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We provide an explicit, closed, and compact expression for the Debye superpotential of a circular source.
This superpotential is obtained by integrating the Green’s function of the Teukolsky Master Equation
(TME). The Debye potential itself is then, for a particular configuration, calculated in the same manner as
the φ0 field component is calculated from the Green’s function of the TME—by convolution of the Green’s
function with sources. This way, we provide an exact field of charged ring and circular current on the Kerr
background, finalizing thus the work of Linet.
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I. INTRODUCTION

The test electromagnetic fields on a rotating black hole—
a Kerr black hole [1]—background are of perpetual interest
for their astrophysical importance; for an overview, see
Ref. [2]. Fields of stationary and axisymmetric charge/
current configurations attract our attention for the fact that
they can represent (simplified) models of electromagnetic
fields generated by accretion disks.
Yet, the task to solve Maxwell’s equations on a Kerr

background is highly nontrivial.
The most fruitful approach is a special tetrad formulation

based on null tetrad—Newman-Penrose (NP) formalism [3]
and its refinement Geroch-Held-Penrose (GHP) formalism
[4]. Then, the Maxwell field equations (ME) are four
coupled first-order partial differential equations for com-
plex scalars φ0;φ1, and φ2.
Because of the special algebraic properties of type D

spacetimes—of which the Kerr solution is a prominent
member—the Maxwell equations can be decoupled and
cast in three second-order partial differential equations for
respective NP field components. Equations for φ0 and φ2

(so-called TMEs) were found in 1972 by Teukolsky [5,6],
while the equation for φ1 was found by Fackerell and Ipser
in 1971 [7] and elaborated recently in Ref. [8]. In fact, the
TMEs have been extensively studied as they govern the
behaviour of a test field of arbitrary spin.
The TMEs allow us to seek a solution by the method of

separation of variables and therefore are widely used.
Whether or not the NP scalars are components of the same

field (we have decoupled equations) is answered by the
Teukolsky-Starobinsky identities [9–11].
The task of finding an electromagnetic field of charged

ring or circular current has been pursued by many relativist
during the 1960s and 1970s in a progressively more general
setting [12–17]. The very first attempts started with a
classical 4-potential formulation, but soon the NP approach
attracted more attention. TMEs are separable; thus, it is
easy to find a solution of φ0;φ2 corresponding to a given
source in a form of infinite series. Then, the remaining NP
component φ1 has to be solved from ME directly.
Yet another general approach for solving test fields of

arbitrary spin on type D backgrounds is to introduce the
Debye potentials. A single complex scalar function (the only
independent component of Hertz potential in a particular
gauge) is enough to describe the whole test field. This
approach has been introduced in the realms of general
relativity by Cohen and Kegeles [18,19], later elaborated
in Refs. [20,21], and recently developed and explained in
terms of fundamental spinor operators by Aksteiner et al. in
Refs. [22,23].
The Debye potentials were used by Linet in 1979 [24] for

construction of the electromagnetic field of a stationary
axisymmetric field on Kerr background—the theory was
established 43 years ago, but no explicit results were given.
One is not surprised because already the simplest possible
textbook example—a current loop in flat spacetime—is
nontrivial since it contains elliptic integrals. This is where
we are going to proceed further.
The paper is organized as follows.Webriefly introduce the

Kerr metric and the Kinnersley tetrad in Sec. II to set up the
background. The spin coefficients are for the sake of brevity
listed inAppendix B. For the same reason, the congruence of
zero angular momentum (ZAMO) observers, which we will
later use for splitting the electromagnetic field into the
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electric E ¼ u · F and magnetic B ¼ u · ⋆F field, is intro-
duced inAppendixC.And the elliptic integrals are defined in
Appendix D.
We shortly introduce the TMEs in Sec. III and the Debye

potentials in Sec. IV. A very short introduction of NP and
GHP formalism can be found inAppendixA. These standard
methods are in details covered in Refs. [3,4,22,25].
In Sec. V, we shortly recall the results derived by Linet

[24,26]. He cast the TMEs under the assumptions of
stationarity and axisymmetry into the form of generalized
Laplace equations and provided Green’s functions. He has
also shown how to obtain the Debye potential for such
fields—using the generalized axially symmetric potential
(GASP) theory. It is easy to obtain the values of potential
(which is a solution of the Laplace equation) on the axis;
then, the solution on the whole space is defined as a
particular integral.
In Sec. VI, we present the analytic solution of the Debye

potential (which we call the superpotential). This super-
potential gives rise to a field with φ0 given by the Green’s
function of the Teukolsky operator. We discuss the structure
of discontinuities which we found in this superpotential and
their significance. The importance of this result is clear: a
closed compact analytical formula seems to be much better
than an infinite series expansion (which is difficult to treat
numerically close to the radius at which the source is
located).
In Sec. VI A, we discuss the properties and charge

induced by this superpotential on the Kerr black hole.
Sections VI B and VI C are devoted to presentation of
realistic physical fields of given sources: a charged ring or a
current loop. We numerically check our results against the
series expansion solutions presented in Ref. [17]. Again,
for the sake of compactness, the reader is asked to refer to
this paper for particular coefficients of the series.

