 ¼ −
Q
r2
dudvþ r2ðdθ2 þ sin2θ dϕ2

hÞ; ð106Þ

which is the usual form of the spherically symmetric black
holes in the double-null coordinates [4].
On any 2-dimensional section θ ¼ const. andϕh ¼ const.,

using (102), the general metric (105) reduces to

dσ2 ¼ 1

4Ω2

�
−
ð1 − T ΩhÞ2

ρ2
Qðduþ dvÞ2

þ ρ2

½r2 þ ðaþ lÞ2�2 Qðdu − dvÞ2

þ a2
Psin2θ
ρ2

ðrþ rhÞ2ðr − rhÞ2
½r2h þ ðaþ lÞ2�2 ðduþ dvÞ2

�
; ð107Þ

which is indeed null at any horizon rh because QðrhÞ ¼ 0.

Let us now move to the second problem, which is the
global extension and investigation of the degree of smooth-
ness (analyticity) of the horizonsH�

h . Restricting ourselves
to the sections given by constant values of the angular
coordinates θ and ϕh, we introduce the couples of new null
coordinates U�

h and V�
h , defined as

U�
h ¼ ð−1Þisignðk�h Þ exp

�
−

u
2k�h

�
; ð108Þ

V�
h ¼ð−1Þjsignðk�h Þ exp

�
þ v
2k�h

�
: ð109Þ

Each couple covers the corresponding horizon H�
h .

Moreover, it is characterized by a particular choice of
two integers ði; jÞ which specify a certain region in the
manifold. Generally, there are 5 types of regions which are
separated by the four types of horizons H�

h , namely
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Region Description Specification of ði; jÞ
I∶ asymptotic time-dependent domain betweenHþ

a and I ðn − 2mþ 1; nþ 2m − 1Þ
II∶ stationary region betweenHþ

b andHþ
a ð2n −m; 2nþm − 1Þ

III∶ time-dependent domain between the black-hole horizons ðn − 2m; nþ 2mÞ
IV∶ stationary region betweenH−

a andH−
b ð2n −mþ 1; 2nþmÞ

V∶ asymptotic time-dependent domain betweenI andH−
a ðn − 2mþ 1; nþ 2m − 1Þ

where m, n are arbitrary integers. The corresponding
Kruskal–Szekeres-type dimensionless coordinates for
every distinct region are

T�
h ¼ 1

2
ðV�

h þ U�
h Þ; R�

h ¼ 1

2
ðV�

h − U�
h Þ: ð110Þ

Of course, the presence of the curvature singularity at
r ¼ 0 (implying r� ¼ 0) for certain values of θ restricts the
range of the corresponding coordinates U−

b and V−
b in the

region IV to the domain outside U−
bV

−
b ¼ �1.

In terms of these coordinates, the extension across the
horizon is regular (in fact, analytic). Indeed, by multiplying
and dividing the null coordinates (108) and (109) we obtain

U�
h V

�
h ¼

�
1 −

r
rþb

�kþ
b
k�
h

�
1 −

r
r−b

�k−
b

k�
h

�
1 −

r
rþa

�kþa
k�
h

�
1 −

r
r−a

�k−a
k�
h ;

ð111Þ

U�
h

V�
h

¼ð−1Þiþj exp

�
−

t
k�h

�
: ð112Þ

The terms ðdu� dvÞ2 in the metric (107) become

ðdu� dvÞ2 ¼ 4ðk�h Þ2
U�

h V
�
h

�
V�
h

U�
h

ðdU�
h Þ2

∓ 2dU�
h dV

�
h þ U�

h

V�
h

ðdV�
h Þ2

�
: ð113Þ

A nonanalytic behavior across the horizon rh may thus
occur only at zeros of the product U�

h V
�
h . However, they

exactly cancel the zeros of the functions QðrÞ in the metric
(107). For example, by choosing the black hole horizon
rh ¼ rþb ≡ rþ, be get Uþ

b V
þ
b ∝ ðr − rþÞ which clearly

compensates the corresponding root Q ∝ ðr − rþÞ in (5).
Notice also that the last term in (107) actually vanishes.
Therefore, the metric (107) remains finite at rþ. Of course,
the same argument applies to the remaining three horizons.
Now we can construct the Penrose conformal diagrams

which visualize the global structure of the extended
manifold. This is achieved by a suitable conformal rescal-
ing of U�

h and V�
h to the corresponding compactified null

coordinates ũ�h and ṽ�h defined as

tan
ũ�h
2
≡−signðk�h ÞðU�

h Þ−signðk
�
h Þ ¼ ð−1Þiþ1exp

�
þ u
2jk�h j

�
;

ð114Þ

tan
ṽ�h
2
≡−signðk�h ÞðV�

h Þ−signðk
�
h Þ ¼ ð−1Þjþ1exp

�
−

v
2jk�h j

�
:

ð115Þ

Applying the identity arctan xþ arctan y ¼ arctanð xþy
1−xyÞ

ðmod πÞ we get

T̃�
h ≡ 1

2
ðṽ�h þ ũ�h Þ

¼ − arctan

�ð−1Þj expð− tþr�
2jk�h j

Þ þ ð−1Þi expð t−r�
2jk�h j

Þ
1 − ð−1Þiþj expð− r�

jk�h j
Þ

�
;

ð116Þ

R̃�
h ≡ 1

2
ðṽ�h − ũ�h Þ

¼ − arctan

�ð−1Þj expð− tþr�
2jk�h j

Þ − ð−1Þi expð t−r�
2jk�h j

Þ
1þ ð−1Þiþj expð− r�

jk�h j
Þ

�
:

ð117Þ

From these general relations it follows that

T̃�
h ¼

8>>>>>>>><
>>>>>>>>:

ð−1Þjþ1 arctan
cosh t

2jk�
h
j

sinh r�
2jk�

h
j

for iþ j even;

ð−1Þj arctan
sinh t

2jk�
h
j

cosh r�
2jk�

h
j

for iþ j odd; r� < 0;

ð−1Þj arctan
sinh t

2jk�
h
j

cosh r�
2jk�

h
j
þ π for iþ j odd; r� ≥ 0;

ð118Þ

and
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R̃�
h ¼

8>>>>>>>><
>>>>>>>>:

