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We systematically investigate the complete class of vacuum solutions in the Einstein-Gauss-Bonnet
(EGB) gravity theory which belong to the Kundt family of nonexpanding, shear-free, and twist-free
geometries (without gyratonic matter terms) in any dimension. The field equations are explicitly derived
and simplified, and their solutions classified into three distinct subfamilies. Algebraic structures of the
Weyl and Ricci curvature tensors are determined. The corresponding curvature scalars directly enter the
invariant form of the equation of geodesic deviation, enabling us to understand the specific local physical
properties of the gravitational field constrained by the EGB theory. We also present and analyze several
interesting explicit classes of such vacuum solutions, namely, the Ricci type-III spacetimes, all geometries
with constant-curvature transverse space, and the whole pp-wave class admitting a covariantly constant null
vector field. These exact Kundt EGB gravitational waves exhibit new features which are not possible in
Einstein’s general relativity.
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I. INTRODUCTION

The Kundt spacetimes, introduced in Refs. [1,2], re-
present one of the most impressive classes of exact
solutions within the classic Einstein’s general relativity,
as well as its higher-dimensional extensions [3,4]. Their
notable particular members such as pp waves, VSI space-
times,1 or direct-product spacetimes have become textbook
models providing a deeper insight into the structure of the
Einstein gravity theory and its various inherent properties;
see comprehensive monographs [5,6]. Interestingly, in an
arbitrary dimension, the Kundt family is defined invariantly
in terms of optical scalars as those geometries admitting
nontwisting, shear-free, and nonexpanding null geodesic
congruence; see, e.g., [7,8] for the review and detailed list
of references. This purely geometric definition thus holds
irrespectively of a specific metric field theory of gravity.
However, particular field equations of a given gravity
theory put further specific restrictions on the resulting
spacetime. The Kundt class, thus, provides a unique non-
trivial opportunity to compare distinct theories of gravity
on the level of the corresponding exact solutions.
In the coordinate setting, which is naturally adapted to its

geometry, the D-dimensional Kundt manifold is described
by the line element

ds2 ¼ gpqðu; xÞdxpdxq þ 2gupðr; u; xÞdudxp
− 2dudrþ guuðr; u; xÞdu2; ð1Þ

where r represents the affine parameter along null geo-
desics forming the nontwisting, shear-free, and nonexpand-
ing congruence generated by the vector field k (i.e.,
k ¼ ∂r), the coordinate u labels null hypersurfaces with
k normal (and also tangent) whose existence is guaranteed
by the Poincaré lemma, and xp with p ranging from 2 to
D − 1 cover the Riemannian transverse space with u and r
fixed. An important attribute of the Kundt class is the r
independence of the corresponding transverse metric gpq
(which is in contrast to the expanding Robinson-Trautman
class [9]). Because of the gauge freedom of the line element
(1) (see [3,4]), the off-diagonal metric functions gup can be
simplified or even completely removed (at least locally).
The exceptional case, for which these terms carry physical
information, corresponds to so-called gyratonic solutions
representing a beam of null radiation with internal spin
[10–13]. The focus of this paper are generic vacuum
spacetimes without internal angular momentum, so that
we set

gup ¼ 0: ð2Þ

Such most general nongyratonic Kundt geometries take the
form

ds2 ¼ gpqðu; xÞdxpdxq − 2dudrþ guuðr; u; xÞdu2; ð3Þ
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with nontrivial contravariant metric components given by

gpq; gru ¼ −1; grr ¼ −guu; where gpk gkq ¼ δp
q:

ð4Þ

Throughout this paper, we employ the Einstein-Gauss-
Bonnet gravity (EGB) to restrict the (nongyratonic) gen-
eral Kundt line element (3). This famous theory arises as
the simplest nontrivial representative of a large class of
Lovelock gravities [14] or also, for example, as the limit of
the heterotic string theory [15,16] for low energies. Its
vacuum action in D ≥ 5 dimensions is given by

S ¼
Z

½κ−1ðR − 2Λ0Þ þ γLGB�
ffiffiffiffiffiffi
−g

p
dDx; ð5Þ

where R is the Ricci scalar, Λ0, κ, and γ are the theory
constants, and LGB represents the Gauss-Bonnet term

LGB ≡ R2
cdef − 4R2

cd þ R2; ð6Þ

constructed as a specific combination of the scalar curva-
ture squares, namely, R2,

R2
cdef ≡ RcdefRcdef; and R2

cd ≡ RcdRcd: ð7Þ

The field equations induced by the action (5) read

1

κ

�
Rab −

1

2
Rgab þ Λ0gab

�
þ 2γHab ¼ 0; ð8Þ

where Hab stands for

Hab ≡ RRab − 2RacbdRcd þ RacdeRb
cde − 2RacRb

c

−
1

4
gabLGB: ð9Þ

It is also useful to express their trace

R ¼ 2

D − 2
½DΛ0 þ 2κγH�;

with H ≡ gabHab ¼ −
1

4
ðD − 4ÞLGB; ð10Þ

and then rewrite the field equations (8) as

Rab ¼
2Λ0

D − 2
gab − 2k

�
Hab −

gab
D − 2

H

�
; where k≡ κγ:

ð11Þ

Our main aim here is to explicitly derive and analyze these
second-order field equations for spacetimes of the form (3).
Of course, for γ ¼ 0 ¼ k the system (8) reduces to classic
Einstein’s equations. We can thus directly compare math-
ematical and physical properties of obtained solutions in

the Einstein-Gauss-Bonnet gravity with those studied for
more than half a century in the framework of Einstein’s
general relativity. Some particular results related to the
Kundt geometries (3) have been already presented in our
previous works [17,18], but here we proceed in full
generality, supplemented by a deeper geometric and physi-
cal analysis. Moreover, some complementary results
obtained in the context of general Lovelock gravity can
be found in Ref. [19].
Finally, notice that recently a specific approach was

suggested in Ref. [20] to introduce the EGB theory even in
standard dimensionD ¼ 4. Immediately, dozens of specific
applications (see, e.g., [21,22]) have followed, together
with some doubts about the physical relevance of this
method (see, e.g., [23,24]). A comprehensive list of the
related references can be found, e.g., in Ref. [25]. Even
though our calculations here are fully general, and the
nontrivial particular limit D → 4 for the Kundt geometries
can be, in principal, obtained, such analysis goes beyond
the scope of this work and will be presented elsewhere.
Here, let us remark only that the key quantity Hab is not in
the case of general transverse metric gpq factorized by
(D − 4) which may lead to the singular behavior in a
combination with the redefinition of the theory param-
eter k → k=ðD − 4Þ.
The paper is organized as follows. In Sec. II, we

formulate the field equations, employ their constraints,
derive the general solution, and distinguish particular
distinct cases. To discuss the physically relevant properties
of new spacetimes, we review algebraic structure of the
curvature tensors in Sec. III, which we subsequently use to
study the geodesic deviation in a coordinate-independent
form in Sec. IV. These tools are then employed in Sec. V to
analyze the most interesting representatives of the Kundt
class and compare the Einstein and Einstein-Gauss-Bonnet
theories. Finally, in Appendixes A and B, the curvature
tensors for the metric (3) and their quadratic contractions
used in this paper are listed, respectively.

II. EINSTEIN-GAUSS-BONNET FIELD
EQUATIONS FOR THE KUNDT CLASS AND

THEIR SYSTEMATIC SOLUTION

To derive the complete family of Kundt solutions (3) in
the Einstein-Gauss-Bonnet gravity, we first calculate all
necessary coordinate components of the curvature tensor
and their combinations which appear in the field equa-
tions (8) and (9). These quantities are summarized in
Appendixes A and B, respectively.
Since the metric functions grr and grp are zero, and also

the rr and rp components of the relevant tensor contrac-
tions vanish, we observe that these components of the field
equations (8) are satisfied identically, in both the Einstein
as well as the Einstein-Gauss-Bonnet theories. It remains to
investigate the nontrivial components, namely, ru, pq, up,
and uu, to restrict the metric functions in (3).
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(i) The ru component of the field equations (8) con-
nects the geometry of the (D − 2)-dimensional
transverse space, described by the Riemannian
metric gpqðu; xÞ, to the constant parameters Λ0

and k of the theory, namely,

SR − 2Λ0 þ kðSR2
klmn − 4 SR2

mn þ SR2Þ ¼ 0: ð12Þ

The curvature quantities with the superscript S are
calculated with respect to the spatial metric gpq. In
the case of classic general relativity (k ¼ 0), we
immediately obtain that the transverse-space Ricci
scalar curvature SR has to be a constant equal to 2Λ0.
This is no more true in the more general Einstein-
Gauss-Bonnet theory, where it is also coupled to the
Gauss-Bonnet term constructed from the transverse-
space metric gpq.

