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Abstract This paper investigates Buchdahl transforma-
tions within the framework of Einstein and Einstein-Scalar
theories. Specifically, we establish that the recently proposed
Schwarzschild–Levi-Civita spacetime can be obtained by
means of a Buchdahl transformation of the Schwarschild
metric along the spacelike Killing vector. The study extends
Buchdahl’s original theorem by combining it with the Kerr–
Schild representation. In doing so, we construct new vacuum-
rotating black holes in higher dimensions which can be
viewed as the Levi-Civita extensions of the Myers–Perry
geometries. Furthermore, it demonstrates that the double
copy scheme within these new generated geometries still
holds, providing an example of an algebraically general dou-
ble copy framework. In the context of the Einstein-Scalar
system, the paper extends the corresponding Buchdahl theo-
rem to scenarios where a static vacuum seed configuration,
transformed with respect to a spacelike Killing vector, gener-
ates a hairy black hole spacetime. We analyze the geometrical
features of these spacetimes and investigate how a change of
frame, via conformal transformations, leads to a new fam-
ily of black hole spacetimes within the Einstein-Conformal-
Scalar system.
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1 Introduction

Einstein field equations represent a set of second-order, non-
linear coupled partial differential equations, of a mixed type
since the momentum and Hamiltonian constraints are of ellip-
tic type, while the evolution of the initial data is given by
a hyperbolic system. Due to this inherent complexity, direct
brute force integration of these equations proves challenging,
with successful integration typically limited to cases exhibit-
ing a high degree of symmetry. Consequently, the pursuit
of exact solutions necessitates the utilization of specialized
techniques, with Lie point symmetries serving as a prominent
approach [1]. These symmetries refer to a set of local trans-
formations that consistently map each solution of the system
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to another solution within the same system. Hence, possess-
ing a solution to the field equations and identifying a Lie
point symmetry within the framework enables the discovery
of additional solutions to the same equations. Although this
seems to be a sort of recipe, there is a highly nontrivial effort
behind the finding of a new Lie point symmetry, as they are
usually hidden in the tensor language. Moreover, recogniz-
ing and accurately assessing the applicability of a particular
Lie point symmetry is of paramount importance, as it may
occur that the entirety of the symmetry’s potential may go
unexplored due to a lack of physical intuition. In the realm
of the electro-vacuum, the pioneering contributions of Ernst
[2,3], Geroch [4], and Kinnersley [5], building upon earlier
works by Ehlers [6,7], and Harrison [8], have played a pivotal
role in advancing our understanding of exact solutions to the
Einstein–Maxwell equations. Particularly significant is the
Ernst scheme, which formulates the Einstein–Maxwell field
equations in a space characterized by two complex poten-
tials, one gravitational and the other electromagnetic, that
enormously facilitates the detection of certain Lie point sym-
metries otherwise hidden in the Einstein–Maxwell theory, the
so-called Ehlers and Harrison transformations [6–8].

In this study, our objective is to reexamine and extend the
discussion on arguably two of the earliest Lie point symme-
tries pertinent to the Einstein field equations. Specifically, we
focus on the transformations introduced by Buchdahl [9,10]
and Janis–Robinson–Winicour (JRW) [11], which represent
straightforward symmetries within the contexts of the Ein-
stein vacuum, the Einstein-Scalar, and the Einstein-Scalar-
Maxwell theories. These transformations facilitate the gen-
eration of new solutions from existing static vacuum solu-
tions of the Einstein equations and have been very useful
in the identification of novel spacetimes. Buchdahl trans-
formations are categorized into two types: first [9] and sec-
ond kind [10].1 The former type converts any static vac-
uum solutions of the Einstein equations into a new “recip-
rocal” static vacuum solution, while the latter type trans-
forms any static vacuum solution into a static solution aug-
mented with a nontrivial scalar field, specifically, a mass-
less scalar field relevant to the Einstein-Scalar system. On
the other hand, the JRW transformation [11] generates an
electrically charged solution from a known Buchdahl scalar
solution, maintaining the scalar profile from the uncharged
seed. A Buchdahl transformation of the first kind may alter
Minkowski spacetime, yielding a reciprocal spacetime that
may not correspond to Minkowski spacetime in disguise.
However, when applied to the Schwarzschild spacetime, it
reproduces the Schwarzschild geometry in a different gauge,
a result consistent with Birkhoff’s theorem. In fact, Buch-
dahl transformations of the first kind (as well as Buchdahl

1 The categorization we have introduced here is new and serves the
purpose of distinguishing between different types of transformations.

transformations of the second kind), as typically employed,
do not alter the spherical symmetry of the reciprocal solu-
tion, and in consequence, the latter cannot depart from the
Schwarzschild spacetime. Conversely, Buchdahl transforma-
tions of the second kind [10] are recognized for their inabil-
ity to introduce a scalar field onto Minkowski spacetime,
but they do so onto the Schwarzschild geometry, producing
the well-known Fisher–Janis–Newman–Winicour (FJNW)
[12,13] spacetime. This spacetime, a solution of Einstein
gravity enhanced with a massless minimally coupled scalar
field, becomes electrically charged in the context of Maxwell
theory through JRW transformations [11]. While the scalar
field profile remains unaltered from the uncharged seed, the
electric configuration adopts a Coulombian nature.

In its original formulation [9], Buchdahl theorem (of the
first kind) can be presented as follows: Consider any d-
dimensional vacuum solution of the Einstein field equations

ds2
0 = gμνdxμdxν = gaa(xk)(dxa)2 + gi j (xk)dxi dx j ,

(1.1)

which is said to be static with respect to a coordinate “a”,
namely, that it satisfies gai = 0 = ∂agμν = 0. Here, a
represents a cyclic coordinate, and i, j run from 1 to d − 1.2

It is proven that, knowing (1.1), a new static and vacuum
solution (d ≥ 4) is automatically given by

ds2 = (gaa)−1(dxa)2 + (gaa)
2

d−3 gi j dxi dx j , (1.2)

which is said to be reciprocal to the original seed. In addition,
it is proven [10] (Buchdahl transformation of the second kind)
that given a static vacuum solution of the form (1.1), the
spacetime configuration (d ≥ 4)

ds2
E S = (gaa)β(dxa)2 + (gaa)

1−β
d−3 gi j dxi dx j ,

� =
√

(d − 2)(1 − β2)

4(d − 3)κ
ln (gaa),

(1.3)

will correspond to a solution of the Einstein-Scalar field equa-
tions

Rμν = κ∂μ�∂ν�, �� = 0, (1.4)

where κ = 8πG represents Newton’s constant, and |β| < 1
a scalar hair parameter.

