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We present a new system of equations that fully characterizes adiabatic, radial perturbations of perfect
fluid stars within the theory of general relativity. The properties of the system are discussed, and, provided
that the equilibrium spacetime verifies some general regularity conditions, analytical solutions for the
perturbation variables are found. As illustrative examples, the results are applied to study perturbations of
selected classical exact spacetimes, and the first oscillation eigenfrequencies are computed. Exploiting the
new formalism, we derive an upper bound for the maximum compactness of stable, perfect fluid stars,
which is equation-of-state agnostic and significantly smaller than the Buchdahl bound.
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I. INTRODUCTION

Relativistic compact stellar objects are among the most
complex and, at the same time, most fascinating gravita-
tional systems. Similar to black holes, these objects
represent strong gravity systems. However, they are fun-
damentally different in that the nature and behavior of
matter play a prominent role in their structure and evolu-
tion. This fact makes their theoretical description particu-
larly challenging. The complexities associated with these
objects explain, on the one hand, the predominant use of
numerical techniques and, on the other, the necessity to
develop and apply perturbative approaches to understand
their properties and dynamics.
The first attempt at the description of perturbations of

stars in general relativity was made by Chandrasekhar
[1,2]. In those works, Chandrasekhar focused on under-
standing the behavior of adiabatic, radial perturbations and
developed an integro-differential equation, the so-called
Chandrasekhar radial pulsation equation, to describe this
somewhat simpler type of perturbation.
The Chandrasekhar equation has had a crucial influence

on the subsequent studies on the dynamical behavior of
perturbations of self-gravitating, massive compact objects,

and various methods were developed to compute the
oscillation eigenfrequencies directly from the pulsation
equation [3]. Various reformulations of Chandrasekhar’s
original equation have been proposed to ease the numerical
treatment of adiabatic, radial oscillations of self-gravitating
fluids with realistic equations of state (see, e.g., [4–8]).
However, to our knowledge, no work has so far tackled one
of the main limitations of Chandrasekhar’s approach, i.e.,
the issue of gauge dependence. Indeed, the predictions of
the Chandrasekhar equation on the stability of a given
matter configuration and on the very behavior of its
perturbations are intrinsically associated with the specific
coordinate system considered and, therefore, conditioned
by the choice of the gauge.
Recently, the authors of this paper derived a completely

covariant and gauge-invariant theory of perturbations for
static, locally rotationally symmetric of class II (LRS II)
spacetimes [9]. LRS spacetimes are characterized by local
rotational symmetry about a given spatial direction, and
their nonvortical subclass, known as LRS II in the case of
perfect fluid sources, can be proven to contain all isotropic
nonrotating spacetimes suitable to describe stellar compact
objects and even some slowly rotating ones. The new
perturbation framework is based on the so-called 1þ 1þ 2
covariant formalism [10,11]. This formalism is based on
the procedure of covariant spacetime decomposition, such
that at each point the spacetime is foliated by surfaces
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orthogonal to two vector fields, a timelike and a spacelike
vector field. Using this covariant decomposition, it is
possible to characterize different aspects of the geometry
of LRS II spacetimes and the thermodynamics of the matter
fields that permeate them in a geometrically clear and
physically meaningful way (see, e.g., Refs. [12–21]).
The aim of this paper is to apply the covariant gauge-

invariant perturbation theory of Ref. [9] to study adiabatic,
radial perturbations of static, compact stellar objects com-
posed of a perfect fluid. In the body of the text, we will,
however, write the perturbation equations immediately in a
noncovariant way from the classical point of view of an
observer locally comoving with the matter and use the
circumferential radius to identify points within the star.
There are essentially two reasons for this choice. First, we
aim to provide a set of equations that can be applied without
any specific knowledge of the covariant formalisms. Second,
the above setting is usually considered in the standardmetric-
based description of this type of perturbation, providing a
clear, familiar interpretation of the quantities and the equa-
tions. We will then present exact solutions for the perturba-
tions of well-known models for equilibrium spacetimes in a
gauge-invariant way.
The paper is organized as follows. In Sec. II, we will

present the equations describing adiabatic, radial perturba-
tions, and propose an algorithm to obtain power series exact
solutions of the system. We also give a lower bound for the
minimum eigenvalue of the system. In Sec. III, we apply
these methods to some classical solutions, namely, we will
consider the interior Schwarzschild, Tolman IV, Kuchowicz
2-III, and Heintzmann IIa (as cataloged in [22]) spacetimes,
and present the behavior of the first eigenfunctions that
characterize the perturbations in the frame of the comoving
observer. In Sec. IV, using results for the perturbation of the
interior Schwarzschild solution, we conjecture on a general
upper bound for instability of static, stellar compact objects
composed of a perfect fluid, which is independent of the
information on the equation of state of the perturbed matter
fluid. We then draw conclusions in Sec. V. The paper also
contains four Appendixes. In Appendix A, we introduce the
general definitions for the 1þ 1þ 2 covariant quantities. In
Appendix B, we give the general covariant, gauge-invariant
perturbation equations for adiabatic, radial perturbations
found from the 1þ 1þ 2 formalism. In Appendix C, we
show how the original Chandrasekhar radial pulsation equa-
tioncanbe recovered fromthenewgauge-invariant equations,
demonstrating their equivalence in the considered coordinate
system, and in Appendix D we present the general inter-
mediate matrix for the power series solutions of the system.
Throughout the article, we will work in the geometrized

unit system where 8πG ¼ c ¼ 1, and consider the metric
signature ð−þþþÞ.

II. ADIABATIC RADIAL PERTURBATIONS

The Einstein field equations (EFE) are a set of nonlinear
partial differential equations that are manifestly difficult to

solve for general source matter fields. To circumvent these
difficulties, it is helpful to devise perturbation schemes to
linearize the field equations and study the behavior of small
deviations from equilibrium solutions. In Ref. [9], a general
set of covariant gauge-invariant equations was derived that
can characterize linear perturbations of static, spatially
compact, spherically symmetric solutions of the Einstein
field equations. We will call such solutions “stars” because
of their most immediate physical application. The gauge-
invariant equations for linear perturbations were written in
the language of the 1þ 1þ 2 covariant decomposition
formalism, which relates the geometry of the spacetime and
the properties of the matter fluid with the kinematical
quantities that characterize two sets of congruences: a
timelike congruence and a spacelike congruence. As
mentioned above, however, we will relate all quantities
directly with the metric tensor and the matter fluid
variables. Nonetheless, since the 1þ 1þ 2 variables have
intrinsic physical meaning, they are important to interpret
the results. The reader can find the basic definitions of the
1þ 1þ 2 formalism in Appendix A.
The evolution of general perturbations of stars is a

compelling yet remarkably complicated problem in gravi-
tation theory. Here, we will focus on studying adiabatic,
radial perturbations of stars with a perfect fluid source. The
article is intended to be self-contained. Nonetheless, some
general properties will be simply stated, and we redirect the
reader to Ref. [9] for technical details.

A. The equilibrium spacetime
and the perturbation variables

We will assume that the equilibrium background space-
time is static and spherically symmetric, such that it can be
characterized by a line element of the form

ds20 ¼ −ðg0Þttdt2 þ ðg0Þrrdr2 þ r2dΩ2; ð1Þ

where dΩ2 represents the natural line element for the unit
2-sphere, ðt; rÞ are the standard Schwarzschild coordinates
measured by an observer at spatial infinity, and the metric
components ðg0Þtt and ðg0Þtt are functions of the circum-
ferential radius, r, only. We will consider the setup where
two solutions of the EFE are smoothly matched at a
common timelike hypersurface, such that the interior of
the star is described by a static, spatially compact solution
with a perfect fluid source, with r∈ ½0; rb�, where r ¼ rb
defines the boundary of the star, and the exterior spacetime,
with r > rb, is described by a radial branch of the vacuum
Schwarzschild solution with no event horizons. The metric
coefficients ðg0Þtt and ðg0Þrr are determined by the EFE
with a zero cosmological constant

Rαβ −
1

2
gαβR ¼ Tαβ; ð2Þ
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where Rαβ ≔ Rαμβ
μ represents the Ricci tensor, R ≔ Rμ

μ

the Ricci scalar, and Tαβ the metric stress-energy tensor
described by a perfect fluid source, i.e.,

Tαβ ¼ ðμ0 þ p0Þðu0Þαðu0Þβ þ p0ðg0Þαβ; ð3Þ

where u0 is the 4-velocity of the elements of volume of the
fluid, and μ0 and p0 are, respectively, the energy density
and the isotropic pressure of the matter fluid. Here and in
the following, we will use the subscript “0” to explicitly
refer to quantities of the equilibrium spacetime.
It is useful to introduce the following scalar functions:

