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We present and analyze a class of exact spacetimes which describe accelerating black holes with a
Newman-Unti-Tamburino (NUT) parameter. First, by two independent methods we verify that the intricate
metric found by Chng, Mann, and Stelea in 2006 indeed solves Einstein’s vacuum field equations of
general relativity. We explicitly calculate all components of the Weyl tensor and determine its algebraic
structure. As it turns out, it is actually of algebraically general type I with four distinct principal null
directions. It explains why this class of solutions has not been (and could not be) found within the large
Plebanski—Demianski family of type D spacetimes. Then we transform the solution into a much more
convenient metric form which explicitly depends on three physical parameters: mass m, acceleration a, and
the NUT parameter I. These parameters can independently be set to zero, recovering thus the well-known
spacetimes in standard coordinates, namely the C-metric, the Taub—NUT metric, the Schwarzschild metric,
and flat Minkowski space in spherical coordinates. Using this new metric, we investigate main physical and
geometrical properties of such accelerating NUT black holes. In particular, we localize and study four
Killing horizons (two black-hole plus two acceleration horizons) and carefully investigate the curvature.
Employing the scalar invariants we prove that there are no curvature singularities whenever the NUT
parameter is nonzero. We identify asymptotically flat regions and relate them to conformal infinities. This
leads to a complete understanding of the global structure of the spacetimes: each accelerating NUT black
hole is a “throat” which connects “our universe” with a “parallel universe.” Moreover, the analytic
extension of the boost-rotation metric form reveals that there is a pair of such black holes (with four
asymptotically flat regions). They uniformly accelerate in opposite directions due to the action of rotating
cosmic strings or struts located along the corresponding two axes. Rotation of these sources is directly
related to the NUT parameter. In their vicinity there are pathological regions with closed timelike curves.
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I. INTRODUCTION

Exact solutions of Einstein’s general relativity play an
important role in understanding strong gravity. Among the
first and most fundamental such spacetimes, which were
found, investigated and understood, were black holes. They
exhibit many key features of the relativistic concept of
gravity with surprising applications in modern astrophys-
ics. It is now clear that rotating black holes reside in the
hearts of almost all galaxies, and that binary black hole
systems in the last stage of their evolution are the strongest
sources of gravitational waves in our Universe.

In 1976, Plebaniski and Demianski [1] presented a nice
form of a complete class of exact spacetimes of algebraic
type D (including a double aligned non-null electromag-
netic field and any cosmological constant), first obtained by
Debever [2] in 1971. This class involves various black
holes, possibly charged, rotating and accelerating. In
particular, this large family of solutions contains the

fpodolsky@mbox.troja.mff.cuni.cz
1 vratny.adam @seznam.cz

2470-0010/2020/102(8)/084024(27)

084024-1

well-known Schwarzschild (1915), Reissner—Nordstrom
(1916-1918), Schwarzschild—de Sitter (1918), Kerr
(1963), Taub—NUT (1963) or Kerr—Newman (1965) black
holes, and also the C-metric (1918, 1962) which was
physically interpreted by Kinnersley—Walker (1970) as
uniformly accelerating pair of black holes.

Unfortunately, these interesting types of black holes—
and their combinations—had to be obtained from the
general Plebafiski-Demianski metric by special limiting
procedures (degenerate transformations), see Sec. 21.1.2 of
the classic compendium [3] for more details. Moreover, it
was traditionally believed that the constant coefficients of
the two related Plebanski—-Demianski quartic metric func-
tions directly encode the physical parameters of the
spacetimes.

In 2003, Hong and Teo [4,5] came with a simple but very
important idea of employing the coordinate freedom
to rewrite the C-metric in a new form such that its two
quartic (cubic in the uncharged case) metric functions
are factorized to simple roots. This novel approach enor-
mously simplified the associated calculations and—more
importantly—the physical analysis of the C-metric because
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the roots themselves localize the axes of symmetry and
position of horizons.

Inspired by these works of Hong and Teo, with Jerry
Griffiths we applied their novel idea to the complete family
of Plebanski-Demianski spacetimes [1]. This “new look”
enabled us to derive an alternative form of this family of
type D black hole solutions, convenient for physical and
geometrical interpretation, see [6—8] and Ch. 16 of [9] for
summarizing review. This form of the metric reads

1 Q . _,0 2 ¢
ds? = —5<{——= |dt— 20 + 41sin® — |d =dr?
s QZ{ Qz[ (asm + 4/s1in 2) (p] +Q r

2
0 P .
—+ Fdez —+ ?Slnze[adt - (7'2 + ((1 + l)z)d(p]z},

(1)

where P =1—a3cos6 — a,cos’ 0, Q = (w*k + e* + ¢*) —
2mr +er* = 2anw™'r* — (@Pk +SA)r?, Q=1-a(l+
acosw='r, ¢* =r*+ (I +acos0)?, and asz,ay,€,n,k
are uniquely determined constants. The free parameters of
the solutions have a direct physical meaning, namely the
mass m, electric and magnetic charges e and g, Kerr-like
rotation a, Newman-Unti-Tamburino (NUT)-like param-
eter /, acceleration «, and the cosmological constant A. All
the particular subclasses of the Plebaiiski-Demiariski black
holes can be easily obtained from (1) by simply setting
these physical parameters to zero.

At first sight, it would seem possible to obtain an
exact vacuum solution for accelerating black holes with
a NUT parameter simply by keeping a, m, [ and setting
a=e=¢g= A =0. However, in [6] we explicitly dem-
onstrated that in such a special case the constant o is a
redundant parameter which can be removed by a specific
coordinate transformation. In other words, the case a, m, [
is just the “static” black hole with a NUT parameter /. Thus
we argued convincingly in [6] that the solution which
would combine the Taub—NUT metric with the C-metric is
not included in the Plebanski—Demianski family of black
holes, despite the fact that a more general solution which
describes accelerating and rotating black holes with NUT
parameter is included in it (indeed, in the metric (1) it is
possible to keep a, a, [, m all nonvanishing). This led us in
2005 to a “private conjecture” that the genuine accelerating
Taub—NUT metric (without the Kerr-like rotation a) need
not exist at all.

Quite surprisingly, such a solution was found next year
in 2006 by Chng, Mann, and Stelea [10] by applying a
sequence of several mathematical generating techniques. It
was presented in the following form'

'We have only replaced the acceleration parameter A by @, and
the mass parameter m by M, and the constant C by c.

O’ - DF(y) ¢%
a*(x—y)* Hx.y)

o (G 2]

c\ @(x=y)

ds* = —

H(x,y) AV (0d?
+a2<x _y)2 |:(1 )F(x)dg
dx? dy?
e il )
where

F(x) =14 2aMx, (3)
F(y) =1+ 2aMy, (4)
f(x.y) :%+§ <(i¥2(;1_)i)<2y)) , (5)

see Eq. (35) in [10]. This metric explicitly contains four
parameters, namely M, «a, ¢, and §. The authors of [10]
argued that the parameter ¢ is related to the NUT parameter
in the limiting case when the acceleration vanishes. And,
complementarily, when this parameter is set to zero, the
C-metric can be obtained. It is thus natural to interpret
the metric (2)—(5) as an exact spacetime with uniformly
accelerating black hole and a specific twist described by the
NUT parameter. This very interesting suggestion surely
deserves a deeper analysis. To our knowledge, during the
last 15 years this has not yet been done, and it is the main
purpose of this paper.

First, in Sec. II we will remove the redundant parameter
¢, simplifying the original metric of [10] to the form in
which the twist can be set to zero (leading to the standard
C-metric). Using it, in subsequent Sec. III we will confirm
that the metric (2)-(5) is indeed a vacuum solution of
Einstein’s field equations (we will do this by two inde-
pendent methods, based on the general results summarized
in Appendices A and B). In Sec. IV we will calculate the
NP scalars W, in a suitable null frame and determine the
algebraic type of the Weyl tensor. Since it will turn out to
be algebraically general with four distinct principal null
directions, it cannot belong to the class of type D
Plebanski—-Demianski spacetimes (1). Then, in Sec. V
we will present a new metric form of the solution which
is much better suited for a geometrical and physical
interpretation of this class of black holes. When its three
parameters [, a, and m are set to zero, standard form of
the C-metric, the Taub-NUT metric, the Schwarzschild
metric and eventually Minkowski space are directly
obtained. Specific properties of this family of accelerating
NUT black holes are investigated in Sec. VI. In particular,
we study horizons, curvature singularities, asymptotically
flat regions, global structure of these spacetimes, and
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specific nonregularity of the two axes of symmetry, cor-
responding to rotating cosmic strings or struts (surrounded
by regions with closed timelike curves) which are the
physical source of acceleration of the pair of black holes.

II. REMOVING THE DEGENERACY
AND INITIAL COMMENTS

We immediately observe that the original metric (2)
does not admit setting ¢ =0 and 6 = 0. The metric
degenerates and its investigation is thus complicated. In
fact, the constant c is redundant. To solve these problems,
we found convenient to perform a transformation of the
time coordinate

7 =2(*ct— @), (6)
where the new real parameter 4 > 0 is defined as

v ™

A

Rescaling trivially the metric (2) by a constant conformal
factor, d5> — ds” = 2d5?, we obtain a better representation
of the solution

(y* = 1)F(y)
o (x — y)*H(x,y)

1—2xy+y2 . 12
[dr AR (x) =2 Yy,

ds? = —
(x—y)?

H(x,y) C VF(0de?
GZ(X_y)Z |:(1 )F(x)dg
dx? dy?
TR 5 DR ®
where the function H = 2H takes the form
H(x,y) =1 +,12m 9)

(x=y*

and F(x) =1+ 2aMx, F(y) = 1+ 2aMy are the linear
functions (3) and (4), respectively. Without loss of general-
ity, we may assume a > 0.

It is now possible to set A = 0, in which case H = 1, and
the new metric reduces to a diagonal line element

1
o (x—y)?
dx? L dy? '
(1=x*)F(x) (> = 1DF(y)

This is the usual form of the C-metric, see e.g. Eqs. (14.3),
(14.4) in [9] with the identification G(x) = (1 — x*)F(x),
y — —y and m =M. In such a special case, the metric
represents a spacetime with pair of Schwarzschild-like
black holes of mass M > 0 and uniform acceleration a
caused by cosmic strings or struts.

ds? = —(y* = 1)F(y)de? + (1 — x?)F(x)dg?

+

(10)

The full metric (8) with a generic A is clearly a one-
parameter generalization of this C-metric. Additional off-
diagonal metric component dzdg also occurs, indicating
that the parameter A is related to an inherent twist/rotation
effect in the spacetime. It will be explicitly demonstrated in
Sec. V that this parameter is directly proportional to the
genuine NUT parameter /.

Preliminary physical interpretation of (8) can now also
be done using similar arguments as those for the C-metric,
as summarized in Ch. 14 of [9]. In particular, we can
comment on the character of coordinate singularities. In
order to keep the correct metric signature of (8) and obtain
the usual black-hole interpretation of the spacetime, it is
necessary to require (1 — x?)F(x) > 0. In view of the roots,
this restricts the range of the spatial coordinate to x €
[-1,1] and puts the constraint 0 < 2aM < 1. The coor-
dinate singularities at x = +1 are the two poles (axes).
On the other hand, the admitted zeros of the function
(y? — 1)F(y) represent the horizons, and F(y) can be both
positive and negative. More arguments on this will be given
in Sec. VI, where it will also be demonstrated that the
singularity of the metric (8) at x =y corresponds to
asymptotically flat conformal infinity I.