ð−1Þj arctan
sinh t

2jk�
h
j

cosh r�
2jk�

h
j

for iþ j even;

ð−1Þjþ1 arctan
cosh t

2jk�
h
j

sinh r�
2jk�

h
j

for iþ j odd; r� < 0;

ð−1Þjþ1 arctan
cosh t

2jk�
h
j

sinh r�
2jk�

h
j
þ π for iþ j odd; r� ≥ 0:

ð119Þ

Recall that the function r�ðrÞ is given by (99) and the
coefficients k�h by (100). In particular, the lines of constant
r thus coincide with the lines of constant r�. Moreover, the
condition (81) for a reasonably small values of the accel-
eration parameter α guarantees that kþa ; k−b < 0 while
k−a ; k

þ
b > 0. Therefore, for every single region the coor-

dinate r� spans the whole range ð−∞;þ∞Þ, and similarly
the coordinate t.
The explicit relations (118), (119) between the compac-

tified coordinates fT̃�
h ; R̃

�
h g and the original coordinates

ft; rg of the metric (1) for all ði; jÞ can be used for graphical
construction of the Penrose diagram which represents the
global structure of the extended black-hole manifold,
composed of various “diamond” regions. The resulting
picture is shown in Figs. 4 and 5. Fig. 4 is the Penrose

diagram of a generic 2-dimensional section through the
whole spacetime for any θ ¼ const such that cos θ ≠ −l=a.
It does not contain the curvature singularity at r ¼ 0. Fig. 5
is the complementary Penrose diagram for the special value
of θ such that cos θ ¼ −l=a which contains the curvature
singularity at r ¼ 0 in all its regions IV (see Sec. V C
and Fig. 3).
It can be seen that the complete manifold consists of an

infinite number of the regions I, II, III, IV and V, each
identified by the specific pair of integers ði; jÞ. These
regions are separated by the corresponding horizons.
Namely, the regions I and II are separated by the accel-
eration horizonHþ

a at rþa , with the asymptotic region I also
bounded by the conformal infinity I (the scri) for very large
values of r. The regions II and III are separated by the
black-hole horizon Hþ

b at rþb ≡ rþ, while the regions III
and IVare separated by the inner black-hole horizon H−

b at
r−b ≡ r−. Finally, the regions IV and V (if present) are
separated by the acceleration horizon H−

a at r−a , with the
asymptotic region V bounded by the conformal infinity I
with negative values of r. The curves in each region
represent the lines of constant t and r (dashed or solid,
respectively).
In the diagonal null directions of these Penrose diagrams

we can identify the particular coordinate patches covered
by the “advanced” metric form (93), extending from the

FIG. 4. Penrose conformal diagram of the completely extended spacetime (1) showing the global structure of this family of
accelerating and rotating charged black holes. We assume the ordering of the four horizons as r−a < r− < rþ < rþa , see (80), which
occurs for reasonably small acceleration parameter α, restricted by (81), and small values of the NUT parameter l such that jlj < jaj.
Here we show a typical 2-dimensional section θ;ϕh ¼ const without the curvature singularity at r ¼ 0, i.e., for any θ ¼ const such that
cos θ ≠ −l=a. The double dashed vertical parallel lines indicate a separation of distinct asymptotically flat regions close to I� (different
“parallel universes” that are not necessarily identified). Grey areas in regions II and IV close to the horizons denote the ergoregions.
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bottom left I− to the top right Iþ [for example the pink
regions I–V between ð1;−1Þ and (1, 3)], and also the
complementary “retarded” metric form (96), extending
from the bottom right I− to the top left Iþ [these are
not colored but also contain the regions I–V, for example
between ð−1; 1Þ and (3, 1)]. These patches “share” the
“central regions” III [for example (1, 1)]. Each of such
central region III is bounded by the inner and outer black-
hole horizons at r− and rþ, localizing thus the interior of
the corresponding black hole. In the whole extended
universe, there are thus infinitely many black holes—
they are identified by the regions III, and labeled by the
corresponding specification ði; jÞ, for example (0, 0), (1, 1),
(2, 2), ð−2; 2Þ, ð−1; 3Þ, (0, 4), etc.
Recall that all these black holes are rotating, NUTed,

charged, and accelerating. Due to their rotation, there are
ergoregions associated with all the horizons, see Sec. V B
and Fig. 1. They are represented by the grey areas in the
regions II and IV close to the horizons.
As shown in Sec. V C and schematically depicted in

Fig. 2, there are two distinct asymptotically flat universes
associated with each original coordinate patch given by the
metric (1), one for r → þ∞ and the other for r → −∞.
These can now be identified in the Penrose diagram in
Fig. 4 as the regions I and V beyond the acceleration
horizons close to I , respectively. However, the maximal
extension has now revealed that each black hole, identified
by the specific region III, is in fact associated with four
asymptotically flat regions, namely the pair of the regions I
and a pair of the regions V. Two such regions are in the

causal future, while the remaining two are in the past.
Moreover, each asymptotically flat region bounded by I is
“shared” by two distinct black holes.
For example, the “infinite chain” of black holes (regions

III) given by …; ð3;−1Þ; ð1; 1Þ; ð−1; 3Þ;… are located in
the “future universes” (regions I) …; ð5;−1Þ; ð3; 1Þ;
ð1; 3Þ; ð−1; 5Þ;…, while their “past universes” (regions
V) are …; ð3;−3Þ; ð1;−1Þ; ð−1; 1Þ; ð−3; 3Þ;…, respec-
tively. However, these “past universes” need not be the
same asymptotically flat regions. Therefore, we inserted the
double dashed vertical parallel lines in them to indicate
their separation: in general the two regions such as ð1;−1Þ
are different “causal-past parallel universes” with respect to
the distinct causal-future universes of the chain of the black
holes. Of course, it is possible to “artificially” identify
(some of) them—both the black-hole regions III and/or
their asymptotically flat regions I and V. Since there are
infinitely many possibilities of such identifications, a
plethora of various topologically extremely complicated
manifolds can be constructed.
Finally, let us remark that the conformal infinities I

plotted in Figs. 4, 5 does not look null. This may be
surprising because in all the regions I and V the spacetime
is asymptotically flat (excluding the cosmic strings along
the axes θ ¼ 0 and θ ¼ π, arising as specific topological
defects which we will investigate in the next three sections
of this paper). Being Minkowski-like, the scri I is indeed
null. However, it should be emphasized that the Penrose
diagrams in Fig. 4 and Fig. 5 are just 2-dimensional
sections through the global conformal structure of the

