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Abstract

We study the gravitational lensing influence of a massive object in a dark matter halo, using a simple model of a
point mass embedded in a spherical Navarro–Frenk–White halo. Building on the analysis of critical curves and
caustics presented in the first part of this work, we proceed to explore the geometry of images formed by the lens.
First, we analyze several lensing quantities including shear, phase, and their weak-lensing approximations,
illustrating the results with image-plane maps. We derive formulae and present a geometric interpretation for the
shear and phase of a combination of two axially symmetric mass distributions. In the case of our lens model, we
describe the occurrence of zero-shear points and specify the conditions under which they become umbilic points.
Second, we use the eigenvalue decomposition of the inverse of the lens-equation Jacobian matrix to compute the
magnification and flattening of lensed images. Based on this, we introduce the convergence–shear diagram, a novel
and compact way of visualizing the properties of images formed by a particular gravitational lens. We inspect
relative deviations of the analyzed lensing quantities in order to evaluate the perturbing effect of the point mass and
the applicability of the weak-lensing approximation. We explore the dependence of the results on the point-mass
parameters by studying grids of plots for different combinations of its position and mass. We provide analytical
explanations for important patterns arising in these plots and discuss the implications for the lensing influence of
isolated compact bodies in dark matter halos.

Unified Astronomy Thesaurus concepts: Gravitational lensing (1909); Galaxy clusters (584); Galaxy dark matter
halos (1880); Dwarf galaxies (416); Supermassive black holes (1663)

Supporting material: figure sets

1. Introduction

Dark matter halos form the basic building blocks in the
bottom-up structure formation of Lambda cold dark matter
(ΛCDM) cosmology. They constitute the dominant matter
component of the astrophysical objects they are associated
with: the largest halos with galaxy clusters, smaller halos with
individual galaxies and dwarf galaxies. Their properties can be
studied by “observations” in the virtual universes arising from
large-scale-structure formation simulations (e.g., Zandanel
et al. 2018). In our universe, main observational constraints
on galaxy-cluster dark matter halos come from the study of the
kinematics of cluster galaxies (starting from Zwicky 1933),
from measurements of X-ray emission from intracluster
baryonic gas (e.g., Ettori et al. 2013), and from analyses of
weak and strong gravitational lensing of background galaxies
(e.g., Limousin et al. 2007; Okabe et al. 2013). Gravitational
lensing analyses are particularly useful as tools for studying the
finer-scale substructure of cluster halos, such as subhalos of
individual cluster galaxies, local clumps, or other inhomogene-
ities. A detailed analysis of 11 galaxy clusters by Meneghetti
et al. (2020) revealed a surprisingly high efficiency of
substructure lensing, more than an order of magnitude higher
than expected from CDM simulations. This result indicates the
need for a better understanding of the lensing effects of
individual bodies within the cluster.

The goal of our work is to study the gravitational lensing
influence of a compact massive body in a dark matter halo. For
this purpose, we use a simple model consisting of a point mass
embedded in a spherical Navarro–Frenk–White (NFW) density
profile (Navarro et al. 1996). In the first part of this work
(Karamazov et al. 2021, hereafter Paper I), we studied the
critical curves and caustics of the lens model as a function of
the mass and position of the point mass. We discovered that the
model exhibited a rich diversity of critical-curve topologies and
caustic geometries. We mapped the boundaries separating the
corresponding lensing regimes in the point-mass parameter
space and identified the accompanying caustic metamorphoses.
Among other findings, we demonstrated the existence of a
critical value of the mass parameter. For centrally positioned
lighter (subcritical) point masses, the lens has two radial critical
curves. Heavier (supercritical) point masses are strong enough
to fully eliminate the radial critical curves. For critical point
masses, the lens has a single radial critical curve with peculiar
properties, which are described in Appendix B of Paper I. We
discussed the relevance of the model to the lensing by galaxies
in galaxy-cluster halos as well as other astrophysical scenarios,
such as the lensing influence of a satellite galaxy or a (super)
massive black hole in a galactic dark matter halo.
In this sequel to Paper I, we explore other lensing properties

of the model. Here we concentrate on the shear and phase and
their relation to the geometric distortions of images formed by
the lens. In the weak-lensing regime, the relation is tight, with
the shear specifying the semiaxis ratio and the phase specifying
the orientation of the major axis of the image. However, this
will not be the case in the regions with high convergence (near
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the halo center) or high shear (near the point mass and near the
halo center). In Section 2 we describe the shear, phase, and
image geometry for an NFW-halo-only lens. We study the
images in Section 2.3, starting from the eigenvalue decom-
position of the inverse of the Jacobian matrix and utilizing the
convergence–shear (hereafter CS) diagram, a new tool
described in detail in the Appendix. In Section 2.4 we
introduce the weak shear and weak phase and compare these
weak-lensing estimates with the shear and phase.

In Section 3 we proceed with the analysis of the NFW halo
+ point-mass lens in a similar manner. More specifically, in
Section 3.1 we derive formulae for the shear and phase of the
combined mass distribution. We describe the emergence and
occurrence of points with zero shear, which may constitute
umbilic points under conditions discussed in Section 3.2. In
Section 3.3 we study the properties of images using the CS
diagram. We present the main results in Section 3.5 in the form
of grids of image-plane maps of different lens characteristics
and CS diagrams, utilizing the same point-mass parameter grid
as in Paper I. We discuss the results and their broader relevance
in Section 4 and summarize our findings in Section 5.

2. Lensing by an NFW Halo

2.1. Convergence, Shear, and Phase

The surface density of a halo with a spherical NFW profile
expressed in units of the critical surface density Σcr yields the
dimensionless convergence profile (Bartelmann 1996; Paper I):
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has a similar radial behavior to the convergence κNFW(x): both
decrease monotonically from∞ at the halo center to 0 for
x? 1 (see Paper I for details). The radius x0 at which the
convergence is equal to 1 can be computed numerically from
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This unit-convergence radius and the circle that it defines play a
key role when studying the geometry of images formed by a
lens. For the NFW halo, x0 increases monotonically with the
convergence parameter κs, as illustrated in Paper I. We note
here that for κs = 3/2, the unit-convergence radius is equal to
the scale radius, x0= 1. For lower values of κs, the unit-
convergence circle lies inside the scale-radius circle; for higher
values outside.

A light ray passing through the halo at a position x in the
plane of the sky is deflected by an angle
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where Dl, Ds, and Dls are the angular-diameter distances from
the observer to the lens, from the observer to the source, and
from the lens to the source, respectively. Expressed in units of
the angular scale radius, the position of a source y and the
position of its image x formed by the gravitational field of the
NFW halo are connected by the lens equation
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For illustration, in the top row of Figure 1 we show the
lensing of a circular source by an NFW halo with convergence
parameter κs≈ 0.239035, the fiducial value used in Paper I. As
seen in the top left panel, in this example, the black circular
source centered at yc= (0.015, −0.005) with radius yr= 0.005
lies inside the radial caustic without overlapping the central
point-like tangential caustic. Solving the lens Equation (5)
numerically for a point y on the circumference of the source
yields three points x on the boundaries of the three black
images shown in the top right panel. One image lies outside the
tangential critical curve, a second image lies between the
tangential and radial critical curves, and the smallest third
image lies inside the radial critical curve. The dashed circle
with radius x0≈ 0.0936 is the unit-convergence circle of this
halo. In this case, the first two images are elongated in the
tangential (azimuthal) direction, while the third image is
elongated in the radial direction.
For a source lying inside the radial caustic and overlapping

the central tangential caustic, the first two images would merge
along the tangential critical curve, forming an Einstein ring. For
a smaller source positioned close to the inner side of the radial
caustic, the second image would lie inside the unit-convergence

Figure 1. Gravitational lensing of a circular source. Top row: lensing by an
NFW halo with convergence parameter κs ≈ 0.239035. Bottom row: lensing
by the same halo with an additional point mass with mass parameter
κP ≈ 2.714 · 10−4 positioned at xP = (0.2, 0). Left column: source-plane plots
indicating the position of the source (black circle) with respect to the lens
caustic (red lines). Right column: image-plane plots indicating the positions of
images (black patches) with respect to the critical curve (solid black lines). The
cyan circle in the bottom right panel marks the Einstein circle of the point mass;
the dashed black lines in the right panels mark the unit-convergence circle.
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circle and be elongated in the radial direction. For a source
positioned on the radial caustic, the second and third images
would merge at the radial critical curve. For a source lying
outside the radial caustic, these two images would vanish,
leaving only the first image.

The deformations and orientations of the images are best
studied by computing the lens shear and its phase, quantities
that may be introduced by means of the lens potential. The
deflection angle can be written in terms of the gradient of the
lens potential ψ(x), which in this case is circularly symmetric,
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where we converted the angular position in radians θ to the
angular position in scale-radius units, x= θDl/rs. By sub-
stituting for the deflection angle from Equation (4) we can
express the lens-potential derivative
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Integration yields the following expressions for the NFW halo
lens potential (Golse & Kneib 2002; Meneghetti et al. 2003):
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For x= 1, the potential close to the halo center
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starting from a finite negative value and increasing mono-
tonically outward, crossing zero at the scale radius. Note that
the expressions for the potential in Meneghetti et al. (2003) and
Golse & Kneib (2002) are higher by the constant− ψNFW(0)
and thus they start at zero.

For a circularly symmetric lens potential, the lens shear γ can
be computed as

( )g
y y

= -
D

r x x x2

d

d

1 d

d
. 10l

2

s
2

2

2

For the NFW profile, the second derivative of the lens
potential,
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can be used together with the first derivative from Equation (7)
in Equation (10) to yield the shear of the NFW halo,
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as shown by Wright & Brainerd (2000). In order to understand
its behavior close to the origin, we expand Equation (12) for

x= 1 and obtain
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By setting x= 0, we see that the NFW shear at the center is
equal to the convergence parameter of the halo, γNFW(0)= κs.
From this value, the shear decreases outward monotonically.
An expansion close to the scale radius shows that for x→ 1
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which yields γNFW(1)≈ 0.561 κs. The NFW shear decreases
for x? 1 to zero,
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The first panel in Figure 2 shows a contour plot of the shear
γNFW(x) in the central part of an NFW halo. Going outward
from the center, the dotted contours correspond to 95%, 90%,
and 85% of the central shear γNFW(0)= κs. Clearly, the shear
changes very slowly on this scale, as indicated also by the
practically homogeneous color, with the color bar set for
comparison with further figures. The solid black circles mark
the radial (smaller) and tangential (larger) critical curve for the
fiducial halo convergence parameter κs≈ 0.239035.
The NFW shear can be written in terms of its two

components, defined as

( ) ( ) ( )g g g j j=, cos 2 , sin 2 , 16NFW1 NFW2 NFW NFW NFW

where the trigonometric functions of the phase jNFW can be
computed for a point ( ) ( )f f= =x x x x, cos , sin1 2 in the
image plane as
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The negative sign in front of the last parentheses indicates that
the phase jNFW= f+ π/2+ kπ, i.e., its orientation is always
perpendicular to the position vector of the point. Note that this
also means that the phase and the shear components are
undefined at x= 0, as the phase depends on the direction of
approach to the center.

2.2. Jacobian

The Jacobian matrix of a general lens equation expressed in
terms of the convergence κ(x), shear γ(x), and phase j(x) has
the form (e.g., Schneider et al. 1992)

( )

( )

k g j g j
g j k g j

=
¶
¶

=
- - -
- - +

x
y
x

J
1 cos 2 sin 2

sin 2 1 cos 2

18

.⎜ ⎟
⎛
⎝

⎞
⎠

3

The Astrophysical Journal, 927:101 (30pp), 2022 March 1 Karamazov & Heyrovský



Its determinant, the Jacobian, can be computed from the
convergence and the shear:

( ) [ ( ) ( )][ ( ) ( )] ( )k g k g= - - - +x x x x xJdet 1 1 . 19

The critical curves, explored in detail in Paper I, can be
obtained by setting ( ) =xJdet 0. We note here merely that for
an axially symmetric lens such as the studied NFW halo,
the first term in Equation (19) yields the tangential critical
curve and the second term yields the radial critical curve.
Hence, the shear is related to the convergence by γ(xT)=
1− κ(xT) at the tangential critical curve and by γ(xR)=
κ(xR)− 1 at the radial critical curve, with the two critical
curves separated by the unit-convergence circle.

2.3. Geometry of Images

To study the geometry of the images, we invert the Jacobian
matrix to obtain the mapping from the source plane to the
image plane. We can write the inverse matrix in terms of its
two eigenvalues,
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where κ, γ, and j are functions of the image-plane position x.
The matrix accompanying λ∥ is a projection matrix onto the
eigenvector ( )j jcos , sin ; the matrix accompanying λ⊥ is a
projection matrix onto the eigenvector ( )j j-sin , cos .
Equation (21) shows that an image at position x is scaled by
a factor λ∥ in the direction parallel to the phase j and by a
factor λ⊥ in the direction perpendicular to the phase, j+ π/2.
A small circular source with radius yr centered at yc is thus

portrayed by the lens as a set of n small elliptical images
with semiaxes ∣ ( ) ( )∣[ ] [ ]k g- -x xy 1 i i

r c c and ∣ ( )[ ]k- +xy 1 i
r c

( )∣[ ]g x i
c . Their positions ( )[ ]x yi

c c , i= 1Kn, can be found by solving
the lens equation, i.e., Equation (5) for the NFW halo. We illustrate
the geometry of one such image in the second panel of Figure 3 for
convergence ( )[ ]k k= =x 0.08i

c and shear ( )[ ]g g= =x 0.16i
c .

In the three right panels, we include all other (κ, γ) combinations
that lead to the same combination of semiaxes |λ∥| yr and |λ⊥| yr,
i.e., they generate an elliptical image of the same shape and size.

Figure 2. Image-plane color maps of lensing characteristics of the NFW halo from the top row of Figure 1. For orientation, solid black circles mark the critical curves
in all panels. First panel: shear γNFW(x) with dotted contours from inside to outside marking 95%, 90%, and 85% of the central shear γNFW(0) = κs ≈ 0.239035.
Second panel: weak shear γw,NFW(x) computed from image flattening, using the same color bar as in the first panel. Third panel: relative weak-shear deviation from the
shear, γw,NFW(x)/γNFW(x) − 1. Fourth panel: weak phase jw,NFW(x) defined by image orientation, with orange corresponding to images oriented counterclockwise,
and blue to images oriented clockwise from the horizontal. Dotted–dashed lines mark the unit-convergence circle and locations of horizontal (white background) and
vertical images (high-saturation blue/orange boundary).

Figure 3. Geometry of an image of a small circular source. Left panel: source with radius yr; the black and white points lie in the directions of the eigenvectors of the
inverse Jacobian matrix  parallel and perpendicular to the phase j. Right panels: elliptical image for (κ, γ) = (0.08, 0.16) and the three other combinations producing
an ellipse of the same shape and size, as marked at the bottom left of each panel. The sizes of the semiaxes are marked in red; the positions of the images of the two
points marked on the circumference are determined by the signs of the eigenvalues marked at the bottom right of each panel.
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The images differ in their orientation and parity. For the
combinations in the two right panels with κ> 1, the major axis
is oriented perpendicular to the phase j rather than parallel to it.
The images in the third and fourth panels have negative parity, as
indicated by the positions of the images of the black and white
points on the circumference of the source. The signs of the
eigenvalues are marked in each panel, with negative values
indicating mirroring along the corresponding eigenvector.