ϕ0 ¼
2

r
ffiffiffiffiffiffiffiffiffiffiffiðg0Þtt

p ;

A0 ¼
1

2ðg0Þtt
ffiffiffiffiffiffiffiffiffiffiffiffiðg0Þrr

p dðg0Þtt
dr

;

E0 ¼
1

3
μ0 þ p0 −A0ϕ0: ð4Þ

The function ϕ0 represents the spatial expansion of the
normalized radial gradient vector field, A0 is the radial
component of the 4-acceleration of the elements of volume
of the fluid, and E0 is the pure radial component of the
electric part of the Weyl tensor, Eq. (A17), which partially
describes radial tidal forces.
To characterize the perturbed spacetime with respect to

the equilibrium background unambiguously, we have to
choose variables that are identification gauge invariant, that
is, variables that are independent of the choice of diffeo-
morphism between the equilibrium and the perturbed
spacetimes. Following the Stewart-Walker lemma [23],
variables that vanish identically in the background space-
time are gauge invariant.
Since the equilibrium spacetime is assumed static, the

proper time derivatives of covariantly defined quantities
vanish in the background and can be used to characterize
the perturbed spacetime. Indeed, to describe the perturba-
tions, we will consider the gauge-invariant variables

m ≔ μ̇; p ≔ ṗ; A ≔ Ȧ; F ≔ ϕ̇; E ≔ Ė; ð5Þ
where the “dot” represents the proper time derivative of an
observer locally comoving with the fluid. In addition to the
variables in Eq. (5), we will also consider two other gauge-
invariant variables: the expansion scalar θ associated with
the integral curves of the u vector field, and the nontrivial
radial component of the shear tensor, Σ (see Appendix A
for details). The expansion scalar, θ, represents the frac-
tional rate of change of the sectional volume of the
congruence associated with the vector field u per unit of
proper time τ, whereas Σ, together with θ, partially
characterizes the proper time evolution of the radial
inhomogeneity of the matter fluid. Then, adiabatic, radial
perturbations of perfect fluid stars can be completely

described in a frame comoving with the fluid, by the set
of gauge-invariant variables fm; p;A;F;E; θ;Σg.

B. Harmonic decomposition

As is often the case in relativistic perturbation theory,
the equilibrium solution is found by considering highly
symmetric setups. These symmetries can be taken into
account to transform the linearized system of partial
differential equations into a system of ordinary differential
equations. Indeed, in the case of a static, spherically
symmetric equilibrium spacetime, for a suitable choice
of frame and at linear perturbation order, all quantities can
be can be written in terms of the spherical harmonics, Ylm,
and the eigenfunctions of the Laplace operator in R, eiυτ,
such that a perturbed first-order scalar quantity χ can be
written as

χ ¼
X
υ

�Xþ∞

l¼0

Xl
m¼−l

Ψðυ;lÞ
χ Ylm

�
eiυτ; ð6Þ

where
P

υ represents either a discrete sum or an integral in
υ, depending on the boundary conditions of the problem, τ
is the proper time measured by an observer comoving with
the fluid in the background spacetime, υ represent the

eigenfrequencies, and Ψðυ;lÞ
χ are the harmonic coefficients,

which depend only on the radial coordinate r.
In the case of isotropic perturbations, all coefficients

Ψðυ;lÞ
χ with l ≥ 1 are identically zero, that is, dipole and

higher-order angular multipoles must be trivial; otherwise,
the perturbations would induce preferred directions in the
system. Moreover, it was rigorously shown in Ref. [9] that,
under certain regularity conditions, for this type of pertur-
bation, the eigenfrequencies are such that υ2 are countable,
are real, are simple, have a minimum, and are unbounded
from above. Therefore, in the study of adiabatic, isotropic
perturbations a gauge-invariant, first-order scalar quantity χ
can be decomposed as

χ ¼
X

υ2¼fυ2
0
;υ2

1
;…g

ΨðυÞ
χ Y00eiυτ; ð7Þ

where the radial harmonic coefficients depend on the radial

coordinate only: ΨðυÞ
χ ¼ ΨðυÞ

χ ðrÞ, and we have omitted the
(trivial) dependency on l to lighten the notation.
Alternatively, instead of considering the proper time τ,

we can consider the time coordinate t. In that case, given
the equation (see Ref. [9])

υðrÞ ¼ λffiffiffiffiffiffiffiffiffiffiffiðg0Þtt
p ; ð8Þ

relating the eigenfrequencies, υ, measured by an observer
comoving with the fluid, with the constant eigenfrequen-
cies λ, measured by a static observer at spatial infinity, a
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gauge-invariant, first-order scalar quantity χ can be equiv-
alently given by Eq. (7) or

χ ¼
X

λ2¼fλ2
0
;λ2

1
;…g

ΨðλÞ
χ Y00eiλt: ð9Þ

C. Gauge-invariant equation of state
and perturbation equations

The perturbation variables proposed previously in this
section completely describe the dynamical evolution of the
adiabatically, radially perturbed spacetime. Nonetheless, to
close the system, we need to characterize the perturbed
matter fluid by providing an equation of state. As a
simplifying assumption, we will consider that the perturbed
matter fluid verifies a barotropic equation of state, such that

p ¼ fðμÞ; ð10Þ
where f is assumed to be twice differentiable in an open
neighborhood of μ0. Then, at linear order

p ≈ f0ðμ0Þm; ð11Þ

where prime represents the derivative with respect to the
function’s parameter, so that f0ðμ0Þ represents the square
of the adiabatic speed of sound in the perturbed fluid, to be
assumed nonvanishing in the interior of the perturbed star.
Notice that the function f does not have to be equal to the
equation of state of the equilibrium configuration. Indeed,
the equilibrium fluid is not even required to verify a
barotropic equation of state. This freedom is physically
relevant, as it was noted, for instance, in Refs. [6,24]
where distinct adiabatic indexes were considered for the
equilibrium and the perturbed star. Moreover, as we will
see, in the case of an interior Schwarzschild background
spacetime, the choice of f is instrumental in analyzing its
stability.
In Appendix B we list the covariant, nontrivial pertur-

bation equations for the variables fm; p;A;F;E; θ;Σg that
characterize adiabatic, radial perturbations. Breaking
covariance, in the Schwarzschild coordinate system ðt; rÞ
and considering the harmonic decomposition described in
the previous subsection, the radial coefficients associated
with those variables verify the following system of differ-
ential equations [9]:

dΨðυÞ
p

dr
þ 4A0

rϕ0

�
1þ 1

3f0ðμ0Þ
�
ΨðυÞ

p ¼ −
2ðμ0 þ p0Þ

rϕ0

ðΨðυÞ
A þA0Ψ

ðυÞ
Σ Þ; ð12Þ

dΨðυÞ
A

dr
þ
�
6A0

rϕ0

−
1

r

�
ΨðυÞ

A ¼ 2E0

rϕ0ðμ0 þ p0Þf0ðμ0Þ
ΨðυÞ

p −
3

rϕ0

�
υ2 þA2

0 þ
1

3
μ0 − 2E0

�
ΨðυÞ

Σ ; ð13Þ

dΨðυÞ
Σ

dr
þ
�
3

r
−

4A0

3rϕ0f0ðμ0Þ
�
ΨðυÞ

Σ ¼ 2

3ðμ0 þ p0Þf0ðμ0Þ
��

f00ðμ0Þ
f0ðμ0Þ

þ 1

μ0 þ p0

�
dμ0
dr

þ 1

rϕ0

�
4

3f0ðμ0Þ
þ 2

�
A0

�
ΨðυÞ

p

þ 4

3rϕ0f0ðμ0Þ
ΨðυÞ

A ; ð14Þ

and the constraints

ðυ2 þA0ϕ0 þA2
0 − p0Þ

�
2

3
ΨðυÞ

θ −ΨðυÞ
Σ

�
¼ ΨðυÞ

p − ϕ0Ψ
ðυÞ
A ; ð15Þ

ΨðυÞ
E ¼ E0

�
3

2
ΨðυÞ

Σ þ ΨðυÞ
p

f0ðμ0Þðμ0 þ p0Þ
�
−
1

2
ðμ0 þ p0ÞΨðυÞ

Σ ; ð16Þ

ΨðυÞ
F ¼

�
1

2
ϕ0 −A0

��
2ΨðυÞ

p

3f0ðμ0Þðμ0 þ p0Þ
þ ΨðυÞ

Σ

�
; ð17Þ

ΨðυÞ
m ¼ −ðμ0 þ p0ÞΨðυÞ

θ ; ð18Þ

ΨðυÞ
p ¼ f0ðμ0ÞΨðυÞ

m ; ð19Þ

where Eq. (19) follows from Eq. (11). The constraint equation (15) is not propagated; therefore, it cannot be used to reduce
the size of the system of differential equations (12)–(14). In fact, it is straightforward to show that Eqs. (12)–(15) imply
Eq. (8).
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To select the physically acceptable solutions and
formalize the boundary value problem, we impose the
following boundary conditions:

(i) the energy density and the pressure perturbations at
the center of the star, r ¼ 0, must be finite in a
neighborhood of the initial instant; and

(ii) the interior perturbed spacetime can be smoothly
matched to an exterior vacuum Schwarzschild
spacetime at a timelike hypersurface, the boundary
of the star.