FIG. 5. Penrose conformal diagram of the spacetime (1) representing the same black hole as in Fig. 4 but for the section θ;ϕh ¼ const
containing the curvature singularity at r ¼ 0, i.e., for the special value of θ such that cos θ ¼ −l=a. In this section, the regions IVare “cut
in half” by this singularity at r ¼ 0, so that the acceleration horizon at r−a < 0 can not be reached, and the region V is thus absent.
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four-dimensional Lorentzian manifold which is not spheri-
cally symmetric. In particular, it turns out that in the
presence of acceleration, the null conformal infinity I of
the asymptotically flat regions is indeed represented as the
non-null curve in the given section. This has been thor-
oughly discussed and analyzed in our previous work on the
C-metric [16], see also Chapter 14 in [4].
The global extension of the type D black-hole family of

spacetimes obtained in this section seems to be more
elegant and also more complete than the preliminary
investigation [17] which employed rather complicated
transformations to the Weyl–Lewis–Papapetrou form and
subsequently to the boost-rotation-symmetric form of the
metric. Moreover, here it is explicitly compactified.

E. Cosmic strings (or struts) and deficit angles
at θ= 0 and θ =π

As shown already in previous works [5,7], the metric
form (1) is convenient for explicit analysis of the regularity
of the poles/axes located at θ ¼ 0 and θ ¼ π, respectively.
This is now further improved with the new metric functions
(2)–(5).
The spatial axes of symmetry are associated with the

Killing vector field ∂φ, identified as its degenerate points.
These are located at the coordinate singularities of the
function sin θ in the metric (1) which appear at θ ¼ 0 and
θ ¼ π. Therefore, the range of the spatial coordinate θ must
be constrained to θ ∈ ½0; π�.
Recall that there are six physical parameters in the new

metric (1), namely m; a; l; α; e; g, which represent mass,
Kerr-like rotation, NUT parameter, acceleration, electric
and magnetic charges of the black hole, respectively.
However, there is also the seventh free parameter—the
conicity C hidden in the range of the angular coordinate

φ ∈ ½0; 2πCÞ; ð120Þ

which has not yet been specified. We will demonstrate its
physical meaning by relating it to the deficit (or excess)
angles of the cosmic strings (or struts). Their tension is the

physical source of the acceleration of the black holes.
These are basically topological defects associated with
conical singularities around the two distinct axes. In
addition, for nonvanishing NUT parameter l these cosmic
strings or struts are rotating, thus introducing specific
internal twist to the entire spacetime. We will now analyze
them in more detail.
Let us start with investigation of the (non)regularity of

the first axis of symmetry θ ¼ 0 in the metric (1). Consider
a small circle around it given by θ ¼ const., with the range
of φ given by (120), assuming fixed t and r. The invariant
length of its circumference is

R
2πC
0

ffiffiffiffiffiffiffigφφ
p dφ, while its

radius is
R
θ
0

ffiffiffiffiffiffi
gθθ

p
dθ. The axis is regular if their fraction

in the limit θ → 0 is equal to 2π. However, in general we
obtain

f0 ≡ lim
θ→0

circumference
radius

¼ lim
θ→0

2πC ffiffiffiffiffiffiffigφφ
p

θ
ffiffiffiffiffiffi
gθθ

p : ð121Þ

For the metric (1), the relevant metric functions are

gφφ¼
1

Ω2ρ2

�
Pðr2þðaþ lÞ2Þ2 sin2θ

−Q

�
asin2θþ4lsin2 1

2
θ

�
2
�
; gθθ¼ ρ2

Ω2P: ð122Þ

For very small values of θ, the second term in gφφ
proportional to Q becomes negligible with respect to the
first term proportional to P, so that we obtain
gφφ ≈ Pðr2 þ ðaþ lÞ2Þ2θ2=Ω2ρ2. Straightforward evalu-
ation of the limit (121) gives

f0¼2πCPð0Þ¼2πC

�
1−α

a2þal
a2þ l2

rþ

��
1−α

a2þal
a2þ l2

r−

�
:

ð123Þ

The axis θ ¼ 0 in the metric (1) can thus be made regular
by the unique choice

C ¼ C0 ≡
��

1 − α
a2 þ al
a2 þ l2

rþ

��
1 − α

a2 þ al
a2 þ l2

r−

��
−1

¼
�
1 − 2αm

a2 þ al
a2 þ l2

þ α2
�
a2 þ al
a2 þ l2

�
2

ða2 − l2 þ e2 þ g2Þ
�
−1
; ð124Þ

where we have employed the relations (6), (7). Notice that
for vanishing acceleration α, this regularization condition is
simply C0 ¼ 1.
Analogously, it is possible to regularize the second axis

of symmetry θ ¼ π. Now, the conceptual problem is that the
metric function gφφ in (122), and thus the circumference,

does not approach zero in the limit θ → π due to the
presence of the term 4l sin2 1

2
θ. This problem can be

resolved by the same procedure as for the classic Taub–
NUT solution (see the transition between the metrics (12.1)
and (12.3) in [4]), namely by applying the transformation of
the time coordinate
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tπ ≡ t − 4lφ: ð125Þ

The metric (1) then becomes

ds2¼ 1

Ω2

�
−
Q
ρ2

h
dtπ−

�
asin2θ−4lcos2 1

2
θ
�
dφ

i
2þρ2

Q
dr2

þρ2

P
dθ2þ P

ρ2
sin2θ½adtπ−ðr2þða− lÞ2Þdφ�2

�
;

ð126Þ

i.e.,

gφφ¼
1

Ω2ρ2

�
Pðr2þða− lÞ2Þ2sin2θ

−Q

�
asin2θ−4lcos2 1

2
θ

�
2
�
; gθθ¼ ρ2

Ω2P: ð127Þ

Thus, for θ → π we get gφφ ≈ Pðr2 þ ða − lÞ2Þ2
ðπ − θÞ2=Ω2ρ2. The radius of a small circle around the
axis θ ¼ π is