II. KERR BLACK HOLE

One of the most fundamental solutions of the vacuum
Einstein field equations—the rotating black hole—was
discovered in 1963 by Roy Kerr [1]. Recent historical
reviews can be found in Refs. [27,28].
We adopt the signature convention ð−;þ;þ;þÞ, and

then the metric itself in Boyer-Lindquist coordinates reads

ds2 ¼ −
Δ
Σ
ðdt − asin2θ dφÞ2 þ Σ

Δ
dr2

þ Σdθ2 þ sin2θ
Σ

ðða2 þ r2Þdφ − adtÞ2; ð1Þ

with the standard definitions

Δ ¼ r2 − 2Mrþ a2 ¼ ðr − rpÞðr − rmÞ; ð2Þ

Σ ¼ ρρ̄ ¼ r2 þ a2cos2θ ð3Þ

ρ ¼ r − ia cos θ: ð4Þ

The parameters have the following meaning:M is the mass
of the black hole, Ma is its angular momentum, rp is the
position of outer black hole horizon, and rm is the position
of inner black hole horizon. We will also frequently use
parameter β, which we define as1

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
¼ ðrp − rmÞ=2: ð5Þ

The Kinnersley NP2 tetrad ðl;m; m̄; nÞ adapted to the
principal null directions of the Weyl tensor reads as
follows:

l ¼ 1ffiffiffi
2

p
Δ
½ðr2 þ a2Þ∂t þ Δ∂r þ a∂φ�;

n ¼ 1ffiffiffi
2

p
Σ
½ðr2 þ a2Þ∂t − Δ∂r þ a∂φ�;

m ¼ 1ffiffiffi
2

p
ρ̄
ðia sin θ∂t þ ∂θ þ i csc θ∂φÞ: ð6Þ

Total electric charge Qe and magnetic charge Qm can
be calculated by integrating 2-form3 F� ¼ F − i⋆F over
a closed 2-surface. This yields

iQe −Qm ¼ 1

4π

I
F�: ð7Þ

After standard reconstruction of F� from the NP compo-
nents and the NP tetrad, we get for surfaces of constant t
and r the following form of the Gauss law:

iQe −Qm ¼ 1

2

Z
π

0

−ρ a sin2θ φ2

− 2i sin θðr2 þ a2Þφ1 þ
aΔsin2θ

ρ
φ0 dθ; ð8Þ

where we already anticipated axial symmetry.
We will also employ the Weyl coordinates, which are

introduced as4

z ¼ 1=2Δ0ðrÞ cos θ; ϱ ¼
ffiffiffiffi
Δ

p
sin θ: ð9Þ

1Out of parameters rp; rm;M; a; β, only two are independent.
2Notice the boost given by

ffiffiffi
2

p
in contrast to standard textbook

form. This makes the resulting expressions in terms of the Debye
potentials to appear “more symmetrical.”

3The Hodge dual of a 2-form is defined as ð⋆FÞab ¼
1
2
ϵabcdFcd, where ϵ is a volume element.
4Notice, that prime is either GHP operation (when connected

with spin coefficients or directional derivative operator) or
standard notation for integrating parameters or it denotes differ-
entiation with respect to r coordinate. We believe that its meaning
is clear from the context.
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III. TEUKOLSKY MASTER EQUATION

Let uswrite downTME [5] forφ0 in theGHP formalismas

½ðþ − ϱ̄ − 2ϱÞðþ0 − ϱ0Þ − ðð − τ̄0 − 2τÞðð0 − τ0Þ�φ0 ¼ J0;

ð10Þ

where the sources are encoded in J0, which is given in terms
of projections of the 4-current onto the null tetrad as

J0 ¼ ðð − 2τ − τ̄0ÞJl − ðþ − 2ϱ − ϱ̄ÞJm: ð11Þ

Once the Green’s function G is known, the field of
particular sources is then given by convolution of this
Green’s function G with the particular source terms J0
[26] as

φ0 ¼
Z

∞

0

Z
π

0

Gðr; θ; r0; θ0ÞJ0ðr0; θ0; r0; θ0Þ

× Σðr0; θ0Þ sin θ0dr0dθ0: ð12Þ

The Green’s function of the Teukolsky operator [the one
on the lhs of Eq. (10)] is easy to integrate and will be
provided explicitly in the next section.
To know the whole electromagnetic field, one has to seek

for φ1 as well. And this task is considerably more difficult.
We can either (a) directly solve the ME in NP formalism,
which are presented in Appendix E in a simplified version
for stationary and axially symmetric field, or (b) use the
Debye potentials for the electromagnetic field. We will
pursue the latter approach in Sec. VI.

IV. DEBYE POTENTIAL

There exist three distinct possibilities of how to choose
the Debye potential for the electromagnetic field. We
adhere to the most common one: a complex GHP scalar
function ψ̄ of GHP weight ½0;−2� which solves the Debye
equation. This equation in GHP formalism can be written as

½ðþ0 − ϱ0Þðþþ ϱ̄Þ − ðð − τÞðð0 þ τ̄Þ�ψ̄ ¼ 0: ð13Þ

The Debye potential then gives rise to the solution of
Maxwell equations. For stationary axisymmetric fields, we
have

φ0 ¼
1

2

∂
2ψ̄

∂r2
; ð14Þ

φ1 ¼
1

2 sin θ
∂
2

∂r∂θ

�
sin θψ̄
ρ

�
− i

a sin θ
ρ3

ψ̄ ; ð15Þ

φ2 ¼ −
Δ
ρ2

φ0; ð16Þ

where Eq. (16) results from axisymmetry and stationarity.

Let us just shortly comment on another possibilities in
choosing the Debye potential. Using the Debye potential
with GHP weights [0, 0] does not lead to the Laplace
equation and thus is not suitable for our purposes, whereas
using the one with GHP weights [0, 2] under the assump-
tions of stationarity and axisymmetry does not lead to
anything new. We can prove that if ψ̄ ½0;−2� solves the Debye
equation (13) then χ̄½0;2� ¼ −ρ̄2Δ−1ψ̄ ½0;−2� solves the corre-
sponding equation for this Debye potential and, moreover,
it gives rise to exactly the same field.

