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A new effective approach to the algebraic classification of geometries in 2þ 1 gravity is presented. It
uses five real Cotton scalars ΨA of distinct boost weights, which are 3D analogs of the Newman-Penrose
scalars representing the Weyl tensor in 4D. The classification into types I, II, D, III, N, O is directly related
to the multiplicity of the four Cotton-aligned null directions (CANDs). We derive a synoptic algorithm
based on the invariants constructed from ΨA, and we show its agreement with the Petrov scheme based on
eigenvalues and canonical Jordan form of the Cotton-York tensor. Our method is simpler and also general
because it can be used in any 2þ 1 theory, such as Einstein’s gravity or topologically massive gravity. As
an example we analyze the algebraic structure of Robinson-Trautman spacetimes which include charged
black holes with a cosmological constant.
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Introduction. Einstein’s general relativity (GR), conceived
in 1915, is a highly successful physical theory. Formulating
gravity as specific curvature of 3þ 1 spacetime, it plays a
fundamental role in contemporary astrophysics and cos-
mology, in particular in the theory of black holes and
gravitational waves. Its predictions are in excellent agree-
ment with various tests and observations [1].
Despite this enormous success, GR has its own limits. It

predicts physical singularities inside black holes or at an
initial big bang, where quantum effects become crucial.
Many attempts to construct a quantum gravity theory have
been made [2], but it seems that none of them is yet
conceptually clear, mathematically consistent, complete and
(above all) experimentally tested.
In order to attack the difficult problem of quantizing

gravity, various reformulations, modifications and general-
izations of GR have been proposed. These include exten-
sions to higher dimensions D > 4, as in the string theory
approach, but also study of lower-dimensional D ¼ 3

spacetimes. Such a 2þ 1 gravity, proposed in the 1960s,
is nowadays a very popular research arena of fundamental
physics. It provides models of quantum gravity using
various approaches [3], but also gives a great number of
explicit exact spacetimes on a classical level [4].
To classify the vast number of 2þ 1 spacetimes and to

understand their properties, classification schemes were
proposed, analogous to those in D ¼ 4 GR [5]. The most
important is an algebraic classification into types I, II, D,
III, N, O developed in 1954–60 by Petrov, Géhéniau, Pirani,

Bell, Debever and Penrose. In its best formulation it is based
on the multiplicity of 4 principal null directions (PNDs) of
the curvature Weyl tensor Cabcd encoded in the Newman-
Penrose scalars ΨA (A ¼ 0, 1, 2, 3, 4) [5–7]. In 2004 this
was extended to D > 4 by Coley, Milson, Pravda and
Pravdová who introduced the concept of Weyl-aligned null
directions (WANDs), see the reviews [8,9,10] using the
notation ΨA.
The algebraic classification in D ¼ 3 was introduced by

Barrow et al. [11] and later refined by García et al. [12].
Instead of using the Weyl tensor Cabcd (which vanishes
identically), it is necessary to employ the Cotton tensor
Cabc [13]. In 2þ 1 gravity it has 5 components and can be
Hodge-mapped onto the Cotton-York tensor Yab [14]. It is a
symmetric traceless 3 × 3matrix, and its algebraic type can
be determined by the eigenvalues and related Jordan forms
(for details see [4], which also reviews another important
classification method to Segre-Plebański types based on the
traceless Ricci tenor).
Here we propose a novel, practical method of algebraic

classification in 2þ 1 gravity, consistent with [12].
Assuming no field equations, it is also more general.
We directly use the Cotton scalars ΨA which are the null-
triad projections of Cabc. These are the D ¼ 3 counterparts
of the Newman-Penrose Weyl scalars of GR, and deter-
mine the multiplicity of the CANDs—in analogy with
PNDs (in D ¼ 4) and WANDs (in D > 4).