III. CHECKING THE VACUUM EQUATIONS

Next, it is desirable to verify that the metric (8) with (3),
(4), (9) is an exact solution of vacuum Einstein’s field
equations.

With trivial identification z=¢, this metric clearly
belongs to the generic class of stationary axially symmetric
metrics

ds* = g, dr* + 2g,,d1de + g,,de* + g dx® + g, dy?,
(11)
in which all the functions are independent of the temporal

coordinate ¢ and angular coordinate ¢. Indeed, the explicit
metric coefficients of the spacetime (8) are

I = T 2 (x—y)2H(x, )
(2 = DF()F(x)(1 = 2xy +?)
Gip = =24 a*(x — y)*H(x,y) ’
4 0P DFOPP)(1 =20y +5%)?
Gpp = —44 a*(x —y)®H(x,y)
x,y)(1 —x?)F(x
+4 ;"?Ex—y)z)F( -
g H(x,y)
Yo —y)P(1 - x)F(x)
H(x,y)

(12)
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Interestingly, the subdeterminant

D= 91199 — gtzqa < Ov (13)

turns out to be very simple, namely

(1= )FX)(? - DFQ)

at(x—y)*

D=- (14)

Using the expressions (11)—(14), we need to evaluate the
Riemann and Ricci curvature tensors. Unfortunately, stan-
dard computer algebra systems did not provide us the
results (even after several hours of calculation on a standard
desktop PC) when we attempted to perform a direct
calculation starting from (12). Therefore, we had to employ
a more sophisticated approach. Actually, we developed two
independent methods.

A. Method A

It turned out much more convenient first to analytically
derive explicit expressions for the Christoffel symbols and
subsequently the corresponding components of the curva-
ture tensors of the generic stationary axisymmetric metric
(11). These results are summarized in Appendix A.

Moreover, instead of using standard textbook definitions
of the Riemann and Ricci tensors, we employed their
alternative (and equivalent) versions (A8), (A10). The main
advantage of this approach is that the second derivatives of
the metric are all involved explicitly in the simplest possible
way. It is not necessary to differentiate the Christoftel
symbols which also contain the inverse metric and thus
their first derivatives unnecessarily complicate the evalu-
ation of the curvature.

In the second step, we then substituted the explicit metric
functions (12), (14) into the general expressions (AS), (A9),
and (All). With a usual PC, such a symbolic-algebra
computational process using MATHEMATICA lasted only
around 40 seconds. The result of this computation con-
firmed that all the Ricci tensor components (A1) are zero.
The metric (8) is thus indeed a vacuum solution in
Einstein’s gravity theory.

B. Method B

To verify this result (and fasten the computation), we
also employed an alternative method based on the ‘“con-
formal trick.” Its main idea is that, by multiplying the
physical metric (8) by a suitable conformal factor 2, the
metric components of the related unphysical metric become
polynomial expressions. Their differentiation and combi-
nation, which are necessary to evaluate the curvature
tensors, are performed much faster. Specifically, we intro-
duced an unphysical metric g,;, via the conformal relation

Jap = ngalﬂ (15)

where
@ =a?(1-2)F(x)(y* = 1)F(y)(x—y)°H(x,y),  (16)
and

H(x,y) = (x = y)*H(x,y) = (x =y)* + 2> = 1)2F2(y).
(17)

The metric functions §,, are then only polynomials of
x and Yy,

g = —(1 =x2)F(x)(y* = 1)*F*(y) (x = )",
Gip = =241 = *)F*(x)(y* = 1)*F*(y)
x (1 =2xy +y?)(x = y)°,
Gpp = =422 (1 =) (x)(y* = 1)’ F?(y)
x (1 =2xy +y*)*(x = y)*
+ (1 =2 F(x)(y* = )F(y)H*(x, y),
O = (2 = DF(y)H?(x,y),
Ty = (1 =) F(x)H?(x,y). (18)

Using the expressions summarized in Appendix A, we first
computed the Christoffel symbols ', and the Ricci tensor
components R, for this conformal metric §,, (it also has
the stationary axisymmetric form (11), only the tilde
symbol is added everywhere). Then we employed the
expressions (B4)—(B6) derived in Appendix B to calculate
the Ricci tensor components R, of the physical metric g,
which is (12). The computer algebra manipulation using
MATHEMATICA again verified that R,;, = 0, confirming that
the metric is a vacuum solution of Einstein’s equations. In
fact, the conformal Method B is faster than Method A: the
computation took only 15 seconds.

IV. DETERMINING THE ALGEBRAIC
TYPE OF THE SPACETIME

It is now necessary to determine the algebraic type of the
spacetime which is given by the algebraic structure of the
Weyl tensor. The standard procedure is to evaluate all its ten
components [3,9]

lPO = Cabcdk“mbkcmd,

lP] = Cabcdkalbkcmd’

le = Cabcdkambﬁ’lcld,

lP3 = Cabcdlakblcn_’ld,

W, = CupeqlémPIcm, (19)
in properly normalized null tetrad {k,l,m,m}. We adopt

the most natural tetrad for the metric (11) in the coordinates
(1, ,x,y), namely
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1 1 1
= ()

\/§< —9n ' Gyy !
,EL< 1 La),

\/7 vV _gtt V9yy

1 9it e i >

=—(/29, + 9,-——a.), (20

" \/§< D VDgttl Yxx (20)

with D given by (13). All the scalar products vanish,
except for

k-l=-1, m-m=1. (21)

For vacuum solutions, the Ricci tensor and Ricci scalar
vanish. The Weyl tensor is thus identical to the Riemann
curvature tensor, and in expressions (19) we can replace
Cupea BY Rpeq- In view of the vanishing components of the
null tetrad vectors (20) and the vanishing components of the
Riemann tensor (A9) of the metric (11), summarized in
Appendix A, the following formulas for the Weyl scalars
can be derived

11 (g, 1
LPO = Z Dgyy ERtyty - zgt(/lRty(py + gttR(py(/)y - BRt(pt(p

txtx Rx)x) > :|

Rtxty Rtgoxy - Rtxcpy) s

Rtxty:| )

i

.

0

1 1 Yip
\/—_m (gn
e,y

( typy —

Nl*—‘

i
Ry ’y> G115/ Tox Ty

g 1
lP2 o 4 |:Dgw <gz</’ Rt)ty - 29t(pRty(/7y + gltR(ﬂ)’W’) + BRZ‘/”‘/’
1 /1 1
+— _Rtxtx + _nyxy
9xx \YGut Gyy
i 1 1 Gip )
—— Riuy + Ripey = Rivor ).
2\/=D /TGy (9:: ey e
LP3 — lPl 5
1P4 - lP(). (22)

Notice that, interestingly, the long expressions for ¥, and
¥, are very similar. In fact, they only differ in signs of
three terms.

Now, by substituting the explicit components (12) of the
metric and the corresponding Riemann tensor (A9) into
(22), the computer algebra system MAPLE rendered the
following Weyl scalars:

¥y = W4 = =3a’A(1 = x*)F(x)(y* = ) F(y) E(x, y),

¥, =¥ = —3a%iy/ (1 - ) F(x)\ (02 - DF()

x Z(x, y) E(x. ),

¥, = [@®AT0(x, y) + i’ M(x = y)°] E(x, y), (23)
where the functions E, X, and II are defined as
S(x.y) = (H-4)vVH—-1+i(4-3H)
ST ey
T(x,y) = xy — 1 —aMx(1 = 3y?) —aMy(1 + y?),
M(x,y) = 22*(x,y) = [(1 = x*)F(x) — aM(x — y)’]

x (y* = 1)F(y), (24)

with H = H(x, y) given by (9), and F(x), F(y) by (3), (4).
Surprisingly, the key function E(x, y) which factorizes all
the Weyl scalars can be written in an explicit and compact
form as

i(x—y)*
= 2(y* = 1)(1 +2aMy)]?"

—_
= —
—_ =

(L 25)

From these curvature scalars, we then computed the
scalar invariants I and J, defined as

Yo ¥ ¥
I = lPO\P4 - 4‘1’1‘}‘3 + 3‘1’2, J= \Pl ‘Pz lP3 , (26)
v, W, v,

and using MAPLE we verified that the equality I° = 27J?
does not hold. This means (see [3,9]) that the metric (8) is
algebraically general, that is of type 1.

Consequently, the accelerating NUT metric (8) cannot
be included in the Plebariski—-Demiariski family because
this is of algebraic type D.

Of course, this conclusion is only valid when 4 # 0.
In the case of vanishing A, implying H =1 and thus
E=i/(x—y)? the only nontrivial Weyl scalar remains
¥, = —Ma?(x — y)3. Such spacetime is of algebraic type
D, with double degenerate principal null directions k and .
In fact, it is the C-metric (10) which belongs to the
Plebanski—Demianski class.

Deeper analysis of the algebraic structure will be
presented in Secs. VIB and VIC.

A. The principal null directions

Actually, it is possible to determine four principal null
directions (PNDs) of the Weyl tensor, and to prove
explicitly that they are all distinct.

As usual [3,9], we employ the dependence of the Weyl
scalars (19) on the choice of the null tetrad, namely their
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transformation properties under a null rotation which keeps
[ fixed,

k' =k + Km+ Km + KKI, I'=1, m'=m+KlI,

(27)

where K is a complex parameter. The component ¥, then
transforms to

Yy =¥, +4KY, + 6K>¥, + 4K3W; + K*Y,. (28)

The condition for k' to be a principal null direction is
¥,’ = 0, which is equivalent

lPO + 4K\Pl + 6K2q"2 + 4K31P3 + K4‘P4 = O (29)

Since this is a quartic expression in K, there are exactly
four complex roots K; (i = 1,2, 3, 4) to this equation. Each
K; corresponds via (27) to the principal null direction k.

In the case of the metric (8), the Weyl scalars with respect
to the null tetrad (20) are (23). Due to the special property
Y, =¥, and ¥; =¥, the key algebraic equation (29)
simplifies to

1 1

(K must be nonvanishing in (29) because ¥, # 0). It is
convenient to introduce a new parameter

1
=K+ —, 31
K +K (31)

so that (30) reduces to the quadratic equation in x,
lI'lol('z + 4‘P1K + 2(3‘1”2 - \Po) = O, (32)

with two solutions

—2¥, £ /4¥3 - 2%,(3%, - ¥,)
Yo

Kip = . (33)
Finally, we find the roots K; by solving (31), that is the
quadratic equation K?> —kK + 1 = 0:

+Vir -4
K=" 0 (34)
2
where k = k| and k = k,. Indeed, we have thus obtained
four explicit complex roots K; corresponding to four
distinct PNDs &/, which can be expressed using (27).

V. A NEW CONVENIENT FORM OF THE METRIC

The metric (2) can be put in an alternative form which is
suitable for its physical interpretation, in particular for

determining the meaning of its three free parameters. This
is achieved by performing the coordinate transformation

1 r.—r
= — 9, = -, ?: + -

* o8 Y a(r—r_) 2alc

(35)
We introduce the NUT parameter [ as
)
lEirJr:iz_rJr, (36)
a

using the definition (7), and a new real mass parameter m
via the relation

m=\VM - (37)

Specific combinations of m and [ can conveniently be
defined and denoted as

ro=m+vVm?+ 2,
re=m—vVm?+ B, (38)

so that r__ is always positive while r_ is always negative.
Actually, it will soon be seen that these constants describe
the location of two Taub-NUT horizons. From these

definitions, important identities immediately follow,
namely
ry+r_=2m,
ry—r_=2 m2+12=2M >0,
rore ==,
ro(ry—ro)=ri+P. (39)

The original metric (2) with (3)-(5) then becomes

d5? = {_(”_7“)2(1 —(r=r_P) F(y)

Q? 212 H(x,y)
_ 2F : 29 2
« (dr=21( cos 0 — =TS ECISINTEN o)
(ro—r_)Q
1
+5(r=r)?H(x.y)

dr?
) <F<y><r P —(r-r )
do?