From the point of view of the comoving observer,
the boundary condition (ii) implies that the pressure of
the perturbed fluid is identically zero at all times at the

hypersurface and so p, henceΨðυÞ
p , is also identically zero at

the boundary, that is,

ΨðυÞ
p ðrbÞ ¼ 0: ð20Þ

Before proceeding, we remark that, in general, the
coordinate system in the background spacetime and that
of the perturbed spacetime are not necessarily the same: any
smooth mapping can be considered. Since the perturbation
variables are gauge invariant, that choice does not affect the
results. In the particular case of isotropic perturbations, the
Schwarzschild coordinate system can always be defined
since there is no gravitational wave emission, and the
spacetime is asymptotically flat; hence, the time coordinate
t and circumferential radius r are equally defined by an
observer at spatial infinity in both spacetimes. In particular,
the adoption of this coordinate system is useful to compare
our approach with the classical results of Chandrasekhar,
found from metric-based perturbation theory [1,2]. In
Appendix C we show explicitly that Chandrasekhar’s
second-order radial pulsation equation follows from the
system above by relating the kinematical quantities with the
radial displacement parameter and its derivatives.

D. Analytic solutions

The system (12)–(19) with boundary conditions (i) and
(ii) completely characterizes adiabatic, radial perturbations
of a star composed of a perfect fluid. Specifying the
background spacetime and the equation of state of the
perturbed fluid, numerical methods can be used to find
approximate solutions. Nonetheless, contrary to the origi-
nal form of the second-order Chandrasekhar’s pulsation
equation [1,2], or the associated first-order realizations of
Refs. [4,6], it is possible, under rather general conditions, to
find analytic solutions for the perturbations using standard
theory of systems of linear ordinary differential equations.
To find analytic solutions for the system (12)–(19), we

will further impose the following regularity constraints:
(iii) the weak energy condition holds for the equilib-

rium fluid;

(iv) as background spacetime, we consider a solution of
the Tolman-Oppenheimer-Volkoff (TOV) equation
for which the energy density and pressure functions
are real analytic for the whole range within the
equilibrium star; and

(v) in the interior and at the boundary of the star, f0, i.e.,
the square of the speed of sound of the perturbed
matter fluid, is positive and real analytic.

The stronger constraint among the above is certainly the
real-analytical character of the source thermodynamical
potentials, especially in light of the complexities associated
with a realistic description of matter in relativistic stars.
On the other hand, every classical solution of the TOV
equations verifies this hypothesis, at least in some open
neighborhood of the center of the star (r ¼ 0). Hence, we
can safely assume that the treatment below holds for all
known exact solutions of the TOV equations.
Imposing the above conditions, we can express the

quantities ϕ0, E0, and A0 as

ϕ0 ¼
2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2MðrÞ
r

r
;

E0 ¼
1

3
μ0 −

2MðrÞ
r3

;

A0ϕ0 ¼ p0 þ
2MðrÞ
r3

; ð21Þ

where

MðrÞ ≔ 1

2

Z
r

0

μ0x2dx ð22Þ

is usually called the mass function. Thus, if the functions μ0
satisfy the regularity conditions above, the functions A0

and E0 will be real analytic within the star, with the
exception of ϕ0 which will present a simple pole at the
center, r ¼ 0. Consequently, it is possible to find solutions
of the system Eqs. (12)–(14) as power series around the
singular point r ¼ 0 using the method in Ref. [25].
As a first step, we can recast the system (12)–(14) in

matrix form:

dW
dr

¼ ðr−1Rþ ΘÞW; ð23Þ

where

W ¼

2
6664
ΨðλÞ

p

ΨðλÞ
A

ΨðλÞ
Σ

3
7775; R ¼

2
64
0 0 0

0 1 0

0 0 −3

3
75; ð24Þ
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Θ ¼ 2

rϕ0

2
666664
−2A0

�
1þ 1

3f0ðμ0Þ
�

−ðμ0 þ p0Þ −ðμ0 þ p0ÞA0

E0
f0ðμ0Þðμ0þp0Þ −3A0 − 3

2

�
υ2 þA2

0 þ 1
3
μ0 − 2E0

�
3f00ðμ0Þrϕ0∂rμ0þ4A0

9ðμ0þp0Þ½f0ðμ0Þ�2 þ rϕ0∂rμ0þ2A0ðμ0þp0Þ
3ðμ0þp0Þ2f0ðμ0Þ

2
3f0ðμ0Þ

2A0

3f0ðμ0Þ

3
777775: ð25Þ

The real-analytic character of the matrix Θ at r ¼ 0 is
ensured by the regularity conditions above. More specifi-
cally rϕ0 does not vanish in the interior of the star, and
Eq. (23) allows us to conclude that r ¼ 0 is a regular
singular point of the system. However, this does not imply
that all solutions must be singular at the center. To select
only the physically acceptable solutions, we will impose
the boundary conditions (i) and (ii).
Since theΘmatrix is real analytic at the center of the star, it

can be expanded in a convergent power series of the form1

ΘðrÞ ¼
Xþ∞

n¼0

Θnrn: ð26Þ

As a result, we can alsowrite the solutionW of the system in
Eqs. (23)–(25) in the form of a power series, and this series
will converge to the solution in a neighborhood of r ¼ 0
which is equal (except maybe in r ¼ 0) to the radius of the
series in Eq. (26).
Now, the general family of solutions of the system (23)–

(25) is quite complex. However, using the TOV equations
and considering the previous regularity constraints, it can
be shown that some entries of the coefficient matrices
fΘ0;Θ1;Θ2;Θ3g must vanish identically, such that the
physically relevant family of solutions of the system are
significantly simpler. Indeed, the general physical solutions
are given by

2
6664
ΨðλÞ

p

ΨðλÞ
A

ΨðλÞ
Σ

3
7775 ¼

2
64
−1 12

r ½ðΘ0Þ12ðΘ0Þ23 − 3ðΘ1Þ13� 0

0 12ðΘ0Þ23½ðΘ1Þ22 − ðΘ1Þ33� − 18ðΘ2Þ23 þ 4½ðΘ0Þ23�2ðΘ0Þ32 − 12
r2 ðΘ0Þ23 r

0 36
r3 0

3
75PW

2
64
c1
c2
c3

3
75; ð27Þ

where c1, c2, and c3 are λ-dependent integration constants.
Here ðΘnÞij represents the ij entry of the nth-order matrix
coefficient of the power series expansion of Θ, and PW is
defined as

PWðrÞ ¼
Xþ∞

n¼0

Pnrn;

P0 ¼ I3;

Pk ¼
1

k

Xk−1
j¼0

Ak−1−jPj; for k ≥ 1; ð28Þ

where I3 is the 3 × 3 identity matrix, the matrix A is real
analytic with the same radius of convergence as Θ, and An
represents the nth-order matrix coefficient of its power
series expansion, that is, AðrÞ ¼Pþ∞

n¼0Anrn. Due to its
size, the matrix A is presented in Appendix D.