Cotton scalars ΨA. In a general 3D spacetime with the
metric gab of signature ð−;þ;þÞ, the curvature is given by
the Ricci tensor Rab, Ricci scalar R≡ Ra

a, and Cotton
tensor [4], Ch. 20,

*jiri.podolsky@mff.cuni.cz
†matus.papajcik@matfyz.cuni.cz

PHYSICAL REVIEW D 108, L121504 (2023)
Letter

2470-0010=2023=108(12)=L121504(6) L121504-1 © 2023 American Physical Society

https://orcid.org/0000-0003-2998-6830
https://orcid.org/0000-0002-5664-1670
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.L121504&domain=pdf&date_stamp=2023-12-21
https://doi.org/10.1103/PhysRevD.108.L121504
https://doi.org/10.1103/PhysRevD.108.L121504
https://doi.org/10.1103/PhysRevD.108.L121504
https://doi.org/10.1103/PhysRevD.108.L121504


Cabc ≡ 2

�
∇½aRb�c −

1

4
∇½aRgb�c

�
; ð2:1Þ

where ∇ is the metric connection. It is antisymmetric
(CðabÞc ¼ 0 ¼ C½abc�) and traceless (Cab

a ¼ 0), so that it
has 5 independent components. The Cotton tensor Cabc
plays the role similar to theWeyl tensorCabcd representing a
free gravitational field in Einstein’s 4D gravity. In the
Newman-Penrose formalism [5–7] the Weyl tensor is
encoded in 5 complex scalars ΨA, defined as projections
of Cabcd onto specific combinations of some null tetrad
vectors. SinceCabcd ≡ 0 in any 2þ 1 geometry, it cannot be
used for classification in 3D. However, one can introduce
the null triad basis feag≡ fk; l;mg normalized as

kala ¼ −1; mama ¼ 1; ð2:2Þ
kaka ¼ 0 ¼ lala and kama ¼ 0 ¼ lama. It means that k and
l are null vectors, while m is the spatial unit vector
orthogonal to both k and l. Next we define the Newman-
Penrose-type real Cotton scalars ΨA as the projections

Ψ0 ≡ Cabckambkc;

Ψ1 ≡ Cabckalbkc;

Ψ2 ≡ Cabckamblc;

Ψ3 ≡ Cabclakblc;

Ψ4 ≡ Cabclamblc: ð2:3Þ
Equivalently, Ψ1 ¼ Cabckambmc, Ψ3 ¼ Cabclambmc,
Ψ2 ¼ Cabcmalbkc ¼ 1

2
Cabckalbmc.

The classification based on ΨA. The specific algebraic
types of 2þ 1 geometries can now be defined by very
simple conditions, namely that in a suitable null triad
fk; l;mg some of the Cotton scalars ΨA vanish, as given in
Table I.
In fact, formally these are the same conditions as for the

D ¼ 4 classification related to the multiplicity of the PNDs
of the Weyl tensor, see Sec. 4.3 of [5], or the multiplicity of
the WANDs in D > 4 [9].

Classification invariants. A general choice of the null
triad fk; l;mg does not provide vanishing Cotton scalars
as prescribed in Table I. However, for each algebraic type

the required canonical forms of ΨA can be achieved by
a suitable Lorentz transformation. This also leads to
the important concept of Cotton-aligned null direction
(CAND), see Sec. V.
In practise it is not necessary to find the null triad with

the canonical forms of ΨA. It can be proven [15] that the
algebraic type of a given 2þ 1 geometry can be determined
using the Cotton scalars (2.3) evaluated in any null triad
satisfying (2.2). Such a classification can be done using the
scalar polynomial invariants

I ≡Ψ0Ψ4 − 2Ψ1Ψ3 − 3Ψ2
2;

J ≡ 2Ψ0Ψ2Ψ4 þ 2Ψ1Ψ2Ψ3 þ 2Ψ3
2 þ Ψ0Ψ2

3 − Ψ4Ψ2
1;

G≡Ψ1Ψ2
4 − 3Ψ2Ψ3Ψ4 −Ψ3

3;

H ≡ 2Ψ2Ψ4 þ Ψ2
3;