The conventional understanding of staticity is tied to the
metric’s time independence and the absence of stationary
terms in the metric tensor. Consequently, investigations into
the Buchdahl theorem have primarily occurred within the
framework where the cyclic coordinate a represents the time
coordinate. In this context, this is what we previously called

2 Note that the index a is fixed, no summation is assumed even when
repeated.
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“the typical” manner of applying the Buchdahl transforma-
tions (1.2) and (1.3). However, this limitation is not inherent
in the theorem itself; rather, a could denote any cyclic coordi-
nate associated with any other Killing vector of the geometry,
not necessarily the timelike Killing vector ∂t . An intriguing
avenue of inquiry involves employing Buchdahl transforma-
tions concerning spacelike Killing vectors. Therefore, a logi-
cal progression of exploration involves examining the effects
of a Buchdahl transformation when applied along the Killing
vector ∂φ .

In a recent publication [14], a vacuum solution to
the Einstein field equations has been introduced, termed
the Schwarzschild–Levi-Civita black hole. This geometry
depicts a Schwarzschild black hole situated within a Levi-
Civita spacetime, as its geometric analysis can testify. The
geometry corresponds to the Levi-Civita spacetime in the
massless limit, while it asymptotically approaches a Levi-
Civita spacetime at radial infinity, or in terms of cylindri-
cal coordinates, asymptotically far from the symmetry axis.
Although not advertised in [14], further analysis reveals
that this solution is algebraically general, namely, of Petrov
type I, indicating that its classification departs from the gen-
eral expanding Plebanśki–Demiański class [15], where most
known black holes belong to. Furthermore, particularly note-
worthy reveals to be the fact that this solution corresponds to
a Buchdahl-transformed version of the Schwarzschild black
hole. However, unlike previous transformations, which were
typically applied with respect to the timelike Killing vec-
tor ∂t , this transformation occurs concerning the azimuthal
spacelike Killing vector ∂φ .

The Schwarzschild–Levi-Civita spacetime prompts a reev
aluation of Buchdahl’s transformations. Specifically, we aim
to extend the Buchdahl theorem to encompass geometries
featuring two Killing vectors in dimension four. However,
an extension with an arbitrary number of commuting Killing
vectors and in an arbitrary number of dimensions is also fea-
sible. We will examine the new geometries achievable via
this generalized Buchdahl theorem when applied to spacelike
Killing vectors. Furthermore, it will be demonstrated that the
solution introduced in [14] admits a Kerr–Schild representa-
tion, with the Kerr–Schild vector being null and geodesic but
not shear-free. This observation aligns with the Goldberg-
Sachs theorem [16], which stipulates that the geometry must
belong to algebraically special spacetimes for a null and
shear-free geodesic congruence. This naturally leads to the
question of how Buchdahl transformations can be applied to
rotating vacuum spacetimes. Explicit Buchdahl versions of
the Myers–Perry black hole [17] and their Kerr–Schild form
will be provided. In addition, it will be clearly seen why
four-dimensional rotating black holes cannot be subjected
to Buchdahl transformations. Additionally, we will elucidate

how the double copy scheme [18–20], which establishes con-
nections between solutions of Einstein–Maxwell theory and
Maxwell theory in flat spacetime, operates in the presence of
Buchdahl-transformed geometries. Lastly, at a static level, we
will revisit the standard Buchdahl theorem within Einstein-
Scalar theory [10], in order to construct new hairy extensions
of the Schwarzschild–Levi-Civita black hole. In addition, we
will introduce a framework through which an external mag-
netic field can influence these solutions, providing a magnetic
generalization of the JRW transformations [11]. We will ana-
lyze the main geometric properties of these new hairy black
hole solutions and provide several avenues to be explored in
the context of black holes in scalar-tensor theories.

This work is structured as follows: In Sect. 2, we delve
into the main properties of the Levi-Civita black hole [14],
elucidating its evident connection with the Buchdahl the-
orem (1.2) and providing a magnetized version that regu-
larizes the curvature singularity it presents along the sym-
metry axis. Section 3 extends the Buchdahl theorem in vac-
uum in several directions. First, to scenarios where two com-
muting Killing vectors of a four-dimensional geometry are
considered. Next, Buchdahl and Kerr–Schild transforma-
tions are composed, resulting in the Kerr–Schild form of
the Schwarzschild–Levi-Civita black hole and facilitating
the construction of new higher-dimensional rotating black
holes. In particular, Buchdahl-transformed extensions of the
Myers–Perry spacetime. In addition, leveraging the Kerr–
Schild form of our solutions, we establish a novel double
copy scheme, notable for its algebraically general nature.
Section 4 presents a generalization of the original Buchdahl
theorem within the Einstein-Scalar system, facilitating the
construction of a Levi-Civita version of the Fisher–Janis–
Newman–Winicour black hole [11–13]. We analyze its key
geometric features and introduce its magnetically charged
extension, in an attempt to generalize the standard JRW elec-
tric transformation [11]. Additionally, we perform the well-
known Bekenstein change of frame [21], obtaining the Levi-
Civita extension of the celebrated BBMB black hole [21,22].
Finally, in Sect. 5, we conclude by outlining further avenues
for exploration within the realm of these novel geometries.

2 Revisiting the Schwarzschild–Levi-Civita black hole

As we have already pointed out the Schwarzschild–Levi-
Civita black hole [14], although it can be easily integrated
from the field equations, corresponds with the Buchdahl-
transformed version of the Schwarzschild geometry, how-
ever, not with respect to the standard timelike Killing vector
but with respect to the spacelike Killing vector ∂ϕ . As pre-
sented in [14] the geometry reads
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ds2 = dϕ2

λ2
0r2 sin2 θ

+ λ2
0r4 sin4 θ

[
−

(
1 − 2M

r

)
dt2

+ dr2(
1 − 2M

r

) + r2dθ2

]
, (2.1)

beingλ0 an integration constant and M the mass parameter. In
fact, considering the coordinate a to be the azimuthal angle ϕ

and remaining in four dimensions, the Buchdahl-transformed
metric (1.2) becomes

ds2 = dϕ2

r2 sin2 θ
+ r4 sin4 θgi j dxi dx j . (2.2)