Using P0 ¼ I3 in Eq. (27), we can immediately compute
the lower-order coefficients of the power series expansion
of W. Imposing the boundary condition at the center sets
the coefficient c2 to be zero; otherwise, the pressure would
diverge at r ¼ 0 at all times. Then, we find

2
6664
ΨðλÞ

p

ΨðλÞ
A

ΨðλÞ
Σ

3
7775 ¼

2
64
−c1 þOðr2Þ
c3rþOðr3Þ

Oðr2Þ

3
75: ð29Þ

We see that the coefficient c1 directly characterizes the

behavior of ΨðλÞ
p at r ¼ 0 and that both ΨðλÞ

A and ΨðλÞ
Σ must

vanish at the center. On the other hand, the coefficients c1
and c3 are not independent: considering the regularity of
the background spacetime and imposing the constraints
(15), (18), and (19) leads to

c3 ¼r¼0 −
c1

3ðμ0 þ p0Þf0ðμ0Þ

×

�
λ2

ðg0Þtt
þ 1

3
μ0 þ

3

2
ðμ0 þ p0Þf0ðμ0Þ

�
; ð30Þ

1We should stress, at this point, that the radius of convergence
of the above power series, as well as the ones shown below, may
be smaller than the radius of the equilibrium star. In such a case,
the method we proposed will give valid results only within such a
radius of convergence, and the solution must be completed with
numerical methods.
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where all quantities on the right-hand side are to be
evaluated at r ¼ 0. Therefore, for each value of λ2 there
is a single arbitrary parameter, either c1 or c3, to be
characterized by the initial perturbation at the center of
the star. That is, the coefficients of the Fourier transform
of the initial perturbation provide the values of the
independent parameters, setting which eigenmodes are
excited and the respective initial magnitude. In what
follows we will consider c1 as the independent para-
meter. Specifying the background spacetime, the equation
of state of the perturbed fluid and the values of the
eigenfrequencies λ, these results allow us to find regular
analytic solutions for the perturbations that verify the
boundary conditions.
In addition to the analytical results for the eigenfunc-

tions, in Ref. [9] it was possible to establish lower bounds
for the square of the eigenfrequencies, λ2. In particular, if
the regularity conditions in the beginning of this subsection
and the boundary conditions (i) and (ii) hold, nontrivial C1

solutions of the system (12)–(19) exist only if

λ2 max
r∈ �0;rb½

ðg0Þtt > − max
r∈ �0;rb½

�
μ0 þ p0

ϕ0

�
1

2
ϕ0 þ 2A0

�

þ A2
0

f0ðμ0Þ
þ rϕ0A0

2ðμ0 þ p0Þ
dμ0
dr

�
: ð31Þ

This result can be useful to determine numerically the
eigenfrequencies of the system, offering a baseline to
search for their values.

III. PERTURBATIONS AND FUNDAMENTAL
EIGENFREQUENCIES OF CLASSIC

EXACT SOLUTIONS

As illustrative examples of the general results in the
previous section, we will study the properties of adiabatic,
radial perturbations of some classical solutions of perfect
fluid stars within general relativity. We consider space-
times that verify the four regularity criteria presented in
Ref. [22]. Namely, we will study the stability of specific
Interior Schwarzschild, Tolman IV, Kuchowicz 2-III, and
Heintzmann IIa solutions. Since the independent parameter
c1 simply characterizes the magnitude of a specific eigen-
function at r ¼ 0, without loss of generality, in this section
we will set c1 ¼ −1.
In Table I, considering a line element of the form (1), we

present the nontrivial metric coefficients. In Table II we
present the absolute value of the first three eigenfrequencies
for specific models for the equilibrium background space-
time. For the interior Schwarzschild solution, at linear
order, the perturbed fluid is completely characterized by a
constant speed of sound, which must be provided as an
extra parameter. For the other models, we assume that the
equation of state of the perturbed fluid is the same as that of

the equilibrium setup. For all considered models, the
eigenfrequencies take real values; therefore, all equilibrium
spacetimes represent stable configurations under adiabatic,
radial perturbations.
In Figs. 1–4 we present the radial profile of the Fourier

coefficients of the functions p, A, and Σ, associated with the
eigenfrequencies presented in Table II for the various
background spacetimes. Figures 1–4 highlight the expected
behavior for the eigenfunctions. For a real-analytic back-
ground spacetime, in Ref. [9] it was shown that the
perturbation equations can be cast in the form of a
Sturm-Liouville eigenvalue problem. Therefore, in particu-
lar, the number of roots of the eigenfunctions is associated
with the order of the associated eigenvalue in the
sequence ðλ2nÞn∈N.
Except for the interior Schwarzschild solution, the

results in Table II were compared with the predictions of
the systems in Refs. [4,6]. Implementing a shooting method
to solve numerically each of those systems for each
equilibrium spacetime, all values for the fundamental

TABLE I. Metric coefficients of classical solutions of the
Einstein field equations. The spacetimes are assumed to be
characterized by a line element of the form of Eq. (1). We
follow the naming conventions for the solutions of Ref. [22].

Spacetime Nontrivial metric components

Interior
Schwarzschild

ðg0Þtt ¼
�
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

rb

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mr2

r3b

q �
2

ðg0Þrr ¼
	
1 − 2Mr2

r3b


−1
Tolman IV ðg0Þtt ¼ B2

	
r2

A2 þ 1



ðg0Þrr ¼
2r2

A2
þ1	

1þr2

A2


	
1−r2

R2



Kuch2-III ðg0Þtt ¼ Be

Ar2
2

ðg0Þrr ¼ ðr2e−1
2
Ar2 ½C − A

2eEiðAr
2

2
þ 1Þ� þ 1Þ−1

Heint IIa ðg0Þtt ¼ A2ðar2 þ 1Þ3
ðg0Þrr ¼

�
1 − 3ar2½cð4ar2þ1Þ−12þ1�

2ðar2þ1Þ
�−1

TABLE II. First absolute values of the eigenfrequencies, λ,
rounded to three decimal places, for the equilibrium solutions in
Table I for specific values of the spacetime parameters. In all
examples, the eigenfrequencies are real; hence, all spacetimes are
stable under adiabatic, radial perturbations. We follow the naming
conventions for the solutions of Ref. [22].

Spacetime Parameters jλ0j jλ1j jλ2j
Interior
Schwarzschild

ðM; rb; c2sÞ ¼ ð0.1; 1; 0.1Þ 0.108 0.305 0.478

Tolman IV ðA;B; RÞ ¼ ð1; 1; 1.5Þ 1.533 4.281 6.723
Kuch2-III ðA; B;CÞ ¼ ð5; 1;−3Þ 20.214 41.085 61.808
Heint IIa ða; A; CÞ ¼ ð1; 1; 1.5Þ 4.004 10.262 15.939
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eigenfrequencies matched to the considered numerical
accuracy. Moreover, the general solutions found in
Sec. II are regular around the center, and for the spacetime
parameters in Table II, the solutions are exact and the radius

of convergence of the power series is greater than the radius
of the star. Hence, we can explicitly evaluate the boundary
conditions at any point within the star, in particular at the
center and the surface.

FIG. 1. Radial profile of the Fourier coefficients of the functions p, A, and Σ, associated with the eigenfrequencies presented in Table II
for the interior Schwarzschild spacetime. For all oscillation modes, it was assumed c1 ¼ −1.

FIG. 2. Radial profile of the Fourier coefficients of the functions p, A, and Σ, associated with the eigenfrequencies presented in Table II
for the Tolman IV spacetime. For all oscillation modes, it was assumed c1 ¼ −1.

FIG. 3. Radial profile of the Fourier coefficients of the functions p, A, and Σ, associated with the eigenfrequencies presented in Table II
for the Kuchowicz 2-III spacetime. For all oscillation modes, it was assumed c1 ¼ −1.

FIG. 4. Radial profile of the Fourier coefficients of the functions p, A, and Σ, associated with the eigenfrequencies presented in Table II
for the Heintzmann IIa spacetime. For all oscillation modes, it was assumed c1 ¼ −1.
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IV. BOUND ON MAXIMUM COMPACTNESS

The dynamical stability of an equilibrium static, self-
gravitating fluid is a crucial problem in astrophysics.
Finding that a given solution of the Einstein field equations
is dynamically unstable for some type of perturbation
implies that such a solution might not be suitable to
describe massive compact objects that are expected to
be empirically observable in the current universe. In that
regard, considerable effort has been devoted to finding an
upper bound for the maximum compactness of a star: the
ratio between the gravitational mass and the circumferential
radius of a star, beyond which it is unstable (cf., e.g.,
Refs. [26,27] for a review for perfect and nonperfect fluids,
and Ref. [28] and references therein for the case of
electrically charged self-gravitating fluids). Nonetheless,
the results in the literature are fundamentally connected to
the equation of state of the equilibrium fluid and, to our
knowledge, no universal upper bound has been found for
the maximum compactness of these types of objects. In the
particular case of perfect fluid stars, we can use the
previous results and the interior Schwarzschild solution
to conjecture an equation of state agnostic upper bound for
the dynamical stability of this type of objects.
The interior Schwarzschild spacetime represents a sol-

ution of general relativity describing the interior of a star
composed of a perfect fluid with a constant energy density
that can be smoothly matched with an exterior vacuum
Schwarzschild spacetime. This solution can be character-
ized by a line element of the form (1), with

ðg0Þtt ¼
 
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
rb

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Mr2

r3b

s !2

;