For a general source, the distortion of its image can be
quantified by the dimensionless flattening,

( ) ( )k g
k g
k g

k g
k g

= -
- -
- +

- +
- -

f , 1 min
1

1
,

1

1
, 22⎜ ⎟

⎛
⎝

⎞
⎠

defined here using the ratio of the smaller to larger eigenvalues,
with their definitions taken from Equation (20). For an elliptical
image of a circular source, f is equal to its ellipticity. For the
sample images in Figure 3, f≈ 0.30. While the absolute value
of the ratio of the eigenvalues determines the distortion of the
image, their product determines its magnification and parity.
Hence, it is sufficient to know the convergence κ and shear γ at
the position of an image of a small source in order to fully
determine its distortion, magnification, parity, and orientation
with respect to the phase.

For a given gravitational lens, this information can be
condensed into the CS diagram, introduced in the Appendix.
The geometry of images formed by an NFW halo lens as a
function of their radial position x can be easily identified from
its CS diagram, shown in Figure 4 for the fiducial convergence
parameter κs≈ 0.239035. The green curve connecting the
( ( ) ( ))k gx x,NFW NFW points is obtained by using the NFW halo
convergence from Equation (1) and the NFW halo shear from
Equation (12). The center of the halo corresponds to position
(κ, γ)= (∞, κs) in the diagram, while for x→∞ the green
curve reaches the origin, (κ, γ)→ (0, 0). The tick marks along
the curve correspond to radii (from the right side of the plot)
x ä {0.002, 0.003,K,0.01, 0.02,K,0.1, 0.2,K,1, 2}.

In order to interpret the image geometries in an NFW halo
from Figure 4, we follow the green curve, starting from the

origin for very distant images and progressing toward the halo
center. We first recall the discussion following Equation (17),
which implies that for the NFW profile the direction of the
phase corresponds in polar coordinates to the tangential, and
the direction perpendicular to the phase to the radial direction,
respectively. Initially, the image has positive parity with
magnification increasing from 1 and the flattening increasing
from 0. The image is expanded tangentially (|λ∥|> 1) but
contracted radially (|λ⊥|< 1), as indicated by the position
above the dashed line.
Between x= 2 and x= 1, the green line crosses the diagonal

and the image becomes expanded also radially (|λ⊥|> 1). For
lower x, the green curve approaches the solid black tangential-
critical-curve line, along which the magnification and |λ∥|
become infinite, the flattening increases to 1, and |λ⊥| remains
finite. After crossing the tangential critical curve at x= xT≈
0.155, the image parity changes to negative (due to the sign of
λ∥ changing to negative), and the magnification and flattening
decrease. The maximum distortion stays oriented tangentially
until reaching the unit-convergence circle, x= x0≈ 0.0936,
corresponding to the vertical solid black line at κ= 1. To the
right of this line, the maximum distortion is oriented radially.
At the unit-convergence radius the negative-parity image is
close to its lowest magnification (though it stays higher than 16
in this case, as indicated by the hyperbolic contours), and with
zero flattening its shape is undistorted.
Proceeding further toward the halo center, the magnification

and flattening increase again, with the radial expansion |λ⊥|
growing rapidly while the tangential expansion |λ∥| decreases.
At the solid black radial-critical-curve line, which corresponds to
x= xR≈ 0.056, the magnification and |λ⊥| become infinite, the
flattening increases to 1, and |λ∥| remains finite. For lower radii,
image parity changes back to positive (due to the sign of λ⊥
changing to negative), and the magnification and flattening
decrease. The expansion in both perpendicular directions
decreases, until the intersection with the dashed black line at
x≈ 0.019. Images lying closer to the halo center are tangentially
contracted rather than expanded (|λ∥|< 1). After crossing the
solid black unit-magnification hyperbola at x≈ 0.0105, all
images are demagnified. The last important intersection occurs
at x≈ 0.0068; images to the right of the last dashed black line
are contracted even radially (|λ⊥|< 1), and their magnification
and flattening decrease to 0 at the halo center.
The three orange points marked along the green curve in

Figure 4 correspond to the radial positions of the centers of the
three images in the top right panel of Figure 1. The first point at
x≈ 0.188 corresponds to the image outside the tangential
critical curve at the right side of the panel. The second point at
x≈ 0.115 corresponds to the image between the tangential
critical curve and the unit-convergence circle at the left side of
the panel. The third point at x≈ 0.014 corresponds to the
smallest image inside the radial critical curve. The magnifica-
tion, parity, flattening, orientation, and the two scaling factors
of the corresponding images can be determined from the
positions of these points in the diagram in Figure 4. Note that
the values obtained from the diagram are technically valid at
the positions of the source-center images and thus correspond
to the local “point-source” values. Taking into account the
radial extent of each image, their position (and the relevant
range of their properties) should be marked by line segments
along the green line in Figure 4 rather than by points.

Figure 4. CS diagram illustrating the geometry of images formed by the NFW
halo from the top row of Figure 1 with κs ≈ 0.239035. The green line marks all
( ( ) ( ))k gx x,NFW NFW combinations of the lens, with radial positions x marked
by tick marks, starting from x = 0.002 near the right edge and ending with
x = 2 close to the origin of the diagram. The orange dots mark the (κ, γ)
combinations at the positions of the three images in the top right panel of
Figure 1. For more details on the diagram and its interpretation see Figure 15.
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2.4. Weak Shear and Phase

Weak-lensing cluster-mass reconstructions are based on
statistical analyses of the images of background galaxies (Kaiser
& Squires 1993). The convergence map is computed from maps
of the shear components. These are constructed from the shear and
the phase, which are in turn determined from the shapes and
orientations of the images. In the weak-lensing limit, the geometry
of the elliptical image of a small circular source corresponds to
the second panel of Figure 3. Its axis ratio yields the shear and the
orientation angle of its major axis is equal to the phase. The
semiminor to semimajor axis ratio b/a is obtained by expanding
the ratio λ⊥/λ∥ of the eigenvalues from Equation (20) to first
order in κ and γ. The ellipticity, which is equal to the flattening of
the image defined in Equation (22), reduces in this limit to

( )g= -f b a1 2 , 23

i.e., double the value of the local shear. For illustration, for the
image in the second panel of Figure 3 Equation (23) yields an
approximate flattening 2 γ= 0.32, which is an 8% overestimate
of the actual value f≈ 0.30 from Equation (22).

Based on the weak-lensing regime, we introduce the weak
shear and weak phase, which are computed from the images
using the weak-lensing relations from the previous paragraph.
We define the weak shear as

( ) ( ( ) ( )) ( )g k g=x x xf
1

2
, , 24w

where the flattening f is computed from Equation (22) using
lens-specific convergence and shear functions. Note that γw by
its definition attains only values from the interval [ ]0, 0.5 . In
the weak-lensing regime γw≈ γ, but as γ and κ increase, the
weak shear computed from the image flattening deviates from
the shear.

For the NFW halo, we compute the weak shear γw,NFW(x)
from Equation (24) using its convergence from Equation (1)
and shear from Equation (12). The second panel in Figure 2
shows a plot of γw,NFW(x) in the central part of an NFW halo,
using the same color scale as for the shear in the first panel of
the figure. Due to its relation to the flattening in Equation (24),
the plot can be interpreted following the f values along the
green curve in the diagram in Figure 4. At the halo center the
flattening and thus also the weak shear are equal to zero. Going
outward from the center, the weak shear increases to its
maximum value of 0.5 at the radial critical curve, marked by
the inner black circle. From there it drops to 0 at the unit-
convergence radius and increases back to 0.5 at the tangential
critical curve, marked by the outer black circle. Beyond the
tangential critical curve, the weak shear drops asymptotically to
0. Comparison with the left panel shows the substantial
difference between the shears in the central region of the NFW
halo, in terms of amplitude as well as radial pattern. Here the
variations in image distortion are primarily driven by the
convergence rather than by the shear.

In the third panel of Figure 2 we illustrate the difference
between the first two panels by plotting the relative deviation of
the weak shear from the shear, γw,NFW/γNFW− 1. The blue
regions in which the weak shear underestimates the shear are
limited to the vicinity of the origin and the vicinity of the unit-
convergence circle. In both cases, the weak shear drops to zero
and the relative deviation thus reaches −1, its minimum possible
value. Everywhere else the weak shear overestimates the shear,

with the positive deviation peaking at the critical curves and
dropping to 0 asymptotically. Note that the maxima at the critical
curves may be negative for NFW halos with a sufficiently high
convergence parameter κs, for which γNFW(xR) or even γNFW(xT)
exceeds the weak-shear value at critical curves (i.e., 0.5).
In addition to the weak shear, we define the image-based

weak phase jw as the angle between the major axis of the image
of a small circular source and the horizontal (x1) axis of the
image plane. Taking into account Figure 3 and the discussion
preceding Equation (22), in the case of the NFW halo it is related
to the phase jNFW as follows:

( )
( ) ( )
( ) ( ) ( )j

j k
j p k

=
<

+ >
x

x x
x x

for 1,

2 for 1.
25w,NFW

NFW NFW

NFW NFW

⎧
⎨⎩

We use values from the interval [ ]p p- 2, 2 for both jNFW

and jw,NFW.
The fourth panel of Figure 2 shows a color map of the weak

phase jw,NFW of the NFW halo. The white regions with
jw,NFW= 0 correspond to horizontally elongated images, in the
orange regions with jw,NFW> 0 the images are oriented
counterclockwise and in the blue regions with jw,NFW< 0
the images are oriented clockwise from the horizontal. The
bright orange/blue boundaries correspond to images elongated
exactly vertically, with |jw,NFW|= π/2. The weak phase flips
by π/2 along the unit-convergence circle, separating the inner
radially oriented from the outer tangentially oriented images.
The weak phase is undefined along this circle as well as at the
origin, which corresponds to zero flattening. The dotted–
dashed lines added for orientation mark the positions of all
images with exactly horizontal, exactly vertical, or undefined
orientation.
Since the weak phase differs from the phase only by the π/2

flip inside the unit-convergence circle, a similar color map of
the phase jNFW(x) would differ merely by having inverted
color and saturation inside the circle. In other words, the color
and saturation outside the circle in the fourth panel of Figure 2
would be radially extended to the halo center. Hence, the first
and third quadrants would be entirely blue and the second and
fourth quadrants would be entirely orange.
The plots of the different quantities in Figure 2 are presented

as reference plots to aid the interpretation of the results for the
NFW halo + point-mass lens model presented in Section 3.5.

3. Lensing by an NFW Halo + Point Mass

3.1. Convergence, Shear, and Phase

Adding a compact massive object modeled by a point mass
positioned at xP changes the convergence to

( ) ( ) ( ) ( )
k k p k d=

-
-

+ -x x x
x

x
2

1

1
, 26s 2 P P

where the mass parameter κP corresponds to the ratio of the
solid angles subtended by the point-mass Einstein circle and by
the halo scale-radius circle (for more details, see Paper I).
Hence, kP is the point-mass Einstein radius in units of the
halo scale radius. The convergence in Equation (26) is identical
to the NFW halo convergence from Equation (1), except
exactly at the position of the added point mass. The lens
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equation can be written as

( )
∣ ∣

( )k k= - + -
-
-

y x
x x x

x x
x

x
x

4 ln
2

, 27s 2 P
P

P
2

⎡
⎣

⎤
⎦

in the form used in Paper I.
For illustration, in the bottom row of Figure 1 we show the

lensing of the same circular source as in the top row, by the
same NFW halo with an additional point mass with mass
parameter κP≈ 2.714 · 10−4 positioned at xP= (0.2, 0). This
parameter combination is selected from the parameter-space
grid used in Paper I. The position of the point mass is indicated
by its Einstein circle (cyan) in the bottom right panel. As seen
in the bottom left panel, the black circular source lies inside the
weakly perturbed radial caustic, with its upper part lying also
inside the strongly perturbed tangential caustic. For a source
not lying on the caustic, lens Equation (27) yields two, four, or
six images. For a source lying on the caustic, several images
appear combined into a lower number of macro-images. In the
example shown in the bottom right panel, there are five macro-
images. Four of them are images of the full source; the fifth
macro-image to the top left of the point mass consists of two
additional images of the upper part of the source joined along
the critical curve. Comparing the images with those in the top
right panel, we see that the left and central images are affected
only weakly by the point mass. The right image is affected
more strongly, plus there are two new images closer to the
point mass. For these images in particular, their distortion
cannot be simply classified as tangential or radial.

In order to compute the shear we start from the lens
potential, which has an additional term due to the point mass,

( ) ( ) ∣ ∣ ( )y y k= + -x x xx
r

D
ln , 28NFW

s
2

l
2 P P

where ψNFW(x) is given by Equation (8).
The point-mass shear has the simple form

( )
∣ ∣

( )g
k

=
-

x
x x

, 29P
P

P
2

divergent at the point-mass position and dropping rapidly
outward. Since the NFW halo shear peaks at its central value
κs, the added point mass will dominate the lens shear in its
vicinity, wherever it may be positioned. The shear can be
generally computed from the second derivatives of the lens
potential, namely

( ) ( ) ( )g y y y= - +
D

r

1

4
, , , , 30l

2

s
2 11 22

2
12

2

where the commas denote partial derivatives with respect to
image-plane coordinates (x1, x2). For our combined lens we
compute the derivatives of the lens potential from
Equation (28) and get

( ) [ ( ) ( )] ( ) ( ) ( )
( )

g g g g g w= - +x x x xx x4 cos ,

31
NFW P

2
NFW P

2

where γNFW(x) and γP(x) are given by Equations (12) and (29),
respectively, and

( ) · ( )
∣ ∣

( )w =
-
-

x
x x x

x xx
cos 32P

P

is the dot product of the unit vectors pointing to x from the halo
center and from the point-mass position. In terms of image-
plane geometry, ω is the viewing angle from point x of the line
segment connecting the halo center and the point-mass
position. As shown in Figure 5, curves of constant ω are
circular arcs connecting symmetrically the halo center and the
point-mass position. Note that ω is also equal to the angle
between the tangent to the arc at either of its end points and the
outward horizontal direction, as follows from the tangent–
chord theorem (alternate segment theorem).
Along the line segment connecting the center and the point

mass the viewing angle reaches its maximum, ω= π, while
along the rest of the horizontal axis it reaches its minimum,
ω= 0. In both cases, w =cos 12 and the total shear from
Equation (31) is γ(x)= γNFW(x)+ γP(x). In this case, both
shears act in the same orientation, so that their combination is
maximal. Along the circle bisected by the line segment, we find
ω= π/2 according to Thales’s theorem and the total shear is
γ(x)= |γNFW(x)− γP(x)|. In this case, the two shears act in
perpendicular directions, so that their combination is minimal.
For the pair of small arcs in Figure 5 with ω= 3π/4 and for the
pair of large arcs with ω= π/4 we get w =cos 1 22 and the

total shear is ( ) ( ) ( )g g g= +x xxNFW
2

P
2 .