N ≡ 3H2 þΨ2
4I: ð4:1Þ

In fact, I ¼ 1
4
CabcCabc and J ¼ 1

6
CabcCabdYc

d, where Yab

is the Cotton-York tensor (7.1). Useful algorithm of
algebraic classification is given by the flow diagram in
Fig. 1 (it is an analog of the D ¼ 4 diagram presented in
Fig. 9.1 of [5]). The procedure is not applicable if Ψ4 ¼ 0.
In this case, when Ψ0 ≠ 0 we can perform a swap
Ψ0 ↔ −Ψ4, Ψ1 ↔ −Ψ3, after which Fig. 1 can be used.
When Ψ4 ¼ 0 ¼ Ψ0, it is necessary to employ Table II.

Cotton-aligned null direction (CAND). The Cotton scalars
ΨA depend on the choice of the null triad fk; l;mg.
However, as in D ≥ 4 this freedom is simply given by
Lorentz transformations at a given point of the spacetime.
There are 3 subgroups preserving (2.2):

TABLE I. A simple algebraic classification of 2þ 1 geometries.

Type The conditions

I Ψ0 ¼ 0, Ψ1 ≠ 0
II Ψ0 ¼ Ψ1 ¼ 0, Ψ2 ≠ 0
III Ψ0 ¼ Ψ1 ¼ Ψ2 ¼ 0, Ψ3 ≠ 0
N Ψ0 ¼ Ψ1 ¼ Ψ2 ¼ Ψ3 ¼ 0, Ψ4 ≠ 0
D Ψ0 ¼ Ψ1 ¼ 0 ¼ Ψ3 ¼ Ψ4, Ψ2 ≠ 0
O All ΨA ¼ 0

FIG. 1. Flow diagram for determining the algebraic type of a
2þ 1 geometry using the invariants (4.1) constructed from the
Cotton scalars ΨA (if Ψ4 ≠ 0). Type O is a conformally flat
spacetime with vanishing Cotton tensor. Application of the
diagram on various explicit geometries can be found in [15].
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k0 ¼ Bk; l0 ¼ B−1l; m0 ¼ m; ð5:1Þ

k0 ¼ k; l0 ¼ lþ
ffiffiffi
2

p
LmþL2k; m0 ¼mþ

ffiffiffi
2

p
Lk; ð5:2Þ

k0 ¼ kþ
ffiffiffi
2

p
KmþK2l; l0 ¼ l; m0 ¼mþ

ffiffiffi
2

p
Kl; ð5:3Þ

where B, K, L are real parameters. Under the boost (5.1),
Ψ0

A ¼ B2−AΨA, i.e. ΨA in (2.3) are ordered according to
their specific boost weights, which is the corresponding
power ð2 − AÞ of the boost parameter B. Under the null
rotation (5.2) with fixed k ¼ k0, the scalars transform as
Ψ0

0 ¼ Ψ0, Ψ0
1 ¼ Ψ1 þ

ffiffiffi
2

p
LΨ0, etc. [15]. The classification

in Table I is thus invariant with respect to both (5.1)
and (5.2). The null rotation (5.3)with fixed l ¼ l0 transforms
the Cotton scalars (2.3) as

Ψ0
0¼Ψ0þ2

ffiffiffi
2

p
KΨ1þ6K2Ψ2−2

ffiffiffi
2

p
K3Ψ3−K4Ψ4; ð5:4Þ

etc. Now, a crucial observation is that (5.4) always allows us
to achieve Ψ0

0 ¼ 0 by a suitable choice of the parameter K,
so that in the new triad fk0; l0;m0g the condition for type I
given in Table I is satisfied. Such a frame can be called
the principal null triad, and we name its null vector k0
the Cotton-aligned null direction, abbreviated as CAND.
A CAND is the 2þ 1 analog of a PND (principal
null direction) of the Weyl tensor in D ¼ 4 GR, and
of a WAND (Weyl-aligned null direction) in D ≥ 4
gravity [5,9].
This also proves that all 2þ 1 geometries with Cabc ≠ 0