ðg0Þrr ¼
�
1 −

2Mr2

r3b

�−1
; ð32Þ

whereM represents the Arnowitt–Deser– Misner mass and
rb the value of the circumferential radius at the boundary
of the star. Although the interior Schwarzschild solution
does not represent a physically reasonable configuration,
this solution is important from a conceptual point of view
since it saturates the Buchdahl bound for the maximum
compactness:

M
rb

≤
4

9
¼ 0.4̄; ð33Þ

hence, it can be thought of as the extreme scenario for a
static, self-gravitating perfect fluid. On this basis, this
solution can be used to conjecture the maximum compact-
ness of a star composed of a perfect fluid, beyond which it
becomes dynamically unstable.
Considering the results of the previous section, we can

study the dynamical stability of the interior Schwarzschild
solution by computing the fundamental eigenfrequency for
various values of the compactness parameter Mrb. Notice that,

for an interior Schwarzschild background spacetime with a
specific value of the compactness parameter, the value of rb
does not affect the values of the eigenfrequencies, but only
the radial profile of the perturbation variables. Since the
energy density of the background is constant, at a linear
level, the square of the speed of sound, f0ðμ0Þ, is a constant.
Then, to infer the maximum compactness of a physical star
described by the interior Schwarzschild solution, we can
impose the causality condition and consider the extreme
scenario where f0ðμ0Þ ¼ c2s ¼ 1; that is, the square of the
speed of sound of the perturbed star is the vacuum speed of
light. Applying the previous results, we find that

M=rb ¼ 0.367 ⇒ λ20 > 0; M=rb ¼ 0.368 ⇒ λ20 < 0:

ð34Þ

Following this reasoning, we extrapolate that a static,
spherically symmetric solution of the Einstein field equa-
tions with a perfect fluid source is dynamically unstable if

M
rb

≳ 0.368: ð35Þ

The accuracy of the above estimate, of course, can be
increased, but this level of accuracy is unlikely to be
achieved experimentally. The result in Eq. (35) is signifi-
cantly smaller than the Buchdahl bound, Eq. (33).
Moreover, it is slightly higher, but in line with the estimates
of Refs. [29,30] for the maximum compactness, found by
considering an affine fluid model and imposing the
hypothesis that such a model yields the most compact star
composed of a perfect fluid verifying a barotropic equation
of state. The analysis in this section, however, is indepen-
dent of the equation of state of the equilibrium star and
follows from simply considering the extreme case of the
causality condition for the perturbed fluid. Consequently,
this upper bound for instability is universal, and it is not
expected to be saturated by any perfect fluid star solution
verifying a physically meaningful equation of state.

V. CONCLUSION

We have presented a system of first-order differential
equations to describe general linear adiabatic, radial per-
turbations of spatially compact, static, spherically sym-
metric solutions of general relativity with a perfect fluid
source. The new results do not rely on auxiliary test
functions nor on the introduction of a singular point at
the boundary of the star. Contrary to previous approaches,
assuming some regularity conditions for the equilibrium
spacetime, the system can be solved analytically, finding
general solutions for the perturbation variables.
The results were then used to study adiabatic, radial

perturbations of classical exact solutions of the Einstein
field equations, computing the first eigenfrequencies for
particular values of the spacetime parameters. For the

ADIABATIC RADIAL PERTURBATIONS OF RELATIVISTIC … PHYS. REV. D 110, 084054 (2024)

084054-9



considered models, the equilibria proved to be stable. We
have also plotted the eigenfunctions associated with those
eigenfrequencies, illustrating their radial profile. At first
glance, the plots in Figs. 1–4 look remarkably similar.
However, this is a product of the very nature of the Sturm-
Liouville problem, the constraints imposed by the boun-
dary conditions, and the normalized radial coordinate we
have used.
We have considered only a small subset of physically

relevant exact solutions, leaving aside some important
solutions that have been used in the past to study physically
meaningful scenarios. As was discussed in Ref. [9],
although the thermodynamical description of the perturbed
matter fluid is simpler in a comoving frame, this leads to
extra complexity to describe its dynamics such that we end
up with a three-by-three system of differential equations
with a constraint, Eqs. (12)–(15). Indeed, the formulation of
the problem can be made more computationally efficient.
By changing the frame of reference, we can significantly
simplify the problem and efficiently study adiabatic, radial
perturbations of more complex background solutions. In
other frames, however, the stress-energy tensor is non-
diagonal, containing fluxes and anisotropic components.
Therefore, great care has to be taken to ascertain what is
meant by adiabatic perturbations in the new frame. This
will be done elsewhere.
The newly found system of equations also allowed us to

conjecture, independently of the information on the equa-
tion of state of the equilibrium fluid, the upper bound
M=rb ≈ 0.368 for the maximum compactness of a stable,
static, self-gravitating perfect fluid. The result relies on the
hypothesis that the interior Schwarzschild solution repre-
sents the extreme case for a perfect fluid star. Hence, the
maximum bound for the compactness should be absolute,
in the sense that no physically meaningful solution of
general relativity is expected to saturate it. Nonetheless, the
result is a tighter upper bound compared to the previously
suggested bounds in the literature, found by considering a
specific barotropic equation of state. We remark, however,
that the reasoning for this result omits various important
issues on the stability of compact stellar objects. One
example concerns the evolutionary timescales. The eigen-
frequencies fλngn∈N can be used to determine the oscil-
lation period or the period of e-folds of each mode. In the
case of λ0 ∈R, the star will oscillate, and the period of
oscillation for the fundamental mode is given by
T ¼ 2π=jλ0j. On the other hand, if λ0 is purely imaginary,
the perturbations will not be bounded and the quantity T ¼
2π=jiλ0j represents the period of e-folds. Since the funda-
mental mode has the shortest growth timescale, we can
assess the growth timescale of the radial instabilities in the
considered idealized setup, considering this mode.
Nonetheless, the evolutionary timescale of compact stellar
objects depends on various factors omitted in our analysis,
where we have assumed the idealized scenario of an

adiabatic perturbation. Indeed, the thermodynamic evolu-
tion of the matter fields plays a predominant role in the
evolution of those objects, such that even if the star is
pulsationally unstable, the radial modes might not have
time to grow and affect the structure. Moreover, the
previous discussion does not consider the issue of quasist-
ability. In principle, a dynamically unstable object, but such
that its evolution would have a characteristic time compa-
rable to the timescale of the universe, might be effectively
considered stable. A realistic analysis of the topic should
take into consideration all these aspects. The presented
upper bound for dynamical stability should then be valid in
an idealized scenario, disregarding any other effects.
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APPENDIX A: THE 1+ 1 + 2 DECOMPOSITION

1. Projectors and the Levi-Civita volume form

Let us consider, in a Lorentzian manifold ðM; gÞ of
dimension four endowed with a metric g, two local
congruences, one composed of timelike curves with tangent
vector field u, and one composed by spacelike curves with
tangent vector field e. Let the curves of each congruence
be affinely parametrized and assume uαuα ¼ −1 and
eαeα ¼ 1.
If we foliate the manifold by 3-surfaces, V, pointwise

orthogonal to the curves of the timelike congruence, all
tensorial quantities that characterize ðM; gÞ are defined by
their behavior along the direction of u and in V. These
quantities can be proven to satisfy a set of equations which
is equivalent to the Einstein equations. Such an approach is
called 1þ 3 spacetime covariant decomposition. This
decomposition is performed by means of a projector tensor

hαβ ¼ gαβ þ uαuβ; ðA1Þ

with the following properties:

hαβ ¼ hβα; hαβhβγ ¼ hαγ;

hαβuα ¼ 0; hαα ¼ 3: ðA2Þ
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Using the spacelike congruence we can perform a further
foliation so that a given tensorial quantity in V is charac-
terized by its behavior along e and the 2-surfaces W,
pointwise orthogonal to the curves of the spacelike con-
gruence. As before, such decomposition is performed by
means of a projector tensor defined, in this case, as

Nαβ ¼ hαβ − eαeβ; ðA3Þ

verifying

Nαβ ¼ Nβα; NαβNβγ ¼ Nα
γ;

Nαβuα ¼ Nαβeα ¼ 0; Nα
α ¼ 2: ðA4Þ

The characterization of all the tensorial quantities on V and
W requires the introduction of the skew-symmetric tensors

εαβγ ¼ εαβγσuσ;

εαβ ¼ εαβγeγ; ðA5Þ

where εαβγσ is the covariant Levi-Civita tensor.
In what follows, we will adopt the convention to indicate

the symmetric and antisymmetric parts of a tensor using
parentheses and brackets, such that for a 2-tensor χ