+ o) +F (x)sinZHd(pz)] , (40)

where Q=1 — a(r — r_) cos 6. Of course, the metric func-
tions F(x), F(y), and H(x,y) =2H, given by (3), (4), and

(9), respectively, must be expressed in terms of the new
coordinates r and 6. It is useful to relabel them as
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F(x) > PO)=1—a(r,. —r_)coso,

F(y) = F(r)="—".
P(r—r)

H(x,y) » H(r,0) =1 +E(r—r_)2

1 —a?(r—r_)?P

1 —a(r—r_)cosd*

(41)

Notice that H is always positive. Finally, it is natural to
introduce two new functions replacing F(r) and H(r,#@),
namely

Q(r)=F(r)(r=r_)*(1=a*(r—r_)?),
RA(r,0)=— " (r—r_)2H(r.0), (42)

rp—r_

and to perform a trivial rescaling of the whole metric by a
constant conformal factor as

ds? = 2ry

ds?. (43)

ro—r_

Thus, the exact solution found in [10] simplifies consid-
erably to a new convenient form of the metric

. 2
ds? = o {—% <dt —2l(cos 6 — aTSiHZ@)(W)
R, [(de? 212
+—dr? + R?| — + Psin*0dg , (44)
o) P
where
Q(r,0)=1-a(r—r_)cosé,

r—r_)?
T(r.6)= ((r+ - r__))SI;’
R*(r,0) 7%- :_ 2 <ri(r —r )+ P(r— r+)2
1—a?(r

—r )T ) (45)

[1—a(r—r_)cosd]*

This new metric form can be used for investigation of
geometric properties of the spacetime and for its physical
interpretation. It explicitly contains 3 free parameters,
namely m, [ and a [the first two uniquely determining
the constants r, and r_ via the relations (38)]. They can
independently be set to any value. In particular, it is
possible to set them to zero, thus immediately obtaining
important special subclasses of the spacetime metric (44).
This is the main advantage of (44) if compared to the
original form (2) in which, in particular, it is not possible to

set ¢ =0, and also the NUT parameter is not explicitly
identified.

Let us now investigate the spacetime, based on the new
form of its metric (44), (45).

A. The case [=0: The C-metric
(accelerating black holes)

For [ = 0 the constants (38) become
ry=2m, r_=0, (46)

so that the metric functions (45) reduce considerably to

Q(r,0) =1—-arcos,
P(6) =1 —2amcos0,
Q(r) =r(r=2m)(1 —ar)(1 + ar),
R*(r,0) = r*. (47)

The metric (44) thus simplifies to a diagonal line element

1

d?=—
g (1 — arcos6)?
2 2
x [—er2 L e (ﬂ + Psin29d¢2>] . (48)
0 P
where

P =1-2amcos0,
== (1—T>(1—ar)(1+ar). (49)

This is exactly the C-metric expressed in spherical-type
coordinates, see Egs. (14.6) and (14.7) in [9]. As has been
thoroughly described in Ch. 14 of [9], this metric represents
the spacetime with a pair of Schwarzschild-like black holes
of mass m which uniformly accelerate due to the tension of
cosmic strings (or struts) located along the half-axes of
symmetry at @ =0 and/or 6 = zn. Their acceleration is
determined by the parameter a. This gives the physical
interpretation to the two constant parameters of the solution.

B. The case ¢ =0: The Taub-NUT metric
(twisting black holes)

Complementarily, it is possible to directly set @ = 0 in
the metric (44). In such a case the functions (45), using the
identities (39), reduce to simple quadratics

Q(r,0) =1,
PO) =1,
)y =(r=r)(r=r.)=r*=2mr -1,
R3(r,0) = 2 + I (50)
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The metric (44) remains nondiagonal, but has a compact
explicit form

d 2
ds? = —f(dr — 21 cos 0dg)? + Tr

+ (r? + I?)(d6?* + sin? Odg?), (51)
where

Q _r2—2mr—l2

fzﬁ_ 2+ 2 (52)

It is exactly the standard Taub-NUT metric, see Egs. (12.1)
and (12.2) in [9]. As summarized in Ch. 12 of [9], this
metric is interpreted as a spacetime with black hole of mass
m and NUT twist parameter l. There are horizons located at
r =r, and r = r_, but there is no curvature singularity at
r = 0. Whenever the NUT parameter / is nonvanishing,
there is an internal twist in the geometry, related to spinning
cosmic strings located along the axes # = 0 and/or 6 = .
In the vicinity of these “torsion singularities” there appear
closed timelike curves.

C. The case a=0 and /=0: Schwarzschild black hole

By simultaneously setting both the acceleration « and the
NUT parameter / to zero, we immediately obtain the
standard spherically symmetric metric

2 2m\ -1
ds? = —(1 ——m>dt2+ (1 ——m> dr?
r r

+ r2(d6? + sin20dg?). (53)

As is well known (see, e.g., Ch. 8 of [9]), it represents the
spherically symmetric Schwarzschild black hole of mass m
in asymptotically flat space. There is no acceleration and no
twist, the axes are regular (there are no cosmic strings,
struts, or torsion singularities).

D. The case a=0 and /=0 and m =0:
Minkowski flat space

By setting a =0=m in (48), (49) which implies
P=1=0Q, or by setting [ =0 =m in (51), (52) which
implies f =1, or by setting m = 0 in (53), we obtain

ds? = —dr* + dr? + r*(d6? + sin? 0de?).  (54)

This is obviously the flat metric in spherical coordinates
(Eq. (3.2) in [9]).

Since all such subcases are directly obtained as special
cases, it is indeed natural to interpret the general metric
(44), (45) as a three-parameter family of exact spacetimes
with uniformly accelerating black holes with the twist NUT
parameter.

The structure of the new family of spacetimes which
represent accelerating NUT black holes is shown in Fig. 1.
Previously known spacetimes are obtained in their classic

type I

accelerating
NUT black holes

(44)
Ay [=0
type D type D
| NUT solution | a=|0=1 | C-metric |
(51) (48)
type D
Schwarzschild
(53)
¢ m=0
flat
| Minkowski |
(54)
FIG. 1. Schematic structure of the complete family of accel-

erating black holes with a NUT parameter. This 3-parameter class
of vacuum solutions to Einstein’s field equations is of general
algebraic type I, reducing to double degenerate type D whenever
the acceleration a or the NUT parameter / (or both) vanish. By
setting any of the three independent parameters a, /, m to zero, the
well-known classes (namely the NUT solution, the C-metric,
Schwarzschild black hole and Minkowski flat space) are obtained
directly in their usual forms, whose equation numbers are also
indicated in the diagram.

form by simply setting the acceleration a, the NUT
parameter /, or the mass m to zero. With these settings,
algebraically general solution of Einstein’s vacuum equa-
tions reduces to type D.

VI. PHYSICAL INTERPRETATION OF
THE NEW METRIC FORM

A. Position of the horizons

The metric (44) is very convenient for investigation of
horizons. In these coordinates, 0, is one of the Killing vectors
(the second is d,). Its norm is -Q/(QR)?, so that ¢ is a
temporal coordinate in the regions where Q(r) > 0, while itis
a spatial coordinate in the regions where Q(r) < 0. These
regions are separated by the Killing horizons localized at
Q(r) = 0. The form of the metric function Q is given by (45),
which is clearly a quartic factorized into four roots. There are
thus four Killing horizons, located at

e =
Hy:r=r,=r, >0,
H,:r=r,=r_<0,
Hiir=rf=r_+al,

Hy:r=r;=r_—a', (55)

084024-8



ACCELERATING NUT BLACK HOLES

PHYS. REV. D 102, 084024 (2020)

(see Fig. 4) where r are defined by (38). Recall also (39), that
is rp. —r_=2vVm*+ > >0 (unless m = 0 = [, in which
caser, =0 =r_).

The horizons H;,H, at rj,r; are two black-hole
horizons. Interestingly, they are located at the same values
r,, r_ of the radial coordinate r as the two horizons in the
standard (nonaccelerating) Taub—NUT metric, see (50).

The horizons H},’H, at r},r, are two acceleration
horizons. Their presence is the consequence of the fact that
the black hole accelerates whenever the parameter a is
nonzero. They generalize the acceleration horizons
+a~ !, —a”! present in the C-metric, see (49).

These pairs of roots are clearly ordered as r}j > rj and
r} > r; (naturally assuming that the acceleration param-
eter a is positive). Their mutual relations, however, depend
on the specific values of the three physical parameters m, [,
a. Concentrating on the physically most plausible case
when the acceleration is small, the value of a~! is very
large, and rj becomes bigger than r;. This condition
ry > rj explicitly reads

1
VY 0

For such a small acceleration of the black hole, the ordering
of its four horizons is

rg <ry, <0<r;<rf. (57)

The first two horizons H,; and Hj (acceleration and
black-hole, respectively) are in the region r < 0, while the
remaining two horizons H; and M, (black-hole and
acceleration, respectively) are in the region r > 0. Such
a situation can be naturally understood as the Taub-NUT
spacetime with usual two “inner” black hole horizons H;,
which are here surrounded by two additional “outer”
acceleration horizons HZ (one in the region r > 0 and
the second in the region r < 0).

Evaluating Q(r), generally given by (45), at r = 0 we
obtain using (39)

Qr=0)=ror.(1=a*2)=-P(1-a’r2). (58)
From the condition (56) and (38) it follows that

a2 o 2m? + 31 4 2mvVm? + I?
- 4(m* + 1)

>0, (59)

so that Q(r=0)<0. It implies Q<0 for any
r € (r;,r}). We conclude that the coordinate ¢ is temporal
in the regions (r},ry) and (r;,r;), that is between the
black-hole and acceleration horizons, while it is spatial in
the complementary three regions of the radial coordinate r.

Moreover, when the condition (56) is satisfied, the metric
coefficient P(0) in (44) is always positive. Indeed,

Pmin:P<9:0):1_a(r+_r—)

=1-2aVm>+ >0, (60)

Of course, for other choices of the physical parameters,
different number and different ordering of the horizons can
be achieved. They also may coincide, thus becoming
degenerate horizons. In particular, in the limit of vanishing
acceleration o — 0, the two outer acceleration horizons
disappear (formally via the limits r} — +o0, r; — —0),
and only two Taub-NUT black hole horizons H;, H;
remain. On the other hand, for vanishing NUT parameter
[ — 0, one of the black-hole horizon disappears (formally
via the limit r;, =r_ — 0), while the second becomes
ri =r, = 2m. There is just one black-hole horizon at
2m surrounded by two acceleration horizons located at
+a~!, which is exactly the case of the C-metric with a
curvature singularity at r = 0.

B. Curvature of the spacetime, algebraic structure,
and regularity

1. The Weyl scalars

We now employ the Weyl scalars ¥, given by (23), (24),
(25) to discuss the algebraic properties of the spacetime,
including the subcases / =0 and a = 0, the location of
physical curvature singularities and its global structure.