are of algebraic type I, or more special. This is also true for
3þ 1 geometries, considering the Weyl tensor instead of
the Cotton tensor.
Moreover, the CAND can be explicitly found. In view

of (5.4), the condition Ψ0
0 ¼ 0 reads

Ψ4K4þ 2
ffiffiffi
2

p
Ψ3K3− 6Ψ2K2− 2

ffiffiffi
2

p
Ψ1K−Ψ0 ¼ 0: ð5:5Þ

It is an algebraic equation of the 4th order for K, which
admits four complex solutions (not necessarily distinct).

Therefore, at any event of the 2þ 1 spacetime there exist
four CANDs determined by the local algebraic structure of
the Cotton tensor. Each of these four CANDs k0 is obtained
by (5.3) where the parameterK is the root of (5.5), although
it is generally difficult to find them explicitly. Multiplicity
of the roots K thus implies the same multiplicity of the
CANDs. These are uniquely related to the algebraic types,
as we discuss next.

CANDs multiplicity, complexity, and the algebraic (sub)
types.A 2þ 1 spacetime is said to be algebraically general
if its CANDs, i.e. the four roots of (5.5), are all distinct.
Such a spacetime is of algebraic type I. A spacetime is
algebraically special if at least two of its CANDs coincide.
If just two CANDs k coincide, it is of type II. Higher
multiplicity defines type III (triple CAND/root) and the
most special type N (quadruple CAND/root) geometries. In
addition, there is a degenerate case type D—a subtype of
type II with two distinct CANDs k and l, both of
multiplicity 2 (two pairs of coinciding roots), see Table III.
If k is a CAND then Ψ0 ¼ 0, corresponding to the root

K ¼ 0 of (5.5). Type II arises when Ψ1 ¼ 0, type III when
Ψ1 ¼ Ψ2 ¼ 0, and type N when Ψ1 ¼ Ψ2 ¼ Ψ3 ¼ 0, in
which caseK4 ¼ 0 gives the quadruple CAND k. For type D
spacetimes with Ψ0 ¼ Ψ1 ¼ 0 ¼ Ψ3 ¼ Ψ4, Eq. (5.5)
reduces to Ψ2K2 ¼ 0, so that k is the double CAND.
Moreover (swapping k ↔ l, so that Ψ0 ↔ Ψ4, Ψ1 ↔ Ψ3,
Ψ2 ↔ −Ψ2), the vector l is another double CAND, and the
condition Ψ4 ¼ Ψ3 ¼ 0 implies L2 ¼ 0.
Such a classification in 2þ 1 gravity is actually more

subtle because the key real equation (5.5) can have some
complex roots K. Some of the vectors k representing
CANDs can thus formally be complex. This cannot happen
in 3þ 1 gravity or in D > 4. It is thus natural to suggest a
subclassification:

(i) subtypes Ir, IIr and Dr: all four (possibly multiple)
CANDs are real, and

(ii) subtypes Ic, IIc and Dc: some of the CANDs are
complex.

It can be shown that type III≡ IIIr and type N≡ Nr.

TABLE II. Algebraic classification of 2þ 1 geometries for the
special case Ψ4 ¼ 0 ¼ Ψ0.

Ψ1 ¼ 0 Ψ2 ¼ 0 Ψ3 ¼ 0 Type O
Ψ3 ≠ 0 Type III

Ψ2 ≠ 0 Ψ3 ¼ 0 Type D
Ψ3 ≠ 0 Type II

Ψ1 ≠ 0 Ψ2 ¼ 0 Ψ3 ¼ 0 Type III
Ψ3 ≠ 0 Type I

Ψ2 ≠ 0

Ψ3 ¼ 0 Type II

Ψ3 ≠ 0 9Ψ2
2 ¼ −8Ψ1Ψ3 Type II

9Ψ2
2 ≠ −8Ψ1Ψ3 Type I

TABLE III. Algebraic types of 2þ 1 geometries are uniquely
related to the multiplicity of the Cotton-aligned null directions
(CANDs), i.e., to the multiplicity of the four roots of the key
Eq. (5.5). The last column contains the roots K and L for the
canonical Cotton scalars ΨA given in Table I.