χðαβÞ ¼
1

2
ðχαβ þ χβαÞ; χ½αβ� ¼

1

2
ðχαβ − χβαÞ: ðA6Þ

2. Covariant derivatives of u and e

Using the projector operators h and N, the covariant
derivatives of the tangent vector fields u and e can be
uniquely decomposed at each point in their components
along u, along e, and in W. This decomposition yields the
so-called kinematical quantities of the congruences formed
by the integral curves of u and e, providing a clear
geometric and physical interpretation of the behavior of
the congruence.
To simplify the readability of the formulas in this paper

we will introduce a compact notation for the derivatives
along the integral curves of the vector fields u and e. Given
a tensor quantity χ, we set

χ̇ ≔ uμ∇μχ; χ̂ ≔ eμ∇μχ: ðA7Þ

In the 1þ 1þ 2 formalism, the covariant derivative of
the tensor field u can be decomposed as

∇αuβ ¼ −uαðAeβ þAβÞ þ
1

3
hαβθ þ σαβ þ ωαβ; ðA8Þ

where

A ¼ −uμuν∇νeμ; Aα ¼ Nαμu̇μ; ðA9Þ

and the quantities θ, σαβ, and ωαβ are the kinematical
quantities of the congruence of the integral curves of u.
Namely, θ is the expansion scalar, σαβ is the shear tensor,
and ωαβ is the vorticity tensor, defined as

θ ¼ hμν∇μuν;

σαβ ¼
�
hαμhβν þ hανhβμ

2
−
1

3
hαβhμν

�
∇μuν

¼ Σαβ þ 2ΣðαeβÞ þ Σ
�
eαeβ −

1

2
Nαβ

�
;

ωαβ ¼
1

2
ðhαμhβν − hανhβμÞ∇μuν ¼ εαβμðΩeμ þ ΩμÞ;

ðA10Þ

with

Σαβ ¼
�
Nα

μNβ
ν þ Nα

νNβ
μ

2
−
1

2
NαβNμν

�
σμν;

Σα ¼ Nα
μeνσμν; Σ ¼ eμeνσμν; ðA11Þ

and

Ωα ¼ 1

2
Nγ

αεμνγ∇μuν; Ω ¼ 1

2
εμν∇μuν: ðA12Þ

From their definitions, it is immediate to conclude that the
covariantly defined vector and 2-tensor quantities charac-
terize the behavior of the kinematical quantities on the
surfaces W, whereas the scalars characterize the behavior
along u or e.
Similarly, we can decompose the covariant derivative of

e along u, along e, and onto W as

∇αeβ ¼
1

2
Nαβϕþ ζαβ þ εαβξþ eαaβ − uααβ −Auαuβ

þ
�
1

3
θ þ Σ

�
eαuβ þ ðΣα − εαμΩμÞuβ; ðA13Þ

where

ϕ ¼ Nμν∇μeν;

ζαβ ¼
�
Nα

μNβ
ν þ Nα

νNβ
μ

2
−
1

2
NαβNμν

�
∇μeν;

ξ ¼ 1

2
εμν∇μeν ðA14Þ

represent, respectively, the expansion scalar, the shear
tensor, and the twist of the congruence of the integral
curves of e projected on W, and

aα ¼ eμhαν∇μeν; αα ¼ uμhαν∇μeν: ðA15Þ
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3. Weyl and stress-energy tensors

In the covariant formalism the Weyl tensor has a very important role. In four spacetime dimensions, this tensor is defined
by decomposing the Riemann curvature tensor, with components Rαβγδ, as

Rαβγδ ¼ Cαβγδ þ Rα½γgδ�β − Rβ½γgδ�α −
1

3
Rgα½γgδ�β; ðA16Þ

where Cαβγδ represent the components of the Weyl tensor in a local coordinate system. In general, Cαβγδ can be completely
characterized by its “electric” and “magnetic” parts which are both symmetric and traceless tensors on V:

Cαβγδ ¼ −εαβμεγδνEνμ − 2uαEβ½γuδ� þ 2uβEα½γuδ� − 2εαβμHμ½γuδ� − 2εμγδHμ½αuβ�: ðA17Þ

In the 1þ 1þ 2 covariant formalism, Eαβ and Hαβ are further decomposed as follows:

Eαβ ¼ E
�
eαeβ −

1

2
Nαβ

�
þ Eαeβ þ eαEβ þ Eαβ;

Hαβ ¼ H
�
eαeβ −

1

2
Nαβ

�
þHαeβ þ eαHβ þHαβ; ðA18Þ

where

E ¼ Eμνeμeν ¼ −NμνEμν; H ¼ eμeνHμν ¼ −NμνHμν;

Eα ¼ Nα
μeνEμν ¼ eμNα

νEμν; Hα ¼ Nα
μeνHμν ¼ eμNα

νHμν;

Eαβ ¼ Efαβg; Hαβ ¼ Hfαβg: ðA19Þ
Last, to write the Einstein field equations in the language of the 1þ 1þ 2 formalism, we need the covariant

decomposition of the metric stress-energy tensor Tαβ, which reads

Tαβ ¼ μuαuβ þ ðpþ ΠÞeαeβ þ
�
p −

1

2
Π
�
Nαβ þ 2QeðαuβÞ þ 2QðαuβÞ þ 2ΠðαeβÞ þ Παβ; ðA20Þ

with

μ ¼ uμuνTμν; Qα ¼ −Nα
μuνTμν;

p ¼ 1

3
ðeμeν þ NμνÞTμν; Πα ¼ Nα

μeνTμν;

Π ¼ 1

3
ð2eμeν − NμνÞTμν; Παβ ¼

�
Nα

μNβ
ν þ Nα

νNβ
μ

2
−
1

2
NαβNμν

�
Tμν:

Q ¼ −eμuνTμν; ðA21Þ

The various contributions in the covariant decomposition of
the stress-energy tensor in Eq. (A21) have direct physical
meaning. Given an observer with 4-velocity u, μ represents
the mass-energy density of the fluid; p is the isotropic
pressure; Q and Qα represent, respectively, heat and
momentum flows along e and in W; and Π, Πα, and
Παβ characterize the anisotropic pressure within the fluid.

APPENDIX B: 1 + 1 + 2 SCALAR
PERTURBATION EQUATIONS

Using the 1þ 1þ 2 formalism, briefly introduced in
Appendix A, we list here the covariant version of the

equations that describe the scalar adiabatic perturbations of
a fluid distribution in a static, LRS II background. These
equations are written in terms of the variables in Eq. (5) and
characterize the perturbation from the point of view of an
observer locally comoving with the matter composing the
relativistic compact stellar object. They read

Â − θ̈ ¼ 1

2
ðmþ 3pÞ þ Â0

�
1

3
θ þ Σ

�
− ð3A0 þ ϕ0ÞA −A0F; ðB1Þ

p̂ ¼
�
1

3
θ þ Σ

�
p̂0 −A0ðmþ 2pÞ − ðμ0 þ p0ÞA; ðB2Þ
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Σ̈ −
2

3
θ̈ ¼ 1

3
ðmþ 3pÞ − E −A0F − ϕ0A; ðB3Þ

2

3
θ̂ − Σ̂ ¼ 3

2
ϕ0Σ: ðB4Þ

E ¼ E0

�
3

2
Σ − θ

�
−
1

2
ðμ0 þ p0ÞΣ; ðB5Þ

F ¼ ð2A0 − ϕ0Þ
�
1

3
θ −

1

2
Σ
�
; ðB6Þ

m ¼ −ðμ0 þ p0Þθ: ðB7Þ

Upon reorganization, using the background gravitational
field equations and applying a harmonic decomposition of
the perturbation variables, the above equations can be recast
into the system in Sec. II C.
The perturbation equations become increasingly more

complicated as we relax the constraints that we have
assumed before. The general set of perturbation equations
for the variables in Eq. (5), together with additional
perturbation variables useful in other specific frames, can
be found in [9].