V. GENERALIZED AXIALLY SYMMETRICAL
POTENTIAL THEORY

It is straightforward to get the Green’s function of TME
for φ0, φ2 since TME reduces to the Laplace equation in a
fiducial flat space of dimension 2sþ 3 (where s is the spin
weight of the particular NP field component) under the
assumptions of axial symmetry and stationarity. This has
been done by Linet in Refs. [24,26]. The generalized
Laplace equation is

Δsg ¼
1

ϱ
δðϱ − ϱ0Þδðz − z0Þ; ð17Þ

where the Laplace operator Δs is defined as

Δs ≡ ∂
2

∂z2
þ ∂

2

∂ϱ2
þ 1þ 2s

ϱ

∂

∂ϱ
: ð18Þ

Using GASP, Linet has provided the Green’s function of
Eq. (17) in terms of the integral for general s. In our case,
when s ¼ 1, we have

g ¼ ϱ20
2π

Z
π

0

sin2α

ðϱ2 − 2ϱϱ0 cos αþ ϱ20 þ ðz − z0Þ2Þ3=2
dα: ð19Þ

The Debye equation (13) can also be transformed to the
Laplace equation. Yet, for DE, we no longer seek for the
Green’s function. We need to find the Debye potential
(which we call superpotential in this case and denote Ψ) of
this Green’s function. It is given by twice integrating
Eq. (14) with φ0 ¼ G.
Let us introduce function Ξr, which is the Debye

superpotential rescaled and cast in Weyl coordinates

Ψrðr; θÞ ¼ sin θΔðrÞΞrðϱ; zÞ: ð20Þ

The Debye equation transformed to the Weyl coordinates
takes the form of generalized Laplace equation

Δ1Ξr ¼ 0: ð21Þ

In the Weyl coordinates, Linet [24] obtained by simple
integration values of the function Ξr on the axis of the
symmetry
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Ξrð0; zÞ ¼
π

sin θ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − z0Þ2 þ ϱ20
p

z2 − β2
: ð22Þ

A general theorem ensures that the solution of Laplace
equation is in the axisymmetric case completely determined
by its values on the axis. From GASP, it thus follows that
the superpotential is obtained by integration

Ξrðϱ; zÞ ¼
2

π

Z
π

0

Ξrð0; zþ iϱ cos αÞsin2α dα

¼ 2

sin θ0

Z
π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ20 þ ðzþ iϱ cos α − z0Þ2

p
ðzþ iϱ cos αÞ2 − β2

sin2α dα:

ð23Þ

So far, these are the results of Linet [24,26].

VI. EXACT INTEGRALS

The integration of the Debye superpotential, Eq. (23),
is long and involves several steps of simplification and
extensive use of identities involving elliptic integrals.
Therefore, we present only the results and discuss the
properties of the solution.
Although the φ0 component does not carry any infor-

mation about the monopole contribution of the central
black hole, the Debye superpotential can contain a monop-
ole term; it arises during integration as an integration
constant. Thus, the proper value of the monopole on the
central black hole has to be evaluated later.

Let us introduce

hðz0; ϱ0Þ ¼ z − z0 þ iðϱ − ϱ0Þ; ð24Þ

dðz0; ϱ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz0; ϱ0Þh̄ðz0; ϱ0Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − z0Þ2 þ ðϱ − ϱ0Þ2

q
; ð25Þ

we may think of h as being a vector in the complex plane
connecting points ðz; ϱÞ and ðz0; ϱ0Þ; then, d is its norm.
The common form of elliptic modulus for circular

sources is

m ¼ 4ϱϱ0
ðz − z0Þ2 þ ðϱþ ϱ0Þ2

: ð26Þ

However, our results will be given also in terms of
complementary modulus m0 ¼ 1 −m and reciprocal com-
plementary modulus μ0 ¼ 1=m0, explicitly

μ0ðϱ0Þ ¼ 1þ 4ϱϱ0
ðz − z0Þ2 þ ðϱ − ϱ0Þ2

; ð27Þ

m0ðϱ0Þ ¼ μ0ð−ϱ0Þ: ð28Þ

Let us express our desired solution Ξr of the Laplace’s
equation in terms of an auxiliary function f, which is
defined as follows:

fðϱ0Þ ¼
1

ϱ2dðz0; ϱ0Þ
�
−idðz0; ϱ0Þ2Eðμ0Þ þ 2ϱ0ð4z − hðz0; ϱ0ÞÞKðμ0Þ − 4ðzþ z0Þϱ0Π

�
hðz0;−ϱ0Þ
hðz0; ϱ0Þ

����μ0
�

þ 2ϱ0dðβ; 0Þ2
β

Π
�ðz0 − β − iϱ0Þh̄ðz0;−ϱ0Þ

ðz0 − β þ iϱ0Þh̄ðz0; ϱ0Þ

����μ0
�
−
2ϱ0dð−β; 0Þ2

β
Π
�ðz0 þ β − iϱ0Þh̄ðz0;−ϱ0Þ

ðz0 þ β þ iϱ0Þh̄ðz0; ϱ0Þ

����μ0
��

: ð29Þ

Then, the Debye superpotential for the circular sources
Ξr reads [mirror symmetry Πðn;mÞ ¼ Πðn̄; m̄Þ is used]

Ξr ¼
1

sin θ0
ðfðϱ0Þ þ f̄ð−ϱ0ÞÞ: ð30Þ

It is clearly a real function and has an interesting structure
of discontinuities as can be seen from the contour plot in
Fig. 1. Two of these three discontinuities will be dealt
with soon.
The existence of these discontinuities arises naturally

from the behavior of elliptic integrals of the third kind
Πðn;mÞ. Seen as a function of complex n, it has a branch
cut on the interval ð1;∞Þ. When the elliptic characteristic n
crosses the real line for n > 1, it thus has a step