R
π
θ

ffiffiffiffiffiffi
gθθ

p
dθ, so that the fraction

fπ ≡ lim
θ→π

circumference
radius

¼ lim
θ→π

2πC ffiffiffiffiffiffiffigφφ
p

ðπ − θÞ ffiffiffiffiffiffi
gθθ

p ; ð128Þ

is

fπ¼2πCPðπÞ¼2πC

�
1þα

a2−al
a2þ l2

rþ

��
1þα

a2−al
a2þ l2

r−

�
:

ð129Þ

The axis θ ¼ π in the metric (126) can thus be made
regular by the unique choice

C ¼ Cπ ≡
��

1þ α
a2 − al
a2 þ l2

rþ

��
1þ α

a2 − al
a2 þ l2

r−

��
−1

¼
�
1þ 2αm

a2 − al
a2 þ l2

þ α2
�
a2 − al
a2 þ l2

�
2

ða2 − l2 þ e2 þ g2Þ
�
−1
: ð130Þ

With such a choice, there is a deficit angle δ0 (conical singularity) along the first axis θ ¼ 0, namely

δ0 ≡ 2π − f0

¼ 8πα
a2½mða2 þ l2Þ − αalða2 − l2 þ e2 þ g2Þ�

ða2 þ l2Þ2 þ 2αmða2 − alÞða2 þ l2Þ þ α2ða2 − alÞ2ða2 − l2 þ e2 þ g2Þ : ð131Þ

For black holes without the NUT parameter (l ¼ 0) this
expression simplifies to

δ0 ¼
8παm

1þ 2αmþ α2ða2 þ e2 þ g2Þ ; ð132Þ

recovering the previous results for rotating charged
C-metric, see Chapter 14 in [4]. The tension in the cosmic
string along θ ¼ 0 pulls the black hole, causing its uniform

acceleration. Such a string extends to the full range of the
radial coordinate r ∈ ð−∞;þ∞Þ, connecting “our uni-
verse” with the “parallel universe” through the nonsingular
black-hole interior close to r ¼ 0.
Complementarily, when the first axis of symmetry

θ ¼ 0 is made regular by the choice (124), there is
necessarily an excess angle δπ along the second axis
θ ¼ π, namely

δπ ≡ 2π − fπ

¼ −8πα
a2½mða2 þ l2Þ − αalða2 − l2 þ e2 þ g2Þ�

ða2 þ l2Þ2 − 2αmða2 þ alÞða2 þ l2Þ þ α2ða2 þ alÞ2ða2 − l2 þ e2 þ g2Þ ; ð133Þ

which simplifies to

δπ ¼ −
8παm

1 − 2αmþ α2ða2 þ e2 þ g2Þ ; ð134Þ

for l ¼ 0. As in the C-metric, this represents the cosmic
strut located along θ ¼ π between the pair of black holes,
pushing them away from each other in opposite spatial
directions.
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We observe that δ0 ¼ 0 ¼ δπ whenever α ¼ 0. In such a
case both the axes are regular, there is no physical cause of
the acceleration and the Kerr–Newman–NUT black holes
do not move.
Interestingly, both the axes θ ¼ 0 and θ ¼ π can be

simultaneously regular even for nonvanishing acceleration
α when all six physical parameters satisfy the special
constraint

mða2 þ l2Þ ¼ αalða2 − l2 þ e2 þ g2Þ: ð135Þ
The nontrivial constraint requires both a ≠ 0 and l ≠ 0.
Actually, this is a nice compact form of the condition given
on page 313 of [4], when the relations (15) for the physical
parameters and also the convenient gauge choice (30) are
employed. This again demonstrates the advantages of the
new form of the metric (1).
However, the condition (135) is not satisfied for small

values of the accelerationα obeying the inequality (81)which
guarantees the natural ordering of the four horizons (80).
Indeed, (135) can be rewritten as mða2 þ l2Þ ¼ αalrþr−.
Now applying (81), and assumingm, a, l all positive, we get
the relation

m <
l

aþ l
r− < r−: ð136Þ

It is in clear contradiction with (7) which implies m > r−.

F. Rotation of the cosmic strings (or struts)

With a generic NUT parameter l, the cosmic strings (or
struts) are rotating. This can be seen by calculating the
angular velocity parameter ωθ of the metric, see [12], along
the two different axes θ ¼ 0 and θ ¼ π, namely

ωθ ≡ gtφ
gtt

: ð137Þ

For the general form of the new metric (1), where

gtφ ¼ 1

Ω2ρ2

h
Q
�
asin2θ þ 4lsin2 1

2
θ
�

− aðr2 þ ðaþ lÞ2ÞPsin2θ
i
;

gtt ¼
−1
Ω2ρ2

½Q − a2Psin2θ�; ð138Þ

we obtain

ωθ ¼ −
Qðasin2θ þ 4lsin2 1

2
θÞ − aðr2 þ ðaþ lÞ2ÞPsin2θ

Q − a2Psin2θ
:

ð139Þ
Now we take any fixed value of r away from the horizons,
so that Q ≠ 0 is a nonvanishing constant. Then the limits
θ → 0 and θ → π are

ω0 ¼ 0 and ωπ ¼ −4l; ð140Þ

respectively. The first axis θ ¼ 0 is thus nonrotating, while
the second axis θ ¼ π rotates and its angular velocity is
directly and solely determined by the NUT parameter l.
Notice that ωπ is independent of the Kerr-like parameter a,
and it also does not depend on the conicity parameter C.
The rotational character of the axis is thus a specific feature
determined by the NUT parameter l, which is clearly
independent of the possible deficit angles defining the
cosmic string/strut along the same axis.
By changing the time coordinate as (125), we obtain the

alternative metric (126) for which

gtπφ ¼ 1

Ω2ρ2

h
Q
�
asin2θ − 4lcos2 1

2
θ
�

− aðr2 þ ða − lÞ2ÞPsin2θ
i
;

gtπtπ ¼
−1
Ω2ρ2

½Q − a2Psin2θ�; ð141Þ

so that

ωθ¼−
Qðasin2θ−4lcos2 1

2
θÞ−aðr2þða− lÞ2ÞPsin2θ

Q−a2Psin2θ
:

ð142Þ

The corresponding angular velocities of the two axes are
thus

ω0 ¼ 4l and ωπ ¼ 0: ð143Þ

In this case, the situation is complementary to (140): the
axis θ ¼ 0 rotates, while the axis θ ¼ π is nonrotating.
It is interesting to observe that there is a constant

difference Δω≡ ω0 − ωπ ¼ 4l between the angular veloc-
ities of the two rotating cosmic strings or struts, directly
given by the NUT parameter l (irrespective of the value of a
or the choice of C). The NUT parameter is thus responsible
for the difference between the magnitude of rotation of the
two axes θ ¼ 0 and θ ¼ π.