These scalars correspond to the metric (8) with coor-
dinates x, y, and it is thus natural to denote them as ‘Pffy} .
It will also be convenient to express these curvature scalars

as ‘{‘Xg) for the metric form (44) with coordinates r, 6.
Using the transformation (35) and definitions (41), (42)
we immediately derive o?(1 —x?)F(x)(y? = 1)F(y) =
PO(r—r_)"*sin?0, with P = P(0) and Q = Q(r) given
by (45), and similarly we express the functions E, X, and IT.
However, it is also necessary to properly rescale the scalars

‘I’gxy ) given by (23) to get ‘P/(qre) because the metrics (8) and
(44) are not the same: They are related by a constant
conformal factor,

g = 2™ where ? = (61

ry—r_

Indeed, gf;;y )

= 27, while g7 =2 "

ro—r_

Gabs see (43). The
corresponding Weyl tensor components are related as
Cgfgd = a)ZCEf;;)d, see [11]. The null tetrad (20) also needs
to be rescaled in such a way that it remains properly
normalized in the coordinates r, € as (21). This requires
k0 = o k), 100 = (=) () = = lm™) In
view of (19), we obtain the relation
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w1 = o2l (62)

Using (23)—(25) and (61)—(62), we thus calculate the Weyl
curvature scalars for the metric (44) with respect to the null
tetrad

ko) = LQ(&@[ _‘_@ar)’
V2 \WVO R
1(r0) — IQ<R3t _\/@ar)’
V2 \VQ R
m(9) = %% (9, + 2l(cos @ — aT sin? 6)0,
sin
—iPsin09,). (63)

It turns out that

lP(()rH) _ \P‘(‘rﬂ) _ _3ia21PQ(r — r_)SiIlzeX,
\PE"H) _ lpgrg) = 3(1[\/ PQ SiHHSX,
W = [—r Vm? £ PQSHUW/(r-r )X, (64)

where

(rA 4+ P)(r—r_)?Q*
[ro(r—r_)?Q*—ilQ]*’
S(r,0) =1 —-a*(r—r_)?)(r—r.)

—[(r=ry) = vVm*+ P -a*(r—r_)?)Q,
W(r,0) =28+ (1 -a*(r—r_)})(r—ry)

x [Vm? + Q3 —a®(r — r_)3Psin’d).  (65)

X(r,0) =

These functions are related to (24) via

—i(ry —r_) _ ) ;
X=—71"—"—""-H, S= —r_)’%,
a*r’(r—r)’ a(r=r.)

W=a*(r—r )T, (66)

and Q=Q(r,0), P=P(0), and Q = Q(r) are given
by (45).

As we have already argued in Sec. IV, this class of
spacetimes with accelerating Taub-NUT black hole is
generically of type I, i.e., it is algebraically general.
However, it may degenerate. When either a =0 or
[ = 0, the only nontrivial curvature component is given by

W = [—r m? + POS +ilW/(r—r )X, (67)

Such spacetimes are clearly of algebraic type D, with two
double-degenerate principal null directions k"?) and 1("%) of
the Weyl/Riemann tensor.

This is fully consistent with the fact that the case [ = 0
(implying r, = 2m, r_ = 0, see (46), and X = (r, r*Q?)7)
corresponds to the type D accelerating C-metric, for which

‘P(zre) = —E% (1 —arcos6)?, (68)
e

see Ch. 14 in [9].
The complementary case « =0, which cannot be

directly obtained from ‘Pffy ) given by (23), corresponds
to the type D twisting Taub—NUT metric. It follows
from (50) that in such a case Q=1 and Q(r) =
(r = r.)(r — r_). With the help of relation (39) we thus get

_ i+ _ (ry = i)(ry +i0)
[ro(r=r2)=il(r=r ) (ry—i)*(r+il)*’

S=vVm?+ P2, W=vm?+PE(r-r_), (69)

so that

/1112 12 il
W — —m? 4 B(r, —il)X = - mol et

ry —il (r+il)
Vm? + P (r, +il)?
=—— — 5 (70)
ri+ 1 (r+il)

Applying the identities

rP+P=r(ry—r.)=2r,Vm?>+[?, and
(ry +il)? =2r, (m+il), (71)

we finally obtain

m + il

(r0)
P =
: (r+il)?

(72)

which is the standard form of the scalar ¥, for the Taub—
NUT spacetime, see Ch. 12 in [9].

2. Algebraic type and regularity of the horizons

It can be immediately observed from (64) that on the
horizons (55), defined by Q =0, all the Weyl scalars
vanish except

‘I‘ge) (at any horizon ry,)
2Vm?* + 2 5 w
=———\r; Vv PQ3 —il ————— .
Al |V T T T
(73)
Therefore, all horizons are of algebraic type D. This is true

in a generic case with any acceleration a and any NUT
parameter l. Moreover, at these horizons the spacetime is
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regular, that is free of curvature singularities. This can be
proved as follows:
(i) At the acceleration horizons r}, r;, the values are
rp—r_=+a!, so that Q(r,) =1 F cos@ and
W(r,) = 2a72(1 F 2avm?® + I?)>Q?, implying

0 vVm? + 1P
W7 (HE) = 202
JF

X [F ar . vVm* + (1 F cos0)?
+2il(1 F 2aV m? + 7). (74)

(ii) At the positive black hole horizon r; =r, > 0, the
value of the factor is r, — r_ = 2vVm?* + [%, so
that Q(r,)=1-2avm?+1Pcos@=P, W(r,) =
2(m? + 1) (1 — 4a?(m? + 12))*Q?. Thus,

1
lP(rH) H+ — _
2 6) == s
x [ry (1 =2av m* + % cos 0)?
—il(1 — da*(m*> + I))?]. (75)

(iii) At the negative black hole horizon r; =r_ <0,
the expression (73) seems to diverge. However,
a careful analysis of the limit r — r_ of (67)
shows, using X — ir (4B (m* + 1)), Q-1
and W/(r,—r_)—=>Vm*+P(1-6avm?+I>cos)

that
LP(’H) H) = — I+
2 ) = s P
x [[(1 = 6a/ m? + I>cos0) +ir.].

(76)

The expressions (74)—(76) explicitly demonstrate
that at any horizon the gravitational field is finite,
without the curvature singularities.

3. Algebraic type of the axes and principal
null directions

Similarly, along both the axes 8 =0 and 6 =z the

function sin @ vanishes, which implies that W{? = w\"?) =

0 =" =W\ This proves that the algebraic structure

of the spacetime on these axes is also of type D, with the
only curvature component (67).

Finally, let us comment on the principal null directions
(PNDs) of the curvature tensor introduced in Sec. IVA.
Using the Weyl scalars (64) we can express the key
discriminant of the equation (33) as

D =492 - 2W) (3%, — ¥,)
= —18a21\/m? + PPQsin? 0Q3X%Y,  (77)

where Y(r,0)=1(1-a?(r—r_)})(r—r.)+ir, (r—r_)Q2.
Therefore, there arein general two distinct roots ky, k, of (33),
and subsequently there are four distinct roots K ; of (34). They
correspond to four distinct PNDs of the Weyl tensor, con-
firming that the metric (44) is of algebraically general type L.
However, if (and only if) « = 0 or [ = 0, the discriminant
(77) everywhere vanishes and there is only one double
root k of (33). In such cases, there are just two roots

_kEVKE -4

K
1,2 2

(78)
corresponding to two doubly degenerate PNDs k', of
type D spacetimes (the Taub—NUT metric and the C-metric,
respectively). In particular, in this limit K; - 0 and
K, — oo which effectively corresponds to PND k("% and
PND ("9 given by (63).

C. Curvature singularities and invariants

1. Investigation of possible singularities
The Weyl scalars ‘Pl(:y ) given by (23)—(25), or their

equivalent forms ‘PXG) given by (64)—(65), can be used to
study curvature singularities in the family of accelerating
NUT black holes.

By inspection we observe that all functions entering
these scalars are bounded” excepr the function X(r,8), or
equivalently E(x, y), whose denominator can be zero. This
key function appears as a joint factor in all the Weyl scalars
(64). Regions of spacetime where X (r, ) — oo thus clearly
indicate the possible presence of a physical singularity. In
view of (65), such a curvature singularity corresponds to
the vanishing denominator of X (provided its numerator
remains nonzero), that is

ro(r—r_)?Q?—ilQ = 0. (79)

Both the real and imaginary parts must vanish. Since

r. =m+vm*+ 0P >0, Q is everywhere a positive
conformal factor, and Q = 0 identifies regular horizons
(as shown in previous section), the only possibility is when

[ =0 and at the same time r =r_ =0,  (80)

where in the last equality we applied the relation r_ =m —

vVm?* + I? for [ = 0. The curvature singularity thus appears
only in the C-metric spacetime at the origin r = 0. All other

*As will be demonstrated in Sec. VID, a possible divergence
for r — oo corresponds to asymptotically flat regions.
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r

; -0.6

FIG. 2. The value of the Kretschmann curvature scalar (85) plotted as the function /C(r), where r is the radial coordinate, for 6 = 0, Z

>

and z. The black-hole parameters are m = 8, [ = 5, and a = 0.025.

spacetimes in the large class of accelerating NUT black
holes are nonsingular. The presence of the NUT parameter
[ (even a very small one) thus makes the spacetime regular.
This property is well known for classic Taub—NUT space-
time (see Ch. 12 in [9]), and the same property holds also in
this new class of accelerating NUT black holes.
Consequently, to describe the complete spacetime mani-
fold, it is necessary to consider the full range of the radial
coordinate r € (—oo0, +0).

To confirm these observations, we employ the scalar
curvature invariant I defined in (26). Introducing a
convenient new function A, defined as

AE‘“PZ—IP(), (81)

and using the special geometrical property of the spacetime
Yy =¥, and ¥; = ¥;, this invariant is simplified to
I =W3—4¥3 + 395 =3A2-D, (82)

where the discriminant D is given by (77). Explicit
evaluation now leads to

=3 <r£(m2 + 12)Q!°
— 1222 PPQsin?6S? — 3a*I?(r — r_)? P> Q%sin*0
—PW?/(r—r_)? =2ilr .V m* + PQW/(r — r_)>X2.

(83)

Since (as already argued) even the function W/(r —r_) is
finite at the black hole horizon r), = r_, the scalar curvature
invariant / becomes unbounded only if the function
X diverges. This happens if, and only if, both the conditions
(80) hold.

Recall also that the real part of the invariant [ is
proportional to the Kretschmann scalar,

K =R, pqR?P4 = 16Re(I), (84)
which can thus be evaluated as
K= 48{Re(‘P§) — 30?2 2PQsin%6
[48% + &?(r — r_)*PQsin’*0|Re(X?)}. (85)

In this form it is explicitly seen that the Kretschmann scalar
for the C-metric or the Taub—NUT black hole is simply
obtained by setting [ = 0 or a = 0, respectively. In both
cases, it leads to
}Cl or a—0 — 48Re(q}%)7 (86)
where W, is given by (68) or (72), in full agreement with
[12,13]. Interestingly, K = 48Re(¥3) also on the horizons
(55) where Q =0, and on the axes 0 = 0,7 where
sinf = 0.
In the general case of accelerating NUT back holes, the
Kretschmann curvature scalar K is given by expression
(85). This explicit but somewhat complicated function of
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Accelerating Taub-NUT:

C-metric:
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FIG. 3. The Kretschmann curvature scalar (85) visualized in quasipolar coordinates as KC(x,y), where x=+V r2 + I2sin 6,

y=Vr> + cosf, so that r = 0 is a circle of radius /. The left column corresponds to r > 0, while the right column represents
r < 0. The first row plots the Kretchmann scalar for the accelerating NUT black hole with m = 8, / = 5 and a = 0.025. It can be seen
that the curvature is everywhere finite, even in the vicinity of » = 0, and it smoothly continues across » =0 from r > 0 to r < 0.
The second and third rows correspond to special cases of this metric, namely the Taub—NUT metric (with m = 8,/ = 5, @ = 0) and the
C-metric (with m = 8, [ = 0, @ = 0.025). The Taub—NUT metric has no divergence of /C, which is independent of 8. On the other hand,
the C-metric becomes singular as r — 0, that is at x = 0 = y (therefore we plot only the region r > 0). The two separate cosmic strings
along the axes @ = 0 and 0 = x are indicated as dashed curves.
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the coordinates r and 0 is visualized in the two illustrative
figures.