As discussed in Section 2.1, for the NFW halo the central
shear is defined, γNFW(0)= κs, while the phase and shear
components are undefined. The same holds for the central
properties of the point-mass lens. However, for the combined

Figure 5. Viewing angle ω(x) of the line segment from the halo center to the
point mass, appearing in Equation (31) for computing the shear γ(x) of the
combined lens. Points on the horizontal axis mark the halo center and the point-
mass position xP; the dot at the vertex of the angle marks the position x.
Contours of constant ω are symmetric pairs of circular arcs connecting the
centers of the two lens components, with the dashed line marking the arc
passing through position x. The values of ω range from π along the line
segment to 0 along the rest of the horizontal axis.
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lens even the shear at the halo center is undefined. For x→ 0
Equation (31) yields

( ) [ ] ( )g k k k k w - +- -x x x4 cos , 33s P P
2 2

s P P
2 2

a value that depends on the direction of approach to the center,
due to the directional dependence of ω. As seen from Figure 5
and as explained in the discussion above, approaching the
center along the horizontal axis leads to the highest value (the
sum of the two shears) while an approach along the vertical
axis leads to the lowest value (the absolute value of the
difference of the two shears). The situation at the position of
the point mass is similar, though here the angular differences
are suppressed by the divergence of γP.

The range of values of the shear occurring in the studied
central region of the image plane is larger than for the halo or
the point mass separately. Its upper limit is∞ , due to the
divergence of γP at the point-mass position xP. Its lower limit
may reach 0. As seen from the form of Equation (31), this may
occur only along the ω= π/2 circle at points where
γNFW(x)= γP(x). Following the circle from the halo center to
the point mass, γNFW decreases while γP increases. Zero-shear
points thus exist only if γNFW is equal to or larger than γP at the
halo center. Hence, for k k<xP P s there are no zero-shear
points. In this range, for point masses closest to the halo center,
the minimum shear g k k= --xP P

2
s occurs at the halo center

when approached along the vertical axis.
Zero-shear points exist for all larger point-mass distances

from the halo center. For k k=xP P s there is one zero-shear
point located directly at the halo center. For any k k>xP P s
there are two zero-shear points lying symmetrically above and
below the horizontal axis on the ω= π/2 circle. With
increasing distance of the point mass from the halo center,
the zero-shear points shift along the circle toward the position
of the point mass, so that for larger distances they lie nearly
vertically above and below the point mass. Their separation
from the point mass, which is approximately ( )k g xP NFW P in
this regime, increases with distance as the halo shear decreases.

Image-plane maps of the shear γ(x) for different masses and
positions of the point mass are presented and discussed in
Section 3.5.1.

The shear components are defined by

( ) ( ) ( )g g g j j=, cos 2 , sin 2 , 341 2

where the trigonometric functions of the phase j can be
computed for a point x= (x1, x2) in the image plane as

( )
( )

( ) ( )
∣ ∣

( )

( )
( )

( )( )
∣ ∣

( ) ( )

j
g

g

g

j
g

g

g

=
-

+
- - -

-

=
-

+
- -

-

x

x x
x

x

x x
x

x x

x
x

x x x x

x x

x
x

x x x x

cos 2
1

sin 2
2

, 35

2
2

1
2

2 NFW

2 P2
2

1 P1
2

P
2 P

1 2
2 NFW

1 P1 2 P2

P
2 P

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦⎥

where the shears γ(x), γNFW(x), and γP(x) are given by
Equations (31), (12), and (29), respectively. Note that in this
case the phase and the shear components are undefined at the
halo center and the point-mass position, since the phase as well

as the shear γ(x) depend on the direction of approach to these
points.
We would like to point out that Equation (31) is a special

case of the more general formula

( ) ( ) ( )g g g g g j j= - + -4 cos 36A B
2

A B
2

A B

for the shear of a combination of two mass distributions with
shears γA, γB and phases jA, jB. For two circularly symmetric
mass distributions with the same sign of the expression
y y - ¢-x 1 that appears in Equation (10), the absolute value
of the phase difference in Equation (36) is equal to the viewing
angle ω.
The expression y y - ¢-x 1 is globally negative for a range of

mass distributions, such as for the NFW profile, for a point mass,
for a singular or a non-singular (cored) isothermal sphere. For a
combination of two such distributions, the formula for the shear
in Equation (31), the following discussion, and the formulae for
the phase in Equation (35) are valid. For example, the case of
two point masses was studied by Schneider & Weiss (1986), and
the case of two isothermal spheres was studied by Shin &
Evans (2008).

3.2. Jacobian and Umbilic Points

The Jacobian of the lens equation can be computed from
Equation (19) using the convergence from Equation (26) and
the shear from Equation (31). Its explicit form is presented in
Paper I, together with a detailed analysis of the critical curves
which are obtained by setting the Jacobian equal to zero. The
parts of the critical curve lying outside the unit-convergence
circle (x> x0) satisfy the equation

( ) ( ) ( )g k= -x x1 , 37

which yields the tangential critical curve in absence of the point
mass. The parts lying inside the unit-convergence circle
(x< x0) satisfy the equation

( ) ( ) ( )g k= -x x 1, 38

which yields the radial critical curve in absence of the
point mass.
Equation (19) also indicates that for the Jacobian to be equal

to zero at a point lying directly on the unit-convergence circle,
the shear must be zero at such a point. From the properties of
zero-shear points discussed in Section 3.1 it follows that such
critical-curve points must lie at the intersections of the unit-
convergence circle and the ω= π/2 circle extending from the
halo center to the point-mass position.
For xP< x0 these circles have no intersection and, thus, there

are no critical-curve points along the unit-convergence circle.
For xP= x0 these circles have an intersection exactly at the
position of the point mass. However, at this point the shear is
not zero, so that even in this case there is no critical-curve point
along the unit-convergence circle. For any xP> x0 these circles
have two intersections. In this case, the requirement of zero
shear leads to the condition

( )k k= + + + -x x
x

x1 4 1 ln
2

2 3 . 39P 0 P s
0

0
2⎡

⎣
⎛
⎝

⎞
⎠

⎤
⎦

We conclude that for any value of the mass parameter κP
Equation (39) yields a single corresponding distance of the
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point mass from the halo center, for which the critical curve has
points lying on the unit-convergence circle.

If we place the point mass along the horizontal axis in the
image plane at xP= (xP, 0), the positions of these critical-curve
points are

( )=  -x
x

x

x

x
x, 1 , 400

P

0
2

P
2 0

⎛

⎝
⎜

⎞

⎠
⎟

with the value of xP given by Equation (39). These points with
κ= 1 and γ= 0 have special significance. As discussed in the
Appendix, such critical-curve points correspond to umbilics.
Equation (39) thus presents a condition for the existence of
umbilics in the studied lens system. In the (κP, xP) parameter-
space plots in Figure 6 of Paper I, Equation (39) describes the
green and violet umbilic boundary, starting at xP= x0 at the
κP= 0 vertical axis and increasing monotonically for higher
κP. In the image plane, the umbilic points lie along the unit-
convergence circle. For κP= 1 they are located close to the
horizontal axis in the direction of the point mass. Their
displacement from the axis increases with increasing κP.

3.3. Geometry of Images

The geometry of the images can be studied using the
eigenvalue decomposition of the inverse of the Jacobian matrix
given by Equation (21) and the CS diagram introduced in the
Appendix. For a point mass placed at the center of the halo,
the convergence and shear are purely radial functions. Hence,
the range of their possible combinations is limited to the
( ( ) ( ))k gx x, curve in the CS diagram. In this case, the analysis
of possible image geometries can directly follow the example
presented in Section 2.3 for images formed by the NFW halo.

Even when the point mass is positioned away from the halo
center, the convergence given by Equation (26) preserves its
circular symmetry (with the exception of the single point at the
position of the point mass). This means that any convergence
value κ can be one-to-one translated to the corresponding radial
distance from the halo center x. However, the shear given by
Equation (31) loses circular symmetry. In the CS diagram, this
results in the range of possible ( ( ) ( ))k gx x, combinations
covering a two-dimensional region. In terms of image
distortions and orientations, the lack of symmetry means that
instead of the terms “tangential” and “radial” we revert to the
more general “in the direction of the phase” and “perpendicular
to the phase,” respectively.

For illustration, in Figure 6 we present the CS diagram for an
NFW halo with a κP≈ 2.714 · 10−4 point mass located at
xP= 0.2. The purple-shaded region bounded by the bold purple
lines shows the range of (κ, γ) combinations occurring in the
image plane. Added for orientation is the green curve from
Figure 4 showing the (κ, γ) combinations of the NFW halo
without the point mass. As in Figure 4, the tick marks along the
curve mark radial distances from the halo center. At any value of x
along this axis, the vertical extent between the bold purple lines
indicates the range of shear values γ(x) occurring along the circle |
x|= x. The maximum shear always occurs in the direction of the
point mass, i.e., for x= (x, 0). At large distances x, the minimum
shear occurs in the direction opposite to the point mass, i.e., for
x= (–x, 0). At lower distances, to the right of the purple vertical
tick mark (in the case of Figure 6 near x= 0.4), minimum shear
occurs at two points offset symmetrically from the axis connecting

the halo center and the point mass. Close to the halo center, at the
right edge of the diagram, minimum shear occurs at points offset
nearly perpendicularly from the halo center, i.e., for x≈ (0, ±x).
Equation (33) shows that at the center of the halo, the maximum
shear is k k+ -xs P P

2 and the minimum shear is ∣ ∣k k- -xs P P
2 .

In the example shown in Figure 6, the shear range at large
radii does not visibly deviate from the green NFW halo shear.
At radii lower than the purple tick mark near x= 0.4, the
maximum shear starts to deviate substantially from the green
curve. The minimum shear starts to deviate visibly between
x= 0.3 and x= 0.2. Along the circle with the radius of the
point-mass distance, x= xP= 0.2, the maximum shear diverges
at the position of the point mass. At a slightly lower radius, the
minimum shear reaches 0 at the positions of the off-axis zero-
shear points. For lower radii, the shear interval shrinks back
toward the NFW shear at the green curve. However, instead of
reaching the central NFW shear γNFW(0)= κs≈ 0.2390, the
limiting shear at x= 0 varies within the interval [0.2322,
0.2458], as discussed in the previous paragraph.
The four orange points marked in the purple region in

Figure 6 correspond to the positions of the four images of the
source center in the bottom right panel of Figure 1. Note that
the fifth macro-image lying on the critical curve in Figure 1
does not include an image of the source center. The point
appearing at (κ, γ)≈ (0.637, 1.255) corresponds to the image
just to the right of the point mass in Figure 1. The three
remaining points in Figure 6 correspond to perturbed versions
of the three images appearing in the absence of the point mass
in the top right panel of Figure 1. The point at (κ, γ)≈ (0.694,
0.194) corresponds to the lower-right image outside the critical
curve in the bottom right panel of Figure 1. The point at (κ,
γ)≈ (0.897, 0.233) corresponds to the image just outside the
unit-convergence circle at the left side of the panel in Figure 1.
The fourth point at (κ, γ)≈ (1.962, 0.244) corresponds to the
small image close to the halo center in Figure 1.

Figure 6. CS diagram illustrating the geometry of images formed by the NFW
halo with a κP ≈ 2.714 · 10−4 point mass at xP = 0.2, from the bottom row of
Figure 1. The purple-shaded area marks the range of ( ( ) ( ))k gx x, combinations
of the lens; the green line marks the ( ( ) ( ))k gx x,NFW NFW combinations of the
halo-only lens from Figure 4. The green tick marks and labels indicate the
radial distance x along vertical lines in this diagram. The top purple line marks
the maximum shear along a circle with radius x centered on the halo, which
always occurs in the direction of the point mass. The bottom purple line marks
the minimum shear along the circle; for larger radii x (to the left of the purple
tick mark), this occurs in the direction opposite the point mass; for smaller radii
x (to the right of the purple tick mark), this occurs at two symmetric off-axis
points along the circle. The orange dots mark the (κ, γ) combinations at the
positions of the four full images in the bottom right panel of Figure 1.
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The properties of the images can be determined from the
positions of the points in the diagram; the changes in the
properties of the latter three due to the presence of the point
mass can be studied by comparing the diagrams in Figures 6
and 4. Note that, in this case, taking into account the full extent
of each image would require marking them in the CS diagram
by exact patches covering the corresponding range of (κ, γ)
combinations instead of by the points used in Figure 6. This
would permit including even partial images that do not contain
an image of the source center, such as the fifth macro-image in
the bottom right panel of Figure 1.

CS diagrams for different masses and positions of the point
mass are presented and discussed in Section 3.5.3.

3.4. Weak Shear and Phase

Following the example in Section 2.4, we use the geometry
of image distortions to introduce the weak-lensing shear and
phase estimates for the NFW halo + point-mass lens. We
compute the weak shear γw from Equation (24), substituting the
convergence from Equation (26) for κ(x) and the shear from
Equation (31) for γ(x).

The angle between the major axis of the image of a small
circular source and the x1 axis of the image plane is equal to the
phase outside the unit-convergence circle; it is perpendicular to
the phase inside the unit-convergence circle. Hence, the weak
phase jw is related to the phase j as follows:

( )
( ) ( )
( ) ( )

( )j
j k
j p k

=
<

+ >
x

x x
x x

for 1,
2 for 1,

41w
⎧
⎨⎩

where j(x) is given by Equation (35) and κ(x) by
Equation (26). We use values from the interval [ ]p p- 2, 2
for both j and jw.

Image-plane maps of the weak shear γw(x) and weak
phase jw(x) for different masses and positions of the point
mass are presented and discussed in Sections 3.5.4 and 3.5.7,
respectively.

3.5. Lens Characteristics as a Function of Point-mass
Parameters

In Sections 3.1–3.4 we defined the lensing quantities of
interest and described their general properties. In this section,
we present plots illustrating these lens characteristics for
different point masses embedded in an NFW halo with a
fiducial convergence parameter κs≈ 0.239035. With the
exception of Figure 9, all of the plots are presented as color
maps in the image plane. For better orientation in these maps,
we plot the critical curves (solid black) and mark the point-
mass position by its Einstein ring (cyan).

In each of the following figures, the three columns of the plot
grid correspond to the same three values of the mass parameter κP
of the point mass used in Paper I. These differ in the number
of radial critical curves they generate for xP= 0: subcritical
κP= 10−4 with two radial critical curves; critical κP= κPC≈
2.714 · 10−4 with one radial critical curve; supercritical κP=10−3

with no radial critical curve.
The rows of the plot grids correspond to seven values of the

point-mass position xP increasing in steps of 0.05 from 0 to 0.3.
These parameter combinations correspond to the critical curve
and caustic gallery in Figure 5 of Paper I; they are marked by
red crosses in the parameter-space plot in Figure 6 of Paper I.