As a matter of fact, if the seed spacetime is chosen to be
the Schwarzschild geometry, this precisely reproduces the
Schwarzschild–Levi-Civita spacetime (2.1) for λ0 = 1. Con-
trary to the case in which the timelike Killing vector has been
considered in the transformation, the resulting metric cannot
be turned back to the seed by a large diffeomorphism as the
initial spherical symmetry of the seed has been lost. Direct
inspection reveals that the effect of the aforementioned Buch-
dahl transformation consists of embedding the given seed on
a Levi-Civita spacetime [23], namely, a static, cylindrically
symmetric vacuum of Einstein equations. Actually, consid-
ering the Minkowski spacetime in cylindrical coordinates
(t, ρ, z, ϕ)

ds2
0 = −dt2 + dρ2 + dz2 + ρ2dϕ2, (2.3)

making use of (1.2) with respect to the azimuthal coordinate
provides us with

ds2 = ρ4(−dt2 + dρ2 + dz2) + dϕ2

ρ2 . (2.4)

This spacetime is nothing else than the Levi-Civita spacetime

ds2
LC =−ρ4σ dt2+k2ρ4σ(2σ−1)(dρ2+dz2)+ρ2(1−2σ)dϕ2,

(2.5)

with mass per unit length σ = 1 and k = 1. Notice that a
rescaling of the noncompact coordinates is necessary. This
represents a particular case of vacuum Weyl spacetimes in
which the geometry features an additional spacelike Killing
vector, ∂z . Now, the Schwarzschild black hole embedded in
the Levi-Civita spacetime certainly behaves asymptotically
as the Levi-Civita spacetime and it acquires most of its fea-
tures, besides losing the evident symmetry with respect to
the z-coordinate which is lost due to the presence of the mass
term M . Therefore, it is of a general algebraic nature, namely,
of Petrov type I. Its background, the Levi-Civita spacetime,
is algebraically special for σ = (−1/2, 1/4, 1) and confor-
mally flat for σ = (0, 1/2,∞). Moreover, since it belongs
to a vacuum Weyl solution, its interpretation in terms of
a Newtonian potential is direct to obtain, representing the

gravitational potential of an infinite uniform line source with
a mass per unit length expressed by σ . Consequently, the
Schwarzschild–Levi-Civita black hole will always feature a
curvature singularity all over the symmetry axis, which will
be nothing but the relativistic analog of the Newtonian line
source sourcing the Levi-Civita spacetime.

The curvature singularity located at the axis of symmetry
of the Schwarzschild–Levi-Civita black hole can be cured
by embedding the geometry on an external magnetic field.
In direct analogy with the Schwarzschild–Melvin spacetime
[24,25], which is obtained via a magnetic Harrison trans-
formation [8], we construct the Melvin extension of the
Schwarzschild–Levi-Civita black hole

ds2 = �2
(

r4 sin4 θ
) [

−
(

1 − 2M

r

)
dt2

+ dr2

1 − 2M
r

+ r2dθ2

]
+ 1

(r2 sin2 θ)�2
dϕ2,

A = B

�

(
1

r2 sin2 θ

)
dϕ,

(2.6)

where � = 1+ B2

r2 sin2 θ
. The metric exhibits the standard cur-

vature singularity at r = 0 only. As expected, asymptotically
far from the axis of symmetry it behaves as a Levi-Civita
spacetime. Interestingly enough, close to the axis of symme-
try, it is possible to show that

ds2 ∼
r→0

B4
[

2M

r
dt2 − r

2M
dr2 + r2(dθ2 + sin2 θdϕ2)

]
,

A ∼
r→0

B3dϕ. (2.7)

Redefining the azimuthal coordinate as ϕ → B4ϕ, and
rescaling the line element by a constant conformal factor B4,
the spacetime is given by nothing else than the Schwarzschild
metric, with a pure gauge Maxwell field.

3 Extending Buchdahl theorem in vacuum

Thus far, our investigation has yielded a preliminary observa-
tion: employing the Buchdahl transformations relative to the
spacelike Killing vector ∂ϕ presents an intriguing approach
for generating novel spacetimes within the framework of
Einstein’s theory. As shown below in Sect. 4, this method
also extends to the construction of distinctive spacetimes
within Einstein-Scalar and Einstein-Scalar-Maxwell theo-
ries. The primary consequence appears to be the incorpo-
ration of the original seed onto Levi-Civita spacetime, at
least when employing one single transformation. This signif-
icantly modifies the geometric characteristics of these newly
derived solutions compared to the familiar solutions obtained
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through the application of Buchdahl transformations accord-
ing to the standard lore.

3.1 Buchdahl theorem and its extension in d = 4 with two
Killing vectors

A generalization of the Buchdahl transformation can be
achieved, when the number of Killing vectors is greater or
equal than 2, through compositions between two different
transformations associated with two different Killing vectors.
We will initially limit ourselves to the case in four dimensions
with exactly 2 Killing vectors, however, this construction can
be extended in arbitrary dimensions and with any number of
Killing vectors.

Hence, let gμν be the metric tensor in four dimensions
with coordinates defined by xμ = (t, xi , ϕ) and let ξμ∂μ =
∂t and χμ∂μ = ∂ϕ be two Killing vector fields, timelike
and spacelike, respectively. In addition, let us assume that
git = giϕ = gtϕ = 0, that is, the metric tensor acquires the
form g = (−gtt , gi j , gϕϕ

)
with all the metric components

being independent of t and ϕ.
In order to generalize the original Buchdahl theorem (in

four dimensions) to the case in which the transformation
involves the two Killing vectors, we start by defining the
family of applications T(n,m), with n, m ∈ Z, that acts on the
metric components as follows

T(n,m)(g) =
[
− (gtt )

an,m
(
gϕϕ

)am,n gtt , (gtt )
bn,m

(
gϕϕ

)b−n,−m gi j , (gtt )
−an,m

(
gϕϕ

)−am,n gϕϕ

]
,

(3.1)

where we have defined

an,m = 2(−1)n+mn, bn,m = (n + m)(n + m + 1).

(3.2)

It can be proven that if gμν = (−gtt , gi j , gϕϕ

)
is a vacuum

metric, the reciprocal spacetime metrics defined by

g′ = T(n,n)(g) := T (1)
n (g), (3.3a)

g′′ = T(n,n−1)(g) := T (2)
n (g), (3.3b)

will also satisfy Rμν = 0, and this for any integer n ∈ Z.
Many comments can be made concerning this result. First

of all, note that since an,m and bn,m (3.2) are always even,
the signature of the transformed metric T(n,m)(g) is the same
as the original one, g. One can also notice that for the Killing
vector field ξ (resp. χ ), the standard Buchdahl transforma-
tion as defined in [9] will correspond to (3.3b) with n = 1
(resp. n = 0). For example, for a starting metric given by
the Schwarzschild solution with coordinates (t, r, θ, ϕ) and
metric components gtt = g−1

rr = 1 − 2M
r , gθθ = r2 and

gϕϕ = r2 sin2 θ , the transformation (3.3b) with n = 0 yields

the Schwarzschild–Levi-Civita black hole (2.1), recently pre-
sented in [14]. Note that for the transformed Schwarzschild
solution with n = 1, the resulting metric is nothing but the
Schwarzschild spacetime itself written in a different set of
coordinates, see below (3.9). It is also interesting to see that
the set of all the transformations (3.3) forms a group under
composition

T (1)
0 = id, (T (1)

n )−1 = T (1)
−n , (T (2)

n )−1 = T (2)
n

T (1)
m ◦ T (1)

n = T (1)
n+m, T (2)

m ◦ T (2)
n = T (1)

n−m, T (2)
m ◦ T (1)

n

= T (2)
n+m, T (1)

m ◦ T (2)
n = T (2)

n−m .