G. Closed timelike curves around the rotating
strings (or struts)

In the vicinity of the rotating cosmic strings or struts
located along θ ¼ 0 or θ ¼ π, the black-hole spacetimewith
twist can serve as a specific time machine because (as in the
classic Taub–NUTsolution) there are closed timelike curves.
To identify these pathological causality-violating regions

we will consider simple curves in the spacetime, namely
circles around the axes of symmetry θ ¼ 0 or θ ¼ π such
that only the periodic angular coordinate φ ∈ ½0; 2πCÞ
changes, while the remaining coordinates t, r and θ are kept
fixed. The corresponding tangent (velocity) vectors are thus
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proportional to the Killing vector field ∂φ. Its norm is
determined just by the metric coefficient gφφ, which for the
general metric (1) has the form (122). There exist regions
such that gφφ < 0, where the circles (orbits of the axial
symmetry) are closed timelike curves. These pathological
regions are explicitly given by the condition

PðθÞðr2 þ ðaþ lÞ2Þ2sin2θ < QðrÞ
�
asin2θ þ 4lsin2 1

2
θ
�
2
;

ð144Þ

where the functions PðθÞ, QðrÞ are given by (4), (5). In
particular, for l ¼ 0, g ¼ 0, α ¼ 0 this reduces to r2 þ a2 þ
ρ−2ð2mr − e2Þa2 sin2 θ < 0 which is exactly the condition
(27) derived in [13] for the Kerr–Newman family of
black holes.
Although this condition is difficult to be solved analyti-

cally, some general observations can be made. Clearly, the
condition cannot be satisfied in the regions where
QðrÞ < 0. Naturally assuming a sufficiently small accel-
eration α satisfying the inequality (81), the function PðθÞ is
positive, while the four distinct horizons are ordered
as r−a < r−b < rþb < rþa , see (80). For l < a, the metric
function Q satisfies QðrÞ > 0 only in the regions ðr−a ; r−b Þ
and ðrþb ; rþa Þ, in which r is a spatial coordinate. The closed

timelike curves can thus only appear between the black
hole horizon H�

b and the corresponding acceleration
horizon H�

a , that is only in the region IV given by r ∈
ðr−a ; r−b Þ or in the region II given by r ∈ ðrþb ; rþa Þ. On the
contrary, the pathological domain can not occur in the
region III inside the black hole or close to the conformal
infinities I� which are the boundaries of the dynamical
regions I and V where r is temporal because Q < 0.
This fact is explicitly seen in the exact plots shown
in Fig. 6.
Moreover, it can be proven analytically that these

pathological regions with closed timelike curves do not
overlap with the ergoregions (shown in Fig. 1), although
they are both in the same domains II and IV. Recall that the
ergoregions are identified by the condition gtt > 0 (together
with grr > 0), that is

Q < Pa2 sin2 θ; ð145Þ

see Eq. (84). By substituting this inequality into (144),
which is the condition gφφ < 0 for the pathological regions,
we obtain the relation

r2 þ ðaþ lÞ2 < a2 sin2 θ þ 4al sin2 1
2
θ; ð146Þ

FIG. 6. Plot of the metric function gφφ (122) for the accelerating black hole (1) with a regular axis θ ¼ 0 and rotating cosmic string
along θ ¼ π. The values of gφφ are visualized in quasipolar coordinates x≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðaþ lÞ2
p

sin θ, y≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðaþ lÞ2

p
cos θ for r ≥ 0

(left) and r ≤ 0 (right). The grey annulus in the center of the left figure localizes the black hole bordered by its horizonsH�
b at rþ and r−

(0 < r− < rþ). The acceleration horizons H�
a at rþa and r−a (big red circles) and the conformal infinity I at Ω ¼ 0 are also shown. The

grey curves are contour lines gφφðr; θÞ ¼ const, and the values are color-coded from red (positive values) to blue (negative values);
extremely large values are cut. The purple curves are the isolines gφφ ¼ 0 determining the boundary of the pathological regions (144)
with closed timelike curves. They occur close to the axis θ ¼ π (purple regions where gφφ < 0). This plot is for the choicem ¼ 3, a ¼ 1,
l ¼ 0.2, e ¼ g ¼ 1.6, and α ¼ 0.12.
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that is the same as r2 þ a2 cos2 θ þ 2al cos θ þ l2 < 0. In
view of (3), we have thus obtained

ρ2 ≡ r2 þ ðlþ a cos θÞ2 < 0; ð147Þ

which is a contradiction.
Interestingly, there is thus no intersection of the patho-

logical regions with the ergoregions. This is in accord with
a physical intuition: the pathological regions with closed
timelike curves are located here in the vicinity of the
twisting axis θ ¼ π, while the ergoregions are concentrated
mostly near the equatorial plane θ ¼ π

2
of the rotating black

hole horizons.