(ii) The pq component of the field equations (8),
combined with the algebraic constraint (12), gives

Qpqguu;rr þ SRpq þ 2kðSRpq
SR − 2 SRpmqn

SRmn

þ SRpklm
SRq

klm − 2 SRpm
SRq

mÞ ¼ 0; ð13Þ

where Qpq is a fundamental quantity defined as

Qpq ≡ −
1

2
gpq þ kð2 SRpq − SRgpqÞ: ð14Þ

Its trace is

Q≡ gpqQpq ¼ −
�
1

2
ðD − 2Þ þ kðD − 4Þ SR

�
: ð15Þ

Evaluating the trace of the field equation (13), we
obtain a simple explicit constraint

−Qguu;rr ¼ 4Λ0 − SR: ð16Þ

In combination with (15), after integration this
determines the r dependence of the metric function
guu. Further discussion must be split into distinct
cases, namely, Q ≠ 0 and Q ¼ 0.

(iii) The up component of the system (8), simplified by
using previous equations (12) and (13), takes the
form

Qpngnmðguu;rm − 2gklgk½m;ujjl�Þ
þ 2kð−2 SRklδmp þ SRp

kmlÞgk½m;ujjl� ¼ 0; ð17Þ

where jj denotes the covariant derivative on the
transverse Riemannian space of dimension (D − 2).
This equation can be understood as the constraint on
the spatial dependence of guu and also the admitted
u dependence of the spatial metric gpq.

(iv) Finally, the uu component of the field equations (8)
can be written as

Qpq

�
guujjpq þ gpq;uu −

1

2
guu;rgpq;u −

1

2
gklgkp;uglq;u

�
þ 2kðgkogls − 2gklgosÞgpqgk½p;ujjl�go½q;ujjs� ¼ 0;

ð18Þ
which restricts the amplitudes of the transverse
gravitational waves encoded in guujjpq; see Sec. III.

To summarize, the conditions (12) and (13) [implying
(16)] with (17) and (18) are the explicit and compact form
of the field equations (8) for the generic (nongyratonic)
Kundt line element (3).
In the following Secs. II A, II B, and II C, we will discuss

three distinct subclasses of these spacetimes in the
Einstein-Gauss-Bonnet gravity, depending on the quantity
Qpq and its trace Q, defined by (14) and (15). They differ
according to Q ≠ 0, Q ¼ 0, and Qpq ¼ 0.

A. Case Q ≠ 0

In this general case, Eq. (16) with (15) can be immedi-
ately integrated to obtain the r dependence of the metric
function guu, namely,

guuðr; u; xÞ ¼ bðu; xÞr2 þ cðu; xÞrþ dðu; xÞ; ð19Þ
where the coefficient of the leading (quadratic) term is
explicitly given by

b ¼ 4Λ0 − SR
ðD − 2Þ þ 2kðD − 4ÞSR ; ð20Þ

and cðu; xÞ and dðu; xÞ are arbitrary functions. Substituting
the guu;rr term back to the original pq equation (13), we
obtain the relation

½ðD − 2Þ þ 4kðD − 4Þð1þ k SRÞ SRþ 16kΛ0� SRpq

− ð1þ 2 k SRÞð4Λ0 − SRÞgpq
− 2k½ðD − 2Þ þ 2kðD − 4Þ SR�ð2 SRpmqn

SRmn

− SRpklm
SRq

klmþ 2 SRpm
SRq

mÞ ¼ 0: ð21Þ
This is the additional constraint to (12) restricting the
geometry of the (D − 2)-dimensional transverse space in
relation to the theory constants. For Einstein’s gravity
theory, it reduces to ðD − 2Þ SRpq ¼ ð4Λ0 − SRÞgpq, and
(12) simplifies to SR ¼ 2Λ0, so that

SRpq ¼
2Λ0

D − 2
gpq: ð22Þ

In standard general relativity, the transverse space in Kundt
vacuum spacetimes must be an Einstein space.
Using (19) and (20), the up component (17) of the field

equations with guu;rm now becomes
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Qpngnmð2b;mrþ c;m − 2gklgk½m;ujjl�Þ
þ 2kð−2 SRklδmp þ SRp

kmlÞgk½m;ujjl� ¼ 0: ð23Þ

This equation has to be satisfied for both terms linear in r
and the r-independent part, respectively. The first constraint
requires

Qpngnmb;m ¼ 0: ð24Þ

Interestingly, this restriction is identically satisfied as a
consequence of the covariant divergence of Eqs. (12) and
(13) when the Bianchi identities and their contractions are
employed. The r-independent part of (23) implies

Qpngnmðc;m − 2gklgk½m;ujjl�Þ
þ 2kð−2 SRklδmp þ SRp

kmlÞgk½m;ujjl� ¼ 0: ð25Þ

It determines the spatial dependence of a coefficient cðu; xÞ
in the metric function guu, coupled to the u dependence of
the transverse-space metric gkm.
Finally, substituting the form (19) of guu into the uu

component (18) of the field equations, we obtain

Qpq

�
bjjpqr2þðcjjpq−bgpq;uÞr

þdjjpq−
1

2
cgpq;uþgpq;uu−

1

2
gklgkp;uglq;u

�
þ2kðgmogns−2gmngosÞgpqgm½p;ujjn�go½q;ujjs� ¼ 0: ð26Þ

The term quadratic in r gives the condition

Qpqbjjpq ¼ 0; ð27Þ

which again is identically satisfied. Indeed, it follows
from (24) by rearranging indices, performing a covariant
derivative, and applying the Leibniz rule that Qmnbjjmnþ
kð2SRmnkn − SR;ngmnÞb;m ¼ 0. The term in the round
brackets vanishes identically due to the contracted
Bianchi identities.
The condition given by the linear term in r becomes

Qpqðcjjpq − bgpq;uÞ ¼ 0: ð28Þ

This equation can further be simplified2 by expressing the
Laplace-like term Qmncjjmn as a covariant divergence of
(25) and substituting for b from (20) to obtain

4Λ0 − SR
D − 2þ 2kðD − 4Þ SRQmngmn;u − 2gklQmngk½m;ujjl�jjn

þ 2kðSRnkml− 2 SRklgmnÞgk½m;ujjl�jjn ¼ 0: ð29Þ

The remaining part of Eq. (26), which is independent
of r, gives the constraint on the coefficient dðu; xÞ in the
metric function guu of the form (19), namely,

Qpq

�
djjpq −

1

2
cgpq;u þ gpq;uu −

1

2
gklgkp;uglq;u

�
þ2kðgmogns − 2gmngosÞgpqgm½p;ujjn�go½q;ujjs� ¼ 0: ð30Þ

This condition determines possible form of the Kundt
gravitational waves, encoded by the amplitudes djjpq.
In summary, the field equations which must be satisfied

are (21) for gpq, (25) for c, and (30) for d.

B. Case Q= 0 with Qpq ≠ 0

There may occur a peculiar situation in which Qpq ≠ 0,
but its trace vanishes. In such a case, Q ¼ 0 implies a strict
constraint on (15) which uniquely fixes the transverse-
space scalar curvature,

SR ¼ −
D − 2

2kðD − 4Þ ; ð31Þ

which has to be nonvanishing and constant. This case is
clearly not allowed in the Einstein theory. Moreover,
Eq. (16) immediately implies

SR ¼ 4Λ0: ð32Þ

Putting these two conditions together, we obtain the
necessary coupling of all three theory parameters as

8ðD − 4ÞkΛ0 ¼ −ðD − 2Þ; ð33Þ

i.e., the relation

Λ0 ¼ −
D − 2

8kðD − 4Þ : ð34Þ

For any Gauss-Bonnet parameter γ ¼ k=κ, there is a unique
value of the cosmological constant Λ0, and vice versa.
Moreover, k and Λ0 must have opposite signs, and none of
them can be zero.
Since Qpq ≠ 0, the field equations (13) have to be

satisfied for every spatial component p and q. This implies
at most quadratic dependence of guu on r, similarly as in
(19), but without the constraint (20) on b. Moreover, the
value of the transverse-space tensors in (13) has to be equal
for every pq component; i.e., by integrating the equations
for all choices of p, q, we must obtain the same unique guu.
We can also substitute the explicit expression for the

2Let us remark that the structure of the field equations in the
EGB theory is very similar to those studied in various scenarios
within the Kundt class in Einstein’s theory; see, for example,
footnote 8 of Ref. [26] or Sec. IV C of Ref. [27]. Typically, the
parts of the up and uu field equations which are proportional to
linear powers of r are identically satisfied. However, in the case of
(29), due to its greater complexity, we have not yet been able to
prove this conjecture.
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constant Ricci scalar SR ¼ 4Λ0, together with the generic
quadratic form (19) of guu into the up and uu component of
the field equations; see (17) and (18), respectively. In such a
peculiar case, these equations remain very similar to those
presented in Sec. II A.