Moreover, as previously stated, the transformations (3.3) are
nothing but the compositions of the standard Buchdahl trans-
formations associated with each of the two Killing vectors. In
other words, the group of generalized Buchdahl transforma-
tions are generated by T (2)

1 and T (2)
0 only, which are exactly

the standard Buchdahl transformations associated with ξ and
χ . That is, any transformation (3.3), can be expressed as an
alternated composition of the transformations T (2)

1 and T (2)
0

as

T1 := T (2)
1 ◦ T (2)

0 ◦ T (2)
1 ◦ T (2)

0 · · · or

T0 := T (2)
0 ◦ T (2)

1 ◦ T (2)
0 ◦ T (2)

1 · · · . (3.4)

More precisely, T1 will generate all the transformations T (1)
−n

and T (2)
n for n ∈ N while T0 will induce the remaining trans-

formations, namely T (1)
n and T (2)

−n . For example, one can rep-

resent the transformation T (1)
3 as

T (1)
3 = T (2)

0 ◦ T (2)
1 ◦ T (2)

0 ◦ T (2)
1 ◦ T (2)

0 ◦ T (2)
1 . (3.5)

In order to be concrete, once again we exemplify with the
Schwarzschild–Levi-Civita black hole of [14]

ds2
SLC = r4 sin4 θ

[
−

(
1 − 2M

r

)
dt2

+ dr2

1 − 2M
r

+ r2dθ2

]
+ dϕ2

r2 sin2 θ
. (3.6)

As already mentioned, this spacetime can be obtained from
the Schwarzschild metric

ds2
Schw = −

(
1 − 2M

r

)
dt2 + dr2

1 − 2M
r

+r2dθ2 + r2 sin2 θdϕ2, (3.7)

by means of the transformation (3.3b) with n = 0, that is
gSLC = T (2)

(0,−1)gSchw. Let us now go beyond a single trans-
formation, and from the vacuum solution (3.6), operate with
a generalized transformation with the timelike vector field
ξμ∂μ = ∂t . The resulting new vacuum spacetime, dubbed
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extended Schwarzschild–Levi-Civita, reads

ds2
E SLC = −dt2

r4 sin4 θ
(
1 − 2M

r

) +
[

r4 sin4 θ

(
1 − 2M

r

)]2

×
[

r4 sin4 θ

(
dr2

1 − 2M
r

+ r2dθ2

)
+ dϕ2

r2 sin2 θ

]
,

(3.8)

and is simply given via the transformations and gE SLC =
T (2)

(1,0)gSLC = T (2)
(1,0) ◦ T (2)

(0,−1)gSchw = T (1)
(−1,−1)gSchw. This

spacetime has an asymptotic region as r → ∞ which is
locally flat, namely Rμν

αβ approaches zero there, and even
more the Killing vector ∂t becomes null, for arbitrary large r .
The interior of the spacetime ends at the singularity r = 2M ,
which can be seen by computing the Kretchmann scalar, that
diverges at the axes θ = 0, π , as well. In a similar way, we
can start by acting on the Schwarzschild metric with a stan-
dard Buchdahl transformation with respect to the timelike
Killing vector ∂t . This metric, which is nothing else than the
Schwarzschild metric in a different set of coordinates, can be
obtained via (3.3b) with n = 1 as ḡSchw = T (2)

(1,0)gSchw. It is
given by

ds̄2
Schw = −dt2(

1 − 2M
r

) +
(

1 − 2M

r

)2 [
dr2(

1 − 2M
r

)
+r2dθ2 + r2 sin2 θdϕ2

]
. (3.9)

Acting on this metric with a Buchdahl transformation with
respect to the spacelike Killing vector ∂ϕ provides the space-

time ḡE SLC = T (2)
(0,−1)ḡSchw = T (1)

(1,1)gSchw of which the line
element reads

ds̄2
E SLC =

[
r2 sin2 θ

(
1 − 2M

r

)2 ]2

×
[

− dt2

1 − 2M
r

+
(

1 − 2M

r

)2

×
(

dr2

(1 − 2M
r )

+r2dθ2

) ]
+ dϕ2

r2 sin2 θ
(
1 − 2M

r

)2 .

(3.10)

Note that this metric is not diffeomorphic to (3.8). There-
fore, the different vacuum metrics generated by means of
these transformations (3.3) are not diffeomorphic in gen-
eral, and this is consistent with the non-Abelian nature of
the transformations. The latter geometry (3.10), also has an
asymptotically locally flat region as r → ∞, and the space-
time interior extends up to r = 2M , where the spacetime is
singular. In this case the Killing field ∂t remains timelike for
2M < r < ∞.

Finally, we propose to re-derive the previous results with
a static and spherical seed metric using the mini-superspace
formalism. This approach also presents the advantage of
specifying the thermodynamic properties of the solutions
obtained by means of the generating technique method.
As usual, we work in the Euclidean formalism with the
Euclidean time τ related to the Lorentzian time t by t = iτ .
In order to fit with the prescription of (3.1), we shall consider
an Euclidean ansatz of the form

ds2
E =

(
N 2 f

)an,n−1
�an−1,n dτ 2 +

(
N 2 f

)bn,n−1
�b−n,1−n

×
[

dr2

f
+r2dθ2

]
+

(
N 2 f

)a−n,1−n
�−b−n,1−n r2

× sin2 θdϕ2,

(3.11)

where f = f (r), N = N (r) and � = �(r, θ), and where the
factors a and b are defined in (3.2). The Euclidean Einstein–
Hilbert action evaluated on this ansatz (after some integration
by parts) and with a periodic time τ of period β = 1

T , with
T being the temperature, reads

IE = 1

2κ

∫ √
gE d4x R,

= β

κ

∫
θ

∫
r

N

[
sin(θ)

(
r f ′ + f − 1 +

(
∂θ�

�

)2

+r2 f

(
�′

�

)2

− 2r f
�′

�

)
− 2 cos(θ)

∂θ�

�

]
.