For each of the characteristics discussed in Sections 3.5.1–3.5.8
we present a figure set including the plot grid and additional
online figures showing separately plots for 19 point-mass
positions marked by all crosses in Figure 6 of Paper I.
For better orientation in the notation of the different shears,

convergences, phases, and other lensing quantities, we list
selected symbols together with their first appearance in the text
in Table 1.

3.5.1. Shear

Image-plane maps of the shear γ(x) are presented in
Figure 7. The shear color scale is the same as in the first two
panels of Figure 2, ranging from white for γ= 0 to magenta for
all positions with γ� 1.5. In the absence of the point mass, the
shear varies very slowly in this region, as indicated by the
featureless plot in the first panel of Figure 2.
In the bottom row (xP= 0) of Figure 7 the point mass is

located at the center of the halo and the whole system thus
exhibits axial symmetry. From Equations (31) and (32), it
follows that in this case the total shear at any position is a
simple sum of the NFW and point-mass shears. Near the halo
center, the NFW shear γNFW(x), shown in the first panel of
Figure 2, is surpassed by the point-mass shear γP(x), which
diverges at the origin. A comparison of the bottom row in the
three columns shows that the magenta high-shear region with
the strongest point-mass influence naturally increases with its
mass parameter κP.
Next, we focus on the left column illustrating the subcritical

case with κP= 10−4. Already in the second plot from the bottom
(xP= 0.05), many phenomena described in detail in Section 3.1
can be clearly seen. A pale circle corresponding to the viewing
angle ω= π/2 connects the point mass and the halo center,
marking a region with decreased shear. The shear drops to zero at
two points of this circle located above and below the horizontal
axis of symmetry. These zero-shear points lie inside the perturbed
NFW radial critical curve close to the point mass. Their presence
restricts the bright-red high-shear region around the point-mass
divergence to a smaller extent than in the xP= 0 case. The value
of the shear in the vicinity of the halo center depends on the

Table 1
List of Symbols

Symbol Description; First Appearance

γ Shear (combined model or general); Equation (18)
γNFW Shear of NFW-halo lens; Equation (12)
γP Shear of a point-mass lens; Equation (29)
γw Weak shear (combined model or general); Equation (24)
γw,NFW Weak shear of NFW-halo lens; Section 2.4
δjw Weak-phase deviation due to the point mass; Section 3.5.8
κ Convergence (combined model or general); Equation (18)
κNFW Convergence of NFW-halo lens; Equation (1)
κP, κPC Mass parameter of a point mass and its critical value; Equation (26)
κs NFW halo convergence parameter; Equation (1)
j Phase (combined model or general); Equation (18)
jNFW Phase of NFW-halo lens; Equation (16)
jw Weak phase (combined model or general); Equation (41)
jw,NFW Weak phase of NFW-halo lens; Equation (25)
ψ Lens potential (combined model or general); Equation (6)
ψNFW Lens potential of NFW-halo lens; Equation (8)
ω Viewing angle of the line segment connecting the halo center and

the point-mass position; Equation (32)
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Figure 7. Image-plane maps of the shear γ(x) of an NFW halo + point-mass lens, described in Section 3.5.1. Columns correspond to subcritical, critical, and supercritical
mass parameters κP marked at the top; rows correspond to point-mass positions xP marked along the left side. Critical curves are plotted in black, and the point-mass
location is marked by its Einstein ring (cyan). Magenta marks all positions with γ � 1.5. The online figure set includes separate figures for a finer grid of xP values.

(The complete figure set (20 images) is available.)
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direction of approach. Maximum shear can be seen in the
horizontal and minimum shear can be seen in the vertical
direction, tangent to the ω= π/2 circle.

Going further to xP= 0.1, we see that the paler lower-shear
circle and the directional dependence near the origin become
less pronounced, and the zero-shear points move even closer to
the point mass, lying almost vertically above and below it.
They are positioned inside the pair of tiny critical curves seen
in the white low-shear areas. This hints at the fact that umbilics
can only occur at zero-shear points that lie at the intersection of
the ω= π/2 circle and the κ= 1 circle, as explained in
Section 3.2.

For even higher values of xP in the subcritical case, the
directional dependence at the halo center becomes indiscern-
ible, and the pattern close to the point mass becomes more
regular. The region of high shear around the point mass has a
horizontally elongated oval shape and the zero-shear points lie
above and below it in the white spots outside the critical curve.
With increasing xP, this shear pattern around the point mass
resembles the total shear of the Chang–Refsdal model, which
consists of a point mass and a constant external shear (Chang &
Refsdal 1984).

The preceding discussion made for the subcritical case holds
also for the critical case (κP= κPC≈ 2.714 · 10−4) in the
central column. In terms of shear, the corresponding plots
portray qualitatively the same sequence of situations as in the
left column; the difference is merely quantitative. More
specifically, the pattern around the point mass is considerably
larger and the directional dependence around the halo center is
more pronounced, observable even for higher values of xP.

These patterns are even larger and more distinct in the
right column illustrating the supercritical case with κP= 10−3.
However, there are some important differences. In the second
plot from the bottom, xP= 0.05 does not exceed the threshold
value of k k » 0.0647P s . Hence, there are no zero-shear
points. Minimum shear, which is now nonzero in the central
region, can be found at the halo center when approached
vertically. For point-mass positions xP 0.0647, this minimum
shear drops to zero and its position detaches from the origin,
moving along the ω= π/2 circle. In addition, the third plot
from the bottom now depicts the situation before the
detachment of the two small critical curves and, thus, the
zero-shear points still lie inside the perturbed NFW radial
critical curve. Note that in this case the directional dependence
of the shear at the halo center can be seen up to the top row.

The dependence of the shear γ(x) on the point-mass position
xP can be examined in more detail in the figure set available
with the online version of Figure 7, which includes plots for a
finer grid in terms of xP. Zero-shear points appear at the halo
center at point-mass positions {0.0205, 0.0337, 0.0647} in the
subcritical, critical, and supercritical cases. Other key values of
xP correspond to changes in the critical-curve topology, as
indicated by the color boundaries in Figure 6 of Paper I.

Notice that the zero-shear points always occur in a positive-
Jacobian region, as indicated by Equation (19): inside the
perturbed NFW radial critical curve, inside the symmetric pair
of small critical-curve loops, or outside all critical-curve loops.
Apart from this, there is hardly any correlation between the
shear pattern and the critical-curve geometry.

3.5.2. Shear Deviation Due to the Point Mass

In Figure 8, we present image-plane maps of the shear
deviation γ/γNFW− 1 caused by the presence of the point mass.
As indicated by the formula, this quantity represents the relative
difference between the shear γ(x) of the NFW halo + point-mass
lens (shown in Figure 7) and the shear γNFW(x) of the NFW halo
alone (shown in the first panel of Figure 2). As the deviation falls
rather quickly with increasing distance from the point mass, we
introduce a semilogarithmic color scale to visualize even minor
changes in the deviation. In the positive yellow- and orange-hued
regions, the shear is increased, while in the negative blue regions it
is decreased by the point mass. Darkest blue is used for −1, the
lowest possible deviation. From −1 to− 10−3, blue saturation
decreases logarithmically, and then to 0 linearly, where it reaches
white. From 0 to 10−3, yellow saturation increases linearly, and
then to 10−1 logarithmically. The logarithmic scale then continues
to color red at deviation 10, beyond which the color is kept
constant even though the shear deviation can reach arbitrarily
large values near the point mass.
For better orientation, we also include contours for a few

specific values of the shear deviation. The dotted–dashed lines
represent the zero-deviation contour, along which the shears are
equal. Paler and darker shades of orange are used for positive-
deviation contours with values 10−2 and 10−1, respectively.
Similarly, paler and darker shades of blue indicate negative
deviations –10−2 and –10−1, respectively.
We first inspect the deviation map for a centrally positioned

subcritical point mass (bottom left plot). In this case, the deviation
is equal to γP/γNFW, which is positive in the entire image plane,
i.e., the shear is globally increased by the point mass. The
deviation diverges at the halo center, because the point-mass shear
increases to∞while the halo shear tends to the constant κs.
Farther from the halo center, the deviation approaches zero, as the
point-mass shear given by Equation (29) falls quickly with
distance. Contours representing deviations 10−1 and 10−2 are
slightly larger than the outer radial and tangential critical curves,
respectively.
In the second row (xP= 0.05), the point mass is displaced

from the center and a pair of blue regions with negative
deviation appears. These regions reach the halo center from the
vertical direction, while the deviation is positive along the full
horizontal axis, as indicated by the orange and yellow colors
and by the dotted–dashed zero contour pinched at the halo
center. In fact, the deviation along the horizontal axis is always
positive for any xP and κP, because here γ/γNFW− 1=
γP/γNFW according to the discussion in the paragraphs
following Equation (31). The pattern near the halo center
arises from the directional dependence of the shear shown in
Equation (33). Places with the darkest blue color lie above and
below the point mass, with the lowest shear deviation −1
occurring at the zero-shear points. The region with a deviation
larger than 10% in absolute value is now roughly centered on
the point mass, while the region with a deviation lower than 1%
in absolute value lies outside the near-circular pale orange
contour and in narrow bands along the dotted–dashed zero-
deviation contour.
At xP= 0.1 on the third row, we see that the affected area

becomes more asymmetric, with the pale orange contour with
10−2 deviation now broken into two lobes extending to the left
of the center and to the right of the point mass. In this case,
there is a single region with deviation lower than 1% in
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Figure 8. Image-plane maps of the relative shear deviation, γ/γNFW − 1, caused by the presence of the point mass, described in Section 3.5.2. The color scale changes
from logarithmic to linear in the interval [–10−3, 10−3]. All positions with deviation greater than 10 are marked in red. Contours are plotted for five deviation values
indicated in the color bar. Remaining notation as in Figure 7. The online figure set includes separate figures for a finer grid of xP values.

(The complete figure set (20 images) is available.)
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absolute value, reaching inside the critical curves, including the
zero-deviation contour, and reaching the halo center along it.

For higher values of xP, the blue regions of negative
deviation expand as the point mass shifts to the right. Their
borders indicated by the zero-deviation contour become more
and more circular except for the vicinity of the point mass,
where they enclose the zero-shear points but avoid the vicinity
of the point mass. These dotted–dashed contours intersect at the
halo center at a right angle, and the deviation remains positive
in the spindle-shaped region along the horizontal axis from the
halo center to the point mass. The orange and blue contours
gradually detach from the halo center, and for xP� 0.25, they
form a four-lobed structure around the point mass, with
positive lobes extending horizontally from the point mass and
negative lobes separated vertically from the point mass. The
single region with deviation lower than 1% in absolute value
includes the halo center as well as a progressively larger area
around it, including the entire image plane except the four lobes
around the point mass.

In the critical and supercritical cases in the two right
columns, the plots look similar to those in the subcritical case,
with the colors getting progressively more saturated, indicating
higher shears γP from heavier point masses. Naturally, the
orange and blue contours also expand with increasing mass. On
the other hand, the blue regions of negative deviation inside the
dotted–dashed contours do not expand with increasing κP. On
the contrary, they shrink as they recede from a heavier point
mass. Away from the point mass, the dotted–dashed zero
contours are almost circular. They intersect at the halo center at
a right angle and reach nearly to the point mass before
avoiding it.

Comparing the columns in the different rows, we see that the
geometry of the zero-deviation contour is generic, with
increasing κP affecting only the vicinity of the point mass
and increasing xP only enlarging the scale. The pattern arises
naturally from Equation (31) in the regime γP= γNFW, valid
anywhere except in the immediate vicinity of the point mass. In
this case, we expand the shear and get the simple result

( )/ /g g g g w- 1 cos 2NFW P NFW . The ratio in the parenth-
eses is always positive, hence, the zero-deviation contour is
purely given by the condition on the viewing angle requiring

w =cos 2 0. Figure 5 shows that the corresponding ω= π/4
and ω= 3π/4 circles describe the dotted–dashed contours seen
in Figure 8 practically exactly, except in the point-mass vicinity
where γP γNFW.

In the bottom row of the critical and supercritical columns,
we see the same pattern of globally positive shear deviation as
in the subcritical column. What differs is the larger extent of the
orange contours. In fact, in the supercritical case the entire
paler-orange contour of deviation 10−2 lies outside the plotted
area. Within the plotted area in all other panels in the right
column, the regions with a deviation lower than 1% in absolute
value are limited to a band along the zero-deviation contour.
This band expands as xP increases and eventually connects with
the outer low-deviation region. For xP= 0.05 in the super-
critical case we can see very small blue regions of negative
deviation without zero-shear points inside, as these appear at a
higher separation, for xP� 0.0645. Moreover, here the angle of
intersection of the dotted–dashed contours is very different
from a right angle. In this case, the influence of the point mass
at the halo center is too strong (γP/γNFW≈ 1.7) so that the

expansion illustrating the generic shape of the zero-deviation
contour is not valid here.
A more detailed view of the changing deviation patterns with

point-mass position can be seen in the figure set available with
the online version of Figure 8. Their closer inspection reveals
that the deviation is globally positive not only for centrally
positioned point masses, but also for plots up to xP= 0.01 in
the subcritical case, up to 0.02 in the critical case and up to 0.04
in the supercritical case. Imposing the condition γ� γNFW on
Equation (31) reveals that negative deviation first appears at the
halo center in the ω= π/2 vertical direction once the point-
mass shear at the center decreases to γP= 2 γNFW. Using
Equations (13) and (29) with x= (0, 0) then yields the
condition for the existence of negative-deviation regions:

 ( )k kx 2P P s . In the subcritical case, we find xP�
0.0145, in the critical xP� 0.0238, and in the supercritical
xP� 0.0457, in agreement with the deviation maps.
The sizes of the contours can be used to estimate the areas

with a strong effect on the shear due to the presence of the point
mass. As an example, for the three different masses we find that
at the moment of separation of the critical curve surrounding
the point mass from the perturbed NFW tangential critical
curve, the darker contours of deviation ±10−1 extend roughly
seven Einstein radii from the point mass.