In Fig. 2 we plot the Kretschmann scalar K(r) as a
function of the radial coordinate r for three fixed privileged
values of 8, namely 0 = 0, 0 = g and @ = x. In fact, we will
argue later that the two poles/axes at 6 =0 and =#
correspond to the position of (rotating) cosmic strings,
while 6 =7 is the equatorial section “perpendicular” to
them. It can be seen that for each @ there are several local
maxima and local minima. Half of these extremes are in the
region r > 0, the remaining are located in the region r < 0.
The curvature is everywhere finite, and its maximal values
are localized close to the origin r = 0 inside the black hole,
that is within the shaded region r € (r_,r,) = (rj.r})).

In Fig. 3 we include the angular dependence on 6. The
left column corresponds to the region r > 0, while the right
column represents the region r < 0. The first row plots the
Kretchmann scalar /C(r, 6) for the accelerating NUT black
hole (with m = 8, [ = 5, a = 0.025), the second and third
rows correspond to special cases of this metric, namely the
Taub-NUT metric (m = 8, [ = 5, a = 0) and the C-metric
(m =8, =0, a=0.025). From these visualizations of the
Kretschmann curvature scalar it is seen that the dependence
on both r and € is smooth, and the curvature is everywhere
finite, except for the C-metric at » = 0, in full agreement
with the condition (80). The two distinct cosmic strings
located on the axes 8 =0 and 0 = &, respectively, are
indicated as dashed curves.

2. Scalar invariants and algebraic types

Let us conclude this part by returning to the scalar
curvature invariants I and J. We can express J, defined in
(26), in terms of the discriminant D and the function A as

J :%A(D—ZAz). (87)

Using (82), the key expression I3 —27J? thus takes the
compact form

PP —27J% = —(9A% — 4D)D?, (88)

FNI

which is explicitly

9
P =21 = 1 [(r+\/m2 + P —il[W/(r—r_)
—?PQ(r — r_)sin’6)])?
- 16a212PQsin29S2] D2X2. (89)
According to standard classification scheme for determin-

ing the algebraic type (see, e.g., page 122 of [3]), the
spacetime is of a general algebraic type I if (and only if)

I? #27J%. This is clearly the generic case of (89), con-
firming the results of Sec. IV. Only for D=0 (or X =0
which is, however, a subcase of D = 0), the spacetime
degenerates and becomes algebraically special. In particu-
lar, it follows from (77) that D = 0 whenever a =0 or
[ =0, and such spacetimes are actually of type D every-
where, as we have already demonstrated in previous
sections.

Zeros of the big square bracket in (89) identify alge-
braically more special regions in a given spacetime. It
requires

W = a?>PQ(r —r_)*sin’0 and
roV/m? 1+ QS = +dal\/PQsin 0. (90)

Clearly, this can happen only for the generic case of
accelerating NUT black holes with @ # 0 # [. It is inter-
esting to observe from (64) that these two conditions imply

1
\PZ - —§<1P0 Zl: 4‘}’1), (91)
and thus D = 4(¥, £ ¥;)* and A = —3 (¥, = ¥;), which

now implies a specific relation D = %Az. In such degen-
erate regions, the scalar curvature invariants take the form

1
I = éAz, J =—A3  and further
4 8
9. 1
KzglP]A N Lzz(lpoi3‘{’1)A
9
:> N = Z\Pl (3‘?1 :l: 2‘{‘0)A2, (92)

confirming I? = 27J°. Therefore, using the classification
scheme, as summarized in [3], for A = 0 © ¥, = FY¥, the
region is of algebraic type N (because I =J=0=
K = L), while for A #0 it is of type II. It degenerates
to algebraic type D if, and only if, ¥, = 0 # ¥, (because
I#0#Jbut K=0=N).

D. Description of the conformal infinity Z+
and global structure

The coordinates employed in (44) are comoving in the
sense that they are adapted to the accelerating black holes.
This is clearly seen from the fixed position of the
geometrically unique horizons which are still at the same
values (55) of the radial coordinate r, despite the fact that
the black hole moves. This has many advantages, and
greatly simplifies physical and geometrical analysis of the
spacetime. However, as thoroughly discussed in the simpler
case of the C-metric (when [ = 0) in [9], such accelerating
comoving coordinates cannot naturally cover the whole
conformal infinity Z (scri).
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FIG. 4. The complete spacetime structure of the class of accelerating NUT black holes, suppressing the coordinates ¢ and ¢
(corresponding to stationary and axial symmetry). These fundamental sections are represented by (mutually equivalent) coordinates x, y
and 0, r. The black hole spacetime is localized in the shaded region x € [—1, 1] between two rotating cosmic strings at the two opposite
poles 8 = 0 and € = z. In the complementary (vertical) direction, the spacetime is separated by four Killing horizons at special values of
y and equivalently r, namely the two black-hole horizons Hi are located at r;, = r_, 7 = r, and two acceleration horizons H are at
rr=r_+ ﬁ r, =r_— é They separate different regions of the spacetimes in which the coordinate r is spatial (regions II*) or temporal
(regions I* and III). The values » = 0 and == oo, indicated by horizontal dashed lines, are only coordinate singularities. Conformal
infinity Z, where the spacetime is asymptotically flat, is located along the diagonal line x = y. There are thus two asymptotically flat
regions corresponding to our universe where r > 0 and the parallel universe where r < 0, which are connected through the region III
with the highest (but finite) curvature in the black hole interior r € (r_, r..). Notice, however, that only along the equatorial section § = 2
the corresponding two conformal infinities Z* are represented by r = 4-co. Unlike in the C-metric or Schwarzschild black hole, with the
NUT parameter [ there is no curvature singularity at r = 0. It is thus obvious that there are two complete strings (not just semi-infinite
strings) at @ = 0 and 6 = x, both connecting the two distinct universes as r € (—co, +00). In fact, to obtain a geodesically complete
spacetime, it is necessary to “glue the two universes” along the regular horizon H, atr = r, =r_, both at y = —oco0 and y = +o0, by
identifying the corresponding parts of these lower and upper boundaries of the diagram indicated by two finely dashed line segments
between x € [—1, 1]. Thus we obtain a complete diagram of the spacetime with accelerating NUT black holes, shown in the right part of
this figure.

1. Asymptotically flat regions holes will provide us with the complete picture summarized

From the Weyl scalars (64), (65) it follows that asymp- 10 Fig- 4. ) _
totically flat regions without any curvature, locally resem- To describe and investigate the complete conformal

bling the null infinity Z of Minkowski space, are reached inﬁnity. I of spacetimes With accelerating NUT blagk
for X(r,0) — 0. Tt occurs in the vicinity of Q=1— holes, it is much more convenient to consider the metric

a(r —r_)cos@ = 0, that is for r—r_+1/(acosd). This form (8). Similarly as for the spherical-like coordinates, it

. . L . directly follows from expressions (23) that the correspond-
corresponds to the largest possible finite positive values of r in . A lars W, all i = — 0. Such
the angular half-range @ € (0. %), but to the lowest possible 18, Curvature scalars Wy all vanish for E(x,y) = 0. Suc
finite negative values of rfor the second half-range 6 € (%, 7) regions are thus asymptotically flat, representing Z. In view

2>

] . . ) : of the explicit form of this function (25) it is clear that this
In the equatorial section @ = 7, such asymptotically flatregion . 41100 is equivalent to x — y = 0. Therefore, the asymp-

is reacfhed both at r = 40 ?.nd r=—co. . totically flat infinity is located at
It is necessary to clarify these somewhat puzzling

observations. Such an understanding of the global structure )
of the spacetime manifold with accelerating NUT black I:x=y, (93)
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see also Fig. 4. The admitted range of the coordinate x is
x € [-1, 1] (see the subsequent section) and thus the range
of yon Z is also y € [—1, 1]. Interestingly, it is exactly the
same situation as for the C-metric (10), see [9].

It can now be understood, what are the specific draw-
backs of the spherical-like coordinates r, 6 of the metric
(44) to represent Z. There is no problem in the equatorial
plane 6 =7 corresponding to x = 0, which symmetrically
divides the spacetime into two regions between the two
axes (strings). Due to (93), the scri Z in such “transverse
section” is located at y =0, and it follows from the
transformation (35) that this occurs at infinite values of r,

T
7 atf=—:
av=3

r = +oo, (94)
as naively assumed. However, at any other section 6 =
const., the conformal infinity Z is located at finite values
of r. Indeed, (93) with (35) reads cos@ = 1/[a(r — r_)],
that is

Iatany@;ég: r=r_+ (95)

acosf’
Therefore, close to the first string at @ =0 we obtain
r—r_+a'=r!, while close to the second string at
O=nm we get r—>r_—a'=r;, see (55) and Fig. 4.
Notice that this is exactly the condition for vanishing
conformal factor in the metric (44), (45),

Q(r,0) = 0. (96)

Such a behavior is analogous to the situation in the
simpler C-metric [9]. However, in the present case of
accelerating NUT black holes, there are two distinct
asymptotically flat regions, namely Z* which is the
conformal boundary of “our universe” in the region /7,
and Z~ which is the conformal boundary of “parallel
universe” in the region /~. In order to cover the part
0 >7% of Z" in “our universe,” it iS necessary to also
consider r < 0. And vice versa: to cover the part 6 <7 of
7~ in parallel universe, it is necessary to also employ r > 0.
This is surely possible, but quite cumbersome.

2. Boost-rotation metric form and its analytic extension

To further elucidate the global structure of the new
solution (44) for accelerating NUT black holes, it is useful
to express it in a form in which its boost and rotation
symmetries are explicitly manifested. This will also provide
a clear argument indicating that the analytically extended
space-time represents a pair of accelerated black-hole
sources. It is achieved by applying the transformation

R

‘=2

—a?(r—r_)?

, (97)

V(TN e )

(so that £, p > 0) with ¥ = at and ¢ unchanged. Clearly,
¢ = 0 at both acceleration horizons H_, whereas p = 0 at
both black-hole horizons Hj, and also along the two
strings located at § = 0 and @ = z. An application of the
transformation (97), (98) takes the metric (44) to the form
ds? = —e#£2(df — Adg)? + e*(d&? + dp?) + e Hp3de?,
(99)

where the functions yu, 4, and A are

(r=ri)(r=r)
R*P '

et =R">2 ((r —ry)(r=r_)P

e/ =

+ (m? 4+ P)[1 —a*(r - r_)z]sin20>,

A—2a1<cos9— ¢ r_r_Pp2>. (100)

2vVmE+ PPr—ry

Of course, these metric functions need to be rewritten in
terms of the variables ¢ and p.

When the NUT parameter vanishes, [ = 0, the metric
becomes static because A = 0. In fact, the remaining
functions e and e™* then reduce exactly to expressions
(14.30), (14.31) in [9] for the C-metric. For m — 0, the
metric (99) further reduces to the uniformly accelerated flat
metric, since e# — 1 and e™ — 1, yielding

ds? = —2dt”? + d&% + dp? + p>de?. (101)
It is equation (14.25) in [9], equivalent to the Bondi—
Rindler metric (3.14) whose coordinates are adapted to the
uniform acceleration. This weak-field limit thus provides a
reasonable justification that the black-hole sources are
indeed accelerating. Moreover, in view of (97), the accel-
eration is given by the parameter a (see also Sec. 3.5 in [9]
for more details).