(a) (b)
0 1 2 3 4 5 6 0 1 2 3 4 5 6

0

1

–1

–2

–3

2

3

0

1

–1

–2

–3

2

3

FIG. 1. The contour plot of the Debye superpotential Ξr in the
Weyl coordinates (ϱ, z). Discontinuities are present along the
thick blue lines, γn; γi; γs, and they divide the space into three
different regions whose characteristic function are Θn;Θi;Θs
(northern, inner, and southern regions). The outer horizon of the
black hole stretches on the z axis from −β to β.
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lim
ϵ→þ0

Πðn − iϵjmÞ ¼ ΠðnjmÞ; ð31Þ

lim
ϵ→þ0

Πðnþ iϵjmÞ ¼ ΠðnjmÞ þ πffiffiffiffiffiffiffiffiffiffiffi
1 − n

p ffiffiffiffiffiffiffiffiffiffiffi
1 − m

n

p : ð32Þ

In our case, the discontinuities are located—in the Weyl
coordinates—at two arcs connecting the north pole and
south pole of the black hole with the source (curves γn and
γs) and a line from the source to infinity (curve γi).
The respective circles have centers ð0; zjÞ and radii Rj,

where

zn ¼ 1

2

z20 þ ϱ20 − β2

z0 − β
; Rn ¼ 1

2

ðz0 − βÞ2 þ ϱ20
z0 − β

;

zs ¼
1

2

z20 þ ϱ20 − β2

z0 þ β
; Rs ¼

1

2

ðz0 þ βÞ2 þ ϱ20
z0 þ β

: ð33Þ

We also define

rn ¼ ϱ2 þ ðz − znÞ2 − R2
n;

rs ¼ ϱ2 þ ðz − zsÞ2 − R2
s ; ð34Þ

for the purpose of the definition of region functions.
TheWeyl plane is divided into the north, inner, and south

regions with the region functions defined as

Θn ¼ Θðþz − z0Þ þ signðz0 − βÞΘð−rnÞΘ½−ðz − z0Þsignðz0 − βÞ�;

Θi ¼
�Θð−signðzs þ βÞrsÞΘðsignðzn − βÞrnÞ; for jznj > βorjzsj > β

Θð−rnÞ þ Θð−rsÞ − Θð−signðzs þ βÞrsÞΘðsignðzn − βÞrnÞ; otherwise

Θs ¼ Θð−zþ z0Þ − signðz0 þ βÞΘð−rsÞΘ½−ðz − z0Þsignðz0 þ βÞ�; ð35Þ

where ΘðxÞ stands for the Heaviside step function, see Fig. 2.
We have realized that the discontinuities across the lines γn; γi; γs corresponds to a contribution of the Debye potential of

monopole in one part and zero in the other in the sense that

½Ξr�jγj ¼ Ξjjγj ; ð36Þ

for j ∈ fn; i; sg, where ½fðxÞ� represents the jump. Thus, we may get rid of the discontinuities across the lines γn and γs by
adding an appropriate monopole term in the respective regions as

FIG. 2. Diagram showing different possibilities of the location
of discontinuities depending on the mutual position of the
horizon and the source in Weyl coordinates. The shape of inner
region has nontrivial algebraic expression. The black hole
horizon stretches on vertical axis from −1 to 1, and the location
of the ring is denoted by a point. Wherever possiblecome the
centers of the circles are also shown (dots on the axis).

FIG. 3. The contour plot of the Debye superpotential (a) Ξ in
Weyl coordinates (ϱ, z) and (b) Ψ in Boyer-Lindquist coordinates
ðr; θÞ. Discontinuity is still present along the line γi—thick blue
line. The white regions are merely a cutoff of the values.
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Ξ ¼ Ξr −
4iπ
sin θ0

ðβ þ iaÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz0 − βÞ2 þ ϱ20
p

β
ΞnΘn

þ 4iπ
sin θ0

ðβ − iaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 þ βÞ2 þ ϱ20

p
β

ΞsΘs; ð37Þ

where the normalized—corresponding to unit charge—
Debye potentials of the monopole read

Ξn ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − βÞ2 þ ϱ2

p
2ðβ þ iaÞϱ2 ; ð38Þ

Ξi ¼ −i
zþ z0

ðrp þ rmÞϱ2
; ð39Þ

Ξs ¼ þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ βÞ2 þ ϱ2

p
2ðβ − iaÞϱ2 : ð40Þ

The Debye superpotential Ξ remains real.
Actually, the discontinuity can be removed across

arbitrary two of these three lines by analytical continuation,
yet it has to remain present on the third one. It has to be
stressed that it is necessary to remove two of these three
discontinuities; if this is not done, then the electromagnetic
field component φ1 generated from this superpotential is
discontinuous (due to the presence of different monopole
contributions).
The remaining discontinuity is caused by a ramification

of a multivalued function. Yet, it can be also seen as a
presence of distributional sources on the right-hand side of
the Laplace equation, and we have decided to have these
sources along γi.
The function Ξ is finally sufficiently smooth across γn

and γs, but the discontinuity across γi is still present.
The Debye superpotential is

Ψ ¼ sin θΔðrÞΞðr; θÞ; ð41Þ

where Ξðϱ; zÞ given by Eq. (37) has to be transformed from
Weyl coordinates to Boyer-Lindquist coordinates. The
contour plot of Ξ and Ψ is in Fig. 3.
For stationary axisymmetric sources, we may write

J ¼ j0∂t þ j3∂φ; ð42Þ

where j0 and j3 are functions of r and θ only.
Simplified expression for the sources of TME reads as