3.5.3. Convergence–Shear Diagrams

In Figure 9, we present a grid of CS diagrams, which provide
a description complementary to the image-plane plots of the
shear, its deviation due to the point mass, and the quantities
discussed in the following sections. For a general under-
standing of CS diagrams, see the Appendix with Figure 15,
Section 2.3 with Figure 4, and, in particular, Section 3.3 with
Figure 6.
The purple-shaded area marks the full range of (κ, γ)

combinations of the NFW halo + point-mass lens. Its
intersection with the green curve corresponds to the dotted–
dashed zero-deviation curve in Figure 8. The part of the area
above the green curve then corresponds to the yellow- and
orange-hued positive-deviation regions, and the part below the
green curve corresponds to the blue negative-deviation regions
in Figure 8.
We start by describing the subcritical case shown in the left

column. For xP= 0, the point mass lies at the center of the halo
and the system therefore has axial symmetry. In addition, the
radial dependence of the convergence is monotonic. This
implies that only one value of the shear γ(x) can occur for any
value of the convergence κ(x). These combinations
( ( ) ( ))k gx x, are plotted here as the bold purple curve. For
positions far from the halo center (at the left side of the plot),
this curve closely follows the unperturbed-halo green curve,
which starts at the origin of the plot. Proceeding to the right
(closer to the halo center), the purple curve reaches the bold
black line with slope −1 representing the tangential critical
curve. Here the magnification is infinite, and the flattening
reaches 1.
Farther to the right, the curve enters an area of negative

parity, where the magnification decreases and the flattening
drops to 0 at the bold vertical κ= 1 line corresponding to the
unit-convergence radius x0≈ 0.0936. To the right of this line,
images are elongated perpendicularly to the phase. Roughly
here, the purple curve of ( ( ) ( ))k gx x, combinations starts to
deviate significantly from the green curve. It rises rapidly and
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Figure 9. Convergence–shear (CS) diagrams of an NFW halo + point-mass lens, described in Section 3.5.3. Combinations ( ( ) ( ))k gx x, occurring in each of the lens
configurations are marked by the purple regions or curves. The green curve corresponds to the NFW-halo lens from Figure 4. For further details on the notation, see
Figure 6; for the interpretation of CS diagrams, see Figure 15. The online figure set includes separate figures for a finer grid of xP values.

(The complete figure set (20 images) is available.)
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eventually leaves the plot, as the shear diverges at the location
of the point mass. Close to the point mass, the parity is always
negative and both magnification and flattening approach zero.
Before this happens, the purple curve intersects the bold black
line with slope 1 twice. The first intersection represents the
outer radial critical curve and the second intersection represents
the inner radial critical curve. Between them, images have
positive parity.

Increasing the point-mass position from xP= 0 to xP= 0.05
brings about several important changes. As the system loses its
axial symmetry, for each value of convergence κ(x) there is a
continuous interval of shear values γ(x) in the image plane, and
the set of convergence–shear combinations is represented by a
two-dimensional region. At the left side of the plot, far from the
halo center, these combinations remain limited to the close
vicinity of the green curve of the unperturbed halo. At the right
side, close to the halo center, the set of combinations forms a
horizontal band, with shear values γä [γNFW− γP, γNFW+ γP]
corresponding to its directional dependence at the halo center,
demonstrated by Equations (31) and (33). In the vicinity of
x= xP we see the broadest range of shear values. On the one
hand, the shear diverges at the position of the point mass while
on the other hand, the shear drops to 0 at the zero-shear points
occurring here at a radius slightly lower than xP. Overall, the set
of ( ( ) ( ))k gx x, combinations looks similar to the case
illustrated in Figure 6 and described in detail in Section 3.3,
with one important difference. The shear divergence and the
zero-shear points both lie in the area of κ> 1, meaning that
nearby images would now be elongated perpendicularly to the
phase.

As xP increases in the following rows, both the shear
divergence and the zero-shear point shift to the left, indicating
that the point mass moves to locations with progressively lower
halo convergence. By the third row from the bottom (xP= 0.1),
the purple region touches the horizontal axis to the left of the
vertical κ= 1 line, indicating that the lens underwent an
umbilic transition at a slightly lower xP value. The surroundings
of the shear divergence and the zero-shear point now lie in the
region κ< 1, where images are elongated parallel to the phase.
The purple regions in the diagram also become narrower with
increasing xP. In the case of the divergence, this is due to the
changing scale of CS diagrams in terms of image-plane
positions, as indicated by the green ticks. In the case of the
horizontal band, this is due to the decreasing value of γP(0),
i.e., the shear due to the point mass at the halo center.

There are a few differences to notice in the critical case,
which is shown in the central column of Figure 9. For a
centrally positioned point mass (xP= 0), the purple curve of the
( ( ) ( ))k gx x, combinations deviates from the green curve of
halo combinations similarly as it does in the subcritical case.
However, instead of intersecting the bold black line with slope
1, the curve merely touches it at a single point. This indicates
the disappearance of the inner positive-parity region and the
presence of a degenerate radial critical curve, described in
detail in Appendix B of Paper I. The plot in the third row from
the bottom (xP= 0.1) depicts a configuration extremely close to
the elliptic umbilic, as the zero-shear points now occur almost
precisely at (κ, γ)= (1, 0). Generally speaking, the purple
regions of convergence–shear combinations are broader than
those in the subcritical case, meaning that at a given distance
from the halo center, a larger range of shear values occurs.

For the supercritical mass in the right column, in the axially
symmetric xP= 0 case, the purple curve of the ( ( ) ( ))k gx x,
combinations does not touch the black line with slope 1 at all.
This means that there are no radial critical curves. The second
plot from the bottom (xP= 0.05) is now profoundly different
than in previous cases. Here, the purple area does not touch the
horizontal axis of the plot. As discussed in Section 3.5.1, in this
case there are no zero-shear points and minimum shear can be
found at the halo center when approached vertically. Moreover,
unlike in the lower-mass cases, at the halo center, the horizontal
band does not spread symmetrically around the green line. In
this case, at the center, the shear due to the point mass is higher
than the shear due to the halo, so that γ ä [γP− γNFW,
γP+ γNFW] as shown by Equation (33) and discussed in the
following paragraphs and in Section 3.3.
The variation of the CS diagrams with point-mass position

can be inspected in more detail in the figure set available with
the online version of Figure 9. Note that the shear interval at the
halo center is centered on γP rather than on γNFW in all cases
with k k<xP P s , namely, from xP= 0 to xP= 0.02 in the
subcritical case; to xP= 0.03 in the critical case; to xP= 0.06 in
the supercritical case. The xP= 0.01 diagrams illustrate the
nature of the transition from the axially symmetric lens
configurations at xP= 0, best seen in the right panel. The bold
purple curve from xP= 0 gradually expands to a broader band
at lower radii for xP= 0.01. The remaining structure of the
purple region lies outside the plotted area in the right panel, but
it has a similar nature to the plot in the left panel (also similar to
the right panels for higher xP values): shear divergence at the
lens position (xP= 0.01), and the shear interval shrinking to a
horizontal band centered on γP.
Another feature to notice for the lower xP values is that the

entire purple region lies above the green curve, which means
that for such configurations, the shear is higher than in the
absence of the point mass everywhere in the image plane. As
shown in Section 3.5.2, this is the case for ( )k k<x 2P P s ,
namely, plots up to xP= 0.01 in the subcritical case; up to
xP= 0.02 in the critical case; up to xP= 0.04 in the supercritical
case. For higher values of xP, the shear may be lower than in
the absence of the point mass, but only in limited parts of the
image plane. For example, along the horizontal axis of the lens,
the shear always stays higher than in the absence of the point
mass, as shown in Section 3.5.2. For lower masses at higher
separations xP, the generic geometry of the zero-deviation
contour discussed in Section 3.5.2 shows that the regions of
lower shear are limited to radial distances <x x 2P .

3.5.4. Weak Shear

The plots in Figure 10 show image-plane color maps of the
weak shear γw(x), which we defined in Section 2.4 as the shear
that would be measured from image deformations using weak-
lensing analysis. At the same time, these maps illustrate image
flattening, because f (x)= 2 γw(x), as shown in Equation (24).
This equality also implies that weak shear values range from 0
(corresponding to white color in the maps) to 0.5 (bright red
color), with the maximum value occurring exclusively along
the full length of the critical curve. In spite of this limited
range, for purposes of comparison, we retain the same color
scale as in the first two panels of Figure 2 and in Figure 7.
We begin our description in the left column of Figure 10

with a subcritical point mass, starting from the bottom row
corresponding to its central position in the NFW halo. Directly
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Figure 10. Image-plane maps of the weak shear γw(x) of an NFW halo + point-mass lens, described in Section 3.5.4. These maps also illustrate image flattening with
values f (x) = 2 γw(x). Maximum weak shear γw = 0.5 occurs exclusively along the critical curves. Remaining notation as in Figure 7. The online figure set includes
separate figures for a finer grid of xP values.

(The complete figure set (20 images) is available.)
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at the center, the weak shear is equal to zero, because the image
cannot be flattened in any direction due to the axial symmetry
of the lens configuration. Going farther from the halo center,
the weak shear reaches 0.5 at the small inner radial critical
curve, then it decreases slightly before returning to 0.5 at the
outer radial critical curve. The weak shear then drops to zero at
the unit-convergence circle, along which images are undis-
torted, increasing again to 0.5 at the tangential critical curve,
beyond which it drops asymptotically to zero.

In the second row (xP= 0.05), the outer red ring of high
weak shear along the perturbed NFW tangential critical curve is
preserved. The same holds for the white γw= 0 ring along the
unit-convergence circle, which is in fact preserved exactly in all
configurations for all point masses. However, several changes
can be seen closer to the halo center, where there are now four
points with zero weak shear. These points coincide with the
halo center, the point-mass position, and the pair of zero-shear
points. This can be understood by inspecting Equation (22) and
taking its limit at these points. At the halo center, the difference
of signs before γ is suppressed by diverging κ, which also
suppresses the directional dependence of the shear close to the
center. Both fractions in Equation (22) tend to 1, which results
in zero flattening. At the position of the point mass, both
numerators and denominators are dominated by the diverging
shear and the fractions thus again approach unity. At the zero-
shear points, the fractions for γ= 0 are directly equal to 1. It is
worth noting here that zero shear γ implies zero weak shear γw,
but not vice versa. All four points are connected by a paler low-
weak-shear region corresponding to the ω= π/2 circle, which
is interrupted between the zero-shear points and the point-mass
position by the perturbed NFW radial critical curve, along
which the weak shear reaches 0.5.

At xP= 0.1 the region of low weak shear surrounding the
point mass is superimposed over the white ring of the unit-
convergence circle, while the pair of γw= 0 zero-shear points
is now trapped inside tiny critical curves, here very close to the
elliptic umbilic transition. For higher values of xP, a lobe forms
on the perturbed NFW tangential critical curve with the point
mass inside and the zero-shear points outside. By xP= 0.25, the
curve splits, and the point mass is surrounded by a small oval
critical-curve loop elongated toward the halo center. Three
points with zero weak shear remain associated with this loop:
the point-mass position inside and the two zero-shear points
directly above and below the loop. Similar but larger weak-
shear patterns near the tangential-critical-curve lobes and the
detached ovals can be seen in the two right columns showing
the critical and supercritical cases, in the rows with xP� 0.15.

In the critical case with a centrally located point mass
(bottom plot in central column), there is only one γw= 0.5
circle along the single radial critical curve between the white
center and the white κ= 1 circle. The third row (xP= 0.1)
illustrates the peculiar situation in the presence of elliptic
umbilic points (technically, these occur at xP≈ 0.0996, but the
plot is visually identical). These are zero-shear points lying
directly on the unit-convergence circle. At these points, the
weak shear (and flattening) is undefined, as can be seen by
substituting γ= 0 and κ= 1 in Equation (22). In the plot we
can see them as point-like interruptions of the white unit-
convergence circle.

In the supercritical case with xP= 0 (bottom right plot), there
is no radial critical curve. Hence, the weak shear increases only
slightly between the center and the κ= 1 circle without

reaching 0.5. In the xP= 0.05 plot, the pair of vertically offset
zero-weak-shear points is missing because the condition

k k>xP P s for the existence of zero-shear points is not
fulfilled here. Note in the same plot that the weak-shear pattern
near the halo center resembles the central directionally
dependent shear pattern. However, while the shear is undefined
at the center, the weak shear reaches 0 from any direction, with
only the rate of convergence depending on the direction. The
rate is slowest in the horizontal direction with γw∼ (γP+
γNFW)/(κ− 1) and fastest in the vertical direction with
γw∼ |γP− γNFW|/(κ− 1) to first order in 1/(κ− 1). Clearly,
the directionality will be most pronounced when γP= γNFW at
the halo center, i.e., at the appearance of the zero-shear points.
The directionality will be least pronounced when either of the
component shears γNFW and γP dominates over the other at the
halo center.
The emergence and evolution of the features and structures

discussed above can be studied in more detail in the figure set
available with the online version of Figure 10. For example, the
formation of the tiny critical-curve loops around the zero-
(weak)-shear points is well visible in the subcritical case at
xP= 0.08 or in the critical case at xP= 0.09. The location of the
white zero-(weak)-shear points inside these loops is most
visible for xP= 0.12 for all three masses, as well as for
xP= 0.13 in the subcritical case.

3.5.5. Weak-shear Deviation Due to the Point Mass

The plots in Figure 11 depict the weak-shear deviation
caused by the presence of the point mass, given by
γw/γw,NFW− 1. As indicated by the formula, it is defined as
the relative difference between the weak shear γw(x) of an
NFW halo with a point mass (see Figure 10) and the weak
shear γw,NFW(x) of an NFW halo alone (see the second panel of
Figure 2). This means that the plots are the weak-shear
equivalents of the plots from Figure 8 described in
Section 3.5.2. Therefore, we use the same color scale and the
same set of contours as in Figure 8. Note that due to
Equation (24), the plots in Figure 11 also exactly portray the
relative image-flattening deviation, including the color bar and
the values of the contours. The yellow- and orange-hued
regions thus correspond to higher flattening and weak shear,
while the blue regions correspond to lower flattening and weak
shear than in the absence of the point mass.
The striking patterns of the colored areas in Figure 11 look

remarkably complex at first. However, especially in the top rows,
away from the halo center and from the vicinity of the point mass,
the plots are very similar to those in Figure 8. This should be
expected, because in these regions with low values of γ and κ the
weak shear is a good approximation of the shear. Closest to the
point mass, the plots differ from those in Figure 8 fundamentally.
In Figure 8, the relative shear deviation diverges to∞ at the
position of the point mass. In Figure 11, even inside the positive
weak-shear deviation contours in the top rows, there is a blue
negative area in which the deviation falls to the minimum possible
value of −1 at the point-mass position. This is a consequence of
the weak shear γw converging to 0, while the shear γ diverges
there. Interestingly, this result holds even for xP= 0 at the
halo center, where even γw,NFW converges to 0. Nevertheless, in
the immediate vicinity of the center the weak-shear ratio

( )g g k k x x4 ln 0w w,NFW
2

s P , so that even in this case
the weak-shear deviation at the point-mass position is −1.
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Figure 11. Image-plane maps of the relative weak-shear deviation, γw/γw,NFW − 1, caused by the presence of the point mass, described in Section 3.5.5. The maps
also exactly portray the relative deviation in image flattening due to the point mass. Color scale, contours, and remaining notation as in Figure 8. The online figure set
includes separate figures for a finer grid of xP values.

(The complete figure set (20 images) is available.)
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In order to decipher the alternating positive and negative
regions in Figure 11, we concentrate on their boundaries, which
are indicated by the dotted–dashed zero-weak-shear-deviation
contour. Especially in the top rows, for higher xP, we can see
that parts of the contours look identical to the zero-shear-
deviation contours from Figure 8. However, here there is an
additional strong effect closely associated with the critical
curve, unlike in the case of the shear-deviation patterns, which
show very little influence from the critical curve. More
specifically, this additional effect reflects the relative deforma-
tions of the critical curve caused by the point mass.