Type CANDs Multiplicity Canonical roots

I 1þ 1þ 1þ 1 K ¼ 0, 3 other distinct roots

II 1þ 1þ 2 K2 ¼ 0, 2 other distinct roots

D 2þ 2 K2 ¼ 0, L2 ¼ 0

III 1þ 3 K3 ¼ 0, L ¼ 0 or K ≠ 0

N 4 K4 ¼ 0
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Explicit conditions for these subtypes, the relation to
Class I0 geometries with complex eigenvalues of the Cotton-
York tensor, and the Petrov-Segre types IR and IC in
topologically massive gravity is presented in [15], together
with the Bel-Debever criteria for all types.

Equivalence with classification based on the Cotton-York
tensor. In previous studies, the Hodge dual of the Cotton
tensor Cabc was employed. The Cotton-York tensor [14] is
defined as Yab ≡ eac�Cb, where Cb is the Cotton 2-form
Cb ≡ 1

2
Cmnbωm ∧ ωn, see Eq. (20.111) in [4]. Explicitly,

Yab ¼
1

2
gakωkmnCmnb; ð7:1Þ

where the Levi-Civita tensor reads ωabc ¼ − ffiffiffiffiffiffi−gp
εabc. It

has 5 components because it is symmetric and traceless
(Yab ¼ Yba and Ya

a ¼ 0). It can be shown [15] that the
general Cotton-York tensor in the triad (2.2) is

Yab ¼ −Ψ0lalb þ Ψ1ðlamb þmalbÞ
−Ψ2ðlakb þ kalb þ 2mambÞ
−Ψ3ðkamb þmakbÞ þΨ4kakb: ð7:2Þ

This can be used to show the equivalence of our new
method of classification, based on the Cotton scalars ΨA
and the multiplicity of CANDs, with the “Petrov” scheme
based on the Jordan form and eigenvalues of the Cotton-
York tensor [4,11,12]. To this end, we express Yab in an
orthonormal basis fE0;E1;E2g associated with fk; l;mg
viaE0 ≡ 1ffiffi

2
p ðkþ lÞ,E1 ≡ 1ffiffi

2
p ðk − lÞ,E2 ≡m, so that in this

basis the metric reads gab ¼ diagð−1; 1; 1Þ. Using (7.2) we
calculate all orthonormal projections (such as Y00 ≡
Ea
0E

b
0Yab etc.), and evaluate Ya

b ≡ Yacgcb as

Ya
b ¼

0
BBBBBBBB@

Ψ2 þ
Ψ0 −Ψ4

2
−
Ψ0 þ Ψ4

2
−
Ψ1 −Ψ3ffiffiffi

2
p

Ψ0 þ Ψ4

2
Ψ2 −

Ψ0 −Ψ4

2
−
Ψ1 þΨ3ffiffiffi

2
p

Ψ1 −Ψ3ffiffiffi
2

p −
Ψ1 þ Ψ3ffiffiffi

2
p −2Ψ2

1
CCCCCCCCA
:

ð7:3Þ

This matrix is traceless but not symmetric, so the roots
of the characteristic polynomial detðYa

b − λδa
bÞ ¼ 0 may

be complex. According to the eigenvalues λ1, λ2, and
λ3 ¼ −λ1 − λ2, the Petrov types are defined such that the
case λ1 ≠ λ2 gives type I, λ1 ¼ λ2 ≠ 0 gives type II or
type D, while λ1 ¼ λ2 ¼ 0 ¼ λ3 gives type III or type N.
We can find the Jordan normal forms defining the

algebraic types of 2þ 1 geometries, as presented in
Table IV. For types I and D the first two columns are a

copy of Table 1.2.1 of [4]. For types II and N we
performed a similarity transformation between the
Jordan form J presented in [4] and the normal form
AJA−1 with