APPENDIX C: DERIVATION OF
CHANDRASEKHAR’S RADIAL

PULSATION EQUATION

In this appendix, we show how the system of equations
for the comoving observer in Appendix B returns the well-
known Chandrasekhar radial pulsation equation [1,2]. We
will then start by recalling the classical derivation of the
Chandrasekhar equation. Then, we will break covariance
and gauge invariance in the 1þ 1þ 2 perturbation equa-
tions to prove that they lead to the same result.
Let us start by constructing the Chandrasekhar pulsation

equation considering perturbations of the metric directly.
Consider the Schwarzschild coordinate system ðt; r;ψ ;φÞ
defined by an observer at spatial infinity, such that events in
both the equilibrium and the perturbed spacetime can be
identified unambiguously. Let the equilibrium spacetime be
characterized by a line element of the form

ds2 ¼ ðg0Þαβdxαdxβ ¼ −e2Φ0ðrÞdt2 þ e2Λ0ðrÞdr2 þ r2dΩ2;

ðC1Þ

where dΩ2 ¼ dψ2 þ sin2 ψdφ2 represents the natural line
element of the unit 2-sphere. We will adopt the nomen-
clature of the body of the text and indicate quantities in the
background spacetime by a subscript “0.”
Assuming the equilibrium spacetime to be permeated by

a perfect fluid, such that, from the point of view of an
observer at rest with matter, the energy-momentum tensor
will be written as in Eq. (3)

Tαβ ¼ ðμ0 þ p0Þðu0Þαðu0Þβ þ p0ðg0Þαβ; ðC2Þ

where

ðu0Þαdxα ¼ −eΦ0dt; ðC3Þ
the Einstein field equations are

Λ0
0 ¼

1

2
e2Λ0μ0r −

e2Λ0

2r
þ 1

2r
; ðC4Þ

Φ0
0 ¼

1

2
e2Λ0p0rþ

e2Λ0

2r
−

1

2r
; ðC5Þ

Φ00
0 ¼

1

4
e2Λ0μ0 þ

1

4
e4Λ0μ0 þ

5

4
e2Λ0p0 −

3

4
e4Λ0p0

þ 1

4
e4Λ0μ0p0r2 −

1

4
e4Λ0p2

0r
2 −

e4Λ0

2r2
þ 1

2r2
; ðC6Þ

and the Bianchi identity

p0
0 ¼ −Φ0ðμ0 þ p0Þ: ðC7Þ

Now, radially perturbing the equilibrium configuration
leads to a new metric associated with the line element

ds2 ¼ gαβdxαdxβ ¼ −e2Φðt;rÞdt2 þ e2Λðt;rÞdr2 þ r2dΩ2;

ðC8Þ
and the energy-momentum tensor for an observer comov-
ing with matter will be described by

Tαβ ¼ ðμþ pÞuαuβ þ pgαβ; ðC9Þ

where uα represent, in a local coordinate system, the
components of the 4-velocity form of an observer comov-
ing with the perturbed fluid. The perturbation will induce a
change in a given scalar variable X, which can be
characterized by the quantity

δX ¼ Xðt; rÞ − X0ðrÞ: ðC10Þ

This expression constitutes the Eulerian representation of
perturbations, i.e., the description of the perturbation from
the point of view of an observer in a position with a
constant r coordinate.
In addition to the δ-variations, we need to introduce an

extra parameter to describe the radial displacement of a
fluid element. A fluid element at the coordinate r in the
unperturbed spacetime is moved to a new position r̃, in the
perturbed spacetime, such that

r̃ ¼ rþ ηðt; rÞ: ðC11Þ

The parameter η is usually called “radial displacement.”We
need to be especially careful in understanding the meaning
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of η. Even if this function is connected to the choice of a
local coordinate system, η effectively also characterizes the
mapping between the unperturbed and perturbed space-
times, as it is relabeling events. Therefore, it cannot be just
considered a product of a coordinate transformation, but
rather a gauge. For this reason, η is often called “gauge
parameter.” In this appendix, for example, in our con-
struction, we have tacitly considered the Schwarzschild
coordinate system to write the components of the perturbed
metric and those of the background metric. Therefore, we
will find that the perturbations depend directly on the gauge
parameter. This, of course, is not a necessity, but it is useful
in the treatment of this type of perturbations. We stress,
however, that this approach should be used with caution. In
the case of adiabatic, radial perturbations, it is indeed
possible to define the same coordinate system in both the
equilibrium and the perturbed spacetimes. Therefore, the
conclusions are not ambiguous. However, in general this is
not the case, and attributing physical observable effects to
active coordinate transformations might lead to gauge-
dependent, physically meaningless conclusions. In addi-
tion, choosing from the start the coordinate system of the
equilibrium and the perturbed spacetimes will force the
analysis to a specific gauge, which might lead to spurious
complexity of the equations.
In terms of Eulerian perturbations, at first perturbative

order, that is, disregarding quadratic and higher-order terms
of the δ-variations, we have

uαdxα ¼ −eΦ0ð1þ δΦÞdtþ e2Λ0−Φ0ηη�dr; ðC12Þ

where we have indicated the derivative with respect to t
with an “asterisk.” Then the perturbed gravitational field
equations associated with the metric Eq. (C8) read

ðδΛÞ� ¼ −ðΛ0
0 þΦ0

0Þη�; ðC13Þ

ðδΛÞ0 ¼
�
2rΛ0

0 −
1

r

�
δΛþ 1

2
re2Λ0δμ; ðC14Þ

ðδΦÞ0 ¼
�
2Φ0

0 þ
1

r

�
δΛþ 1

2
re2Λ0δp; ðC15Þ

ðδΦÞ00 ¼ e2ðΛ0−Φ0ÞδΛ�� þ 1

2
e2Λ0ð1þ rΦ0

0Þδμ

þ 1

2
e4Λ0ð1þ rΛ0

0 − 2rΦ0
0Þδp

−
e2Λ0

r2
½2e2Λ0 − rΛ0

0ð3þ 4rΦ0
0Þ

þ rΦ0
0ð1þ 4rΦ0

0Þ�δΛ; ðC16Þ

and the Bianchi identities

δμ� ¼ 1

r
ð−2η� þ rη�Φ0

0 − rη0�Þðμ0 þ p0Þ − η�μ00; ðC17Þ

ðδpÞ0 þ η��e2ðΛ0−Φ0Þðμ0 þ p0Þ þ ðδΦÞ0ðμ0 þ p0Þ
þ ðδμþ δpÞΦ0

0 ¼ 0; ðC18Þ

where we have indicated the derivative with respect
to r with a “prime.” Integrating Eq. (C17) with respect
to t leads to

δμ ¼ 1

r
ð−2ηþ rηΦ0

0 − rη0Þðμ0 þ p0Þ − ημ00; ðC19Þ

where we have set the integration constant to zero as we
assume δμ ¼ 0 when η ¼ 0. As we have mentioned before,
this choice of integration constant follows from encoding
the perturbations in the gauge parameter. Consistently, in
the above expressions, if η ¼ 0, we recover the background
spacetime.
Continuing, the system above is closed by providing an

equation of state that relates the pressure to the energy
density. Following Chandrasekhar’s original derivation, we
will consider a barotropic equation of state, such that
p ¼ fðμÞ. Using the equation of state, Eq. (C19) allows us
to write δp in terms of η and its derivatives:

δp ¼ Γ1p0

r
ð−2ηþ rηΦ0

0 − rη0Þ − ηp0
0; ðC20Þ

where the quantity

Γ1 ¼
μ0 þ p0

p0

f0ðμ0Þ ðC21Þ

is the adiabatic index of the fluid. Integrating Eq. (C13)
with respect to t, choosing the integration constant such that
δΛ ¼ 0 when η ¼ 0, yields

δΛ ¼ −ðΛ0
0 þΦ0

0Þη: ðC22Þ

Substituting the above relations and Eq. (C15) in
the momentum conservation equation (C18), after a labo-
rious yet straightforward simplification, we obtain an
equation for η, the so-called Chandrasekhar radial pulsation
equation.
Alternatively to the Eulerian description, we can define a

Lagrangian description of the perturbations. In this picture,
an observer located at some point with radial coordinate r
in the background spacetime is moved together with
matter to r̃ in the perturbed spacetime. We then define a
Lagrangian perturbation of a scalar quantity X as

ΔX ¼ Xðt; r̃Þ − X0ðrÞ: ðC23Þ

The 1þ 1þ 2 perturbation variables we have used in this
paper correspond, by definition, to Lagrangian perturbation
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variables. Indeed, since all the quantities in Sec. II C are
defined from the point of view of a comoving observer,
they are naturally Lagrangian.
Thus, to prove that the equations following from the

covariant approach imply the Chandrasekhar equation, we
have to break covariance and gauge invariance and show
that the perturbation equations (B1)–(B4) reduce to the
perturbed field equations or to the Bianchi identities (C13)–
(C18). In that regard, we have to relate the Lagrangian
variables fA;ϕ; θ;Σg and fm; p;A;F;E; θ;Σg in terms of
Eulerian variables to linear perturbation order.
We already know how to write, at first order, the 1-form

associated with the vector field u in terms of the metric
coefficients of the equilibrium and the perturbed spacetime,
Eq. (C12). For the e congruence, we have

ðe0Þαdxα ¼ eΛ0dr;

eαdxα ¼ −eΛ0η�dtþ eΛ0ð1þ δΛÞdr: ðC24Þ

Then, from the definitions in Appendix A and Eqs. (C3),
(C12), and (C24) we obtain