Now, the metric (99) in the stationary regions II can be
analytically extended through the acceleration horizons
located at { = 0 by transforming it to the boost-rotation
symmetric form with rotating sources (see [14—16]). In
particular, by performing the transformation

T = +{sinh?, Z =+ cosh?, (102)
the metric becomes
3An analogous transformation in the nonstationary

regions I close to the conformal infinity Z is 7 = +{ cosh#/,
Z = +{sinh?.
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eH
72 —T?
. [(zdz — TdT)?

N2

ds? = — [(ZdT — TdZ) — A(Z2 — T?)dg)?

+dp? | + e Hprde?. (103)

Clearly, £ = |Z% — T?|, so that the acceleration horizons
HE are now located at T = +Z. They separate the domains
of types I and II. For the whole range of the coordinates T
and Z, the boost-rotation symmetric metric (103) covers all
these regions, with u, A, and A being specific functions of p
and Z? — T2, independent of ¢ and ¢.

Notice, however, that the coordinates (¢, p) and equiv-
alently (r,0) with the “+” sign in (102) each cover only
half of the section ¢ = const corresponding to a single
domain of type II, because necessarily Z > 0. To cover
also the analytically extended regions Z < 0, a second
copy of these coordinates is required by choosing the
“~” sign in (102). This indicates that the complete
spacetime actually contains a pair of uniformly accel-
erating NUT black holes, similarly as in the case of the
C-metric (see Ch. 14 in [9] for the details). These two
black holes accelerate away from each other, and are
causally separated. The analytically extended manifold
thus contains four asymptotically flat regions, a pair of
77" and a pair of Z~, each in our universe and in the
parallel universe.

Let us finally remark that at large values of the radial
coordinate r close to Z¥ where Q =0, for any fixed
value of € the metric functions behave as R ~r, P is a
constant, and Q~r (the case ¢ =7 must be treated
separately). It thus follows from (100) that the functions
e’,e™*, A remain finite in this limit, demonstrating the
correct asymptotic behavior of the boost-rotation metric
form (103). In fact, analogously to the procedure pre-
sented in [16], by a properly performed rescaling of the
coordinates and uniquely chosen linear combination of 7
and ¢, for the given @ it is possible to achieve e, et - 1,
and A — 0 in the asymptotically flat regions of these
spacetimes.

E. Character of the axes =0 and 0=rx:
Rotating cosmic strings

We have seen in Sec. VI A that the coordinate singu-
larities given by Q(r) =0 represent four horizons (55)
associated with the Killing vector field 0,. There is also the
second Killing vector field 0, and its degenerate points
identify the spatial axes of symmetry.

They are located at the coordinate singularities of the
function sin @ in the new metric (44), and these appear
at the poles 8 = 0 and 6 = z. Therefore, the range of the
spatial coordinate § must be constrained to 6 € [0, z].
Via the simple relation x = —cos @ this is equivalent to
the range x € [—1, 1] between the two poles x = +1 of
the function (1 —x?) in the original form of the metric

(8). The location of these poles is indicated in Fig. 4,
defining the boundary of the physical spacetime with
black holes (the shaded region). Expressed in terms of
the coordinates of the boost-rotation/axially symmetric
metric (103), related by (98), these poles 6 =0,
correspond to p =0 which naturally identifies the
corresponding two axes.

In analogy with the C-metric, such degenerate axes
represent cosmic strings or struts. Their tension is the
physical source of the acceleration of the black holes.

We have proven in Sec. VIB that the algebraic
structure of (generic) type I spacetime degenerates along
these axes to type D, with the only curvature component
¥, given by (67). Subsequently, in Sec. VIC we have
demonstrated that for § = 0 and 6 = z the Kretschmann
scalar K(r) = 48Re(¥3) [see the expression (85)]
is everywhere finite, as is explicitly plotted in Figs. 2
and 3. There is thus no curvature singularity along
these axes. Instead, these are basically topological
defects associated with conical singularities given by
deficit or excess angles around the two distinct axes. In
addition, due to the nonvanishing NUT parameter /,
these cosmic strings or struts are rotating, thus intro-
ducing an internal twist to the entire spacetime with
accelerating NUT black holes. We will now analyze
them in more detail.

1. Cosmic strings or struts

We have seen that there are three explicit physical
parameters of the spacetime (44), namely the mass m,
the acceleration a, and the NUT parameter [ of the black
holes [which determine the horizon parameters r. = m=+
Vm? + 2, see (38) and (55)]. In fact, there is also the
fourth free parameter C, which is hidden in the range of
the angular coordinate ¢ € [0,2xC). It has not yet been
specified. We will demonstrate its physical meaning by
relating it to the deficit (or excess) angles of the cosmic
strings.

Let us start with investigation of the (non)regularity of
the first axis of symmetry @ = 0 in (44). Consider a small
circle around it given by @ = const, with the range
@ € [0,2xC), assuming fixed ¢ and r. The invariant length
of its circumference is [\ /G,,dp, while its radius is

foe \/Gaed0. The axis is regular if their fraction in the limit
0 — 0 is equal to 2z. In general we obtain

circumference . 27C./g,,
= lim .
6—-0 0O v/ 900

Now, the conceptual problem is that the metric function g,,,
in (44), and thus the circumference, does not approach zero
in the limit @ — 0 due to the presence of cos @ in the first
term in the metric. This problem can be resolved by the
same procedure as for the classic Taub—-NUT solution (see

fo=lim (104)

6—0 radius
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the transition between the metrics (12.1) and (12.3) in [9]):

By applying the transformation of the time coordinate’
t =ty + 2, (105)

the metric (44) becomes

ds? = é {— % <dt0 +21 (ZSin2 g + aTsin29> d(ﬂ) ’

+ %2dr2 + R2 (dTez + Psin29d(p2>} . (106)
so that
Gop = é {RzPsinze — 4P % <2Sin2 g + aTsin29> 2] .
Yoo = QRT; (107)

For very small values of @ we obtain g, ~ R?P¢*/Q?

because the terms proportional to /> become negligible.
Evaluating the limit (104) we thus obtain

fo=2aC(1 —a(r,. —r_))=2zC(1 = 2a/m* + I%).
(108)

The axis 0 =0 in the metric (106) can thus be made
regular by the choice

1
C=Ch=—F+——.
Tl 2aVm 1 I

Analogously, it is possible to regularize the second axis
of symmetry @ = n. Performing the complementary trans-
formation of the time coordinate

(109)

t=t,—2lgp, (110)

the metric (44) becomes

1 0 ?
ds? = o {—% <dt,, -2/ <2cos2 3 aT sin29> d§0>

R? de?
+§dr2 +R? <?+Psin2€dqoz>}, (111)
1.e.,
1 . Q 0 . 2
9oo = o {RzPssz — 4[> = <2cos2 3 aTsm29> ] ,
R2
= 112
Yoo Q2p ( )

*It leads to a closed circle instead of an open helical orbit of the
axial Killing vector around € = 0. For a recent related study of
geometrical and physical properties of symmetry axes of black
holes with NUT parameters see [17].

For § — = we thus obtain g,, ~ R*P(x —0)*/Q?. The
radius of a small circle around the axis 6 = 7 is fé’ /Go0d0.
Evaluating the fraction

circumference lim 27C. /Gy
o—x (7 — 0)\/Jag

fr=1lim

, 113
O—n radius (113)

we obtain

fr=2xC(1 +a(r, —r_))=22C(1 + 2a\/ m?> + I%).
(114)

The axis @ = n in the metric (111) is thus regular for the
unique choice

1
14+ 2avVm? + 2

It is now explicitly seen that it is not possible to
regularize simultaneously both the axes because Cy # C,
and 1y #t, =ty + 4lp (unless @« = 0 =1 which is just
the Schwarzschild solution, regular for the standard
choice C = 1).

When the second axis of symmetry 0 = z is made
regular by the choice (115), there is necessarily a deficit
angle &y (conical singularity) along the first axis 6 = 0,
namely

C=C,= (115)

8ravm? + 2
8o =21 — fo = —————=>0.
14+ 2avVm? + 12

The corresponding tension in this cosmic string located
along 0 =0 pulls the black hole, causing its uniform
acceleration. Such string extends to the full range of the
radial coordinate r € (—oo,+00), connecting thus our
universe with the parallel universe through the nonsingular
NUT black-hole interior, see Fig. 4. Moreover, as argued in
Sec. VI D, there is a pair of causally separated NUT black
holes accelerating away from each other by the action of
two such cosmic strings, one string in each copy Z > 0
and Z < 0.

Complementarily, when the first axis of symmetry 8 = 0
is made regular by the choice (109), there is necessarily an
excess angle 6, along the second axis 8 = z, namely

8ravm? + 2
1=2avVm? + 2

This represents the cosmic strut located along 6 = n
between the two black holes, pushing them away from
each other in opposite spatial directions +Z.

In particular, for black holes with vanishing NUT
parameter [ =0, the general results (116) and (117)
reduce to

(116)

S, =21 — fp = <0. (117)
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8ram

B 8ram
1+ 2am

0 and 6, = (118)

1-2am’
which fully agree with the known expressions for the
C-metric, see Eqs. (14.15)-(14.17) in [9].

2. Rotation of these cosmic strings or struts

With a generic NUT parameter [/, these cosmic strings/
struts are rotating. This can be seen by calculating the
angular velocity parameter @ of the metric along the two
different axes [10],

Giq
w="2.

119
Int ( )

For the general form of the new metric (44) we obtain
w = —2l(cos @ — a7 sin® ). Evaluating it on the axis
0 = 0 and the axis 6 = z, we immediately get
wy=-21 and w, =2l (120)
respectively. Both cosmic strings/struts thus rotate. In fact,
they are contrarotating with exactly opposite angular
velocities +21 determined solely by the NUT parameter.
If the first axis of symmetry € = 0 is made regular by
considering the metric (106) with the time ¢, then @ =
21(2sin*§+ a7 sin*#) and the corresponding angular
velocities of the axes are
wy=0 and w, =41, (121)
On the other hand, when the second axis 0 =z is
regularized by switching to the metric (111) with 7, then
w = =2[(2cos*§ — aT sin? ) and the angular velocities of
the axes are
wy=-4] and w,=0. (122)
Clearly, there is always a constant difference Aw = w, —
o = 41 between the angular velocities of the two rotating
cosmic strings or struts, directly given by the NUT
parameter [.

F. Regions with closed timelike curves around the
rotating strings

In the vicinity of the rotating cosmic strings or struts,
which are located along € = 0 and 6 = x, the spacetime
with accelerating NUT black holes can serve as a specific
time machine. Indeed, similarly as in the classic Taub—-NUT
solution, there are closed timelike curves.

To identify these pathological causality-violating
regions, let us again consider simple curves in the space-
time which are circles around the axes of symmetry 6 = 0
and 0 = 7 such that only the periodic angular coordinate
@ €[0,22C) changes, while the remaining three

coordinates ¢, r and 0 are kept fixed. The corresponding
tangent (velocity) vectors are thus proportional to the
Killing vector field 0,,. Its norm is determined just by
the metric coefficient g,,,, which for the general metric (44)
reads

1
o0 = cp R?Psin’0 — 41 % (cos @ — aTsin’0)?|.