A ¼

0
B@

−1 1 0

1 0 0

0 0 1

1
CA:

For type III we employed

A ¼

0
B@

−1 0 1

1 0 0

0 −1 0

1
CA:

Such forms of Ya
b can be uniquely identified with the

special values of the Cotton scalars ΨA using (7.3), see the
third column of Table IV. It confirms that the “Petrov
types” defined by the Jordan forms of Ya

b are equivalent
to our approach. Indeed, evaluating the invariants (4.1) for
the special values of ΨA (the last column in Table IV) the
algorithm in Fig. 1 gives the same algebraic types (for D
and III we must employ Table II because Ψ0 ¼ 0 ¼ Ψ4).
Our method also shows the unique relation to multiplicity
of CANDs, in full analogy with PNDs in D ¼ 4 gravity,
see Sec. 4.3 of [5], and WANDs in D > 4 theories [9].

Robinson-Trautman spacetimes. The usefulness of the new
classification method can be demonstrated on treating a
class of 2þ 1 Robinson-Trautman spacetimes with a
cosmological constant Λ and an aligned electromagnetic
field, which include black holes. In [16] we derived their
general form

ds2 ¼ r2

P2
ðdxþ eP2duÞ2 − 2dudr − 2Hdu2;

2H ¼ −mþ κ0Q2 ln

����Qr
���� − 2ðlnQÞ;ur − Λr2; ð8:1Þ

with the Maxwell field potential A ¼ Q lnðr=r0Þdu, see
Eqs. (180) and (182) of [16]. Here m≡ μQ2, μ is a constant
and QðuÞ is any function of u, while the functions Pðu; xÞ,
eðu; xÞ satisfy the Einstein field equation ðQ=PÞ;u ¼
QðePÞ;x. The Cotton tensor (2.1) of the solution (8.1) has
components Curr ¼ 1

2
κ0Q2r−3, Cxrx ¼ 1

2
κ0ðQ2=P2Þr−1,

Cxru ¼ Curx ¼ 1
2
κ0eQ2r−1, and much more complicated

expressions for Cruu, Cuxu, and Cuxx. However, using the
null triad k ¼ ∂r, l ¼ ∂u −H∂r − eP2

∂x, m ¼ ðP=rÞ∂x,
definition (2.3) yields very simple Cotton scalars

Ψ0 ¼ 0 ¼ Ψ4; Ψ2 ¼ 0;

Ψ1 ¼ −
κ0Q2

2r3
; Ψ3 ¼

1

2

�
m − κ0Q2 ln

����Qr
����þ Λr2

�
Ψ1:

ð8:2Þ
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Because Ψ0 ¼ 0 and generally Ψ1 ≠ 0, Table I indicates
that such spacetimes are of algebraic type I. Moreover, it
follows from Secs. V and VI that k ¼ ∂r is the CAND. It
coincides with the null direction of the aligned electro-
magnetic field. Because Ψ4 ¼ 0, the second distinct
CAND is l.
All scalars (8.2) vanish when Q ¼ 0, corresponding to

vacuum solutions with Λ, and thus (anti-)de Sitter or
Minkowski spaces which are conformally flat (type O).
In the case Q ≠ 0 with an aligned electromagnetic field the
main invariants (4.1) are I ¼ −2Ψ1Ψ3 and J ¼ 0. Because
Ψ4 ¼ 0 ¼ Ψ0, we must employ Table II instead of Fig. 1.
Then Ψ1 ≠ 0, Ψ2 ¼ 0, Ψ3 ≠ 0 determine type I.
In [16] we identified the class of (cyclic symmetric)

charged black hole electrostatic solutions [17], the 2þ 1
analog to the Reissner-Nordström-(anti-)de Sitter solution
[Eq. (192) of [16] and Sec. 11.2 of [4]]. This arises as the
special subcaseQ ¼ const, e ¼ 0 of (8.1). Such spacetimes
are also of type I, in agreement with Sec. 11.1.5 of [4].
Interestingly, on the horizons, localized by the condition
H ¼ 0, the scalar Ψ3 in (8.2) vanishes. So according to
Table II these horizons are of type III. Equation (5.5)
determining the CANDs for (8.2) becomes