A0 ¼ e−Λ0Φ0
0; ðC25Þ

ϕ0 ¼
2e−Λ0

r
; ðC26Þ

θ0 ¼ 0; ðC27Þ

Σ0 ¼ 0; ðC28Þ

and

A¼ e−Λ0Φ0
0þ e−Λ0δΦ0 − e−Λ0Φ0

0δΛþ η��eΛ0−2Φ0 ; ðC29Þ

ϕ ¼ 2e−Λ0

r
ð1 − δΛÞ; ðC30Þ

θ ¼ e−Φ0

r
ðrδΛ� þ 2η� þ rη�Λ0

0 þ rη0�Þ; ðC31Þ

Σ ¼ 2

3

e−Φ0

r
ðrδΛ� þ η� þ rη�Λ0

0 þ rη0�Þ: ðC32Þ

Now, the following relation holds between the Lagrangian
and Eulerian perturbations of a scalar quantity X:

ΔX ¼ δX − X0
0η: ðC33Þ

This equation can be used to relate the Lagrangian variables
fm; p;Ag with their Eulerian counterparts. For the
Lagrangian perturbation of the time derivative of the
pressure, p, we find

p ¼ ṗ − p̊0; ðC34Þ

where we have defined

p̊ ¼ ðu0Þα∂αp: ðC35Þ

Expressing the right-hand side of Eq. (C34) in terms of
Eulerian perturbations yields

p ¼ ðδpÞ·þ p0
0η̇ ¼ e−Φ0 ½ðδpÞ� þ p0

0η
��: ðC36Þ

It is also useful to find the expression for the hat derivative
of p in terms of the metric perturbations:

p̂ ¼ e−Λ0Φ0
0p − e−ðΦ0þΛ0Þ½ðδpÞ0� þ p00

0η
� þ p0

0η
0��: ðC37Þ

Similarly, we obtain the following expressions for the m
and A quantities:

m ¼ e−Φ0 ½ðδμÞ� þ μ00η
��; ðC38Þ

A ¼ −e−Λ0−3Φ0 ½e2Φ0Φ0
0δΛ� − e2Φ0ðδΦÞ0�

þ e2Φ0ðΛ0
0Φ0

0 −Φ00
0Þη� − e2Λ0η����: ðC39Þ

Finally, using the above results, Eqs. (4), (B5), and (B6),
we can obtain algebraically the expressions for E0, F, and E
in terms of the coefficients of the metric in Eq. (C8) and
their perturbations.
Gathering all the above results and substituting them in

the perturbed momentum conservation equation for the
comoving frame, Eq. (B2), yields, after some fairly long
calculations, the momentum conservation equation (C18).
Applying the same substitutions in the remaining equations
of Appendix B yield a system of equations equivalent to
combinations of the perturbed Einstein equations (C13)–
(C22). Thus, we conclude that in the comoving frame, the
covariant, gauge-invariant equations for adiabatic, radial
perturbations are equivalent to the ones derived from the
metric, coordinate-based approach.

APPENDIX D: MATRIX A

Consider the matrix Θ defined in Eq. (25). To shorten the
expressions, let Θij represent the ij-entry of Θ, and ðΘnÞij
be interpreted as the ij-entry of the nth-order coefficient of
the power expansion of Θ at r ¼ 0, Eq. (26). Then, matrix
A in Eq. (28) is given by

A ¼

2
64
A11 A12 A13

A21 A22 A23

A31 A32 A33

3
75;

where

A11 ¼ Θ11 −
1

3
r2Θ31½ðΘ0Þ12ðΘ0Þ23 − 3ðΘ1Þ13�; ðD1Þ
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A12 ¼ −
36Θ13

r3
þ 12

r2
½Θ12ðΘ0Þ23 − ðΘ0Þ12ðΘ0Þ23 þ 3ðΘ1Þ13� þ

12

r
ðΘ33 − Θ11Þ½ðΘ0Þ12ðΘ0Þ23 − 3ðΘ1Þ13�

þ 2

3
r2Θ32½ðΘ0Þ12ðΘ0Þ23 − 3ðΘ1Þ13�f6ðΘ0Þ23½ðΘ1Þ22 − ðΘ1Þ33� − 9ðΘ2Þ23 þ 2ðΘ0Þ32½ðΘ0Þ23�2g

− 4Θ32ðΘ0Þ23½ðΘ0Þ12ðΘ0Þ23 − 3ðΘ1Þ13� − 12Θ12ðΘ0Þ23½ðΘ1Þ22 − ðΘ1Þ33� þ 18Θ12ðΘ2Þ23
− 4Θ12ðΘ0Þ32½ðΘ0Þ23�2 þ 4rΘ31½ðΘ0Þ12ðΘ0Þ23 − 3ðΘ1Þ13�2; ðD2Þ

A13 ¼
1

3
r3Θ32½ðΘ0Þ12ðΘ0Þ23 − 3ðΘ1Þ13� − rΘ12; ðD3Þ

A21 ¼ −
1

36
r3Θ31; ðD4Þ

A22 ¼
1

9
r3Θ32

�
3ðΘ0Þ23½ðΘ1Þ22 − ðΘ1Þ33� −

9

2
ðΘ2Þ23 þ ½ðΘ0Þ23�2ðΘ0Þ32

�

þ 1

3
r2Θ31½ðΘ0Þ12ðΘ0Þ23 − 3ðΘ1Þ13� −

r
3
ðΘ0Þ23Θ32 þ Θ33; ðD5Þ

A23 ¼
1

36
r4Θ32; ðD6Þ

A31 ¼
1

9
Θ31f3ðΘ0Þ23½r2ðΘ1Þ22 − r2ðΘ1Þ33 − 1� − 9

2
r2ðΘ2Þ23 þ r2ðΘ0Þ32½ðΘ0Þ23�2g −

Θ21

r
; ðD7Þ

A32 ¼ −
2r
3
Θ31½ðΘ0Þ12ðΘ0Þ23 − 3ðΘ1Þ13�f6ðΘ0Þ23½ðΘ1Þ22 − ðΘ1Þ33� − 9ðΘ2Þ23 þ 2½ðΘ0Þ23�2ðΘ0Þ32g

− r2Θ32ðΘ0Þ23½ðΘ1Þ22 − ðΘ1Þ33�
�
4ðΘ0Þ23½ðΘ1Þ22 − ðΘ1Þ33� − 6ðΘ2Þ23 þ

4

3
½ðΘ0Þ23�2ðΘ0Þ32

�

− r2Θ32½ðΘ0Þ23�2ðΘ0Þ32
�
4

3
ðΘ0Þ23½ðΘ1Þ22 − ðΘ1Þ33� − 2ðΘ2Þ23 þ

4

9
½ðΘ0Þ23�2ðΘ0Þ32

�

þ 36

r4
½Θ23 − ðΘ0Þ23� −

12

r3
ðΘ22 − Θ33ÞðΘ0Þ23 þ

12

r2
Θ21½ðΘ0Þ12ðΘ0Þ23 − 3ðΘ1Þ13�

þ 2

r
ðΘ22 − Θ33Þf6ðΘ0Þ23½ðΘ1Þ22 − ðΘ1Þ33� − 9ðΘ2Þ23 þ 2½ðΘ0Þ23�2ðΘ0Þ32g

þ 4

3
ðΘ0Þ23Θ32f6ðΘ0Þ23½ðΘ1Þ22 − ðΘ1Þ33� − 9ðΘ2Þ23 þ 2½ðΘ0Þ23�2ðΘ0Þ32g

þ r2Θ32ðΘ2Þ23f6ðΘ0Þ23½ðΘ1Þ22 − ðΘ1Þ33� − 9ðΘ2Þ23 þ 2½ðΘ0Þ23�2ðΘ0Þ32g

þ 2

r2
f6ðΘ0Þ23½ðΘ1Þ22 − ðΘ1Þ33� − 9ðΘ2Þ23 − 2½ðΘ0Þ23�2½Θ32 − ðΘ0Þ32�g

þ 4

r
Θ31ðΘ0Þ23½ðΘ0Þ12ðΘ0Þ23 − 3ðΘ1Þ13�; ðD8Þ

A33 ¼
r
9
Θ32

�
3ðΘ0Þ23ð1 − r2½ðΘ1Þ22 − ðΘ1Þ33�Þ þ

9

2
r2ðΘ2Þ23 − ½ðΘ0Þ23�2ðΘ0Þ32r2

�
þ Θ22: ðD9Þ

At first glance, it might seem that the A matrix is singular at r ¼ 0. However, after direct substitution and simplification,
one can verify that A is real and analytic, and it has the same radius of convergence as the matrix Θ.
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