(123)

When [ =0, i.e., for nonrotating cosmic strings, this
metric coefficient is always positive, so that the circles
are spacelike curves. However, with the NUT parameter
[, there are regions where g,, <0 in which the circles
(orbits of the axial symmetry) are closed timelike curves.
These pathological regions are explicitly given by the
condition

RAP(1 —cos?0) < 41>Q(cos @ — aT (1 — cos? 6))?,
(124)

where the functions P, Q, 7, R have been defined in
(45). Although this condition is quite difficult to be
solved analytically, some general observations can easily
be made.

In particular, the condition can not be satisfied in the
regions where Q(r) < 0. Assuming that the acceleration
a is not too large, satisfying (56) which implies (57),
the closed timelike curves can thus only appear
between the black hole horizon H,; and the acceleration
horizon H,, that is only in the region II* given by
r€ (rj,rf) or in the region II” given by r € (ry,r}).
On the contrary, the pathological domain can not occur
in the region III inside the black hole or close to the
conformal infinities Z+ which are the boundaries of the
dynamical regions I* where r is temporal because
Q <0, see Fig. 4.

These observations are nicely confirmed by plotting the
values of the relevant function g,,(r,6) given by (123),
obtained numerically for various choices of the black-hole
parameters. A typical example m = 0.5, = 3, a = 0.05 is
presented in Fig. 5, for r > 0 (left) and r < O (right). The
grey curves are contour lines (isolines) of a constant value
of g,,,(/,(r, 0), red color depicts large positive values, while
blue color depicts negative values (dark gray domains
indicate extremely large values, both positive and negative).
Zeros of g, in light yellow, determining the boundary of
the pathological regions given by the condition (124), are
exactly indicated by the thick black curves. As expected,
these regions with closed timelike curves occur close to the
both axes 6 = 0 and 8 = z, were the rotating cosmic strings
at located. Such regions are indeed restricted to the
concentric domains (two annuli) between the black hole
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FIG. 5.

-20 -10 0 10 20

Plot of the metric function g, (123) for the general accelerating NUT black hole (44) with rotating cosmic strings on both axes

0 =0 and 0 = . Its values are visualized in quasipolar coordinates x = V'r> + [>siné, y = V7> + [> cos § for r > 0 (left) and » < 0
(right). The gray annulus in the center of each figure localizes the black hole bordered by its horizons H; at r, > 0 and r_ < 0. The
acceleration horizons HZ at r} and r; (big red circles) and the conformal infinity Z at Q = 0 are also shown. The grey curves are
contour lines g,,,,(r, 8) = const, and the values are color-coded from red (positive values) to blue (negative values). Extremely large/low
values are cut and depicted in dark gray. The thick black curves in the light yellow domain are the isolines g,, = 0 determining the
boundary of the pathological regions (124) with closed timelike curves. They occur close to both the axes § = 0 and 8 = = (purple
dashed lines), but also near the acceleration horizons, forming an additional symmetric pair of “lobes” around & = 0 just below H and
around 6 = x just above H;. This plot for the choice m = 0.5, [ =3, a = 0.05 is typical.

horizons H; at ri = r.. and the acceleration horizons HZ
at rir =r_+al.

Interestingly, for r > O there is another pair of symmetric
“lobes” around € = 0 near the acceleration horizon
(big red circle). At a given r close to r}, these lobes
extend to surprisingly large values of 6. Similarly, there
is a “mirror” pair of such pathological regions near H;
and @ =nx for r<0. In both cases, the lobes are
localized around such axis, along which the acceleration
horizon H, closely approaches the conformal infinity 7
at Q =0.

In Fig. 5 we visualized the regions containing the closed
timelike curves for the accelerating black hole with a big
value of the NUT parameter / = 6m = 3. However, our
investigation of a large set of the parameters m, [, and
shows that the overall picture displayed here is quite
generic.

Similarly, it is possible to investigate the regions
with closed timelike curves in the special cases when
one of the axes is regular. The case with regular axis
0 = 0 is described by the metric (106), and the corre-
sponding metric function (107) gives for fixed #, the
condition

RAP(1+ cos ) < 42Q(1 —cosO)(1 + aT (1 + cosH))?,
(125)

while the complementary case with regular axis 0 = x
is described by the metric (111), and the corresponding
metric function (112) yields for fixed ¢,

RAP(1 —cos @) < 42Q(1 + cos0)(1 —aT (1 —cos 0))>.
(126)

For a direct comparison with Fig. 5, analogous visual-
izations of the pathological regions in such special cases
are shown in Fig. 6 for the same choice of the black-
hole parameters.

Finally, we can observe that the conditions (124)-(126)
for the pathological regions simplify considerably in the
absence of acceleration. Indeed, for @« = 0 the key functions
reduce to P=1, Q= (r—r )(r—r_)=r>=2mr-1
and R? = r2 + [2, see (50), so that the above three con-
ditions (124)—(126) for the regions with closed timelike
curves become, respectively,

P4+
P+ 2 —4rf
rr 4+ 2 —41%f

cos2 6 >
cosf < —

cos 6 > (127)
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FIG. 6. The functions g,,, given by (107) and (112) for the accelerating NUT black hole metric (106) with the regular axis & = 0 (top
row) and for the metric (111) with the regular axis € = 7 (bottom row). The regions with closed timelike curves surround the remaining
rotating cosmic string, and there is always an additional symmetric pair of such pathological regions near the acceleration horizons.

where f(r) = Q/R?, see (52). The result (127) fully agrees
with the equation for the Taub—NUT spacetime presented in
Sec. 12.1.4 of the monograph [9].

VII. CONCLUDING SUMMARY

We presented and carefully investigated a remarkable
class of spacetimes which represent accelerating black
holes with a NUT parameter. In particular:

(1) By two independent methods we verified in Sec. 11
that the metric (2) found by Chng, Mann and Stelea
in 2006 is indeed an exact solution to Einstein’s
vacuum field equations.

084024-21

(ii)

(iii)

(iv)

To achieve this, we employed a modified version
(8) of the solution in which one redundant param-
eter was removed and the original metric simpli-
fied, so that the standard C-metric (10) is
immediately obtained by setting the NUT-like twist
parameter A to zero.

Using the metric form (8), in Sec. IV we calculated
all components of the Weyl tensor in the natural null
tetrad (20), namely the NP scalars ¥4 (23), and the
corresponding curvature scalar invariants / and J (26).
Since generically I° # 27J2, the Weyl tensor is
of algebraically general type I with four distinct
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V)

(vi)

(vii)

(viii)

(ix)

x)

(xi)

(xii)

(xiii)

(xiv)

principal null directions, explicitly given by ex-
pressions (27) with (34), (33).
It explains why this class of solutions with accel-
erating NUT black holes has not been previously
found within the large Plebafski—-Demiafiski family
of type D spacetimes.
In Sec. V we derived and introduced a new
metric form (44) of these solutions in ‘“spheri-
cal-type” coordinates which is much more
convenient for understanding of this class of black
holes.
In particular, its metric functions (45), with r, =
m £ vm? + > given by (38), explicitly depend on
three physical parameters, namely the mass m, the
acceleration a, and the NUT parameter /.
These black-hole parameters can be separately set
to zero, recovering the well-known spacetimes in
standard coordinates, namely the C-metric (48)
when [ =0, the Taub—-NUT metric (51) when
a =0, the Schwarzschild metric (53), and flat
Minkowski space (54).
The structure of this complete family of accelerat-
ing NUT black holes is shown in Fig. 1. By setting
a=0 or [ =0, algebraically general spacetime
reduces to the type D.
Using the new metric (44), in Sec. VI we inves-
tigated main physical and geometrical properties of
this family of accelerating NUT black holes. In
particular:
In Sec. VIA we localized the position of the
horizons associated with the Killing vector field
d,. There are two black-hole horizons H; located at
r, =r_and rj = r, plus two acceleration horizons
HE at rj=r_+1 and r7=r_—1 For small
1
24/ m*+ 12
rg <ry <0<rf <rf, see (57).
We carefully analyzed the curvature of the spacetime
in Sec. VI B. We expressed the Weyl scalars (64) in
the new coordinates and frames. For / =0 and
a =0, only the Newtonian component ‘Pére) re-
mains, and its special subcases (68) and (72) fully
agree with standard expressions for the C-metric and
the Taub—NUT metric, which are both of algebraic
type D.
Evaluating these Weyl scalars on the horizons, we
proved that they are all regular (that is free of
curvature singularities), and of a double degenerate
algebraic type D.
Using the curvature invariants, including the
Kretschmann scalar, we proved in Sec. VIC that
there are no curvature singularities whenever the
NUT parameter / is nonzero. This is visualized in
Figs. 2 and 3. Maximal (finite) values of the
curvature are inside the black hole.

acceleration a <

they are ordered as

(xv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

(xx1)

(xxii)

(xxiii)
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Curvature singularity appears only in the C-metric
case [ =0 at r = 0. All other spacetimes in the
class of accelerating NUT black holes are non-
singular, and to describe their complete manifold it
is thus necessary to consider the full range of the
coordinate r € (—00, +00).

There may occur special regions in a given space-
time which are of algebraic type D, II or N,
according to the values of the scalar curvature
invariants (92).

In Sec. VID we identified asymptotically flat
regions which correspond to the conformal infin-
ities Z* given by Q = 0. These are simply given by
the condition x = y in the coordinates of the metric
form (8).

Using the spherical-like coordinates of (44), the
position of Z* is given by the conditions (94) and
(95), which look less intuitive.

All these investigations lead us to a complete
understanding of the global structure of this class
of spacetimes, summarized in Fig. 4. The accel-
erating NUT black hole can be understood as a
“throat” of maximal curvature which connects our
universe located in the region » > 0 with the second
(also asymptotically flat) parallel universe in the
region r < 0.

Analytic extension across the acceleration horizons,
using the boost-rotation symmetric form of the
metric (103), revealed that there is actually a pair of
such (causally separated) NUT black holes, which
together involve four asymptotically flat regions.
The two black holes uniformly accelerate in oppo-
site directions, as in the case of the C-metric
with / = 0.

We clarified in Sec. VIE that the physical
source of the acceleration of this pair of black
holes is the tension (or compression) in the
rotating cosmic strings (or struts) located along
the corresponding two axes of axial symmetry at
0 =0 and 0 = 7.

These strings or struts are related to the deficit or
excess angles which introduce topological defects
along the axes. However, their curvature remains
finite, and of algebraic type D.

In general, there are strings/struts along both the
axes, but one of the axis can be made fully
regular by a suitable choice of the constant C in
the range ¢ € [0,27C). The first axis € =0 is
regular in the metric form (106) with the choice
(109), whereas the second axis € = z is regular
in the form (111) with the choice (115). In the
first case, there is a cosmic strut along 0 ==
with the excess angle (117), while in the second
case there is a cosmic string along 6 = 0 with
the deficit angle (116).



ACCELERATING NUT BLACK HOLES

PHYS. REV. D 102, 084024 (2020)

(xxiv) In addition to the deficit/excess angles, these
cosmic strings/struts located along the axes of
symmetry are characterized by their rotation param-
eter @ (angular velocity). Their values are directly
related to the NUT parameter [, see expressions
(120)—(122).

There is always a constant difference Aw = 4/
between the angular velocities of the two rotating
cosmic strings or struts. If, and only if / = 0, both
the axes are nontwisting.

In the neighborhood of these rotating strings/struts
there occur pathological regions with closed time-
like curves. They are given by the conditions (124)—
(126) and visualized in Figs. 5 and 6.