C. Case Qpq = 0 implying Q= 0

As in the previous case, the condition Q ¼ 0 implies the
constraints (31) and (32), i.e., (34). Moreover, the addi-
tional condition Qpq ¼ 0, where Qpq is defined as (14),
puts a further strong constraint on the transverse-space
geometry, namely,

SRpq ¼
1

4k
gpq þ

1

2
SRgpq: ð35Þ

Because the spatial Ricci scalar is simply SR ¼ 4Λ0, using
the coupling (33), we obtain

SRpq ¼
4Λ0

D − 2
gpq ≡ −

1

2kðD − 4Þ gpq: ð36Þ

We thus have proved that in such a case the (D − 2)-
dimensional transverse space has to be the Einstein space.
As we have already mentioned, this subclass of vacuum
solutions is not allowed in Einstein’s gravity theory
corresponding to k ¼ 0.
Now, we may proceed with the discussion of the

remaining field equations. By putting Qpq ¼ 0 and sub-
stituting (31) and (36) into the general pq equation (13), we
obtain the following constraint for the contraction of the
transverse-space Riemann tensor:

SRpklm
SRq

klm ¼ 2

½2kðD − 4Þ�2 gpq ≡
32Λ2

0

ðD − 2Þ2 gpq

≡ 8Λ0

D − 2
SRpq ≡ −

1

kðD − 4Þ
SRpq: ð37Þ

With (32), (33), (36), and (37), the ru equation (12) is
now identically satisfied.
For Qpq ¼ 0 and (36), the up equation (17) simplifies to

�
−

8Λ0

D − 2
δmp gkl þ SRp

kml

�
gk½m;ujjl� ¼ 0: ð38Þ

The expression in the round brackets cannot be zero,
because otherwise the resulting Ricci tensor would be
incompatible with (36).
Finally, the uu component (18) for Qpq ¼ 0 reduces to

ðgkogls − 2gklgosÞgpqgk½p;ujjl�go½q;ujjs� ¼ 0; ð39Þ

which represents a further constraint for the spatial part gpq
of the metric and its u dependence.

We conclude that, for this specific subclass of Einstein-
Gauss-Bonnet Kundt spacetimes, the parameters of the
theory are constrained by the condition (33). The transverse
space must be an Einstein space of the form (36), implying
(32). The spatial metric is further constrained by (37)–(39).
On the other hand, the metric component guuðr; u; xÞ

remains a fully arbitrary function of all spacetime varia-
bles; i.e., there is no constraint imposed by the field
equations.
It can also be immediately observed that the complicated

field equations (38) and (39) are trivially satisfied when the
spatial metric gpq is independent of the retarded time coordi-
nate u. In such a case, the vacuum solutions to Einstein-
Gauss-Bonnet gravity theory with nonzero parameters

8kΛ0 ¼ −
D − 2

D − 4
≠ 0 ð40Þ

[see (34)] are

ds2 ¼ gpqðxÞdxpdxq − 2dudrþ guuðr; u; xÞdu2; ð41Þ

where the spatial metric gpqðxÞ is any Einstein space
satisfying

SRpq ¼
4Λ0

D − 2
gpq ⇒ SR ¼ 4Λ0; ð42Þ

together with the specific curvature constraint

SRpklm
SRp

klm ¼ 8Λ0

D − 2
SRpq ≡ 32Λ2

0

ðD − 2Þ2 gpq: ð43Þ

Notice that the corresponding transverse-space Kretschmann
scalar invariant is

SRpklm
SRpklm ¼ 32Λ2

0

D − 2
: ð44Þ

It is everywhere the same and finite, uniquely determined
just by the value of the cosmological constant Λ0 ≠ 0. This
indicate that the solutions are (in this sense) uniform and
nonsingular.

III. ALGEBRAIC STRUCTURE OF THE WEYL
AND RICCI TENSORS

In this section, we analyze the algebraic structure of the
Weyl and Ricci tensors of the three classes of spacetimes
introduced in Secs. II A–II C. We apply the classification
scheme of tensors in terms of their boost-weight irreducible
components with respect to a suitable null frame [7,8]. Such
a natural null frame fk; l;mig satisfying the normalization
conditions k · l ¼ −1 and mi ·mj ¼ δij (which means
gpqm

p
i m

q
j ¼ δij), adapted to the Kundt geometry (3), is
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k ¼ ∂r; l ¼ 1

2
guu∂r þ ∂u; mi ¼ mp

i ∂p: ð45Þ

Following the Weyl tensor decomposition [7], together with
explicit results in the case of Kundt geometries [8,9], we
introduce the frame components with respect to the generic
null frame fk; l;mig by

Ψ0ij ¼ Cabcdkamb
i k

cmd
j ;

Ψ1ijk ¼ Cabcdkamb
i m

c
jm

d
k; Ψ1Ti ¼ Cabcdkalbkcmd

i

Ψ2ijkl ¼ Cabcdma
i m

b
jm

c
km

d
l ; Ψ2S ¼ Cabcdkalblckd;

Ψ2ij ¼ Cabcdkalbmc
im

d
j ; Ψ2Tij ¼ Cabcdkamb

i l
cmd

j ;

Ψ3ijk ¼ Cabcdlamb
i m

c
jm

d
k; Ψ3Ti ¼ Cabcdlakblcmd

i ;

Ψ4ij ¼ Cabcdlamb
i l

cmd
j : ð46Þ

These scalars are sorted by their boost weights. Moreover,
their irreducible components (which identify specific alge-
braic subtypes) are

Ψ̃1ijk ¼ Ψ1ijk −
2

D − 3
δi½jΨ1Tk� ;

Ψ̃2TðijÞ ¼ Ψ2TðijÞ −
1

D − 2
δijΨ2S;

Ψ̃2ijkl ¼ Ψ2ijkl −
2

D − 4
ðδikΨ̃2TðjlÞ þ δjlΨ̃2TðikÞ

− δilΨ̃2TðjkÞ − δjkΨ̃2TðilÞ Þ − 4δi½kδl�j
ðD − 2ÞðD − 3ÞΨ2S;

Ψ̃3ijk ¼ Ψ3ijk −
2

D − 3
δi½jΨ3Tk� : ð47Þ

Evaluating these quantities for the nongyratonic Kundt
metric (3) in the natural null frame (45), we find that the
þ2 and þ1 boost-weight components Ψ0 and Ψ1 are
identically zero. These geometries are thus at least of
algebraic type II, with k ¼ ∂r being a double degenerate
Weyl-aligned null direction. In fact, since also Ψ2ij ¼ 0 (see
[8,9]), it is of the algebraic subtype II(d). The remaining
Weyl scalars are, in general, nontrivial and take the form

Ψ2S ¼
D − 3

D − 1

�
1

2
guu;rr þ

1

ðD − 2ÞðD − 3Þ
SR

�
; ð48Þ

Ψ̃2TðijÞ ¼ mp
i m

q
j

1

D − 2

�
SRpq −

1

D − 2
gpqSR

�
; ð49Þ

Ψ̃2ijkl ¼ mm
i m

p
j m

n
km

q
l
SCmpnq; ð50Þ

Ψ3Ti ¼ mp
i
D − 3

D − 2

�
−
1

2
guu;rp þ

1

D − 3
gmngm½n;ujjp�

�
;

ð51Þ

Ψ̃3ijk ¼mp
i m

m
j m

q
k

×

�
gp½m;ujjq�−

1

D−3
gosðgpmgo½s;ujjq�− gpqgo½s;ujjm�Þ

�
;

ð52Þ

Ψ4ij ¼ mp
i m

q
j

�
−
1

2
guujjpq −

1

2
gpq;uu þ

1

4
gosgop;ugsq;u

þ 1

4
gpq;uguu;r −

gpq
D − 2

gmn

�
−
1

2
guujjmn

−
1

2
gmn;uu þ

1

4
gosgom;ugsn;u þ

1

4
gmn;uguu;r

��
: ð53Þ

These results apply to any Kundt geometry. For solutions to
specific gravity theory, the Weyl scalars have to be further
expressed using the corresponding field equation constraints.
In the Einstein-Gauss-Bonnet gravity, we thus obtain the
following.

(i) In the generic case Q ≠ 0 of Sec. II A, the main
modification arises from the explicit form (19) of the
guu metric function, quadratic in r coordinate. In
particular, 1

2
guu;rr ¼ b given by (20). However, the

algebraic type II(d) of the Kundt solution remains, in
general, unchanged.

(ii) The caseQ¼0withQpq ≠ 0, discussed in Sec. II B,
is even less restrictive than the case Q ≠ 0. Its
algebraic type remains II(d). It specializes to II(ad)
if, and only if, Ψ2S ¼ 0. Because of (31), (32), and
(48), this occurs when

b ¼ −
SR

ðD − 2ÞðD − 3Þ ¼ −
4Λ0

ðD − 2ÞðD − 3Þ
¼ 1

2kðD − 3ÞðD − 4Þ : ð54Þ

(iii) In the classQpq ¼ 0 implyingQ ¼ 0 (see Sec. II C),
both the highest admitted and the lowest boost-
weight components Ψ2 and Ψ4 contain an arbitrary
metric function guu. They are, thus, in general, non-
vanishing, so that the algebraic (sub)type of Kundt
spacetimes (3) has to be II(d) or of a more special
subtype. Indeed, due to the conditions (31) and (36)
specifying the transverse Einstein space, we get
Ψ̃2TðijÞ ¼ 0, and the Weyl type specializes to II(bd).