H. Thermodynamic properties

Finally, we evaluate basic thermodynamic quantities of
this class of black holes, namely the entropy

S≡ 1

4
A; ð148Þ

given by the horizon area A, and the temperature

T ≡ 1

2π
κ; ð149Þ

given by the corresponding horizon surface gravity κ,
see [18].
We obtain the horizon area by integrating both angular

coordinates of the metric (1) for fixed values of t and
r ¼ rh,

AðrhÞ ¼
Z

2πC

0

Z
π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgφφ

p
dθdφ; ð150Þ

where the metric functions are given by (122). Using the
fact that QðrhÞ ¼ 0 on any horizon, this expression
simplifies to

A ¼ 2πCðr2h þ ðaþ lÞ2Þ
Z

π

0

sin θ
Ω2ðrhÞ

dθ: ð151Þ

Applying the explicit form of the conformal factor (2), an
integration immediately leads to

A ¼ 4πCðr2h þ ðaþ lÞ2Þ
ð1 − α a2þal

a2þl2 rhÞð1þ α a2−al
a2þl2 rhÞ

: ð152Þ

With the gauge (30), this is the same expression as Eq. (51)
in [10]. In particular, for the four distinct horizons H
introduced in (71)–(74) we thus obtain that

area ofHþ
b isA

þ
b ¼ 4πCðr2þþðaþ lÞ2Þ

ð1−αa2þal
a2þl2 rþÞð1þαa2−al

a2þl2 rþÞ
; ð153Þ

areaofH−
b isA

−
b ¼

4πCðr2−þðaþ lÞ2Þ
ð1−αa2þal

a2þl2 r−Þð1þαa2−al
a2þl2 r−Þ

; ð154Þ

area ofHþ
a is infinite; ð155Þ

area ofH−
a is infinite: ð156Þ

The area of the acceleration horizons H�
a is thus

unbounded, while the black-hole horizons H�
b have finite

values given by (153), (154).
Interestingly, there exists a relation between these

horizon areas and the conicities, namely

Aþ
bA

−
b ¼ 16π2C2C0Cπðr2þ þ ðaþ lÞ2Þðr2− þ ðaþ lÞ2Þ;

ð157Þ

where C0 and Cπ , given by (124) and (130), are the specific
conicities which regularize either the θ ¼ 0 or the θ ¼ π
axis, respectively. For vanishing acceleration α the con-
icities are C ¼ C0 ¼ Cπ ¼ 1, so that the two horizons of
the complete family of Kerr–Newman–NUT black holes
(31)–(33) located at r� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
have the corresponding areas

A�
b ¼ 4πðr2� þ ðaþ lÞ2Þ: ð158Þ

This simple expression reduces to the well-known
formulas for Kerr–Newman black holes (l ¼ 0),
charged Taub–NUT (a ¼ 0), Kerr (l ¼ 0, e ¼ 0 ¼ g),
Reissner–Nordström (a ¼ 0, l ¼ 0), and Schwarzschild
(a ¼ 0, l ¼ 0, e ¼ 0 ¼ g) with a single horizon of the
area Ab ¼ 4πr2h ¼ 16πm2.
The surface gravity κ is defined as the “acceleration” of

the null normal ξa generating the horizon at rh via the
relation ξa;bξ

b ¼ κξa (so that κ2 ¼ − 1
2
ξa;bξ

a;b). Previously
in [10] we showed that for the general metric form (1) this
can be expressed as

κ ¼ 1

2

Q0ðrhÞ
r2h þ ðaþ lÞ2 ; ð159Þ

where the prime denotes the derivative with respect
to the coordinate r. With the new factorized form (5) of
the metric function QðrÞ this can now be easily evaluated,
yielding
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surface gravity ofHþ
b is κþb ¼

1
2
ðrþ − r−Þð1þ α a2−al

a2þl2 rþÞð1 − α a2þal
a2þl2 rþÞ

r2þ þ ðaþ lÞ2 ; ð160Þ

surface gravity ofH−
b is κ

−
b ¼ −

1
2
ðrþ − r−Þð1þ α a2−al

a2þl2 r−Þð1 − α a2þal
a2þl2 r−Þ

r2− þ ðaþ lÞ2 ; ð161Þ

surface gravity ofHþ
a is κþa ¼ − α

a2

a2 þ l2
ðrþa − rþÞðrþa − r−Þ
ðrþa Þ2 þ ðaþ lÞ2 ; ð162Þ

surface gravity ofH−
a is κ−a ¼ α

a2

a2 þ l2
ðr−a − rþÞðr−a − r−Þ
ðr−a Þ2 þ ðaþ lÞ2 : ð163Þ

Recall that the specific values rþ, r−, rþa , r−a of the horizons
position are explicitly given by (71)–(74). In particular,

1

2
ðrþ − r−Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
: ð164Þ

Notice that the surface gravities κ (and thus the corre-
sponding temperatures T) of the black-hole horizon Hþ

b
and the acceleration horizonH−

a are positive, while they are
negative for the complementary horizons H−

b and Hþ
a .

It is also very interesting that even in the most general
case the product of the area and the surface gravity of the
black-hole horizons are the same, and expressed simply as

Aþ
b κ

þ
b ¼ −A−

b κ
−
b ¼ 2πCðrþ − r−Þ: ð165Þ

Consequently, the product of the temperature and the
entropy of the black-hole horizons H�

b is

ðTSÞþ ¼ −ðTSÞ− ¼ 1

2
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

q
: ð166Þ

Moreover, it is seen from (160) and (161) that

κþb ¼ 0 ¼ κ−b if and only if rþ ¼ r− ð167Þ

(assuming a reasonably small acceleration α). This fully
confirms that an extremal horizon has vanishing surface
gravity. As described in Sec. IV, if the extremality condition
(44) is satisfied the double-degenerate extremal horizon is
located at

rh ¼ m; ð168Þ

and the metric function QðrÞ takes the form (47),

QðrÞ ¼ ðr −mÞ2
�
1þ αa

a − l
a2 þ l2

r

��
1 − αa

aþ l
a2 þ l2

r

�
:

ð169Þ

Clearly, QðrhÞ ¼ 0 and also Q0ðrhÞ ¼ 0, so that κ ¼ 0 due
to (159). Such a degenerate black-hole horizon at r ¼ m in
the family of accelerating extremal Kerr–Newman–NUT
spacetimes has zero surface gravity, and thus zero thermo-
dynamic temperature T.
Let us consider the special case with vanishing accel-

eration (α ¼ 0). In such a situation, the expressions (160)–
(163) simplify:

surface gravity ofHþ
b is κþb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
r2þ þ ðaþ lÞ2 ;

ð170Þ

surface gravity ofH−
b is κ

−
b ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
r2− þ ðaþ lÞ2 ;

ð171Þ

surface gravity ofH�
a is κ�a ¼ 0: ð172Þ

(Actually, both the acceleration horizons H�
a disappear in

this limit.) Writing (170) fully explicitly, we obtain the
surface gravity of the black-hole horizon Hþ

b

κþb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
ðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
Þ2 þ ðaþ lÞ2