The zero-weak-shear-deviation contour can be defined using
the flattening from Equation (22) by setting f (κ, γ)= f (κ,
γNFW). Because the convergence is the same with or without
the point mass (except at the point-mass position), we
immediately see that the zero-shear-deviation contour

( ) ( ) ( )g g=x x 42NFW

automatically also forms a component of the zero-weak-shear-
deviation contour. All dotted–dashed contours from Figure 8
thus also appear in Figure 11. The remaining components can
be obtained by solving the flattening equality, which yields the
additional nontrivial solution

( ) ( ) [ ( ) ] ( )g g k= -x x x1 . 43NFW
2

This equation describes all components of the zero-weak-shear-
deviation contour that do not appear in Figure 8.

In particular, these include components closely associated
with the critical curves, which is best illustrated when the NFW
critical curves are only weakly perturbed by the point mass.
Along the NFW tangential critical curve, we recall that
γNFW(x)= 1− κ(x), as discussed in Section 2.2. Similarly,
along the perturbed NFW tangential critical curve, which lies
outside the unit-convergence circle, the shear satisfies
γ(x)= 1− κ(x), as discussed in Section 3.2. It is straightfor-
ward to show that the product of the two shears is lower than
[ ( )]k- x1 2 along a section of one of these critical curves and
at the same time it is higher than [ ( )]k- x1 2 along the
corresponding section of the other critical curve. Due to
continuity, there is a contour between the critical curves of the
two models along which Equation (43) is satisfied. When the
point-mass perturbation is weak, such as in the top left plot in
Figure 11, the corresponding component of the zero-weak-
shear-deviation contour is indistinguishable from the perturbed
NFW tangential critical curve. The contour can be distin-
guished, for example, in the top right plot near the horizontal
axis in the direction of the point mass.

A similar argument can be made for the NFW radial critical
curve, along which γNFW(x)= κ(x)− 1, as discussed in
Section 2.2, and for the perturbed NFW radial critical curve
inside the unit-convergence circle with γ(x)= κ(x)− 1, as
discussed in Section 3.2. Even in this case there is a contour
between the two critical curves along which Equation (43) is
satisfied. The contour can be distinguished from the perturbed
NFW radial critical curve in Figure 11, for example, in the
supercritical xP= 0.15 plot near the horizontal axis in the
direction of the point mass. Note that Equation (43) also
accounts for other components of the zero-weak-shear-devia-
tion contour, such as the loop around the point mass in the top
row of Figure 11.

At the mutual intersections of the components of the zero-
weak-shear-deviation contour, Equations (42) and (43) have to

be satisfied simultaneously. This implies that these points also
represent the intersections of the critical curves of the NFW
halo with and without the point mass. The combined geometry
of the components with their mutual intersections explains the
partitioning of the image plane into the color patterns seen in
Figure 11.
Starting with a centrally positioned subcritical point mass

(bottom left plot), the deviation shows a very small negative
region around the point mass inside the inner radial critical
curve, followed by a positive annulus reaching just beyond the
outer radial critical curve, a negative annulus almost to the
tangential critical curve, and a positive outer region. All three
boundaries separating these regions are described by
Equation (43). At xP= 0.05, the negative region around the
point mass is connected with the larger negative annulus. In
addition, the zero-shear-deviation boundary given by
Equation (42) can be seen, introducing negative areas above
and below the halo center, with positive crescents where it
reaches beyond the zero-weak-shear-deviation contour asso-
ciated with the perturbed NFW radial critical curve. At
xP= 0.1, strong positive deviation can be seen close to the
two tiny critical-curve loops, along which γw= 0.5 while
γw,NFW≈ 0. However, note that at the zero-shear points inside
the loops the weak-shear deviation equals −1, with the
indiscernible negative regions around them bordered by
contour loops obeying Equation (43). At xP= 0.15, the region
inside the zero-shear-deviation contour flips color again as it
crosses the zero-weak-shear-deviation contour associated with
the perturbed NFW tangential critical curve. At xP= 0.25, the
point-mass critical-curve loop is detached from the NFW-halo
critical curve, showing the characteristic four-lobed contour
pattern seen in Figure 8, here with the central negative region
described above.
A similar sequence can be seen in the two right columns, in

which the structures are larger and the deviations more
prominent. In particular, the zero-weak-shear-deviation con-
tours near the critical curves are better visible in some of the
plots here. Note also the change with increasing mass for a
central position of the point mass in the bottom row. In the
critical case there is only a single degenerate radial critical
curve, with the accompanying zero-weak-shear-deviation
contour well separated from it. The positive-deviation annulus
is narrower as the central negative region is larger, and for a
higher mass it disappears entirely. This can be seen in the
supercritical case, where there is only a single large negative-
deviation region reaching almost to the tangential critical curve.
The transitions of the patterns with increasing point-mass

position xP can be studied in more detail in the figure set
available with the online version of Figure 11. For example,
note the appearance of a positive-deviation region in the
supercritical case at xP= 0.01, as soon as the point mass is
displaced from the halo center. For larger separations the
boundary of this region forms the zero-weak-shear-deviation
contour associated with the perturbed NFW radial critical
curve. The small negative regions inside the tiny critical-curve
loops can be seen here at xP= 0.13 in the subcritical case, or at
xP= 0.12 in all cases. In the critical and supercritical cases at
xP= 0.13, we see that these regions persist even after the loops
merge with the outer critical curve.
Studying the colored contours, we see that the regions with

the strongest negative weak-shear deviation occur close to the
point mass and near the zero-shear points (except when they lie
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between the perturbed NFW radial and tangential critical
curves). The strongest positive deviation occurs close to the
point mass along the horizontal axis outside its Einstein radius
and just outside the tiny critical-curve loops enclosing the zero-
shear points. A closer inspection of the contours reveals that
some of them display sharp bends at specific positions. These
may appear at three types of locations. First, at the unit-
convergence circle, as can be seen, for example, in the critical
case at xP= 0.15 on the pale blue, pale orange, and dark orange
contours. These kinks are caused by the switching of the
minimum fractions in Equation (22) at κ= 1, which causes a
discontinuity in the derivatives.

Second, at the critical curves, as can be seen, for example, in
the supercritical case at xP= 0.25 on the pale orange and pale
blue contours at the left side of the plot, or in the subcritical
case at xP= 0.15 on the pale orange and pale blue contours
above and below the halo center. These kinks are caused by
crossing the zero points of the absolute values in Equation (22),
which also causes a discontinuity in the derivatives. Third, at
the NFW-halo critical curves, as can be seen, for example, in
the supercritical case at xP= 0.15 on the dark blue contours
around the zero-shear points above and below the point mass,
or in the critical case at xP= 0.20 on the dark blue contour
extending from the point mass toward the halo center. These
kinks are similar to the previous ones, being caused by crossing
the zero points of the absolute values in Equation (22) when
evaluating the NFW halo weak shear.

Regarding the extent of the contours, they are generally
slightly smaller than those in Figure 8, indicating that the weak-
shear deviation falls more quickly with the distance from the
point mass than the shear deviation. As a rough estimate, at
the moment of separation of the critical curve surrounding the
point mass from the perturbed NFW tangential critical curve,
the γw/γw,NFW− 1=± 10−1 contours extend roughly six
Einstein radii from the point mass.

3.5.6. Weak-shear Deviation from the Shear

The relative deviation γw/γ− 1 of the weak shear (shown in
Figure 10) from the shear (shown in Figure 7) is plotted in the
image-plane color maps in Figure 12. We use the same color
scale as in the third panel of Figure 2, which shows the same
quantity plotted for the NFW halo alone. By its definition, this
deviation shows the relative error of shear estimation using the
weak-lensing approximation.

In the case of the subcritical mass (left column), the plots
are very similar to the plot in the third panel of Figure 2, with
the point mass affecting only its nearby surroundings. Note that
the weak shear is always zero at the position of the point mass,
so that the deviation reaches its minimum value of −1 there,
leading to a dark blue spot similar to the one associated with
the point mass in Figure 11. In the bottom row, the central
negative spot is thus more prominent than in the absence of the
point mass and it includes even the inner radial critical curve.
At xP= 0.05, there is a pair of red spots with a strong positive
deviation close to the zero-shear points above and below the
point mass. At these points, both γw and γ drop to 0, but their
ratio γw/γ converges to 1/|κ− 1|. The deviation is thus
positive as long as κ< 2, corresponding to zero-shear points
located more than circa 0.011 from the center of our
fiducial halo.

As the point mass crosses the unit-convergence circle near
xP= 0.1, the red spots shrink but their peak deviation increases.

When the zero-shear points approach the perturbed NFW
tangential critical curve at xP= 0.15, the spots expand to their
largest as they merge with the positive-deviation band along the
critical curve. When the point-mass critical-curve loop is
detached from the perturbed tangential critical curve of the
NFW halo as seen in the two top rows, the positive-deviation
spots remain associated with the zero-shear points above and
below the point mass, even though their peak deviation
declines with increasing point-mass position xP. The pattern
around the halo center at xP= 0.3 is virtually identical to the
unperturbed-halo pattern in the third panel of Figure 2.
The plots for a critical mass in the central column follow a

similar sequence, with larger affected regions around the point
mass. When it is positioned at the halo center (bottom row), we
see that the single radial critical curve shows practically zero
deviation, and between it and the blue unit-convergence circle,
the positive deviation reaches lower values. At xP= 0.1, the red
areas of high deviation extend from the perturbed NFW radial
critical curve past the zero-shear points and beyond the unit-
convergence circle. The pinched pattern at its intersection with
the circle is indicative of the elliptic umbilic at which the weak
shear is undefined, as discussed in Section 3.5.4.
The regions strongly influenced by the supercritical mass in

the right column are much larger, with nearly half of the pattern
around the NFW halo critical curve affected for xP= 0.1, 0.15,
and 0.2. For xP= 0, there is no region of positive deviation
between the halo center and the unit-convergence circle. For
xP= 0.05, a positive region is present but there are no red spots,
as there are no zero-shear points at this configuration. At
xP= 0.1, the red spots are very large and prominent. At
xP= 0.15, in addition to the zero-shear-point red spots there are
two adjacent smaller red spots along the perturbed NFW radial
critical curve.
The changing patterns can be studied with a finer step in

point-mass positions in the figure set available with the online
version of Figure 12. For example, the pattern around the tiny
critical-curve loops can be seen at xP= 0.12 and in a few
neighboring panels. We also point out the xP= 0.03 panel in
the subcritical case and the xP= 0.04 panel in the critical case.
In these panels there are no red spots close to the zero-shear
points, which lie still too close to the halo center. However, in
the supercritical case at xP= 0.06 we see red (or rather orange)
spots at the tips of the perturbed NFW radial critical curve even
though the zero-shear points are not present yet. One panel
higher, at xP= 0.07, these red spots are more prominent while
the zero-shear points are located near their edge closer to the
halo center. Clearly, the red spots develop at the perturbed
NFW radial critical curve even for lower point-mass positions
at which there are no zero-shear points. With a slight increase
in xP, the points reach the red spots, which then remain
associated with them at more distant point-mass positions.
Overall, the pattern of the blue areas shows that the weak

shear underestimates the shear near the halo center, along the
unit-convergence circle, and roughly within an Einstein radius
of the point mass (extending farther when it overlaps with the
unit-convergence circle). Practically everywhere else the weak
shear overestimates the shear, most prominently in the red and
orange areas: close to the zero-shear points, along the perturbed
NFW tangential critical curve, and along the perturbed NFW
radial critical curve (except when a supercritical mass is
positioned close to the halo center). Further from the halo
center, e.g., close to the right edge of the plots in Figure 12 for
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Figure 12. Image-plane maps of the relative weak-shear deviation from the shear, γw/γ − 1, of an NFW halo + point-mass lens, described in Section 3.5.6. The maps
illustrate the relative error of the weak-lensing shear estimate. All positions with deviation greater than 1.5 are marked in red. Remaining notation as in Figure 7. The
online figure set includes separate figures for a finer grid of xP values.

(The complete figure set (20 images) is available.)
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our fiducial halo, the positive deviation is very low, so that the
weak shear may serve as a good approximation of the shear.
However, the agreement fails in the vicinity of the point mass.
This occurs primarily inside its Einstein radius but also farther
to the tangentially offset zero-shear points. Note that for
κNFW(xP)= 1, the deviation at the zero-shear points reaches a
value γw/γ− 1≈ κNFW(xP), so that their influence decreases as
the halo convergence declines for higher xP.

3.5.7. Weak Phase

In Figure 13 we present image-plane plots of the weak phase
jw of the NFW halo + point-mass lens, given by Equation (41).
We defined the weak phase in Section 2.4 as the phase that would
be measured from the orientation of image deformations using
weak-lensing analysis. For an elliptical image of a small circular
source the weak phase is simply the angle between its major axis
and the horizontal axis in the plots. Thus, jw= 0 corresponds to
horizontally and |jw|= π/2 to vertically elongated images. The
weak phase of the NFW-halo lens is described in Section 2.4 and
shown in the fourth panel of Figure 2. Without the point mass,
outside the unit-convergence circle, the weak phase is equal to the
phase and images are oriented tangentially. Inside the unit-
convergence circle the weak phase is perpendicular to the phase
and images are oriented radially.

In Figure 13 we use the same weak-shear color scale as in
the fourth panel of Figure 2, with white corresponding to
horizontal images, orange to images oriented counterclockwise
from the horizontal, and blue to images oriented clockwise
from the horizontal. The saturation of both colors increases
with the angle from the horizontal, from zero saturation for
angle 0 to maximum saturation for angle π/2. The dotted–
dashed contour marks several special orientations: jw= 0,
|jw|= π/2, and undefined jw. The weak phase is undefined at
all points with zero weak shear, as described in Section 3.5.4.
These include the halo center, the point-mass position, the zero-
shear points, and the unit-convergence circle. All of these
points thus play an important role in the patterns seen in the
color maps in Figure 13.

Thanks to the axial symmetry of the lens configurations with
xP= 0 in the bottom row of Figure 13, the color maps are
identical to that of the unperturbed halo, as seen in the fourth
panel of Figure 2. This means that outside the κ= 1 circle,
images are oriented tangentially, while inside the circle the
weak phase is flipped by π/2 and images are oriented radially.
Exactly at the halo center, the weak phase is undefined. Note
the colors alternating around the center with orange in the first
quadrant and the saturation varying from zero along the
horizontal to maximum along the vertical axis. Such a pattern
corresponds to radial orientation of images around the center.