The explicit form of the scalars (48)–(53) can be employed
to discuss the specific algebraically special subclasses
within the Kundt solutions (3) in the Einstein-Gauss-
Bonnet gravity. For example, the scalars (48)–(50) imply
that the geometry becomes of the Weyl type III or more
special if, and only if, the transverse space is conformally flat
(Ψ̃2ijkl ¼ 0) Einstein space (Ψ̃2TðijÞ ¼ 0) and guu function is
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at most quadratic in r, with the coefficient of r2 proportional
to the spatial curvature SR (to obtain Ψ2S ¼ 0).
We can also define the traceless Ricci tensor Rab ≡

Rab − 1
DRgab. Its frame components ΦAB with respect to

the null frame fk; l;mig given by (45), evaluated using
the explicit coordinate components (A3) for the Kundt
metric (3), are

Φ00 ¼
1

2
Rabkakb ¼ 0; ð55Þ

Φ01i ¼
1ffiffiffi
2

p Rabkamb
i ¼ 0; ð56Þ

Φ11 ¼ Rabkalb ¼ −
1

2
guu;rr þ

1

D
ðSRþ guu;rrÞ; ð57Þ

Φ02ij ¼ Rabma
i m

b
j ¼ mp

i m
q
j
SRpq −

1

D
ðSRþ guu;rrÞδij;

ð58Þ

Φ12i ¼
1ffiffiffi
2

p Rablamb
i ¼

1ffiffiffi
2

p mp
i

�
−
1

2
guu;rp þ gmngm½p;ujjn�

�
;

ð59Þ

Φ22 ¼
1

2
Rablalb ¼

1

8
gmngmn;uguu;r −

1

4
gmngmn;uu

−
1

4
gmnguujjmn þ

1

8
gmngpqgpm;ugqn;u: ð60Þ

Because Φ00 ¼ 0 ¼ Φ01i , the metric ansatz (3) always
leads to the algebraically special Ricci tensor.
To analyze the genuine Gauss-Bonnet contribution, the

above expressions have to be further modified using the
constraints implied by the field equations (11). To this end,
it is convenient to rewrite the nontrivial Ricci components
using the field equations with the term Hab defined in (9).
Its decomposition into the trace H [see (10)] and the
traceless part Hab ≡Hab − 1

DHgab leads to the relation
Rab ¼ −2kHab, so that

Φ11 ¼ −2kHru; ð61Þ

Φ02ij ¼ −2kmp
i m

q
jHpq; ð62Þ

Φ12i ¼ −
ffiffiffi
2

p
kmp

i Hup; ð63Þ

Φ22 ¼ −kðguuHru þHuuÞ: ð64Þ

To obtain an algebraically more special Ricci tensor,
both its zero-boost-weight components given by (57) and
(58) have to vanish, that is,

Φ11 ¼ 0 and Φ02ij ¼ 0: ð65Þ

We study the solutions in Einstein-Gauss-Bonnet gravity,
and, therefore, the corresponding conditions (61) and (62)
implied by the field equations must be zero. The condition
(57) implies guu;rr ¼ 2SR=ðD − 2Þ, that is,

guu ¼
SR

D − 2
r2 þ crþ d; SRpq ¼

SR
D − 2

gpq; ð66Þ

while its combination with the second condition (62) gives

SR2
klmn ¼ 2

SR2

D − 2
; SRpklm

SRq
klm ¼ 2

SR2

ðD − 2Þ2 gpq;

ð67Þ
where we have employed the explicit expressions for Hab
and its trace H, given in (B6)–(B10). Obviously, these
constraints also specialize the Weyl tensor to type II(bd)
since Ψ̃2TðijÞ ¼ 0; see (49).

IV. GEODESIC DEVIATION IN THE
EINSTEIN-GAUSS-BONNET THEORY

The specific tidal deformations caused by inhomogene-
ities of the gravitational field can be naturally observed via
their influence on freely falling nearby test particles, such
as the test masses of the Laser Interferometer Space
Antenna (LISA) detector. Geometrically, these effects are
encoded in the spacetime curvature Ra

bcd and described by
the equation of geodesic deviation:

D2Za

dτ2
¼ Ra

bcdubucZd; ð68Þ

where ub are components of the reference observer velocity,
which moves along a timelike geodesic γðτÞ with τ being its
proper time, and Za are components of the vector connecting
this observer with another one moving nearby. To obtain an
invariant description [28–32] of such tidal deformations, we
employ an orthonormal frame feð0Þ; eð1Þ; eðiÞg associated
with the fiducial test observer, i.e., ea · eb ¼ ηab, where we
assume eð0Þ ≡ u ¼ _r∂r þ _u∂u þ _xp∂p. The projection of

Eq. (68) onto such a frame can be written as Z̈ðaÞ ¼
RðaÞð0Þð0ÞðbÞZðbÞ with Z̈ðaÞ ≡ eðaÞb

D2Zb

dτ2 and ZðbÞ ≡ eðbÞa Za,
where a; b ¼ 0; 1;…; D − 1. This immediately gives
Z̈ð0Þ ¼ 0, and, without loss of generality, we can set
Zð0Þ ¼ 0 corresponding to the test observers always located
at the same spacelike hypersurfaces synchronized by their
proper time τ. Subsequently, using a standard decomposition
of the Riemann tensor [33], the invariant form of the
equation of geodesic deviation becomes

Z̈ðiÞ ¼
�
CðiÞð0Þð0ÞðjÞ þ

1

D − 2
ðRðiÞðjÞ − δijRð0Þð0ÞÞ

−
Rδij

ðD − 1ÞðD − 2Þ
�
ZðjÞ; ð69Þ
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where i; j ¼ 1; 2;…; D − 1. To analyze particular contribu-
tions to the total deformation of a test congruence, we define
the null interpretation frame as

kint ¼ 1ffiffiffi
2

p ðuþ eð1ÞÞ; lint ¼ 1ffiffiffi
2

p ðu − eð1ÞÞ; mint
i ¼ eðiÞ:

ð70Þ
Then theWeyl tensor projections can be expressed in term of
the scalars (46) as

Cð1Þð0Þð0Þð1Þ ¼ Ψint
2S;

Cð1Þð0Þð0ÞðjÞ ¼
1ffiffiffi
2

p ðΨint
1Tj −Ψint

3TjÞ;

CðiÞð0Þð0Þð1Þ ¼
1ffiffiffi
2

p ðΨint
1Ti −Ψint

3TiÞ;

CðiÞð0Þð0ÞðjÞ ¼ −
1

2
ðΨint

0ij
þ Ψint

4ij
Þ − Ψint

2TðijÞ ; ð71Þ

and for the relevant Ricci tensor components using the
definitions (55)–(60) we obtain

Rð0Þð0Þ ¼ Φint
00 þΦint

22 þΦint
11 −

R
D
;

Rð1Þð1Þ ¼ Φint
00 þΦint

22 −Φint
11 þ

R
D
;

Rð1ÞðjÞ ¼ Φint
01j

−Φint
12j
;

RðiÞðjÞ ¼ Φint
02ij

þ R
D
δij; ð72Þ

with i; j ¼ 2;…; D − 1 labeling D − 2 spatial directions
orthogonal to the privileged longitudinal direction eð1Þ.
By combining the definition (70) with the orthonormal-

ity condition ea · eb ¼ ηab, we obtain the explicit form of
the null interpretation frame, namely,

kint ¼ 1ffiffiffi
2

p
_u
∂r;

lint ¼
� ffiffiffi

2
p

_r −
1ffiffiffi
2

p
_u

�
∂r þ

ffiffiffi
2

p
_u∂u þ

ffiffiffi
2

p
_xp∂p;

mint
i ¼ 1

_u
gpqm

p
i _x

q∂r þmp
i ∂p: ð73Þ

Using the Lorentz transformation, we may relate this
interpretation frame (adapted to a generic timelike
observer) with the natural null frame (45) corresponding
to the choice of a specific static observer with

ffiffiffi
2

p
_u ¼ 1,

_xp ¼ 0 (and
ffiffiffi
2

p
_r − 1 ¼ 1

2
guu due to u · u ¼ −1); see

[32,34] for more details. In particular, it is a combination
of a boost followed by a null rotation with fixed k:

kint ¼ Bk;

lint ¼ B−1l þ
ffiffiffi
2

p
Limi þ jLj2Bk;

mint
i ¼ mi þ

ffiffiffi
2

p
LiBk; ð74Þ

where jLj2 ≡ δijLiLj and

B ¼ 1ffiffiffi
2

p
_u
; Li ¼ gpqm

p
i _x

q: ð75Þ

Using the Lorentz transformation (74) and definition (46),
we can evaluate the Weyl scalars in the decomposition (71)
with respect to the null interpretation frame (73) in terms of
the scalars (48)–(53) with (47) expressed in the natural null
frame (45) adapted to the algebraic structure of the
spacetime. It turns out that