J0 ¼
1

2ρΣ

�
−

∂

∂θ
ðρ2j0Þ þ ia sin θ

∂

∂r
ðρ2j0Þ

×
∂

∂θ
ðasin2θρ2j3Þ − i

∂

∂r
ðða2 þ r2Þ sin θρ2j3Þ

�
; ð43Þ

and the Debye potential is given by convolution of the
Debye superpotential with sources as

ψ̄ ¼
Z

π

0

Z
∞

0

Ψðr; θ; r0; θ0ÞJ0ðr0; θ0; r0; θ0Þ

× Σðr0; θ0Þ sin θ0dr0dθ0: ð44Þ

We can also explicitly integrate the Green’s functionG of
the Teukolsky operator, which is

G ¼ sin θ
sin θ0

g; ð45Þ

g¼dðz0;−ϱ0Þ
ϱ2

�
−EðmÞþ

�
1þ 2ϱ0ϱ

dðz0;−ϱ0Þ2
�
KðmÞ

�
: ð46Þ

The functionG solves TME, and for g, we have Δ1g ¼ 0. It
can be checked that

G ¼ 1

2

∂
2Ψ
∂r2

; ð47Þ

which is a consistency check following from the definition
of the superpotential.
Let us also note that the position of discontinuities

discussed so far is “natural” in the sense that it is defined
by the branch cuts of respective elliptic integrals of the third
kind. These discontinuities are merely mathematical diffi-
culties (see AppendixG for details), and the fields of realistic
physical sources are well behaved, as we will see later.
But we are allowed to move these discontinuities

wherever is desired by analytical continuation and taking
a new branch cut. Thus, they can be moved to line r ¼ r0
on Boyer-Lindquist coordinates (which is an ellipse in
Weyl coordinates). The reason we make this short comment
is to draw a clear theoretical connection to the series
expansion approach. In Ref. [17], the field is given by
different series expansions in regions r < r0 and r > r0,

φ0 ¼ 2
X∞
l¼1

al
lðlþ 1Þ 1Yl0

d2yð1Þl0

dx2
;

yð1Þl0 ¼ xðx − 1ÞFðlþ 2; 1 − l; 2; xÞ; for r < r0; ð48Þ

φ0 ¼ 2
X∞
l¼1

bl
lðlþ 1Þ 1Yl0

d2yð2Þl0

dx2
;

yð2Þl0 ¼ ð−xÞlFðl; 1þ l; 2lþ 2; xÞ; for r > r0; ð49Þ

where x ¼ r−rm
rp−rm

. Thus, this is almost ready to be twice

integrated along r to obtain the series expansion of the
Debye potential. As discussed in Ref. [17], for φ1, a
different monopole term has to be added in regions r <
r0 and r > r0, so the discontinuity is present also in this
formulation. In Fig. 4, other possible locations are dis-
continuities are visualized. The respective formulas are
postponed to Appendix F.
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We do not integrate the series expansion of the Debye
potential since we already have found an exact closed
solution. For particular sources, we have numerically
checked the validity of our results.

A. Debye superpotential

The Debye superpotential is itself a Debye potential for
some electromagnetic field. What will be the electric and
magnetic charge induced on the black hole? Recall that the
charge within a topological sphere is given by the Gauss
law—Eq. (8). Using Eq. (16), this simplifies to

iQe −Qm ¼
Z

π

0

−i sin θðr2 þ a2Þφ1 þ
aΔsin2θ

ρ
φ0 dθ;

ð50Þ

which we would like to evaluate on the horizon.
First of all, we may express the electromagnetic field in

terms of the Debye superpotential φ½Ψr�. The behavior of
Ψr on the horizon5 is of the form

Ψr ¼ 0þ SðθÞðr − rpÞ þOððr − rpÞ2Þ: ð51Þ

In particular, we have

Ψr ≐ 0− π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Δðr0Þsin2θ0 þ ð−2β cosθþ cosθ0Δ0ðr0ÞÞ2

p
β sinθ sinθ0

× ðr− rpÞ þ… ð52Þ

Evaluating the flux on the horizon and simplifying the
expressions yield a simple result, which can be explicitly
integrated,

iQe −Qm ¼
Z

π

0

−irpðrp þ rmÞ
∂

∂θ

�
sin θ∂rΨr

ρðrp; θÞ
�
dθ

¼ −irpðrp þ rmÞ
�
sin θSðθÞ
ρðrp; θÞ

�
π

θ¼0

: ð53Þ

Thus, the total charge upon the black hole is6

Qr ¼ iQe −Qm ¼ −i
π

β sinθ0

�
ϱðrp;θÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Δðr0Þsin2θ0 þ ð−2β cosθþ cosθ0Δ0ðr0ÞÞ2

q �
π

θ¼0

:

ð54Þ

B. Charged ring

Let us consider the source of static charged ring in the
form of Eq. (42) with

j0 ¼ ĵ0ðr0; θ0Þ
δðr − r0Þ
Σðr0; θ0Þ

δðθ − θ0Þ
sin θ0

; j3 ¼ 0: ð55Þ

Then, the convolution of the sources with the superpoten-
tial as in the Eq. (44) leads to the Debye potential of the
charged ring

ψ̄ ring ¼ ĵ0ðr0; θ0Þ
2ρðr0; θ0Þ

�
cot θ0 þ

∂

∂θ0
− ia sin θ0

∂

∂r0

�
Ψ: ð56Þ

From this Debye potential, the electromagnetic field is
easily reconstructed by differentiation. Hence, we have

φ0 ¼ φ0½ψ̄ ring�;
φ1 ¼ φ1½ψ̄ ring� þ

ering
ρ2

;

φ2 ¼ φ2½ψ̄ ring�; ð57Þ
where the value of the charge ering counterbalances the
charge induced on the black hole by the presence of the
ring. It is given by the same operator as in Eq. (56), i.e.,

ering ¼ ĵ0ðr0; θ0Þ
2ρðr0; θ0Þ

�
cot θ0 þ

∂

∂θ0
− ia sin θ0

∂

∂r0

�
Qr: ð58Þ

The integral lines of electric and magnetic field of a
charged ring hovering above the equatorial plane on the
Kerr background which would have been measured by
congruence of ZAMO observers are visualized in Fig. 5.
We have numerically compared the values of φ0 with the

results given in Ref. [17] as an infinite series expansion,
and the results are identical (modulo normalization fac-
tor

ffiffiffi
2

p
π).