ð1þHK2ÞK ¼ 0: ð8:3Þ

For H > 0 (above the horizon) there are thus two complex
CANDs, so that this region is of algebraic subtype Ic.

In contrast, for H < 0 (below the horizon) there are four
real CANDs, and thus the region is of subtype Ir.

Summary. We have presented a new convenient method
of algebraic classification for 2þ 1 geometries. It is
independent on any field equations. The procedure has
5 simple steps:
(1) Calculate the Cotton tensor Cabc using (2.1).
(2) Choose any null triad fk; l;mg satisfying (2.2).
(3) Evaluate the Cotton scalars ΨA by (2.3).
(4) Calculate the invariants I, J, G, H, N by (4.1).
(5) Use the algorithm presented in Fig. 1 (or Table II).

The types I, II, III, N, D, O correspond to canonical forms
of the Cotton scalars (Table I), with specific multiplicity of
the 4 CANDs (Table III). Our method also suggests the
refinement into the subtypes Ir, IIr, Dr (all CANDs are real)
and subtypes Ic, IIc, Dc (complex CANDs). We proved that
this agrees with previous classification scheme based on
eigenvalues and Jordan forms of the Cotton-York tensor
Ya

b (Table IV). As demonstrated in an explicit example
(Sec. VIII), it provides additional insight into the structure
of exact spacetimes in 2þ 1 gravity.

Acknowledgments. This work has been supported by
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23-05914S.

TABLE IV. Algebraic classification based on the Jordan normal forms and eigenvalues λi of the Cotton-York
tensor Ya

b, the corresponding special values of the Cotton scalars ΨA, and the scalar invariants. It shows the
equivalence of these classifications.

Algebraic type Jordan normal form of Ya
b Special Cotton scalars Invariants

I  λ1 0 0

0 λ2 0

0 0 −λ1 − λ2

! Ψ1 ¼ 0 ¼ Ψ3 I ¼ λ1λ2 − ðλ1 þ λ2Þ2
Ψ0 ¼ 1

2
ðλ1 − λ2Þ ¼ −Ψ4 J ¼ λ1λ2ðλ1 þ λ2Þ

Ψ2 ¼ 1
2
ðλ1 þ λ2Þ

II  λ1 − 1 −1 0

1 λ1 þ 1 0

0 0 −2λ1

! Ψ0 ¼ 0;Ψ1 ¼ 0 ¼ Ψ3 I ¼ −3λ21
Ψ2 ¼ λ1 J ¼ 2λ31
Ψ4 ¼ 2 G ¼ 0; N ¼ 36λ21

D  λ1 0 0

0 λ1 0

0 0 −2λ1

! Ψ0 ¼ 0 ¼ Ψ4 I ¼ −3λ21
Ψ1 ¼ 0 ¼ Ψ3 J ¼ 2λ31

Ψ2 ¼ λ1 G ¼ 0 ¼ N

III  
0 0 1

0 0 −1
−1 −1 0

! Ψ0 ¼ 0 ¼ Ψ4 I ¼ 0 ¼ J
Ψ1 ¼ 0 ¼ Ψ2 G ¼ −2

ffiffiffi
2

p
; H ¼ 2

Ψ3 ¼
ffiffiffi
2

p

N  −1 −1 0

1 1 0

0 0 0

! Ψ0 ¼ 0 ¼ Ψ2 I ¼ 0 ¼ J
Ψ1 ¼ 0 ¼ Ψ3 G ¼ 0 ¼ H

Ψ4 ¼ 2
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