It is interesting to note that the reduced action (3.12) is generic
and does not depend on the coefficients a and b, and its field
equations obtained by varying with respect to f , N , and �

are easily integrated. Indeed, one can show that the equation
we obtain via variation with respect to f can be re-written as

N ′

N
= r

(
�′

�

)2

− 2�′

�
,

which automatically implies that � is separable in product
as � = r2 H(θ), and consequently N = cte. Finally, the
integration of the remaining equations yields

f (r) = 1 − 2M

r
, N = cst, �(r, θ) = r2 sin2 θ. (3.12)

This result is in complete accordance with the extended
Buchdahl transformations (3.1) together with the Birkhoff
theorem. The thermodynamics can be carried out by adding
a boundary term BE to the Euclidean action such that the full
variation vanishes δ(IE + BE ) = 0. In our case, the variation
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of the appropriate boundary term is given by

δBE = −β

κ

∫ π

θ=0

∫ ∞

r=rh

×N
[

sin(θ)
(

rδ f + 2δ ln �(1 + r2 f − 2r f )
)

−2 cos(θ)δ ln �
]
,

where rh = 2M is the location of the horizon. For the class
of solutions (3.12), since δ ln � = 0, we end up with the
standard Schwarzschild boundary term

BE = β

(
4M

κ

)
− 4πr2

h

κ
,

from which one can infer the mass M = 4M
κ

, and that the

entropy satisfies the one-quarter area law S = 4πr2
h

κ
.

As a last comment before closing this section, we recall
that the Buchdahl transformation of the Schwarzschild
solution along the timelike Killing vector yields, after
an appropriate re-definition of the radial coordinate, the
Schwarzschild spacetime. There is nevertheless an exam-
ple where this transformation on a vacuum black hole solu-
tion generates a new solution which is not diffeomorphic to
the starting seed. Indeed, in [26], a five-dimensional vacuum
solution with a three-dimensional Nil geometry horizon was
constructed, of which the line element is given by

ds2 = −
(

1 − M

r

)
dt2 + dr2

r5
(
1 − M

r

)
+1

r
(dx2

1 + dx2
2 ) + r(dx3 − x1dx2)

2. (3.13)

It is clear that the Buchdahl transformation can only be done
along the timelike Killing vector field yielding to a new vac-
uum solution with a Nil geometry horizon

ds2 = − dt2(
1 − M

r

) +
(

1 − M

r

)

×
[

dr2

r5
(
1− M

r

) + 1

r
(dx2

1 +dx2
2 )

+r(dx3−x1dx2)
2
]
, (3.14)

which after the change r = −ρ + M , and then performing
the redefinition ρ = −r and M → −M leads to

ds2 = −
(

1 − M

r

)
dt2 + dr2

r5
(
1 − M

r

)5

+ r

(r − M)2 (dx2
1 + dx2

2 ) + r(dx3 − x1dx2)
2. (3.15)

In this case the range of the radial coordinate can be
extended from 0 < r < ∞. The spacetime is singu-
lar at both ends, nevertheless, the null surface r = M is

a Killing horizon for the Killing field ∂t , which is time-
like for r > M and spacelike when r < M . The sur-
faces at constant t and constant r , are Nil geometries, lead-
ing to the following Killing vectors for the full spacetime(
e1 = ∂t , e2 = 2

(
x1∂x2 − x2∂x1

) + (
x2

1 − x2
2

)
∂z, e3 = ∂x1

+ x2∂x3 , e4 = ∂x2 , e5 = ∂x3

)
, which span the following

solvable algebra

[e2, e3] = −2e4 [e2, e4] = 2e3 [e3, e4] = −e5. (3.16)

A further exploration of the geodesic motion on this space-
time, exploiting the isometry algebra, will be presented else-
where.

3.2 Composition of Buchdahl and Kerr–Schild
transformations

In order to explore whether any of the spacetimes acquired
through Buchdahl transformations can be expressed in a
Kerr–Schild form, we delve into the composition of Buch-
dahl and Kerr–Schild transformations. Here, we will only
use the Buchdahl transformation with respect to the space-
like Killing vector ∂ϕ . This is due to the fact that the effect of
the transformation with respect to the timelike Killing vector
is pure gauge if the seed is either standard Minkowski or the
Schwarzschild spacetime. Starting from this observation, we
will then split the d-dimensional coordinates appropriately
as xμ = (xi , ϕ), where i = 1, . . . , d − 1. Our objective is
to fix the conditions for which a metric written in the Kerr–
Schild form maintains a Kerr–Schild decomposition under
the action of a Buchdahl transformation with respect to the
spacetime Killing vector ∂ϕ . Let us assume that the starting
vacuum metric admits a Kerr–Schild representation

ds2 = ds2
0 + H(xμ)l ⊗ l, (3.17)

where the seed metric is g0, and l is a null and geodesic vector
field for the seed and the full metrics

g(0)μνlμlν = lμ(∇(0)
μ lν) = 0

= gμνlμlν = lμ(∇μlν) = 0. (3.18)

Now, in order for the full metric to satisfy the Buchdahl con-
ditions along the spacelike Killing vector ∂ϕ , the seed metric
g0 must have the following decomposition

ds2
0 = g(0)

i j dxi dx j + g(0)
ϕϕ dϕ2, (3.19)

while H = H(xi ) and the component of the null 1-form l
along the basis element dϕ is vanishing, i.e., l = ai (x j )dxi .
Under these conditions, it is clear that using the Buchdahl
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transformation, the metric defined by

ds̃2 =
(

g(0)
ϕϕ

) 2
d−3

[
g(0)

i j dxi dx j
]

+dϕ2

g(0)
ϕϕ

+
(

g(0)
ϕϕ

) 2
d−3

H(xi )l ⊗ l, (3.20)

is also a vacuum metric. It remains to show that (3.20) has
a Kerr–Schild representation, that is l is null and geodesic
with respect to seed and the full metric (3.20). In fact, under
our assumption, particularly that l = ai (x j )dxi , the null
character of l is trivial while the geodesic equation simplifies
to

lμ(∇̃μlν)= li
[
�

(0) j
ik −�̃

j
ik

]
l j

=−1

�

[
(∂i�) δ

j
k +(∂k�) δ

j
i −(∂ j�) gik

]
li l j,

(3.21)

where � =
(

g(0)
ϕϕ

) 1
d−3

. By utilizing the null nature of the

congruence g̃μνlμlν = li li = 0, it becomes evident that l is
geodesic as well.