Ψint
0ij

¼ 0; Ψint
1Ti ¼ 0; Ψint

2S ¼ Ψ2S; Ψint
2Tij ¼ Ψ2Tij ;

Ψint
3Ti ¼ B−1Ψ3Ti −

ffiffiffi
2

p
ðΨ2TkiLk þ Ψ2SLiÞ;

Ψint
4ij

¼ B−2Ψ4ij þ 2
ffiffiffi
2

p
B−1ðΨ3TðiLjÞ −Ψ3ðijÞkL

kÞ
þ 2Ψ2ikjlL

kLl − 4Ψ2TkðiLjÞL
k

þ 2Ψ2TðijÞ jLj2 − 2Ψ2SLiLj: ð76Þ

Employing the same procedure, the Ricci tensor frame
components, entering the projection (72), expressed using
those with respect to the natural frame (55)–(60) become

Φint
00 ¼ 0; Φint

01j
¼ 0; Φint

11 ¼ Φ11; Φint
02ij

¼ Φ02ij ;

Φint
12j

¼ B−1Φ12j þΦ11Lj þΦ02ijL
i;

Φint
22 ¼ B−2Φ22 þ 2B−1Φ12jL

j þΦ11jLj2 þΦ02ijL
iLj:

ð77Þ

In general, all these scalars have to be evaluated as
functions of proper time τ along the fiducial observer
geodesic γðτÞ. However, for the physical analysis of the
spacetime geometry, one can use them in a local sense
where their values at any given event correspond to the
actual accelerations of test observers.
Finally, we can now explicitly write down the invariant

form of geodesic deviation equations for a generic timelike
observer freely falling in the nongyratonic Kundt geom-
etries (3):

Z̈ð1Þ ¼ R
DðD − 1Þ Z

ð1Þ þ Ψint
2S Z

ð1Þ −
1ffiffiffi
2

p Ψint
3Tj ZðjÞ

−
1

D − 2
ð2Φint

11 Z
ð1Þ þΦint

12j
ZðjÞÞ; ð78Þ

Z̈ðiÞ ¼ R
DðD − 1Þ Z

ðiÞ −Ψint
2TðijÞ ZðjÞ −

1ffiffiffi
2

p Ψint
3Ti Zð1Þ

−
1

2
Ψint

4ij
ZðjÞ −

1

D − 2
ð−Φint

02ij
ZðjÞ þΦint

12i
Zð1Þ

þ ðΦint
22 þΦint

11ÞZðiÞÞ; ð79Þ

where i; j ¼ 2;…; D − 1. The scalar curvature can be
expressed using (10), and the remaining Weyl and Ricci
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scalars are given by (76) and (77) with (48)–(53) and (61)–
(64), respectively, together with (75).
We observe that the Gauss-Bonnet terms encoded via the

vacuum field equations (11) in the Ricci tensor components
Φint

AB cause specific relative accelerations of free test obser-
vers. This is an additional contribution to the Weyl tensor
components Ψint

A representing the only relevant effects of
the gravitational field in the vacuum Einstein theory.
In particular, the term proportional to R≡ SRþ guu;rr

[see (A4)] determines the isotropic influence of the
cosmological constant Λ0 combined with the direct con-
tribution of the Gauss-Bonnet term LGB via the trace H as
R ¼ 2

D−2 ðDΛ0 þ 2kHÞ [see (10)]. In addition, there is the
Newtonian tidal effect, caused by the Ψint

2S and Ψint
2TðijÞ Weyl

components, which specifically deform the test body in all
spatial directions due to the constraint Ψint

2S ¼ δijΨint
2TðijÞ .

These directions are also similarly influenced by 2Φint
11

acting in the longitudinal eð1Þ direction and Φint
02ij

affecting
the remaining (D − 2) transverse directions eðiÞ. As in the
case of the Newtonian effect, these terms satisfy the con-
straint 2Φint

11 ¼ δijΦint
02ij

. Moreover, the longitudinal defor-
mations corresponding to Ψint

3Tj are similar to the effect of
Φ12i . The purely transverse deformations classically related
to gravitational waves are encoded in the Weyl Ψint

4ij
scalars

which are traceless, δijΨint
4ij

¼ 0. Finally, there is also the
peculiar combined influence ofΦint

22 þΦint
11 deforming these

transverse directions.
To analyze the specific role of the Gauss-Bonnet theory

more explicitly (and suppress the complicating kinematic
effect of observer’s motion), we restrict ourselves to the
(initially) transversally static observers, that is,

ffiffiffi
2

p
_u ¼ 1,

_xp ¼ 0, so that B ¼ 1 and Li ¼ 0. This corresponds to the
direct choice of the natural frame (45). By substituting the
Ricci tensor contributions ΦAB from (61)–(64), we obtain

Z̈ð1Þ ¼ 2ðΛ0 þ 2kH=DÞ
ðD − 1ÞðD − 2Þ Z

ð1Þ þ Ψ2SZð1Þ −
1ffiffiffi
2

p Ψ3TjZðjÞ

þ k
D − 2

ð4HruZð1Þ þ
ffiffiffi
2

p
mp

jHupZðjÞÞ; ð80Þ

Z̈ðiÞ ¼ 2ðΛ0 þ 2kH=DÞ
ðD − 1ÞðD − 2Þ Z

ðiÞ −Ψ2TðijÞZðjÞ −
1ffiffiffi
2

p Ψ3TiZð1Þ

−
1

2
Ψ4ijZ

ðjÞ þ k
D − 2

ð−2mp
i m

q
jHpqZðjÞ

þ
ffiffiffi
2

p
mp

i HupZð1Þ þ ½ðguu þ 2ÞHru þHuu�ZðiÞÞ;
ð81Þ

where the components of the traceless Gauss-Bonnet part
Hab satisfy 2Hru ¼ gpqHpq. The explicit form of the
Gauss-Bonnet quantities Hab ≡Hab − 1

DHgab can be sim-
ply calculated using Hab and the trace H, presented in
(B6)–(B9) and (B10).

A. Example: Solutions of the Ricci type III

A better understanding of the specific terms and their
mutual couplings in the above equations can be achieved
via study of simplified particular examples. Let us assume
here the Kundt spacetimes (3) with u-independent trans-
verse-space metric gpq and additional constraints corre-
sponding to the vanishing traceless Ricci tensor Rab
zero-boost-weight components Φ11 ¼ 0 and Φ02ij ¼ 0
which are presented in Eqs. (66) and (67). In such a case,
the expressions (80) and (81) for the geodesic deviation
reduce to

Z̈ð1Þ ¼ 2ðΛ0 þ 2kH=DÞ
ðD − 1ÞðD − 2Þ Z

ð1Þ þ Ψ2SZð1Þ −
1ffiffiffi
2

p Ψ3TjZðjÞ

þ k
D − 2

ffiffiffi
2

p
mp

jHupZðjÞ; ð82Þ

Z̈ðiÞ ¼ 2ðΛ0 þ 2kH=DÞ
ðD− 1ÞðD− 2Þ Z

ðiÞ −
1

D− 2
Ψ2SZðiÞ −

1ffiffiffi
2

p Ψ3TiZð1Þ

−
1

2
Ψ4ijZ

ðjÞ þ k
D− 2

ð
ffiffiffi
2

p
mp

i HupZð1Þ þHuuZðiÞÞ;
ð83Þ

respectively, with the Weyl tensor components

Ψ2S ¼
1

D − 1
SR; ð84Þ

Ψ3Ti ¼ −
1

2

D − 3

D − 2
mp

i guu;rp; ð85Þ

Ψ4ij ¼ −
1

2
mp

i m
q
j

�
guujjpq −

gpq
D − 2

gmnguujjmn

�
: ð86Þ

The traceless Ricci tensor contributions are

Hup ¼ −
1

2

D− 4

D− 2
SRguu;rp; Huu ¼ −

1

2

D− 4

D− 2
SRgpqguujjpq;

ð87Þ

and the trace part is

H ¼ −
DðD − 4Þ
4ðD − 2Þ

SR2: ð88Þ

They clearly vanish for D ¼ 4, reducing (82) and (83) to
the results known for standard general relativity [31,32,34]
with the cosmological term 1

3
Λ0. Moreover, the metric

functions are constrained by the remaining field equations.
Namely, the trace equation (10) couples the transverse
space scalar curvature SR to the theory constants:
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SR ¼ D − 2

2kðD − 4Þ
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8kΛ0

D − 4

D − 2

r
− 1

�
; ð89Þ

and the up and uu components give the conditions

guu;rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8kΛ0

D − 4

D − 2

r
¼ 0;

gpqguujjpq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8kΛ0

D − 4

D − 2

r
¼ 0; ð90Þ

respectively. In view of this, there are thus two classes of
solutions corresponding to Secs. II A and II C:

(i) The generic case with guu given by (66), implying
necessarily guu;rp ¼ c;p ¼ 0, and gpqguujjpq ¼ 0.
Under the assumption of this example, this does
not cause any nonclassical motion of the test
particles, since Hup ¼ 0 ¼ Huu. There is only the
background isotropic modification via the traceH to
the value

2ðΛ0 þ 2kH=DÞ ¼ SR: ð91Þ

The same constraints are obtained also in the Ein-
stein theory (when k ¼ 0).