We hope that, with these geometrical and physical
insights, the new explicit form (44) of the class of
accelerating NUT black holes can be used as an interesting
example for various types of investigations in Einstein’s
general relativity, black hole thermodynamics, quantum
gravity, or high-energy physics, for example by extending
the recent studies [18,19].

(xxv)

(xxvi)
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Ly =0, r(ptt =0,
[y, =0, Ly =0,
| %gtt,xv F(ptx = %gt(p,xv
Ly = %gtty’ Loy = %gﬂp,y’
Ly =0, Lppp =0,

_ 1
Dipr =290 Tppr = 290000

Cipy =395 Topy = 19001
e =0, Ly =0,
Iy =0, Ty =0,
Iy =0, Ly =0,

APPENDIX A: CURVATURE OF GENERAL
STATIONARY AXISYMMETRIC SPACETIMES

Let us assume a general form of stationary axisymmetric
metric in coordinates (7, @, x,y) given by (11), that is

9t Gip 0 0
9o 9o 0 0
_ , Al
G 0 0 g. 0 (A1)
0 0 0 g,

in which all the metric functions can only depend on
x and y. The inverse matrix is

g(p(p/D _gt(p/D 0 0
—G,0/ D D 0 0
g = gt(/)/ 9u/ ’ (AZ)
0 0 1/Gx 0
0 0 0 1/g,,
where
D= 9119pp — th(p‘ (A3)

The corresponding Christoffel symbols of the first kind
Copy =5 (Gapy + Gyap — pya) are

Uy = _%gtt,m rytt = _%gtt,yv
Fxt(p = _%gl(p.x’ Fylrp = _%gr(p,y’
1—‘)ct)c =0, Fytx =0,
[y = 0, Ly, = 0,
Lipp = _%gt/if/hx’ Lypp = _%gw-y’ (Ad)
Iy =0, [y,r =0,
Lypy =0, Lypy =0,
Fxxx = %gxx,xv Fyxx = _%gxx,y’
Fxxy = %gxx,w Fyxy = %gyy,xv
Loy = =39 Lyyy =39y

and usual Christoffel symbols of the second kind 1*5, = g*°T',5, are thus
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r,=0, r,=0,
r, =0, v, =0,
U = 5 (9ppinx = 9ip9r9.x)/ D T =5 (9u9rg.x = 9ip9.x)/ D
Uy =5 ppiny = 9i99i0y)/ D- Ty =5 (9uipy = Gip9uy)/ D
=0, F‘/’W =0, (AS)
L e =3 (9pp9t0x = 919990.x)] D ? o = 3 (919ppx = It99t0x)/ D
% 90910y — 9ip9pp.y)/ D % 911900y — 1991p.y)/ D
F’xx =0, F w =0,
I, =0, I, =0,
I,y =0, Iy, =0,
I+, = _%gtt,x/gxx’ 7, = _%gtl.y/gyy!
Iy, = _%gtwqx/gxx’ [V = _%gtfp.,y/gyy’
r«,.=0, I, =0,
r, =0, r, =0,
Ty = =3 ppx/ Guxs T oy = =3 9005/ 9y (A6)
I, =0, I, =0,
Mgy =0, [Py =0,
T = 3 e/ G D = =3 9xy/ Gy
Ty = 3 9xey/ Gurs Doy = 39/ Gy
Ty = =39/ Gxx: sy =3 9v.0/ 9y
Now, we compute the Riemann curvature tensor. However, instead of using the usual definition
RE G =TV e =Ty s FTH L7 ) = TH )17 (A7)
for our purposes we found that it is much more convenient to employ the equivalent expression
Ry = %(Qﬂz,m + Gewsih = Gucwi = Goagu) T Loil %ok = Lol 702 (A8)

Its advantage is that there is no need to differentiate the complicated Christoffel symbols of the second kind. This greatly
simplifies subsequent computer algebra manipulations. Direct evaluation using (A4) and (AS5) leads to
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R _ l glzl/),x - gtt,xg(/up,x + g%{p,y - glt,yg(/up.y
e 4 YGxx Gyy ’
Rt(ptx =0,
R,(/,ly =0,
RWW =0,
Rippy = 0,
Rt(pxy = <gtt(gt(p,yg(/}(p,x - gtq).xgq}w,)') - gr(p (gtt,yg(p(/),x - gtt,xg(p(/),y) =+ g(p(p (gtt.ygt(p,x - gtt.xgtq;,y)) ’
(gngw 49uGpp — T2p)
1 1 gttg%(p,x - 2gt(pgtt,xgt(p,x + g(p(pgtzt,x GrtxYxxx  Yrt,yGxx,y
Ry = > Giux T 5 + - >
2 4 91199p — Gip Yxx yy
R 1 1 (94919 x99y — gl(p(glt,xgt(p,y + gl(p.xgtt,y) + 9oty | Guxxxy | JiryGyyx
txty — 2 A~ 9 Xy + Z + + )
gttg{p(p - 912(/1 Ixx gyy
1 1 91t9tp x9pp.x — Gip (gt2(p,x + gtt.xg(p(/),x) + o9t xYGip.x Gipx9xxx  GipyGxx,y
Rtxgox = gt(p xx T Z 5 + - s
911999 — Gip Gxx 9yy
1 91t 91p.y9ppx — gt(p(gt(p,xgtgo,y + gtt,yg(p(p,x) + 9pp9tty9ipx  rpxYxxy = Grp.yY9yy.x
Rixgy = gt(p Xy Z b + + ,
91199p — e Yxx Gyy
Rtxxy =0,
1 gltgtz(p.y - 2gt(pgtt,ygt(p.y + g(p(pgtzt,y 91t x9yyx  GiryGyy.y
Rtyty gtt yy + 2 - + B
gttg(p(p - gt(p xx gyy
Riypx = way Rigxys
R 1 9191059005 = 910\ Tipy + Guy900y) + Gpp9u39ipy  Gipxyyx | JipyTyyy
gy = gttp wTy ) - + ,
I19pp — Yrp Grx Gyy
Ry = 0,
- 1 (9490 = 291091059005 + 9poTips  Jppalres  JppyTrry
Rgoxsz - g(p(p xx T Z + - ’
gttg(/up - g%(p Gxx gyy
1 gttg(p(/;,xg(/)q),y - gt(p (gt(p.xg(p(p,y + g(p(/).xgtl/l,y) + g(/uﬂgtlp,xgtz/z,y g(/)(/z,xgxx,y g(/up,ygyy,x
Ryxpy = g(,,(,, Xyt 4 2 =+ + ,
91999 — J1p xx Gyy
R(pxxy = O’
R 1 (949005 = 29091059005 + Y0090y JooxIyvx | JopyIsyy
pypy = g¢¢ w 4 — 5 - + )
gltg(p(p gt(p Gxx gyy
Ryyy = 0.
1 1[Gy + Goonyyx . Toyx +
nyxy _ __(gxx’yy + gyy,xx) += Gxx,y GxxxYyy.x + 9yyx Gxx,y9yy,y ) (A9)
2 4 gxx gyy

Finally, we employ a general expression for the Ricci tensor,

1
_gﬂK(g;M,Ky + gm/,/M - g;uc,ui - gyﬂ./uc) + gﬂkraﬂlraw - gﬂkrayxrgulv (AlO)

Ryﬂ = gﬂKR;wK/i = )
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which yields the following nontrivial components for the Ricci tensor of the metric (Al):

1
Ry=—3 <M + m) - 2(Fxt<orwtx + Fytqu(pty)
2\ % Gy

- 1—‘xtt(l—‘rtx -1? @x +1I xx = I xy) Fytt(rtty - F(/l(py - FXX)’ + Fyyy)’

1 (Gipax | Gipyy , :
Rip == 2 < Zc:x ’ %) Tl g = 0l gy =TT gy = TP ) = T (M = Ty ) 1 (T = 7).
1 (Gpp. Yooyy
R(/)(/} — _ E ( PP.xx + PP yy) _ Z(Fxt(prt(/)x + v t(/:r (/’})
YGxx gyy
- Fx(p(/)(_rttx + Fq)(/;x + 1—‘Xxx - Fyxy) - Fyt/)(/)(_rtty + F{/)(/)y - Fxxy + Fyyy)’
1 g gttxx_zgt(gt( xx+gttg(( XX g"xx+gxxw
R _ - ppIit, pILQ, PP, AL A I 2 oTe. It In% 2
=5 ( PP L— + () 4 207, g+ (17)
+ Fxxx(rttx + F(/}(px) + Fyx_v(l—‘xxx + I_‘yxy) + Fyxx (Ftty + F(p(/;y - Fxxy - Fyyy)’
1 99 ,x’_2g(g(,X'+g Yop.x
ny - 2 ( e gng[ﬂ t—pg} e t Ft’xrt’y + F(ptxrt(/’y + F(/}’)‘Ftlﬁx + F(pwxrlﬂ(py
»p »
+ Fxxy(rttx + Fq)(/)x) + Iﬂyxy(l—‘tty + F(ﬂ(py) + Fxxyl—‘yxy - nyyryxxv
Ryy _ _l <gl/1(pgl[,yy - 2gt(/7.gl‘(/7,yy2+ gttg(/up.yy + gxx,yy + gyy,xx) + (Flty>2 + 2F¢tvrtq)y + (I“(p[ﬂy)z
2 9199 — Gip Gxx i
+ Fy))(l—‘tly + F(/)([ly) + Fxxy(rxxy + Fyyy) + ny) (Fttx + F(/](/)x - FXXX - Fyxy)' (Al 1)
|
. - (o038 2 - =
APPENDIX B: RICCI TENSORS OF Ry=Ry+ =0y —=([,Q, +17,Q,),
CONFORMALLY RELATED METRICS Q )
= o 2 . -
For the conformally related metrics (15), R,, = R,, + 59,(/, e I, Q, +17,Q,),
~ D 2 - =
0., = »p = oJre T o \\ eptx pp==y)
Gub ngab’ (Bl) R R +Qg Q(F Q. +17,,Q))

R. =R, +¢~ +2(Q Mm.Q. -m.Q)
the corresponding Ricci tensors are connected as (see, N Q7 QT R ey
e.g., [11]) ~ (O} 2 ~ -

R = R + ﬁgxy + ﬁ (Q,xy - rxxyg,x - 1—‘y)cysz.y)’
7 - - ~ (O3 2 - .

Rab = Rab - 2Q lvavbQ -Q 'gabngVCVdQ Ryy = Ryy + ﬁgyy + ﬁ (Q.yy — nyyg.x - F)yyg’y),
‘I’ 4Q._2VaQVbQ - Q_zgabngVCQVdQ. (B2) (B4)
This implies relation between the physical and unphysical where
Ricci tensors R, and R, respectively,
1
o=- D [(g(p(/) thq;F w T gttr )Q'.x
R, = + o d 42664 (Q g — T 0, )Q
ab = Rap [(gabg B (L, a.e) + (QWF thrpr w0+ gnr )Q ]
— 30, 7°9Q Q. B3 1 - -
gabg ,C ,d] ( ) + — (Qxx _ FXXXQ,X _ F?}xxg’y)
XX
For the metric (15), (18), the conformal factor (16) is 1 - . 3 Q?x sz
independent of ¢ and ¢, so that the resulting metric is again + Q_ e A e B Q E + Q_ ’
stationary and axisymmetric, in which case the relations o w
(B3) simplify to (B5)
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and the determinant for the metric (18) reads

D = gtt.a(p(p - glztp = Q4D

= —(x =) (1 =P P x)(y* = 1P F (y) (x.y). (B6)
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