Let us exemplify this outcome with two cases. We will
first show that the Schwarzschild–Levi-Civita black hole
can fit in the Kerr–Schild representation, and that this is
related to the fact that the Schwarzschild metric itself has a
Kerr–Schild form respecting the previous conditions. Unfor-
tunately, although Kerr’s solution has a Kerr–Schild type
representation, the latter is not compatible with the above-
mentioned conditions unless the rotation parameter vanishes.
However, in higher dimensions where there is more than one
rotation parameter, one can show that the general Myers–
Perry rotating black hole solutions with one vanishing rota-
tion are in complete adequacy with the previous hypotheses
and thus new spinning solutions can be generated.

3.2.1 Kerr–Schild form of the Schwarzschild–Levi-Civita
black hole

Firstly, observe that the Schwarzschild–Levi-Civita black
hole metric (3.6) can be expressed through a Kerr–Schild
transformation of the form

ds2
SLC = r4 sin4 θ

[
−dt2 + dr2 + r2dθ2

]
+ dϕ2

r2 sin2 θ
+

(
2Mr3 sin4 θ

)
(dt + dr)2, (3.22)

where l = dt + dr defines a null and geodesic but not shear-
free congruence, and that its standard form (3.6) is recovered
by implementing the following change of coordinates

dt → dt + 2M

r − 2M
dr. (3.23)

On the other hand, it is known that the Kerr–Schild represen-
tation of the Schwarzschild metric is given by

ds2
Schw = −dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2

+
(

2M

r

)
(dt + dr)2, (3.24)

and that its standard form is recovered using the same change
of variables (3.23). It is direct to observe that the Kerr–Schild
representation of the Schwarzschild–Levi-Civita black hole
(3.22) can be obtained from (3.24) using the transforma-
tion (3.20). Although this observation proceeds straightfor-
wardly, it suggests an interesting fact. Indeed, it seems that
the Schwarzschild–Levi-Civita black hole constitutes the first
example of an algebraically general spacetime in vacuum
admitting a Kerr–Schild representation. Note that in contrast
to the Schwarzschild–Levi-Civita black hole (3.22), the met-
ric (3.9) cannot be obtained from a standard Kerr–Schild
transformation but instead from a Kerr–Schild transforma-
tion in the (t, r)-sector and a conformal transformation in
the orthogonal sector (θ, ϕ). Indeed, the metric defined by

ds̄2
Schw = −dt2 + dr2 −

(
2M

r − 2M

)

× (dt + dr)2 +
(

1 − 2M

r

)2

×
[
r2dθ2 + r2 sin2 θdϕ2

]
, (3.25)

following the change of variable, dt → dt − 2M
r dr , yields

(3.9).

3.2.2 A rotating example: Myers–Perry black holes à la
Buchdahl

The next example is provided by the rotating Myers–Perry
vacuum solutions [17] in d = 5, and later generalized in
any higher dimension d ≥ 5. In a d-dimensional Myers–
Perry solution, the rotation group is SO(d − 2) which has
[ d−1

2 ] independent Casimir invariants corresponding to the
rotations in the distinct planes (each of them associated to
a different rotation parameter). One can show that for the
Myers–Perry solutions the hypothesis allowing the Buchdahl
transformation is not respected unless (and at least) one of the
rotation parameters vanishes. We shall also take advantage
from the fact that the rotating Myers–Perry solutions admit
a Kerr–Schild representation to present the new generated
spinning solutions in the Kerr–Schild form.

In five dimensions, the Myers–Perry solution with two
rotations has the following Kerr–Schild representation
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ds2
MP = −dt2 + r2ρ2

(r2 + a2
1)(r2 + a2

2)

×dr2 + ρ2dθ2 + (r2 + a2
1) sin2 θ

×dϕ2
1 + (r2 + a2

2) cos2 θdϕ2
2 − M

ρ2 l ⊗ l, (3.26)

where ρ2 = r2 + a2
1 cos2 θ + a2

2 sin2 θ , and the null and
geodesic vector l is defined as

l = dt + r2ρ2

(r2 + a2
1)(r2 + a2

2)
dr

−a1 sin2 θdϕ1 − a2 cos2 θdϕ2. (3.27)

In order for our Buchdahl–Kerr–Schild composition to be
valid in the presence of rotation, it is mandatory to turn off
at least one of the angular momenta, let us say a2 = 0 (the
case a1 = 0 can be treated identically). Therefore, taking
ξμ∂μ = ∂ϕ2 as the Killing vector of our transformation, our
new spinning vacuum solution (Rμν = 0) in the Kerr–Schild
form reads

ds2
MPLC =

(
r2 cos2 θ

) [
− dt2 + ρ2

1

r2 + a2
1

dr2

+ ρ2
1 dθ2 + (r2 + a2

1) sin2 θdϕ2
1

]

+ dϕ2
2

r2 cos2 θ
− Mr2 cos2 θ

ρ2
1

l1 ⊗ l1, (3.28)

where now ρ2
1 = r2 + a2

1 cos2 θ and where the null and
geodesic vector field l1 is given by

l1 = dt + ρ2
1

(r2 + a2
1)

dr − a1 sin2 θdϕ1. (3.29)

Notice that the presence of a cosmic string localized at θ = π
2

is unavoidable. Similarly, the construction could have been
performed by turning off the angular momentum a1 = 0, in
such a case ending up with a cosmic string localized at θ = 0.
In the more intuitive Boyer–Lindquist set of coordinates the
line element (3.28) reads

ds2
M P LC =

(
r2 cos2 θ

)

×
[
−dt2 + M

ρ2
1

(
dt − a1 sin2 θdϕ1

)2

+ρ2
1

(
dr2

r2+a2
1 −M

+dθ2

)
+(r2+a2

1) sin2 θdϕ2
1

]

+ dϕ2
2

r2 cos2 θ
. (3.30)

The existence of the Boyer–Lindquist coordinates is a con-
sequence of the circularity of the spacetime, the latter being
a coordinate-independent property.