FIG. 4. The contour plot of the Debye superpotential Ξj, j ∈
ð0; 1; 2Þ in Weyl coordinates with different positions of disconti-
nuities. In (c), we can see the discontinuities corresponding to the
series expansion case. The exact formulas can be found in
Appendix F.

5Keep in mind that during the “regularization” of the Debye
superpotential in Eq. (37) no charge has been added on the black
hole. 6Notice that ρðr; 0Þρðr; πÞ ¼ r2 þ rprm.
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C. Current loop

Let the source of the electromagnetic field be an axially
symmetric current loop defined as

j0 ¼ 0; j3 ¼ ĵ3ðr0; θ0Þ
δðr − r0Þ
Σðr0; θ0Þ

δðθ − θ0Þ
sin θ0

: ð59Þ

Evaluating the Eq. (12) leads to the Debye potential of the
current loop

ψ̄current ¼ ĵ3ðr0; θ0Þ
sin θ0

2ρðr0; θ0Þ

×

�
−ir0 − a sin θ0

∂

∂θ0
þ iðr20 þ a2Þ ∂

∂r0

�
Ψ:

ð60Þ

Again, the results are in agreement with Ref. [17] if we set
the normalization constant ĵ3¼ 2

ffiffiffi
2

p
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðr0Þ=ϒðr0;π=2Þ

p
(in Ref. [17], the ring is only in equatorial plane).

The field can be reconstructed from the NP projections

φ0 ¼ φ0½ψ̄current�;
φ1 ¼ φ1½ψ̄current� þ

ecurrent
ρ2

;

φ2 ¼ φ2½ψ̄current�; ð61Þ

where the monopole charge ecurrent has to be set to

ecurrent ¼ ĵ3ðr0; θ0Þ
sin θ0

2ρðr0; θ0Þ

×

�
−ir0 − a sin θ0

∂

∂θ0
þ iðr20 þ a2Þ ∂

∂r0

�
Qr;

ð62Þ

if we want the black hole to be uncharged.
The integral lines of the electric and magnetic fields

which would have been measured by congruence of ZAMO
observers are visualized in Fig. 6.

FIG. 6. Integral curves of the electric and the magnetic field
around the current loop (depicted by black dot) above the black
hole as measured by ZAMO in the ðr; θÞ plane. The rotational
axis is horizontal and the parameters are rp ¼ 2, rm ¼ 1.999,
r0 ¼ 4, and θ0 ¼ π=3.

FIG. 5. Integral curves of the electricE and the magnetic B field
of a charged ring (depicted by black dot) above the black hole as
measured by ZAMO in the ðr; θÞ plane. Due to the almost
extremal rotation of the black hole the Meissner effect as well as
the presence of both electric and magnetic field can be observed.
The rotation axis is horizontal, and the parameters are rp ¼ 2,
rm ¼ 1.999, r0 ¼ 4, and θ0 ¼ π=3.
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VII. CONCLUSIONS

We provided a compact and closed form of the electro-
magnetic Debye superpotential for circular sources on the
Kerr background. This superpotential is not unique, as the
necessary discontinuities can be moved to any line con-
necting the source to infinity/axis if viewed as a one-valued
function after ramification. Therefore, also the distribu-
tional sources of the Debye potential are not unique;
however, these have no physical meaning.
Having this superpotential at hand, we discussed the

field of the charged ring and the circular current loop; these
results have been known only in terms of series expansion
so far.
We demonstrated that our results are in agreement with

previous results obtained in a form of series.
The field of charged ring and of circular current loop

can be considered as elementary building blocks for more
complicated and astrophysically interesting axially sym-
metric stationary configurations—e.g., (slowly) accreting
disks around rotating black holes. These can be obtained
from our results by numerical integration.
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APPENDIX A: NP AND GHP FORMALISM

In the NP formalism [3], quantities describing spacetime
geometry and field equations are expressed in terms of
scalars obtained as their projections onto the null tetrad
ðl;m; m̄; nÞ. The tetrad is determined by demanding that the
only nonvanishing scalar products are lana ¼ −mam̄a ¼
−1 [in our adopted signature convention ð−;þ;þ;þÞ]. The
freedom in its choice is given by the Lorentz group, which
naturally splits into four groups: null rotations around fixed
l, null rotations around fixed n, boosts in ðl; nÞ plane, and
rotations in ðm; m̄Þ plane. The metric is reconstructed as
gab ¼ −2lðanbÞ þ 2mðam̄bÞ. And the connection is encoded
in 12 complex spin coefficients.
The directional derivatives associated with the null tetrad

are defined as

D≡ la∇a; δ≡ma∇a;

Δ≡ na∇a; δ̄≡ m̄a∇a: ðA1Þ

The discrete “prime” transformation which interchanges
the null basis vectors as

l↔
0
n; m↔

0
m̄ ðA2Þ

allows us to reduce the number of greek letters needed for
spin coefficients, and it is common to use ðκ; σ; ϱ; τ; β; ϵÞ
and their primed counterparts ðκ0 ¼ −ν; σ0 ¼ −λ; ϱ0 ¼ −μ;
τ0 ¼ −π; β0 ¼ −α; ϵ0 ¼ −γÞ. These spin coefficients are
defined as