The variation of the weak-phase maps with point-mass
position xP is best seen in the supercritical case (right column).
In the top row with xP= 0.3, the point mass is well separated
from the halo center. The left part of the plot closer to the halo
center is similar to the unperturbed pattern seen also in the
bottom row. Note here the slight shift toward the point mass of
the dotted–dashed contour extending vertically outward from
the unit-convergence circle, which corresponds to horizontal
images. The main new feature is the oval region with inverted
colors bordered by a loop of the dotted–dashed contour, which
passes through the position of the point mass at its right side
and extends in the direction of the halo center on its left side.
The pattern seen around the point mass also has colors

alternating around the center, however, here with blue in the
first quadrant. In addition, the saturation varies from zero along
the vertical to maximum along the horizontal axis. This pattern
corresponds to tangential orientation of images around the
point mass.
The left part of the dotted–dashed border of the oval

separates high-saturation regions and, thus, corresponds to
vertically oriented images. The right part of the border lies in
the white band separating low-saturation regions and, thus,
corresponds to horizontally oriented images. The two parts of
the boundary meet at the zero-shear points that lie above and
below the point mass. In this panel, horizontal images occur
along the horizontal axis inside the unit-convergence circle,
along the vertical dotted–dashed contour outside the unit-
convergence circle, and along the right boundary of the oval
region connecting the zero-shear points vertically through the
point-mass position. Vertical images occur along the horizontal
axis outside the unit-convergence circle, along the vertical
dotted–dashed contour inside the unit-convergence circle, and
along the left boundary of the oval region connecting the zero-
shear points and passing vertically through a point between the
halo center and the point mass.
Going down in the right column, the inverted-color oval

shrinks slightly as it moves with the point mass closer to the
halo center. At xP= 0.15, the oval partly overlaps the unit-
convergence circle. The very pale color in the region of their
overlap indicates near-horizontal orientation of images there.
At the boundary of the oval in this plot, images are oriented
horizontally along its left part inside the unit-convergence
circle and along its right part from the zero-shear points to the
point-mass position. Along the segments extending from the
zero-shear points to the left until the unit-convergence circle,
images are oriented vertically. Image orientations along the
other parts of the dotted–dashed contour remain unchanged.
At xP= 0.1, the zero-shear points now lie inside the unit-

convergence circle, so that horizontally oriented images now
occur along the left boundary of the oval up to the zero-shear
points and along the part of the right boundary outside the unit-
convergence circle passing through the point-mass position.
Vertically oriented images occur along the segments extending
from the zero-shear points to the right until the unit-
convergence circle. The pattern inside the overlap of the oval
and the unit-convergence circle reflects two general properties
of its boundaries. Crossing the boundary of the oval inverts
only the color at jw= 0 or |jw|= π/2, which corresponds to a
continuous change in orientation. Crossing the unit-conv-
ergence circle inverts the color as well as the saturation, which
corresponds to a π/2 flip in orientation. Note here also the
more prominent bulging of the vertical dotted–dashed contour
passing through the halo center as the point mass lies closer.
Between xP= 0.1 and xP= 0.05, the boundary of the

inverted-color oval undergoes reconnection with the bulging
vertical dotted–dashed contour. At xP= 0.05 this contour
passes through the point-mass position, while a small
inverted-color oval lies to the left of it, with its left boundary
passing through the halo center. Note that at xP= 0.05 there are
no zero-shear points, so that here the entire boundary of the
small oval corresponds to horizontal images. What is more
striking in this plot is the pattern around the point mass, which
now lies inside the unit-convergence circle. Orange in the first
quadrant and zero saturation along the horizontal axis indicate
that images are now oriented radially around the point mass. As
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Figure 13. Image-plane maps of the weak phase jw(x) of an NFW halo + point-mass lens, described in Section 3.5.7. Orange and blue correspond to images oriented
counterclockwise and clockwise, respectively, from the horizontal. Dotted–dashed curves indicate exactly horizontal, exactly vertical, or undefined image orientation.
Remaining notation as in Figure 7. The online figure set includes separate figures for a finer grid of xP values.

(The complete figure set (20 images) is available.)
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the point mass moves closer to the halo center, at a certain
value 0� xP< 0.05, the small oval disappears, and the dotted–
dashed vertical curve passes through the origin for xP= 0.

In the critical and subcritical cases (the central and left
columns, respectively) the same sequence of changes occurs as
in the supercritical case, although for slightly different values
of xP. Note that the inverted-color oval increases in size with
increasing mass parameter κP. In the top rows, the point at
which the left side of its boundary crosses the horizontal axis
marks a boundary of influence of the halo and the point mass
(at least as far as image orientation is concerned). Both
boundaries passing through this point correspond to vertically
oriented images. However, images located off the horizontal
axis to the left of this point are tilted tangentially to the halo,
while those to the right of this point are tilted tangentially to the
point mass.

Details of the changing patterns and contours can be studied
in more detail in the figure set available with the online version
of Figure 13. For example, it can be seen that the reconnection
of the vertical and oval dotted–dashed contours occurs at the
zero-shear points. At higher values of xP the points lie on the
larger oval passing through the point-mass position, while at
lower values they lie on the smaller oval passing through the
halo center. For progressively lower point-mass distances, the
zero-shear points move along the smaller oval to the center,
where they disappear at k k=xP P s .

The plot for the critical case at xP= 0.1 illustrates the
situation at the elliptic umbilics, which occur for a slightly
lower point-mass distance. In this case, the full length of the
oval contour corresponds to horizontal image orientations
(except the point-mass position and the zero-shear points with
undefined orientation). Similarly, the xP= 0.09 plots for the
critical and supercritical cases indicate the interesting pattern
near the point mass when it lies on the unit-convergence circle
(in both cases for a slightly higher point-mass distance). To the
right of the point mass, images are oriented vertically
(tangentially), to the left horizontally (radially), and above
and below the orientation is undefined (i.e., the images are
circular).

The weak-phase plots presented in Figure 13 can also be
used to visualize the phase, which we do not present in a
separate plot. The reason is indicated by Equation (41), which
shows that outside the unit-convergence circle the phase is
equal to the weak phase, while inside it differs by π/2. The
phase plots would thus differ from the weak-phase plots in
Figure 13 by having the colors and saturations flipped inside
the unit-convergence circle around the halo center. The circle
would disappear in such plots, and the color and saturation
outside would extend continuously inside all the way to the
halo center. The dotted–dashed contour would then consist
only of the horizontal axis, the perturbed vertical line through
the halo center, and the large oval associated with the point
mass reconnecting to the small oval associated with the halo
center.

Overall, note that unlike the weak shear in Figure 10, the
weak phase in Figure 13 shows very little correlation with the
geometry of the critical curve. Finally, we point out that placing
the point mass off the horizontal axis would not lead to a
simple rotation of the patterns as in the other presented plot
grids. Instead, the overall halo pattern and the pattern close to
the point mass would remain unchanged. A point mass in a
blue region of the halo would thus locally generate a pair of

orange lobes, while in an orange region it would generate a pair
of blue lobes.

3.5.8. Weak-phase Deviation Due to the Point Mass

The image-plane color maps presented in Figure 14 depict
the weak-phase deviation due to the point mass, defined as the
difference between the weak shear of the NFW halo + point-
mass lens (shown in Figure 13) and the weak shear of the NFW
halo alone (shown in the fourth panel of Figure 2),
δjw(x)= jw− jw,NFW. We correct the difference if necessary
by adding or subtracting π to keep δjw in the interval
[ ]p p- 2, 2 . The deviation is also equal to the angle by which
the orientation of an image changes due to the presence of the
point mass. Red positive values of δjw correspond to a
counterclockwise change, blue negative values to a clockwise
change in orientation. The color saturation is scaled linearly for
|δjw|� π/2000 and logarithmically for |δjw|� π/2000. Con-
tours are plotted for |δjw|= π/20= 9° (dark red and blue) and
for |δjw|= π/200= 0.9° (light red and blue).
When the point mass is located exactly at the center of the

halo (bottom row of Figure 14), the lens has axial symmetry
and the weak-phase deviation is zero everywhere, which
explains the completely white plots. Note that this result also
reflects the fact that images are oriented radially around a point
mass lying inside the unit-convergence circle, as shown in
Section 3.5.7.
All the other plots with an off-center point mass share the

same characteristic color pattern; they differ only in its scale
and in color saturation. The blue and red regions are separated
by the dotted–dashed contour, which marks all positions with
zero deviation δjw= 0 or maximum deviation |δjw|= π/2.
The geometry of the contour is simple and independent of the
mass parameter κP: it includes the horizontal axis and the
ω= π/2 circle reaching from the halo center to the position of
the point mass (see Figure 5). Along the horizontal axis, images
are always horizontal inside and vertical outside the unit-
convergence circle, unaffected by the presence of a point mass,
as shown in Section 3.5.7. Hence, this part of the dotted–
dashed contour corresponds to δjw= 0.
Along the ω= π/2 circle, there is a right angle between the

direction to the halo center and the direction to the point mass.
The shear from the halo and the shear from the point mass thus
act in perpendicular directions. Going from the halo center
along the ω= π/2 circle, the halo shear decreases and the
point-mass shear increases, as described in Section 3.1. Hence,
from the halo center to the zero-shear points the halo shear
dominates and the image orientation remains unchanged, so
that δjw= 0 along this part of the circle. From the zero-shear
points to the point mass, the point-mass shear dominates and
the images are oriented perpendicular to the orientation they
would have in absence of the point mass, so that |δjw|= π/2
along the remaining part of the circle. For point-mass positions

k k<xP P s , there are no zero-shear points and the entire
ω= π/2 circle corresponds to |δjw|= π/2.
Above the horizontal axis and outside the ω= π/2 circle, the

weak-shear deviation is positive, meaning that in this region the
image orientation changes counterclockwise. Conversely,
under the axis and outside the circle, the deviation is negative
and the image orientation changes clockwise. Inside the ω=
π/2 circle, the sign of the deviation in either half-plane is
switched and image orientations change in the opposite sense.
At the center of the halo and at the location of the point mass,
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four regions of alternating positive and negative devia-
tion meet.

Deviations |δjw| peak close to the point mass (particularly
along the ω= π/2 circle) and fall rapidly with increasing
distance from it. The color pattern near the point mass indicates
that images are oriented tangentially around it (when it lies
outside the unit-convergence circle) or radially around it (when
it lies inside the unit-convergence circle). The color pattern
around the halo center indicates that the point mass orients the
images more horizontally there. When zero-shear points are
present, zero deviations occur in the horizontal and vertical
directions from the center and strongest deviations occur along
the diagonals. In the absence of zero-shear points, for

k k<xP P s , zero deviations occur in the horizontal direc-
tions and the strongest |δjw|= π/2 deviations occur in the
vertical directions.

The areas with high deviation |δjw| extend farther from the
point mass for greater values of κP, as seen in the central and
right columns of Figure 14. For point masses far from the halo
center (in the top rows), all contours form four-lobed butterfly-
like shapes. For point masses closer to the halo center, the left
lobes of the contours become pointy (e.g., xP= 0.2 in the
central column) and eventually they extend to the halo center
(e.g., xP= 0.15 in the central column). To illustrate the area
affected by the point mass, we estimate the extent of the
contours at the moment of separation of the critical curve
surrounding the point mass from the perturbed NFW tangential
critical curve, i.e., between xP= 0.20 and xP= 0.25 for the
subcritical and critical cases, and between xP= 0.25 and
xP= 0.30 in the supercritical case. In all three cases, the inner
|δjw|= π/20 contours extend about four Einstein radii, while
the outer |δjw|= π/200 contours extend as far as 12 Einstein
radii from the point mass.

The changes in the contours for different point-mass
positions can be studied in more detail in the figure set
available with the online version of Figure 14. The abrupt
change from zero deviation to |δjw|= π/2 along the ω= π/2
circle at the zero-shear points can be best seen in the presence
of the small critical-curve loops surrounding them, e.g., for
xP= 0.12. Note also the very small extent of the colored
regions for the lowest separations xP.

Similarly to Figure 13, the weak-phase deviation in
Figure 14 shows very little correlation with the geometry of
the critical curve. However, unlike Figure 13, it also shows no
influence of the unit-convergence circle.

4. Discussion

The examples of images formed by the NFW halo + point-
mass lens in the bottom right panel of Figure 1 can be
compared with the results presented in Section 3.5, specifically
with the corresponding xP= 0.2, κP≈ 2.714 · 10−4 panels of
the plot grids. In particular, the weak-shear map in Figure 10
shows the image flattening, the weak-phase map in Figure 13
shows the image orientation, and the weak-shear-deviation-
from-shear map in Figure 12 shows the relative shear error that
would be incurred by assuming the weak-lensing relation
between image distortion and shear.

A few points should be noted regarding the interpretation of
such comparisons. First, Figures 7–14 present maps of their
respective quantities for point-like sources. For images of
extended sources such as those shown in Figure 1, one has to
consider the full variation of the quantities within the area of

the image. For example, an image lying on the unit-
convergence circle will have its inner part extended radially
and its outer part tangentially, as seen from Figure 13.
Second, when studying the changes in image shape and

orientation due to the point mass using Figure 1 with
Figures 11 or 14, a direct comparison can be made when there
is at least a partial overlap of the images formed by halos with
and without the point mass. In the bottom right panel of
Figure 1, the left and central images have a large overlap with
the images in the top right panel, the lower-right image has a
smaller overlap, and the two images close to the point mass
have no overlap. For these two images, Figures 11 and 14 show
the deviations from images formed at the same positions by the
halo-only lens, but for different source positions. In this
particular case, the sources would lie above the horizontal axis
at different radial distances in the top left panel of Figure 1. In
fact, even in the case of overlapping images, the overlapping
parts may be images of different parts of the source. Thus,
Figures 11 and 14 compare the properties of images formed by
the two lens models at a same position in the image plane of
sources at different positions in the source plane. They do not
compare the properties of images of a fixed source formed by a
halo with and without a point mass.
Third, in this work we do not explore the changes in image

positions due to the point mass. This would be difficult to
present in general, if only due to the change in the number of
images. However, it could be done in a perturbative regime by
studying the displacement and distortion of particular images of
a fixed source due to the presence of a point mass. This
approach was taken by Wagner (2018), who studied general
perturbations of large arc-like images along the tangential
critical curve of axisymmetric lenses. One provided example
shows the influence of a point-mass perturber on the radii and
lengths of arcs formed by a singular isothermal sphere lens.
Even though NFW halos have different lensing properties, the
generic pattern of angular distortions seen, for example, in the
xP= 0.25, κP= 10−4 panel of Figure 14 indicates that an arc-
like image between the tangential critical curve and the point
mass inside the ω= π/2 circle would be straightened by its
influence. Hence, its radius of curvature would be increased, in
agreement with the example in Wagner (2018). Overall, image-
plane maps such as those in Figures 11 and 14 are suitable for
assessing the influence of compact masses in observed lensing
clusters or galaxies where the image positions are fixed.
The results presented in this work correspond to one fiducial

value of the halo convergence parameter κs. The variation of
the critical curves and the unit-convergence circle with κs, as
well as the variation of κs and κP with source redshift are
discussed in Paper I. The plots presented above in
Sections 3.5.1–3.5.8 can be expected to follow the combined
geometry of the critical curve, the unit-convergence circle, and
the ω= π/2 circle. Note that the last mentioned circle is given
purely by the value of xP, which is independent of the source
redshift and the halo convergence parameter.
Some of the obtained results have more general relevance

than just for a point mass embedded in a spherically symmetric
NFW halo. These include some of the analytic results, such as
the shear of a combination of two mass distributions described
in Section 3.1. Among the numerical results shown in
Figures 7–14, the patterns seen around the point mass at
sufficient separation from the halo critical curves will be very
similar for other halo mass distributions with low spatial
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Figure 14. Image-plane maps of the weak-phase deviation δjw(x) caused by the presence of the point mass, described in Section 3.5.8. The maps also exactly portray
the change in image orientation due to the point mass. Red and blue indicate counterclockwise and clockwise deviations, respectively. The color scale changes from
logarithmic to linear in the interval [–π/2000, π/2000]. Four colored contours correspond to the δfw values indicated in the color bar; the dotted–dashed contour
corresponds to δfw = 0 and δfw = ± π/2. Remaining notation as in Figure 7. The online figure set includes separate figures for a finer grid of xP values.