A straightforward generalization of this result to the
generic d-dimensional case proceeds directly by taking to
zero one of the angular momenta. In the case of odd dimen-
sions, d = 2n + 1, the Buchdahl-transformed Myers–Perry
metric with (n − 1) rotations reads

ds2 =
(

r2μ2
n

) 2
d−3

⎡
⎣−dt2 + Mr2

�F

(
dt +

n−1∑
i=1

aiμ
2
i dϕi

)2

+ �F

�−Mr2 dr2+
n−1∑
i=1

(r2+a2
i )

(
dμ2

i +μ2
i dϕ2

i

)

+r2dμ2
n

⎤
⎦ + dϕ2

n

r2μ2
n
, (3.31)

where

n∑
i=1

μ2
i = 1, F = 1 −

n−1∑
i=1

a2
i μ2

i

r2 + a2
i

,

� =
n−1∏
i=1

(r2 + a2
i )r2. (3.32)

Similarly, for even dimensions d = 2n + 2 with (n − 1)

rotations we obtain

ds2 =
(

r2μ2
n

) 2
d−3

⎡
⎣−dt2 + Mr

�F

(
dt +

n−1∑
i=1

aiμ
2
i dϕi

)2

+ �F

� − Mr
dr2+

n−1∑
i=1

(r2+a2
i )

(
dμ2

i +μ2
i dϕ2

i

)

+r2dμ2
n + r2dα2

]
+ dϕ2

n

r2μ2
n
, (3.33)

where the variables (μi , α) are subject to the constraint α2 +∑n
i=1 μ2

i = 1.
It is interesting to remark that,
it is natural to expect that these solutions are going to be

of the general algebraic type according to the higher dimen-
sional Petrov classification [27,28]. Again, the attractiveness
of these solutions relies on the fact that they are vacuum alge-
braically general solutions admitting a Kerr–Schild decom-
position. The Kerr–Schild ansatz can also be useful regarding
what is called the double copy framework. This latter posits
that scattering amplitudes in gauge theories, such as quan-
tum chromodynamics, are intimately connected to those in
gravity. On the other hand, while the Kerr–Schild ansatz is
not directly applicable to the double copy in its usual formu-
lation, there have been explorations of connections between
exact solutions in gravity and their counterparts in gauge the-
ories within the framework of the double copy. For example,
certain properties of black hole solutions obtained through
the Kerr–Schild ansatz may have analogs or implications in
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the context of the double copy (see e.g. [29] and references
therein and thereof). This is precisely what we are going to
investigate in the next subsection.

3.3 Buchdahl-transformed Kerr–Schild metrics and double
copy

In the double copy scheme, the Kerr–Schild function H ,
employed for expressing the black hole metric as a pertur-
bation of the seed metric along a null and geodesic direc-
tion l, becomes associated with the Maxwell gauge poten-
tial via A ∝ Hl. This relationship embodies the canoni-
cal correspondence inherent in the double copy formalism
utilizing the Kerr–Schild ansatz. The underlying reasoning
is to establish a framework for elucidating the interrelation
between gauge theory amplitudes and gravitational counter-
parts, thereby facilitating the examination of scattering phe-
nomena involving gravitons and their interactions with matter
fields within specific spacetime configurations, notably those
of rotating black holes.

In elucidating this correspondence, consider g to represent
a metric formulated within the Kerr–Schild paradigm

gμν = g(0)
μν + H lμlν, (3.34)

where l is a null and geodesic vector field with respect to
both metrics. In this case, the Ricci tensor transforms as

Rμ
ν = R(0)μ

ν − H lμlσ R(0)
σν

+1

2
∇(0)

σ

[
∇(0)μ

(
Hlσ lν

)
+∇(0)

ν

(
Hlσ lμ

) − ∇(0)σ
(
Hlμlν

) ]
. (3.35)

Let us see what could be some hypotheses to ensure that
the Kerr–Schild function H of the Kerr–Schild metric (3.34)
can generate a Maxwell solution with gauge potential A ∝
Hl. We also remind that the null and geodesic vector fields
can always be chosen such that lt = 1. For example, if the
following conditions hold

Rμt = R(0)
μt = 0, �

(0)μ
tν = 0,

∂t gμν = ∂t H = ∂t lμ = 0, (3.36)

the gauge potential A ∝ H l will satisfy the Maxwell equa-
tions. Indeed, taking the relation (3.35) for ν = t , that would
imply that ∇(0)

t (Hlσ lμ) = 0, and hence

∇(0)
σ

[
∇(0)μ

(
Hlσ

) − ∇(0)σ
(
Hlμ

) ]
= ∇(0)

σ Fμσ = 0.

(3.37)

It is a matter of checking to see that the sufficiency conditions
(3.36) hold in the case of the Schwarzschild metric (3.24) and
its Kerr extension with the ellipsoidal flat seed metric as well
as for its higher-dimensional version (3.26). The legitimate
question is what happens for the Schwarzschild–Levi-Civita

(3.22) or the Buchdahl-transformed Myers–Perry solution
(3.28). A quick inspection reveals that in both cases, the
condition �

(0)μ
tν = 0 is not fulfilled, and hence the suf-

ficient conditions given in (3.36) do not apply. In fact, in
the Schwarzschild–Levi-Civita black hole (3.22), the Kerr–
Schild function and the null geodesic vector are HSLC(r, θ) ∝
r3 sin4 θ and l = dt +dr , respectively. Then one can directly
see that A = HSLC(r, θ)(dt + dr) ∝ r3 sin4 θ(dt + dr) will
not satisfy the Maxwell equations for the Schwarzschild–
Levi-Civita metric (3.22). But what is surprising is that by
ignoring the term that generates the singularity along the axis,
namely, the term sin4 θ , one can show that the gauge potential
defined by

A = HSLC(r, θ)

sin4 θ
(dt + dr) ∝ r3 (dt + dr),

will be a solution of the Maxwell equations. Our intuition is
re-enforced with the example of the Myers–Perry solution
transformed through the Buchdahl transformation (3.28),
where HMP(r, θ) ∝ r2 cos2 θ

ρ2
1

and the null geodesic vector

is l1. In this case again, one can see that the 1-form gauge
defined by

A= HMP(r,θ)

cos2 θ
l1 ∝ r2

ρ2
1

(
dt+ ρ2

1

(r2+a2
1)

dr −a1 sin2 θdϕ1

)
,

will satisfy the Maxwell equations for the Myers–Perry
Buchdahl-transformed metric (3.28).