: ð173Þ

This generalizes for the case l ≠ 0 and g ≠ 0 the expression

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − e2

p

2mðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 − e2

p
Þ − e2

; ð174Þ

which is the usual surface-gravity formula for the Kerr–
Newman black hole, see Eq. (12.5.4) in [18]. For the
Schwarzschild black hole it reads κ ¼ 1=ð4mÞ.
Finally, let us remark that our explicit and fully general

expressions (160)–(163) for the surface gravity κ of each of
the 4 horizons at rh agree with the results obtained directly
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from the definition ξa;bξ
b ¼ κξa if the appropriate null

normal generator ξa of the horizon is employed. In
particular, the corresponding Killing vector field is

ξa ≡ ∂t þΩh∂φ; ð175Þ

where the constant Ωh is the angular velocity of the given
horizon H. Using (138) and (122), the norm ξaξa of the
Killing vector ξa at the horizon (where Q ¼ 0) vanishes if
and only if

Ωh ¼
a

r2h þ ðaþ lÞ2 : ð176Þ

For the particular horizons r�b ≡ r� and r�a given
by (71)–(74) this gives the constants

Ω�
b ¼ a

r2� þ ðaþ lÞ2 ; ð177Þ

Ω�
a ¼ α2a3ða� lÞ2

ða2 þ l2Þ2 þ α2a2ðaþ lÞ2ða� lÞ2 : ð178Þ

It can be seen that for vanishing Kerr-like rotation
(a ¼ 0) the angular velocities of all four horizons become
zero, whereas for vanishing NUT parameter (l ¼ 0) they all
remain nonzero,

Ω�
b ¼ a

r2� þ a2
; Ω�

a ¼ α2a
1þ α2a2

: ð179Þ

I. Concluding summary

In this work we presented a new metric form (1)–(7) of
the remarkable family of exact black holes of algebraic
type D, initially found by Debever (1971) and by Plebański
and Demiański (1976). Moreover, we demonstrated that
this improved metric representation has many advantages
which simplify the investigation of its geometrical and
physical properties. In particular:

(i) In Sec. II we started with a convenient Griffiths–
Podolský (2005, 2006) form of this class of space-
times, but we further improved it. By introducing a
modified set of the mass and charge parametersm, e,
g, applying a special conformal rescaling S, and
choosing a useful gauge of the twist parameter ω, we
obtained an explicit compact form of the metric.

(ii) Themetric functions (2)–(5) are very simple, depend-
ing only on the radial coordinate r and the angular
coordinate θ. Moreover, the key functions PðθÞ and
QðrÞ are factorized. They explicitly localize the axes
of symmetry and the horizons, respectively.

(iii) The metric depends on six parameters m; a; l; α; e; g
with direct physical meaning, namely they represent
the mass, Kerr-like rotation, NUT parameter, accel-

eration, electric, and magnetic charges of the black
hole, respectively.

(iv) Interestingly, the new metric (1) depends on the
parameters a, l, α directly, while the dependence on
the remaining three parameters m, e, g is encoded in
the two constants rþ and r− defined by (6) and (7).
In fact, these expressions localize the two black-hole
horizons, and they only appear in the factorized
metric functions P and Q.

(v) Very nice feature of the new metric form (1)–(5) is
that any of its six physical parameters can be
independently set to zero, and this can be done in
any order. In this way, specific subclasses of type D
black holes are easily obtained.

(vi) This property is demonstrated in Sec. III where the
general family of accelerating, charged, rotating and
NUTed black holes naturally reduce to its large
subclasses with five physical parameters. These are
the Kerr–Newman–NUT black holes without accel-
eration (α ¼ 0), accelerating Kerr–Newman black
holes without NUT (l ¼ 0), charged Taub–NUT
black holes without rotation (a ¼ 0), and accelerat-
ing Kerr–NUT black holes without electric or
magnetic charges (e ¼ 0 or g ¼ 0).

(vii) All the metric functions (2)–(5) depend on the
acceleration α only via the product αa. Therefore,
by setting the Kerr-like rotation a to zero, the new
metric (1) becomes independent of α, and simplifies
directly to charged Taub–NUT black holes. This
explicitly confirms the previous observation made
by Griffiths and Podolský that there is no accelerat-
ing NUT black hole in the Plebański–Demiański
family of type D spacetimes. Quite surprisingly,
such a solution for accelerating nonrotating black
hole with purely NUT parameter exists [8,12], but it
is of distinct algebraic type I.

(viii) The simplest subcases of our general metric (1) with
just the massm and one additional physical parameter
reveal the famous black holes, namely the Schwarzs-
child,Reissner–Nordström,Kerr, Taub–NUTor theC-
metric solutions, all in their standard coordinate forms.

(ix) As shown in Sec. IV, the improved metric (1)
naturally contains also extreme black holes with
double-degenerate horizons (rþ ¼ r−) located at
r ¼ m, whenever m2 þ l2 ¼ a2 þ e2 þ g2. Such a
family of extremal accelerating Kerr–Newman–
NUT black holes also admits various subclasses,
obtained by setting any of the parameters α, l, a, e, g
to zero. In fact, they represent the complete class of
extremal isolated horizons with axial symmetry [10].

(x) The hyperextreme cases, when the parameters sat-
isfy the relation m2 þ l2 < a2 þ e2 þ g2, represent
exact spacetimes with an accelerated naked singu-
larity. The metric functions P, Q are not (fully)
factorizable, and take the form (51), (52). There are
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thus only two acceleration horizons, which are
absent when αa ¼ 0.

The new convenient metric (1) considerably simplifies the
investigationof various properties of this large family of black
holes, as demonstrated in the subsequent sections of ourwork,
namely:

(i) First, in Sec. V we evaluated the Weyl and Ricci
tensors of (1), expressed as the Newman–Penrose
scalars in the natural tetrad (54) adapted to the
double-degenerate principal null directions. The
only such scalars are Ψ2 and Φ11, confirming
the type D algebraic structure of the gravitational
field, aligned with the non-null electromagnetic field
(67)–(69).

(ii) Their explicit form (55) and (56) reveals that generic
black-hole spacetimes are asymptotically flat at
Ω ¼ 0. For vanishing acceleration α, the spacetimes
(1) become asymptotically flat for large values of the
radial coordinate jrj (except along the axes of
symmetry θ ¼ 0 and θ ¼ π if the cosmic strings
or struts are present).