(ii) The special class of solutions corresponding to a
specific value of Λ0, namely,

Λ0 ¼ −
1

8k
D − 2

D − 4
; ð92Þ

for which the functions c and d in guu given by (66)
remain unconstrained by (90). These terms cause
the additional longitudinal effect in (82) via the Hup

component and a peculiar transverse deformation in
(83) generated byHuu. These effects are not allowed
in classic general relativity without the Gauss-
Bonnet contribution.

V. GEOMETRICALLY SPECIAL MEMBERS OF
THE KUNDT CLASS

In this section, we concentrate on two interesting and
physically important examples of the nongyratonic Kundt
metrics (3). In the first case, we restrict the geometry of
transverse space to be of a constant curvature. In the second
case, there is no a priori restriction applied to the transverse
space, but the metric is assumed to be r independent which
corresponds to the famous pp-wave class of gravita-
tional waves.

A. Waves and backgrounds with a
constant-curvature transverse space

We employ the general results of Sec. II to investigate
those Kundt geometries of the form (3) for which the
(D − 2)-dimensional transverse Riemannian space with the

metric gpqðu; xÞ has a constant curvature implying SR ¼
const (with respect to the spatial coordinates xp). In such a
case, the Riemann tensor can be written as

SRpqmn ¼
SR

ðD − 3ÞðD − 2Þ ðgpmgqn − gpngqmÞ; ð93Þ

and for its contractions we immediately get the relations

SR2
klmn ¼ 2

SR2

ðD − 3ÞðD − 2Þ ;
SRpq ¼

SR
D − 2

gpq;

SR2
mn ¼

SR2

D − 2
: ð94Þ

Also, the (D − 2)-dimensional transverse metric gpq ¼
gpqðu; xÞ can be written in a conformal form

gpq ¼ P−2δpq; where

P ¼ 1þ
SR

4ðD − 3ÞðD − 2Þ ½ðx
2Þ2 þ � � � þ ðxD−1Þ2�:

ð95Þ

Now, we can proceed to discussion of the Einstein-
Gauss-Bonnet field equations. Substituting (94) into the ru
component (12), we obtain the constraint

k
ðD − 4ÞðD − 5Þ
ðD − 2ÞðD − 3Þ

SR2þ SR − 2Λ0 ¼ 0: ð96Þ

Here, we assume that the theory parameters k ¼ κγ and Λ0

are generic (and nonzero). This equation is thus understood
as an algebraic condition for the scalar curvature SR. The
constant coefficients in (96) immediately imply that SR has
to be u independent, which together with (95) gives
gpq ¼ gpqðxÞ. Solving (96), we explicitly and uniquely
express the transverse Ricci scalar in terms of the theory
parameters κ, γ, and Λ0 as

SR ¼ ðD − 2ÞðD − 3Þ
2kðD − 4ÞðD − 5Þ

×

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8kΛ0

ðD − 4ÞðD − 5Þ
ðD − 2ÞðD − 3Þ

s
− 1

!
: ð97Þ

Obviously, there are exceptional casesD ¼ 5 and D ¼ 4 in
(96) for which SR ¼ 2Λ0, corresponding to the classic
Einstein’s theory constraint.
There are two branches of such exact Kundt solutions in

the Einstein-Gauss-Bonnet gravity. The first for the “þ”
choice in (97) admits the general relativity limit as k → 0

leading to SR ¼ 2Λ0, while the second with the “−” choice
in (97) is peculiar.
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The crucial quantity Qpq given by (14), which defines
three distinct subclasses of Sec. II, becomes

Qpq ¼ −
1

2

�
1þ 2k

D − 4

D − 2
SR

�
gpq: ð98Þ

For a generic k, Λ0, and SR given by (97), its trace Q≡
gpqQpq [see (15)] is nonvanishing. Therefore, the Kundt
spacetimes with constant-curvature transverse space belong
to the general class discussed in Sec. II A. The trace of the
field equations pq component (16) thus then implies (19)
and (20), that is,

guu ¼ br2 þ cðu; xÞrþ dðu; xÞ;

with b ¼ 4Λ0 − SR
ðD − 2Þ þ 2kðD − 4Þ SR : ð99Þ

Moreover, due to the independence of the spatial metric
gpq on u coordinate, Eq. (17) simplifies considerably to

�
1þ 2k

D − 4

D − 2
SR

�
guu;rm ¼ 0; ð100Þ

which, using (97) and (99), leads to the simple constraint
c ¼ cðuÞ. This is consistent with Eqs. (24) and (25).
Finally, from the uu component (18), we obtain the
condition

�
1þ 2k

D − 4

D − 2
SR

�
gpqguujjpq ¼ 0; ð101Þ

with only a nontrivial r-independent part implying

△d≡ gpqdjjpq ¼ 0; ð102Þ

see (30). Consequently, the metric must be of the form

ds2 ¼
�
1þ

SR
4ðD − 2ÞðD − 3Þ δmnxmxn

�
−2
δpqdxpdxq

− 2dudrþ
�

4Λ0 − SR
ðD − 2Þ þ 2kðD − 4ÞSR r2

þ cðuÞrþ dðu; xÞ
�
du2; ð103Þ

where cðuÞ is an arbitrary function of retarded time u, while
dðu; xÞ satisfies the spatial Laplace equation (102).
From the general form of the Weyl scalars (48)–(53), we

find that the resulting spacetime is of algebraic type II(bcd),
because the (D − 2)-dimensional transverse space is con-
formally flat Einstein space with the scalar curvature SR
given by (97). The only nontrivial zero-boost-weight
component (48) reads

Ψ2S ¼
D− 3

D− 1

�
bþ

SR
ðD− 2ÞðD− 3Þ

�

¼ ðD− 3Þð4Λ0 − SRÞ
ðD− 1Þ½ðD− 2Þ þ 2kðD− 4Þ SR� þ

SR
ðD− 1ÞðD− 2Þ :

ð104Þ
Therefore, the class of solutions (103) with (102) can be
physically interpreted as exact type-II gravitational waves
propagating on the type D(bcd) background which is the
direct-product (anti-)Nariai universe. Indeed, for D ¼ 4 we
obtain Ψ2S ≡ −2ReðΨ2Þ ¼ 2

3
Λ0, i.e., Ψ2 ¼ − 1

3
Λ0, which

fully agrees with the expressions in Sec. 7.2.1 of Ref. [6]
and Secs. 18.6 and 18.7 therein. We have thus found a
generalization of the gravitational Kundt waves [35] to
D > 4 Einstein-Gauss-Bonnet gravity. These waves propa-
gate in the higher-dimensional Nariai (SR > 0) or anti-
Nariai (SR < 0) universe, identified previously in Ref. [8]
(see, in particular, Sec. 11).
For the flat transverse space, that is, for SR ¼ 0 and

gpq ¼ δpq (and necessarily Λ0 ¼ 0), all the Gauss-Bonnet
corrections in these solutions vanish, and we effectively
deal with the Einstein theory. In fact, we end up in the
subclass of VSI spacetimes (see [36]) of the Weyl type N.
To illustrate the physical nature of the above solutions,

we explicitly comment on the corresponding geodesic
deviation (80) and (81) of (transversally) static test observ-
ers. In particular, the decomposition of the relative accel-
erations becomes

Z̈ð1Þ ¼ 2ðΛ0 þ 2kH=DÞ
ðD − 1ÞðD − 2Þ Z

ð1Þ þ Ψ2SZð1Þ þ 4k
D − 2

HruZð1Þ;

ð105Þ

Z̈ðiÞ ¼ 2ðΛ0 þ 2kH=DÞ
ðD − 1ÞðD − 2Þ Z

ðiÞ −
1

D − 2
Ψ2SZðiÞ −

1

2
Ψ4ijZ

ðjÞ

þ k
D − 2

ð−2mp
i m

q
jHpqZðjÞ

þ ½ðguu þ 2ÞHru þHuu�ZðiÞÞ; ð106Þ

where we used the relation Ψ2TðijÞ ¼ 1
D−2Ψ2Sδij since

Ψ̃2TðijÞ ¼ 0. By applying the field equation constraints,
assuming a generic case with ðD−2Þþ2kðD−4ÞSR≠0,
the above quantities take the explicit form