κ ¼ −maDla; σ ¼ −maδla;

ϱ ¼ −maδ̄la; τ ¼ −maΔla; ðA3Þ

and

β ¼ þ 1

2
ðnaδla − m̄aδmaÞ;

ϵ ¼ −
1

2
ðnaDla − m̄aDmaÞ: ðA4Þ

The primed counterparts are obtained by prime operation,
which was defined in (A2).
In GHP formalism [4], the real null directions l and n are

fixed, and the freedom of the tetrad is restricted to boosts in
the ðl; nÞ plane and rotations in the ðm; m̄Þ plane, which can
be written explicitly as7

la → λλ̄la; na → λ−1λ̄−1na;

ma → λλ̄−1ma; m̄a → λ−1λ̄m̄a; ðA5Þ

where λ is an arbitrary nonvanishing complex function. This
allows us to define GHP scalar of a specific weight ½p; q�
[corresponding to a spin- and boost-weight ð1

2
ðp − qÞ;

1
2
ðpþ qÞÞ], which transforms as

φ → λpλ̄qφ; ðA6Þ

under the transformations (A5). The ðκ; σ; ϱ; τÞ are proper
GHP scalars; meanwhile, neither ðβ; ϵÞ8 nor NP directional
derivatives ðD;Δ; δ; δ̄Þ transform properly. Incorporating β
and ϵ in differential operators leads to GHP derivatives

þη ¼ ðD − pϵ − qϵ̄Þη; þ0η ¼ ðΔþ pϵ0 þ qϵ̄0Þη;
ðη ¼ ðδ − pβ þ qβ̄0Þη; ð0η ¼ ðδ̄þ pβ0 − qβ̄Þη; ðA7Þ

which, acting on scalar of weight ½p; q�, create a scalar of
weight ½pþ r; qþ s�where the appropriate raising/lowering
weights ½r; s� of the particular derivative are as follows:

þ → ½þ1;þ1�; þ0 → ½−1;−1�;
ð → ½þ1;−1�; ð0 → ½−1;þ1�: ðA8Þ

7This transformation naturally follows from the transformation
of spin dyad oA → λoA; ιA → λ−1ιA.

8Together with their primed counterparts.

DEBYE SUPERPOTENTIAL FOR CHARGED RINGS OR … PHYS. REV. D 106, 104022 (2022)

104022-9



Therefore, ð and ð0 are spin raising and lowering operators;
meanwhile, þ and þ0 are boost raising and lowering operators.
The prime operation takes a scalar of weight ½p; q� into a

scalar of weight ½−p;−q� and complex conjugation into a
scalar of weight ½q; p�.
The GHP formalism allows for a simple consistency test

of equations: only a scalars of the same GHP weights can
be compared.
TheWeyl tensor Cabcd is encoded in five complex scalars

ψ j, j ∈ ð0; 1; 2; 3; 4Þ. In spacetimes of algebraic type D in
the aligned tetrad, only ψ2 is nonzero,

ψ2 ¼ Cabcdlambm̄cnd; ðA9Þ

whereas for Maxwell tensor Fab, we have three complex
scalars,

φ0 ¼ Fablamb;

φ1 ¼
1

2
ðFablanb −mam̄bÞ;

φ2 ¼ Fabm̄anb: ðA10Þ

APPENDIX B: NP QUANTITIES OF KERR
BLACK HOLE

The nonzero NP spin coefficients corresponding to the
tetrad (6) are

π ¼ −iffiffiffi
2

p a sin θ
ρ2

; μ ¼ 1ffiffiffi
2

p Δ
Σρ

;

τ ¼ iffiffiffi
2

p a sin θ
Σ

; ϱ ¼ 1ffiffiffi
2

p 1

ρ
;

γ ¼ μ −
1ffiffiffi
2

p r −M
Σ

; β ¼ −1
2

ffiffiffi
2

p cot θ
ρ̄

;

α ¼ π − β̄; ðB1Þ

and the only nonzero Weyl scalar reads

ψ2 ¼
M
ρ3

: ðB2Þ

APPENDIX C: ZAMO CONGRUENCE

The physical interpretation of the electromagnetic field is
done by an observer who makes a local measurements.
Physical measurements in GR are done by projections of
the field onto an orthonormal tetrad. One of the most useful
congruences of observers around the Kerr black hole is
the ZAMO observers whose 4-velocity is defined by
ua ∝ ðdtÞa; the congruence is thus nontwisting, and as
its name suggests, angular momentum of every particular

observer vanishes, i.e., L≡ η · u ¼ 0. The tetrad (u≡ eðtÞ)
is given by

eðtÞ ¼
1

N
ð∂t þ ω∂φÞ; eðrÞ ¼

ffiffiffiffi
Δ
Σ

r
∂r;

eðθÞ ¼
1ffiffiffi
Σ

p ∂θ; eðφÞ ¼
1

sin θ

ffiffiffiffi
Σ
ϒ

r
∂φ; ðC1Þ

where

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη · ξÞ2
η · η

− ξ · ξ

s
; ðC2Þ

ω ¼ −
ξ · η
η · η

; ðC3Þ

ϒ ¼ ΔΣþ rðrp þ rmÞðr2 þ rprmÞ: ðC4Þ

The scalar product of two vectors u and v is denoted as
u · v ¼ uagabvb. The Killing vectors of the Kerr metric are
ξ ¼ ∂t and η ¼ ∂φ. The projections