(iii) Both the double-degenerate principal null directions
are expanding. They are twisting if and only if
a ¼ 0 ¼ l. On the horizons, the expansion and twist
always vanish.

(iv) In general, there are four distinct horizons identified
in Sec. VA as the roots of the metric function
QðrÞ. Since its form (70) is fully factorized, the
corresponding positions are simply expressed in
terms of the physical parameters as (71)–(74).
There is a pair of black-hole horizons H�

b at

r�b ≡ r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
, and a

pair of acceleration horizons H�
a at r�a≡

�α−1ða2 þ l2Þ=ða2 � alÞ, which simplifies to r�a ≡
�α−1 when l ¼ 0.

(v) Interestingly, these positions of the black-hole hori-
zons are independent of the acceleration α, while the
acceleration horizons do not depend on the mass m
and the charges e, g.

(vi) For sufficiently small acceleration α such that
αrþ < ða2 þ l2Þ=ða2 þ alÞ, with 0 ≤ l < a, the four
horizons are ordered as r−a < r−b < rþb < rþa , see (81).

(vii) Whenever the Kerr-like rotation parameter a
is nonzero, each of these four horizons is accom-
panied by the corresponding ergoregion, see
Sec. V B. It “touches’ the horizon at its poles,
extending from the horizon near the equatorial
region. This is shown in Fig. 1. For the Kerr–
Newman–NUT black holes without acceleration,
the ergoregions are bounded by the surface
re�ðθÞ ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − e2 − g2 − a2 cos2 θ

p
.

(viii) Using the Weyl scalar Ψ2 and also the Kretschmann
scalar K≡ RabcdRabcd, in Subsec. V C we clarified
the presence and the structure of the curvature

singularities. Such a singularity is present at r ¼ 0,
but only if lþ a cos θ ¼ 0 which requires jlj ≤ jaj.
There is thus no curvature singularity in the
black-hole spacetimes with large NUT parameter
jlj > jaj ≥ 0.

(ix) For 0 ≤ jlj ≤ jaj the curvature singularity is present
at r ¼ 0, but only in the section with special value of
the angular coordinate θ such that cos θ ¼ −l=a.
Various possibilities are summarized in (89).

(x) This singularity has a ring structure which can be
crossed from the asymptotically flat region r > 0 to
the distinct asymptotically flat region r < 0, as
schematically shown in Fig. 2 and Fig. 3. Only in
the section cos θ ¼ −l=a (or for any value of θ if
l ¼ 0 ¼ a) we have to restrict the range of r to two
separate domains r > 0 and r < 0.

(xi) To complete our understanding of the global causal
structure of the entire family of black-hole space-
times (1), in Sec. V Dwe introduced the retarded and
advanced null coordinates in which the correspond-
ing metric forms (93) and (96) have no coordinate
singularities at the horizons.

(xii) Then we explicitly constructed the corresponding
Kruskal–Szekeres-type coordinates which enabled
us to perform the maximal analytic extension across
all the horizons. It revealed an infinite number of
time-dependent regions (of type I, III, V) and sta-
tionary regions (of type II, IV) which are separated by
the black hole and acceleration horizonsH�

b andH�
a .

(xiii) The complicated global structure of this large family
of spacetimes is visualized in the Penrose diagrams
obtained by a suitable conformal compactification,
drawn in Fig. 4 and Fig. 5. The complete manifold
contains an infinite number of black holes in various
asymptotically flat universes identified by distinct
(future and past) conformal infinities I—unless a
special topological identification is made.

(xiv) In Sec. V E we clarified that the physical source of
acceleration of the black holes is the tension (or
compression) in the rotating cosmic strings (or
struts) located along the two axes of axial symmetry
at θ ¼ 0 and θ ¼ π. Such strings or struts are related
to the deficit or excess angles which introduce
topological defects along these axes (while the
curvature remains finite).

(xv) In general, there are strings/struts along both the
axes, but one of the axis can be made fully regular by
a suitable choice of the conicity parameter C in the
range φ ∈ ½0; 2πCÞ. The first axis θ ¼ 0 is regular in
the metric form (1) with the choice (124), whereas
the second axis θ ¼ π is regular in the form (126)
with the choice (130). In the first case, there is a
cosmic strut along θ ¼ π with the excess angle
(133), while in the second case there is a cosmic
string along θ ¼ 0 with the deficit angle (131). For
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vanishing acceleration, both the axes can be made
regular simultaneously (except for a possible NUT-
like pathology).

(xvi) In addition to the deficit/excess angles, these cosmic
strings/struts located along the axes of symmetry are
characterized by their rotation parameter ω (angular
velocity). We demonstrated in Sec. V F that their
values are directly related to the NUT parameter l,
see expressions (140) and (143).

(xvii) There is always a constant difference Δω ¼ 4l
between the angular velocities of the two rotating
cosmic strings or struts. If and only if l ¼ 0, both the
axes are nontwisting.

(xviii) In the neighborhood of these rotating strings/struts
there occur pathological regions with closed timelike
curves. As shown in Sec. VG, these regions are
generally given by the condition (144). They appear
close to the rotating strings/struts, but only between
the black hole horizon H�

b and the corresponding
acceleration horizon H�

a (that is in the domains of
type II and IV), see Fig. 6.

(xix) Although the pathological regions with closed time-
like curves are located in the same domains as the
ergoregions, they do not overlap with each other.

(xx) The convenient metric form (1) with straight-
forward identification of the horizons is also suitable
for an easy investigation of the black hole
thermodynamics. Indeed, in Sec. V H we explicitly
evaluated the area of the four horizons (153)–(156),
their surface gravity (160)–(163), and their angular
velocity (177)–(178).

(xxi) These expressions generalize the usual formulas
for the Kerr–Newman family to black holes with
acceleration α and NUT parameter l. They reveal
interesting relations for the horizons temperature
and entropy, for example ðTSÞþ ¼ −ðTSÞ− ¼
1
2
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ l2 − a2 − e2 − g2

p
.

To conclude, the simple new metric form (1)–(7) has
clear advantages. We hope that it will be employed for
various studies and applications of this interesting class of
accelerating and rotating black holes which charges and the
NUT parameter.
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