Ψ2S ¼
D − 3

D − 1

�
bþ

SR
ðD − 2ÞðD − 3Þ

�
;

Ψ4ij ¼ −
1

2
mp

i m
q
jdjjpq; ð107Þ

H ¼ −
1

4
ðD − 4Þ½LGBT þ 4b SR�;

Hpq ¼
2gpq

DðD − 2Þ ½LGBT − ðD − 4Þb SR�; ð108Þ
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Hru ¼
1

2
gpqHpq; Huu ¼ −

guu
D

½LGBT − ðD − 4Þb SR�;
ð109Þ

with SR given by (97) and LGBT ¼ ðD−4ÞðD−5Þ
ðD−2ÞðD−3Þ

SR2. The last

term in Eq. (106) can thus be written as

½ðguuþ2ÞHruþHuu�¼
2

D
½LGBT−ðD−4ÞbSR�

¼ 4ðD−2ÞðSR−2Λ0Þ
kDðD−5Þ½ðD−2Þþ2kðD−4ÞSR� ;

ð110Þ

whichvanishes inD ¼ 4 corresponding to SR ¼ 2Λ0; see the
constraint (96). Combining all these explicit terms in (105)
and (106), we obtain a surprisingly simple result:

Z̈ð1Þ ¼ bZð1Þ; ð111Þ

Z̈ðiÞ ¼ −
1

2
Ψ4ijZ

ðjÞ; ð112Þ

with b given by (99) andΨ4ij given by (107). The constant b
directly determines accelerationof the test particles along the
longitudinal spatial direction eð1Þ, while Ψ4ij (reflecting the
nontrivial spacetime geometry via the corresponding covar-
iant spatial derivatives djjpq) causes symmetric and traceless
deformations in the transverse directions eðiÞ which re-
present exact Kundt-EGB gravitational waves. Clearly, by
settingd ¼ 0 in (103), the corresponding constant-curvature
backgrounds (without the waves) are obtained.

B. Einstein-Gauss-Bonnet pp waves

The class of pp waves is invariantly defined as those
geometries admitting a covariantly constant null vector
field [5,6]. They thus necessary belong to the Kundt class
with the privileged vector field k ¼ ∂r. Moreover, the line
element has to be r independent, which implies

guu ≡ dðu; xÞ ð113Þ

in the metric (3), that is,

ds2 ¼ gpqðu; xÞdxpdxq − 2dudrþ dðu; xÞdu2: ð114Þ

In this case, the ru component of the Einstein-Gauss-
Bonnet field equations gives the same constraint (12) as in
the generic case, namely,

2Λ0 − SR ¼ kðSR2
klmn − 4 SR2

mn þ SR2Þ; ð115Þ

which can be used to eliminate the Gauss-Bonnet term of
the transverse space gpq from the remaining equations.

Since we deal with the class with guu;r ¼ 0, the pq
component of the field equations (13) becomes just an
algebraic constraint on the admitted spatial curvature in the
form

SRpq þ 2kðSRpq
SR − 2 SRpmqn

SRmnþ SRpklm
SRq

klm

− 2 SRpm
SRq

mÞ ¼ 0: ð116Þ

The trace (16) directly ties the spatial scalar curvature to the
cosmological constant Λ0 as

SR ¼ 4Λ0: ð117Þ

Let us emphasize that the case Λ0 ≠ 0 is not allowed in the
Einstein theory. Indeed, for k ¼ 0 the condition (115)
requires SR ¼ 2Λ0, and in combination with (117) this
necessarily leads to Λ0 ¼ 0 ¼ SR.
With the above restrictions, the up component of the

field equations (17) now takes the form

gmn½gpn − 2kð2 SRpn − SRgpnÞ�gklgk½m;ujjl�
þ 2kð2 SRklδmp − SRp

kmlÞgk½m;ujjl� ¼ 0: ð118Þ

Finally, the uu component (18) becomes

½−gmn þ 2kð2 SRmn− SRgmnÞ�

×

�
djjmn þ gmn;uu −

1

2
gpqgpm;ugqn;u

�
þ 4kðgmogns − 2gmngosÞgpqgm½p;ujjn�go½q;ujjs� ¼ 0: ð119Þ

As an important explicit and nontrivial example of
spacetimes satisfying all the above constraints, we consider
a special case of the pp-wave geometries with constant-
curvature transverse space discussed in previous Sec. VA.
In particular, Eq. (116) with (93) is satisfied for (117) using
the condition (115). Moreover, these two constraints couple
the spacetime dimensionD and the theory parameters k and
Λ0 as

Λ0

�
8k

ðD − 4ÞðD − 5Þ
ðD − 2ÞðD − 3ÞΛ0 þ 1

�
¼ 0: ð120Þ

There is an obvious solution Λ0 ¼ 0, equivalent to
SR ¼ 0, corresponding to flat transverse space, as it appears
in the Einstein theory, which represents planar gravita-
tional waves propagating on flat background. The new
nontrivial class with

Λ0 ¼ −
ðD − 2ÞðD − 3Þ
8kðD − 4ÞðD − 5Þ ð121Þ

is allowed only in the Einstein-Gauss-Bonnet theory. Since
the transverse-space metric has to be u independent, that is,
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gpq ¼ gpqðxÞ, Eq. (118) is identically satisfied, and (119)
greatly simplifies to

2

D − 5
△d ¼ 0: ð122Þ

In summary,
(i) for Λ0 ¼ 0, we obtain the classic Weyl type-N

solution

ds2 ¼ δpqdxpdxq − 2dudrþ dðu; xÞdu2;
with δijd;ij ¼ 0; ð123Þ

(ii) while, in the non-Einsteinian case Λ0 ≠ 0, the
spacetime becomes

ds2 ¼
�
1 −

δmnxmxn

8kðD − 4ÞðD − 5Þ
�

−2
δpqdxpdxq

− 2dudrþ dðu; xÞdu2;
with △d ¼ 0; ð124Þ

where the Laplace equation (102) for dðu; xÞ reflects
the nontrivial transverse-space geometry, leading to
the Weyl type-II(bcd) solutions.

In the classically forbidden case (124), the geodesic
deviation equations (80) and (81) take the form (105) and
(106), where

Ψ2S ¼
4Λ0

ðD − 1ÞðD − 2Þ ; Ψ4ij ¼ −
1

2
mp

i m
q
jdjjpq; ð125Þ

H ¼ −
1

4
ðD − 4ÞLGBT; Hpq ¼

2gpq
DðD − 2ÞLGBT;

ð126Þ

Hru ¼
1

D
LGBT; Huu ¼ −

guu
D

LGBT;

LGBT ¼ 16Λ2
0

ðD − 4ÞðD − 5Þ
ðD − 2ÞðD − 3Þ ; ð127Þ

with Λ0 given by (121). The additional Gauss-Bonnet
contributions in Eqs. (105) and (106) thus take the explicit
form

Λ0 þ 2kH=D ¼ −
1

4k
ðD − 2Þ2ðD − 3Þ
DðD − 4ÞðD − 5Þ ; ð128Þ

LGBT ¼ 1

4k2
ðD − 2ÞðD − 3Þ
ðD − 4ÞðD − 5Þ ; ð129Þ

ðguu þ 2ÞHru þHuu ¼
1

2k2
ðD − 2ÞðD − 3Þ
DðD − 4ÞðD − 5Þ : ð130Þ

Based on the geodesic deviation, this class of vacuum
solutions can be interpreted as exact gravitational ppwaves,
represented by the Ψ4ij components, which propagate on
Weyl type-D(bcd) background whose isotropic influence is
encoded in the term Λ0 þ 2kH=D. This background causes
the Newtonian behavior encoded in the Ψ2S scalar, com-
bined with the Gauss-Bonnet contributions Hpq and Hru,
respectively, and with the additional transverse effect given
by the term ðguu þ 2ÞHru þHuu. Interestingly, these differ-
ent curvature components perfectly combine. Summing up
all the explicit terms (125)–(130), the complete form of the
geodesic deviation equations (105) and (106) becomes
extremely simple, namely,

Z̈ð1Þ ¼ 0; ð131Þ

Z̈ðiÞ ¼ −
1

2
Ψ4ijZ

ðjÞ: ð132Þ

This is a special case of (111) and (112) when
b ¼ 0 ⇔ SR ¼ 4Λ0.
It describes purely transverse and traceless tidal defor-

mations, without any longitudinal effects. In Einstein’s
theory, these would be interpreted as the typical effect
of Weyl type-N gravitational waves propagating in flat
Minkowski space. Surprisingly, in the context of Einstein-
Gauss-Bonnet theory, the Weyl tensor remains of algebraic
type II(bcd) with

Ψ2S ¼
4Λ0

ðD− 1ÞðD− 2Þ ¼ −
ðD− 3Þ

2kðD− 1ÞðD− 4ÞðD− 5Þ ≠ 0:

ð133Þ

Such transverse EGB pp waves propagate on nonflat
constant-curvature (anti-)Nariai background given by the
metric (124) with d≡ 0 [which is (103) when c ¼ 0 ¼ d

and SR ¼ 4Λ0 ≡ − ðD−2ÞðD−3Þ
2kðD−4ÞðD−5Þ; see (121)]. The wave

amplitudes are geometrically encoded in the scalars
Ψ4ij ≡ − 1

2
mp

i m
q
jdjjpq. The specific imprint of the nonflat

background is thus encoded only in the nontrivial covariant
derivatives on its constant-curvature transverse wave front,
entering Ψ4ij via djjpq. This is the only way to distinguish
the two globally distinct types of gravitational waves in the
LISA-type gravitational wave detector.