EðkÞ ¼ eðtÞ · F� · eðkÞ; for k ∈ ðr; θ;φÞ; ðC5Þ

written in compact form for E ¼ E − iB, are

EðrÞ ¼
−ia sin θΔ

ρ φ0 − 2ðr2 þ a2Þφ1 þ ia sin θρφ2ffiffiffiffi
ϒ

p ;

EðθÞ ¼
r2 þ a2ffiffiffiffiffiffiffiffi

Δϒ
p

�
Δ
ϱ
φ0 −

2ia sin θΔ
r2 þ a2

φ1 − ρ̄φ2

�
;

EðφÞ ¼ −
i

ffiffiffiffi
Δ

p

ρ
φ0 −

iρffiffiffiffi
Δ

p φ2: ðC6Þ

APPENDIX D: ELLIPTIC INTEGRALS

We use the same definition of complete elliptic integrals
as the one implemented in Wolfram Mathematica, i.e.,

EðmÞ ¼
Z

π=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p
dθ; ðD1Þ

KðmÞ ¼
Z

π=2

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p dθ; ðD2Þ

ΠðnjmÞ ¼
Z

π=2

0

1

ð1 − nsin2θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p dθ: ðD3Þ
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APPENDIX E: MAXWELL EQUATIONS
IN AXISYMMETRIC STATIONARY CASE

Maxwell equations in the axisymmetric stationary case
can be, using the rescaled NP quantities

φ0 ¼
ffiffiffi
2

p
ϱ

sinθ
φ̃0; φ1 ¼

ffiffiffi
2

p

ρ2
φ̃1; φ2 ¼

ffiffiffi
2

p
Δ

ρ sinθ
φ̃2; ðE1Þ

rewritten as

∂

∂θ φ̃0

sin θ
−

∂

∂r φ̃1

ρ2
¼ −Jl;

∂

∂r ðΔφ̃0Þ
ρ̄ sin θ

þ
∂

∂θ φ̃1

ρΣ
¼ Jm; ðE2Þ

∂

∂θ φ̃2

Σ sin θ
þ Δ ∂

∂r φ̃1

ρ2Σ
¼ Jn;

∂

∂r φ̃2

ρ sin θ
−

∂

∂θ φ̃1

ρ3
¼ Jm̄: ðE3Þ

APPENDIX F: DIFFERENT DISCONTINUITIES
LOCATION

We may express

r ¼ 1

2

	
rp þ rm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − βÞ2 þ ϱ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ βÞ2 þ ϱ2

q 

;

r0 ¼
1

2

	
rp þ rm þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 − βÞ2 þ ϱ20

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 þ βÞ2 þ ϱ20

q 

ðF1Þ

and then define potentials

Ξ0 ¼ Ξr −
4iπRþ
β sin θ0

ΞnΘn

−
�
4iπðrp þ rmÞ

sin θ0
Ξi þ

4iπRþ
β sin θ0

Ξn

�
Θs; ðF2Þ

Ξ1 ¼ Ξr −
2iπRþ
β sin θ0

ΞnΘnð1þ Θðr0 − rÞÞ

−
�
4iπðrp þ rmÞ

sin θ0
Ξi þ

2iπRþ
β sin θ0

Ξn

�
Θs; ðF3Þ

Ξ2 ¼ Ξr −
2iπRþ
β sin θ0

ΞnΘnð1þ Θðr0 − rÞÞ

−
�
4iπðrp þ rmÞ

sin θ0
Ξi þ

2iπRþ
β sin θ0

Ξn

�
ΘsΘðr − r0Þ

þ 4iπR−

β sin θ0
Θðr0 − rÞΘsΞs; ðF4Þ

where

Rþ ¼ ðβ þ iaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 − βÞ2 þ ϱ20

q
;

R− ¼ ðβ − iaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 þ βÞ2 þ ϱ20

q
: ðF5Þ

All of these potentials represent the same field. They differ
just by the position of discontinuities—visualisations can
be found in Fig. 4. And, moreover, there is still great
freedom since one can add terms

an Ξn þ ai Ξi þ as Ξs; an þ ai þ as ¼ 0; ðF6Þ

i.e., the Debye potential of field representing monopole
with vanishing charge.

APPENDIX G: RIEMANN SURFACE

Let us visualize the Riemann surface of function [the
third term in Eq. (29)]

u ¼ −
4ðzþ z0Þϱ0
dðz0; ϱ0Þϱ2

Π
�
hðz0;−ϱ0Þ
hðz0; ϱ0Þ

; μ0ðϱ0Þ
�
; ðG1Þ

which can be analytically continued across γi by adding

v ¼ −
2πðzþ z0Þ

ϱ2
; ðG2Þ

and in general we have an infinite number of sheets

uþ jv j ∈ Z: ðG3Þ

The appropriate Riemann surface is in Fig. 7 and clearly
shows the branch point at ðz0; ϱ0Þ. To choose a branch cut is

FIG. 7. Riemann surface of function uþ jv for z0 ¼ 0.1,
ϱ0 ¼ 1; the values of Reðuþ jvÞ are on vertical axis.
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to join a branch point with axis or infinity and choose a
particular sheet.
It is easy to write down analytical continuation of the

Debye potential Ξ as given in (37) itself, but it is
“complicated” to make a representative visualization of
its Riemann surfaces since the discontinuities are relatively
small. We just have to add

π

ϱ2 sinθ0

�
2ðzþ z0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððz− βÞ2 þ ϱ2Þððz0 − βÞ2 þ ϱ20Þ

q
=β

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððzþ βÞ2 þ ϱ2Þððz0 þ βÞ2 þ ϱ20Þ

q
=β

�
ðG4Þ

to the Debye potential Ξ.
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