(The complete figure set (20 images) is available.)
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variation on the scale of the point-mass Einstein radius (e.g.,
Chang & Refsdal 1984), as discussed further below. Best seen
in the top left plots for xP= 0.30, κP= 10−4, the patterns are
relevant not only for point masses separated from other mass
concentrations but also for extended bodies with compact mass
distributions that do not extend significantly beyond their
Einstein radius.

The applicability of the studied lens model to the
astrophysical scenarios of a galaxy within a galaxy cluster, of
a satellite galaxy within a galactic halo, and of a massive black
hole in a galactic halo is discussed in Paper I. In addition,
possible extensions toward more advanced models are pointed
out there, such as replacing the point mass by an extended mass
distribution. For distributions that do not extend significantly
beyond their total-mass Einstein radius, the lensing quantities
in the surroundings will not differ significantly from the
patterns seen in Figures 7–14. However, for more extended
distributions, the patterns will be affected more substantially.
Nevertheless, at large separations, the lensing impact of any
compact object may be approximated by that of a point mass.

The explored model can be extended also by altering the
properties of the NFW halo. On the one hand, one may change
its central properties by adding a core radius or by changing its
density divergence (Evans & Wilkinson 1998). Such changes
would alter the radii of the halo critical curves and caustics,
the reference plots in Figure 2, and the critical value κPC of
the mass parameter of the point mass. This would impact the
presented results primarily for point-mass positions close to the
halo center. Regardless of the nature of the alterations, for
sufficiently large distances the point-mass critical-curve loop
disconnects from the halo critical curves. In this distant regime
the patterns in the vicinity of the point mass will have the same
character as seen in the figures.

On the other hand, one may abandon spherical symmetry
and study the effect of a massive object embedded in a more
realistic elliptical NFW halo. The lensing properties of an NFW
halo with an elliptically symmetric mass distribution are poorly
studied due to the lack of simple analytic expressions to
describe them (Oguri 2021). Nevertheless, for low values of the
halo ellipticity, the properties can be approximated by those of
the pseudo-elliptical model, which has an elliptically sym-
metric lens potential (Golse & Kneib 2002; Meneghetti et al.
2003; Dúmet-Montoya et al. 2012). In this model the critical
curve typically consists of two nested oval loops instead of the
two circles of the spherical model. The point-like tangential
caustic of the spherical model is replaced by a four-cusped
loop, the circular radial caustic by an oval loop. In this model
one may expect an even more complex dependence of the
critical curves and caustics of the combined lens on the mass
and two-dimensional position of the point mass than in the
spherical case described in Paper I.

In the elliptical model, the unit-convergence circle, which
plays a key role in the spherical model when studying the
geometry of images, is replaced by a unit-convergence ellipse.
The grids of the plots corresponding to those in Figures 7–14
would be complicated by an additional parameter, the angular
position of the point mass with respect to the axes of the
elliptical halo. Nevertheless, the main factors driving the
patterns described in the text, such as the existence and location
of zero-shear points or the geometry of the perturbations of the
critical curve, would remain the same. The asymptotic patterns
would have the same nature as seen in the spherical model, as

mentioned above. However, they would be less symmetric and
the extent of the contours would additionally depend on the
angular position within the halo.
The presented single-point-mass results will be useful for

interpreting the properties of cluster lens models with multiple
(point) masses embedded in an NFW halo. Masses that are
sufficiently separated from the perturbed NFW halo critical
curves as well as from other masses should display similar
patterns in their vicinity, as discussed above. Each of these
masses will also produce deviation patterns near the halo
center, similar to those seen in the top left plots in Figures 8,
11, or 14. Due to the directional dependence of these patterns,
their superposition for a sufficient number of isotropically
distributed masses would drive the amplitude of the central
deviations to zero. Strong differences can be expected when
one or more of the masses are positioned close to the halo
center, or when two or more neighboring masses are mutually
separated by less than a few Einstein radii. These situations
cannot be simply extrapolated from the results presented in this
work, and their study requires direct simulations.

5. Summary

In this paper we proceeded in our study of gravitational
lensing by a compact massive object in a dark matter halo. In
Paper I we analyzed the critical curves and caustics of a lens
consisting of a point mass embedded in a spherical NFW halo.
Here we concentrated on the shear and phase of the same lens
model, focusing on their relation to the geometry of images
formed by the lens.
In Section 2.1, we described the properties of the shear and

phase of a lens consisting only of an NFW halo. In order to study
the images, we used the eigenvalue decomposition of the inverse
matrix of a general lens-equation Jacobian matrix presented in
Equation (21). Based on it, we introduced the CS diagram in the
Appendix, which illustrates concisely the connection between
arbitrary convergence and shear values and the geometry of an
image corresponding to them. Specific lens models occupy
characteristic regions in the diagram, which then define the
properties of all images that could be formed by the lens. We
described the properties of images formed by the NFW halo by
reading them off the CS diagram in Section 2.3. In Section 2.4 we
defined the weak shear and weak phase as the shear and phase
values obtained by assuming weak-lensing relations involving the
semiaxes of images and their orientation.
We followed the same outline for the NFW halo + point-

mass lens in Section 3. In particular, we derived the formula for
the shear in Equation (31), which provides a geometric
interpretation in terms of the halo and point-mass shears and
the viewing angle ω of the line segment separating them. The
formula that is valid for combinations of other axisymmetric
lenses is a special case of the more general formula in
Equation (36) for the shear of a combination of two arbitrary
lenses. For the NFW halo + point-mass lens, we discuss the
appearance and location of zero-shear points in Section 3.1 and
describe the conditions under which they form umbilic points
in Section 3.2.
Figures 7–14 illustrate the main results in terms of image-

plane maps of different lens characteristics and CS diagrams,
all presented for the same grid of point-mass parameter
combinations as the grid used in Paper I. Important features
and trends seen in the figures are described in the corresp-
onding Sections 3.5.1–3.5.8. As discussed in Section 4, the
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obtained results have broader implications beyond the specific
properties of the studied lens model.

We thank the anonymous referee for comments and
suggestions that helped improve the manuscript. Work on this
project was supported by Charles University Grant Agency
project GA UK 1000218.

Appendix
Image Geometry as a Function of Convergence and Shear

The mapping from a source to its image is described locally
by the inverse of the lens-equation Jacobian matrix. The
eigenvalue decomposition of this inverse matrix  presented in
Equation (21) shows that the full geometry of an image of a
small source, including its shape, size, and orientation with
respect to the phase, is given by the lens convergence and shear
at the position of the image. We demonstrate here the
connection between the geometry of an image and its position
in a general CS diagram.

The properties of an image appearing at position x in the
image plane can be determined from the CS diagram in
Figure 15 using the combination of the local convergence κ(x)
and shear γ(x), and the eigenvalues introduced in Equation (20)
computed from them. The eigenvalue λ∥, which defines the
scaling factor in the direction of the phase, is constant in the
diagram along straight lines with slope −1. It starts at 1 at the
origin of the plot and increases to∞ at the solid red line, which
corresponds to critical curves (tangential in the case of axially
symmetric lenses). Above it, λ∥ changes discontinuously to
−∞ , with the negative sign indicating that the image is flipped
in the direction of the phase. The value of λ∥ increases to −1
along the dashed red line, above which the flipped image is
contracted rather than expanded in the direction of the phase.
Farther beyond the top right corner of the diagram, λ∥ increases
asymptotically to 0. Overall, below the dashed red line, the
image is expanded in the direction of the phase, while above it
the image is contracted in the direction of the phase.

The scaling factor in the direction perpendicular to the phase
is defined by the eigenvalue λ⊥, which is constant in the
diagram along straight lines with slope 1. Along the dashed
blue line passing through the origin we find λ⊥= 1. Above it,
the image is contracted in the direction perpendicular to the
phase, and λ⊥ decreases asymptotically to 0 above the top left
of the diagram. Below the dashed blue line passing through the
origin, λ⊥ increases to∞ at the solid blue line, which
corresponds to critical curves (radial in the case of axially
symmetric lenses). Below it λ⊥ changes discontinuously to
–∞ , with the negative sign indicating that the image is flipped
in the direction perpendicular to the phase. The value of λ⊥
increases to −1 along the right dashed blue line, below which
the flipped image is contracted in the direction perpendicular to
the phase. Farther beyond the bottom right corner of the
diagram, λ⊥ increases asymptotically to 0. Overall, in the band
between the dashed blue lines, the image is expanded in the
direction perpendicular to the phase, while outside it the image
is contracted in the direction perpendicular to the phase.

The described scalings in the two perpendicular directions
can be combined to yield information about the orientation,
shape, and size of the image. Comparing their absolute values
for a nonzero shear, |λ∥| is larger for κ< 1 and |λ⊥| is larger
for κ> 1. Hence, the vertical solid black line at κ= 1 divides
images by the orientation of their distortion, i.e., the orientation

of the major axis of an elliptical image of a small circular
source. To the left of the line, images are oriented in the
direction j (parallel to the phase), while to the right of the line,
images are oriented in the direction j+ π/2 (perpendicular to
the phase).
The distortion of the shape can be quantified by the

flattening, computed from Equation (22). In the diagram in
Figure 15, the flattening f is constant along the straight lines
radiating from the point (κ, γ)= (1, 0), labeled by their f value
at the outer edge of the plot. The horizontal axis corresponds to
f= 0, i.e., there is no distortion for zero shear. Clockwise from
the direction to the origin of the plot, f values along the lines
increase in steps of 0.25 to 1 at the solid red line, corresponding
to maximum flattening in the direction of the phase at the
tangential critical curve. For the following lines, f decreases in
steps of 0.25 to 0 at the vertical κ= 1 line, along which there is
no distortion either. Continuing clockwise, f increases to 1 at
the solid blue line, corresponding to maximum flattening in the
direction perpendicular to the phase at the radial critical curve.
The flattening along the following lines decreases back to 0
along the horizontal axis.
The change in size of the image is given by the absolute

value of the product of the two scale factors. Because they are
eigenvalues of , their product is equal to its determinant,

( ) ( ) ( ) {[ ( )] ( )} ( )l l k g= = - -^
-x x x x xdet 1 , A12 2 1



which is the inverse of the Jacobian ( )xJdet from Equation (19).
For an image at x, the sign of ( )xdet yields the parity, and its
absolute value ∣ ( )∣xdet yields the (point-source) magnification,
the ratio of solid angles subtended by the image and by the source.
The values of det are indicated by the purple-labeled hyperbolic
contours and the color map in Figure 15. Shades of pink above the
critical-curve lines indicate negative det , i.e., all images here are
mirror images with negative parity. Positive-parity images lie in
the green regions below the critical-curve lines.
The origin of the diagram with zero convergence and shear has

unit magnification and positive parity,  =det 1. Proceeding
from the origin, contours are plotted for magnifications increasing
in powers of two, corresponding to  { }Îdet 2, 4, 8, 16 . Along
the solid red and solid blue lines the magnification is infinite;
above them the sign of det flips to negative. Going upward
from the critical-curve lines, the magnifications along the plotted
hyperbolae decrease in powers of two, corresponding to

 { }Î - - - - - -det 16, 8, 4, 2, 1, 0.5 . The bold black
hyperbola passing through the point (κ, γ)= (1, 1) thus
corresponds to unit magnification. All images above it are
demagnified. Below the solid blue radial-critical-curve line, the
sign of det flips back to positive. Proceeding from it to
the right, contours are plotted for  { }Îdet 16, 8, 4, 2, 1, 0.5 .
The bold black hyperbola passing through the point (κ, γ)= (2, 0)
thus also corresponds to unit magnification. All images to its right
are demagnified.
Note that the values of λ∥ along diagonal lines with slope

−1 are equal to the value of det at their intersection with the
dashed blue line starting from the origin. The values of λ⊥
along diagonal lines with slope 1 are equal to -det at their
intersection with the dashed red line.
The two perpendicular lines in the diagram corresponding to

undistorted images differ by the sign of det . Images along the
horizontal axis (with γ= 0) have positive parity; they are
magnified for κ< 2 and demagnified for κ> 2. Images along
the vertical bold line (with κ= 1) are mirror images with
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negative parity; they are magnified for γ< 1 and demagnified
for γ> 1. Clearly, the point (κ, γ)= (1, 0) lying at the
intersection of these lines has special significance. At this point,
the entire Jacobian matrix given by Equation (18) is equal to
zero, and its inverse  is thus undefined. If such points exist in
the image plane of a gravitational lens, they define the position
of critical-curve umbilic points (Schneider et al. 1992; Paper I).
The properties of images in their vicinity depend on higher-
order derivatives of the lens equation.

The structure of the CS diagram shows that in the general
noncritical case, there are four different (κ, γ) combinations
that lead to the same combination of ( ∣ ∣)f , det , i.e., an image
of the same shape and size. Two of these have positive and two
have negative parity, as illustrated in Figure 3. In the case of
zero flattening, there are three different (κ, γ) combinations
with only one negative-parity image.

For any specific gravitational lens, the range of (κ(x), γ(x))
combinations occurring in its image plane defines a region in
the diagram that demonstrates the properties of all possible
images formed by the lens. For a lens with an axially
symmetric mass distribution the region is one dimensional,
described by the curve ( ( ) ( ))k gx x, with the radial position x
varying from 0 to∞. For a spherical NFW halo, this case is
described in Section 2.3 and illustrated in Figure 4; for an NFW
halo with a centrally positioned point mass, see the bottom row
of Figure 9. For more asymmetric lenses with a (nonconstant)
continuous mass distribution, the region in the diagram is two-
dimensional, as shown for the spherical NFW halo with an off-
center point mass in Figures 6 and 9 (except the bottom row).

For lenses consisting of point masses without continuous
matter (e.g., stars and stellar systems in Galactic microlensing),
the corresponding one-dimensional region is the κ= 0 vertical
axis, with γ→∞ at the positions of the masses and γ→ 0 far

from them. For quasar microlensing, in which point masses are
combined with a constant background convergence κ0 and
shear γ0, the one-dimensional region lies along the κ= κ0
vertical line. Finally, the regime of weak lensing with κ= 1
and γ= 1 is confined to the vicinity of the origin of the
diagram in Figure 15.
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specifically to umbilic points. Unit absolute values of the eigenvalues of  occur along the dashed diagonals: λ∥ = −1 (red); λ⊥ = 1 (blue from origin); λ⊥ = −1
(blue from κ = 2). For κ < 1, images are elongated in the direction of the phase; for κ > 1 perpendicular to the phase. For more details, see the Appendix.
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