VI. CONCLUSIONS

Assuming the family of spacetime manifolds which
admit a nontwisting, nonexpanding, and shear-free null
geodesic congruence, constituting the famous Kundt class
of geometries, we derived, discussed, and analyzed the
corresponding exact vacuum solutions to the Einstein-
Gauss-Bonnet theory in an arbitrary dimension D ≥ 5.
Our only additional restriction was the absence of the
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so-called gyratonic terms gup, leading to the initial metric
ansatz (3).
Starting with the quantities characterizing the spacetime

curvature of (3), summarized in Appendixes A and B, in
Sec. II we derived the fully general form (12)–(18) of the
field equations. In the subsections, we distinguished and
presented three distinct subclasses defined by the key
tensorial quantity Qpq and its trace Q given by (14) and
(15), respectively.
In the subsequent Sec. III, we introduced a natural null

frame and analyzed the algebraic structure of the Weyl
and also the traceless Ricci tensor in terms of the corre-
sponding frame projections and their irreducible parts.
Within the metric (3), these tensors are algebraically
special. In particular, all positive boost-weight components
are vanishing; see (48)–(53) and (55)–(60). Moreover,
further specializations enter via specific field equations
constraints.
To better understand the physical nature of the resulting

solution, we presented the invariant form of the geodesic
deviation equation in Sec. IV. Its crucial ingredient, the
Riemann curvature tensor, was decomposed to its traceless
Weyl part and the Ricci tensor and scalar. The corres-
ponding frame projections were expressed in terms of the
scalar quantities introduced in Sec. III. Moreover, the Ricci
contributions were further reexpressed in terms of the
Gauss-Bonnet part of the field equations (11) to explicitly
identify the effects of such a theory on relative motion of

free test particles, detectable, in principle, by the LISA-type
gravitational wave detectors. The result is given by
Eqs. (78) and (79) and in the subsequent paragraph
discussing the specific deformations of the geodesic con-
gruence associated with a timelike observer.
Finally, in Sec. V, we discussed two most important

representatives of the Kundt family, namely, the Kundt
gravitational waves and backgrounds with (D − 2)-
dimensional transverse space being of a constant curvature
and the complete family of pp waves defined as geometries
admitting a covariantly constant null vector field. In the
first case, the resulting line element is (103), while for the
ppwaves we obtained two possible types of explicit metrics
(123) and (124).
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APPENDIX A: CURVATURE TENSORS
FOR THE KUNDT GEOMETRY

For the D-dimensional Kundt geometry (3) with
gup ¼ 0, the nonvanishing Christoffel symbols are

Γr
ru ¼ −

1

2
guu;r; Γr

uu ¼
1

2
guuguu;r −

1

2
guu;u; Γr

up ¼ −
1

2
guu;p; Γr

pq ¼
1

2
gpq;u;

Γu
uu ¼

1

2
guu;r; Γm

uu ¼ −
1

2
gmnguu;n; Γm

up ¼ 1

2
gmngnp;u; Γm

pq ¼ SΓm
pq; ðA1Þ

where SΓm
pq denotes the Christoffel symbols of the spatial metric gpq on the transverse (D − 2)-dimensional space with

coordinates xp. The corresponding nonvanishing Riemann curvature tensor components read

Rruru ¼ −
1

2
guu;rr; Rmpnq ¼ SRmpnq; Rruup ¼ 1

2
guu;rp; Rupmq ¼ gp½m;ujjq�;

Rupuq ¼ −
1

2
guujjpq −

1

2
gpq;uu þ

1

4
guu;rgpq;u þ

1

4
gmngmp;ugnq;u; ðA2Þ

with jj denoting the covariant derivative on the transverse space, i.e., with respect to the connection SΓm
pq. Also SRmpnq stands

for the transverse-space Riemann tensor. Finally, the nonzero Ricci tensor components are

Rru ¼ −
1

2
guu;rr; Rpq ¼ SRpq; Rup ¼ −

1

2
guu;rp þ gmngm½p;ujjn�;

Ruu ¼
1

2
guuguu;rr þ

1

4
gmngmn;uguu;r −

1

2
gmngmn;uu −

1

2
gmnguujjmn þ

1

4
gmngpqgpm;ugqn;u; ðA3Þ

and the Ricci scalar curvature is

R ¼ SRþ guu;rr; ðA4Þ

with SRpq ≡ gmnSRmpnq and SR≡ gpqSRpq, respectively.
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APPENDIX B: SPECIFIC QUADRATIC TERMS FOR THE KUNDT GEOMETRY

To evaluate the Gauss-Bonnet term LGB (6) for the geometries (3), we have to express squares of the Riemann and Ricci
tensors and the scalar curvature. The result is

R2
cdef ¼ SR2

klmn þ ðguu;rrÞ2; R2
cd ¼ SR2

mn þ
1

2
ðguu;rrÞ2; R2 ¼ ð SRþ guu;rrÞ2: ðB1Þ

Moreover, the nonvanishing curvature tensors contractions appearing in Hab in the field equations (8) are
(i) ru component.—

RrcRu
c ¼ −

1

4
ðguu;rrÞ2; RrcudRcd ¼ −

1

4
ðguu;rrÞ2; RrcdeRu

cde ¼ −
1

2
ðguu;rrÞ2; ðB2Þ

(ii) pq component.—

RpcRq
c ¼ SRpm

SRq
m; RpcqdRcd ¼ SRpmqn

SRmn; RpcdeRq
cde ¼ SRpklm

SRp
klm; ðB3Þ

(iii) up component.—

RucRp
c ¼ 1

2
guu;rr

�
−
1

2
guu;rp þ gmngm½p;ujjn�

�
þ gmnSRmp

�
−
1

2
guu;rn þ gklgk½n;ujjl�

�
;

RucpdRcd ¼ −
1

4
guu;rrguu;rp þ gm½p;ujjn�SRmn;

RucdeRp
cde ¼ −

1

2
guu;rrguu;rp þ gk½l;ujjm�SRp

klm; ðB4Þ

(iv) uu component.—

RucRu
c ¼ gpq

�
−
1

2
guu;rp þ gmngm½p;ujjn�

��
−
1

2
guu;rq þ gosgo½q;ujjs�

�

þ 1

4
guu;rrðguuguu;rr þ gmngmn;uguu;r − 2gmngmn;uu − 2gmnguujjmn þ gmngpqgmp;ugnq;uÞ;

RucudRcd ¼ 1

8
guu;rrð2guuguu;rr − gmngmn;uguu;r þ 2gmngmn;uu þ 2gmnguujjmn − gmngpqgmp;ugnq;uÞ

þ gpqguu;rp

�
−
1

2
guu;rq þ gmngm½q;ujjn�

�

þ 1

4
SRpqð−2guujjpq − 2gpq;uu þ guu;rgpq;u þ gmngmp;ugnq;uÞ;

RucdeRu
cde ¼ 1

2
guuðguu;rrÞ2 −

1

2
gpqguu;rpguu;rq þ gosgmngpqgo½m;ujjp�gs½n;ujjq�: ðB5Þ

Using these relations, the Gauss-Bonnet contribution Hab to the field equations [see (8) and (9)] explicitly becomes

Hru ¼
1

4
LGBT; ðB6Þ

Hpq ¼ SHpq þ guu;rr

�
SRpq −

1

2
SRgpq

�
; ðB7Þ

Hup ¼ SRp
nguu;rn −

1

2
SRguu;rp − 2

�
SRmn−

1

2
SRgmn

�
gm½p;ujjn� þ gk½l;ujjm�ðSRp

klm− 2 SRp
lgkmÞ; ðB8Þ
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Huu ¼
�

SRpq−
1

2
SRgpq

��
guujjpq þ gpq;uu −

1

2
guu;rgpq;u −

1

2
gklgkp;uglq;u

�

þ ðgmogns − 2gmngosÞgpqgm½p;ujjn�go½q;ujjs� −
1

4
guuLGBT; ðB9Þ

where LGBT ≡ SR2
mnpq − 4 SR2

mn þ SR2 is the Gauss-Bonnet term of the transverse-space geometry. For the trace of Hab, we
obtain

H ¼ −
1

4
ðD − 4ÞLGB ¼ −

1

4
ðD − 4ÞðLGBT þ 2 SRguu;rrÞ: ðB10Þ
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