We end this section by showing that although it is a mod-
ification of the simple copy gauge field A → A that sat-
isfies Maxwell’s equations, the zeroth copy scalar field H
will satisfy itself the massless Klein–Gordon equation for
the Buchdahl-transformed seed metric along the spacelike
Killing vector field. Let us see how it works. For a vacuum
Kerr–Schild metric of the form (3.34), it was shown [20]
that the Kerr–Schild function H would satisfy the massless
Klein–Gordon equation for the seed metric �0 H = 0, where
�0 means the d’Alembertian operator with respect to the seed
metric. In our case, the Buchdahl-transformed Kerr–Schild
metric is given by (3.20) with a seed metric given by

ds̃2
0 =

(
g(0)
ϕϕ

) 2
d−3

[
g(0)

i j dxi dx j
]

+ dϕ2

g(0)
ϕϕ

. (3.38)

It is now simple to see that since �0 H = 0 together with
the fact that ∂ϕ H = 0, one also has that �̃0 H = 0, with
�̃0 being the d’Alembertian operator with respect to (3.38).
Indeed, this is a direct consequence of the fact that

√
−g̃(0) =

√
−g(0)

(
g(0)
ϕϕ

) 2
d−3

,

g̃(0)i j = g(0)i j
(

g(0)
ϕϕ

) −2
d−3

.
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4 Extending Buchdahl theorem in Einstein-Scalar
theory

Let us now shift our focus to the Buchdahl theorem of the sec-
ond kind (1.3), which pertains to the Einstein-Scalar system
in four dimensions [10]. This theorem follows a similar line
of argumentation as observed in the vacuum case. Initially,
it is noted that due to the specific characteristics of the scalar
field, the transformation fails to dress Minkowski space-
time with a nontrivial scalar field. Conversely, by employ-
ing the Schwarzschild black hole as an initial configuration
and employing (as usual) the transformation along the time-
like Killing vector ∂t , the theorem yields what is commonly
referred to as the FJNW black hole [11–13]. Various facets of
this geometry have been studied [30], including its extension
to higher dimensions within the Kaluza–Klein framework
[31–33]. This, as elucidated in the subsequent section, fur-
nishes an intriguing framework for applying a geometrical
understanding of such solutions.

The FJNW spacetime is recognized for containing a cur-
vature singularity precisely coinciding with the location of
the would-be horizon at rh = 2M . Notably, irrespective of
the parameter β value, it yields Minkowski spacetime in the
limit where the mass approaches zero. The presence of a
naked singularity stems from the divergence of the associated
energy-momentum tensor at rh = 2M , primarily attributed
to the logarithmic behavior exhibited by the scalar field pro-
file. However, it has been demonstrated that upon a frame
transformation, specifically to a scalar theory characterized
by a conformal coupling with the curvature, the divergence
in the scalar field profile does not necessarily manifest as a
divergence in the energy-momentum tensor. Consequently,
the geometry remains free from naked singularities [21]. For
a specific choice of the hair parameter, β = 1/2, this formu-
lation reproduces the renowned BBMB solution [21,22].

4.1 The Fisher–Janis–Newman–Winicour–Levi-Civita
spacetime

As anticipated, investigations into the scalar-augmented ver-
sion of the Buchdahl theorem have predominantly focused on
scenarios where the transformation is applied along the time-
like Killing vector ∂t . Consequently, in this context, we pro-
ceed to formulate the hairy extension of the Schwarzschild–
Levi-Civita black hole [14]. Its expression is given by3

3 It is pertinent to note that the scalar field profile remains defined up
to a sign. Consequently, this sign can be adjusted in accordance with
the sign originating from its logarithmic behavior, thereby directing the
term r2 sin2 θ towards the numerator of the expression (4.1).

ds2
FJNWLC =

(
r2 sin2 θ

)β+1

×
[
−

(
1 − 2M

r

)
dt2 + dr2

1 − 2M
r

+ r2dθ2

]

+ dϕ2(
r2 sin2 θ

)β ,� = −
√

1 − β2

2κ
ln

(
r2 sin2 θ

)
.

(4.1)

This configuration serves as an extension of the FJNW
solution [11–13], derived through a Buchdahl transforma-
tion of the second kind applied to the spacelike Killing vec-
tor ∂ϕ . Reaching the Schwarzschild–Levi-Civita black hole
(3.6) in the limit β = 1, we denote (4.1) as the FJNW-Levi-
Civita spacetime. However, it is noteworthy that in the pres-
ence of a nontrivial scalar field profile, the metric (4.1) does
not exhibit asymptotic behavior akin to that of a Levi-Civita
spacetime, as there exists no value of β yielding a Levi-Civita
metric. As previously noted, the Levi-Civita spacetime man-
ifests a curvature singularity along the entirety of its sym-
metry axis, thereby inheriting the same characteristic in the
Schwarzschild–Levi-Civita solution (3.6). This same feature
is preserved in the hairy extension (4.1); an analysis of the
Kretschmann scalar unveils

Rμνρσ Rμνρσ

= 1

r4 (r sin θ)4+4β
[4(β + 1)

×
(

(β + 1)(7β2 + 2β + 3)

sin4 θ
− 12Mβ(2β + 1)

r

)

−16M

r

(
(β + 1)(7β3 + 5β2 + 3β + 3)

sin2 θ

− M(7β4 + 20β3 + 23β2 + 10β + 3)

r

)]
, (4.2)

a divergent behavior for all possible values of β. The scalar
field profile exhibits regular behavior throughout the space-
time, except at the symmetry axis and at locations asymp-
totically distant from it. While the standard FJNW solution
presents a curvature singularity at rh = 2M , such a sin-
gularity is absent in this formulation. Of significance is the
observation that, asymptotically distant from the symmetry
axis, the kinetic term of the scalar field remains finite, which,
owing to the shift symmetry of the action, emerges as the
pertinent quantity. Moreover, the energy density also retains
finiteness in this regime. It is noteworthy that unlike the
FJNW solution, wherein the massless limit yields Minkowski
spacetime, the corresponding limit in the context of the
FJNW-Levi-Civita solution results in a nontrivial geome-
try characterized by a nontrivial scalar field. Upon examina-
tion in cylindrical coordinates, it becomes apparent that this
geometry cannot be reconciled with the Levi-Civita space-
time, as there exists no value of β that sustains a nontrivial
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scalar field while simultaneously adhering to the Levi-Civita
form for the geometry. The expression read

ds2
FJNWLC = ρ2(β+1)(−dt2 + dρ2 + dz2) + dϕ2

ρ2β

� = −
√

1 − β2

2κ
ln

(
ρ2

)
.

(4.3)

It turns out that the solution exhibits a special algebraic
nature, classified as type D, thereby belonging to the broader
Plebanśki–Demiański class. Conversely, for β = −1/2, it
manifests as a conformally flat spacetime featuring a non-
trivial scalar field, akin to the Levi-Civita spacetime with
σ = 1 if β = 1. When β = −1, it simplifies to Minkowski
spacetime.

An insightful approach to grasp the intricacies of this
geometry involves its higher dimensional Kaluza–Klein
uplift. Following the Kaluza–Klein framework (see e.g. [34]),
whereby a solution of the Einstein-Scalar theory in dimension
d can always be extended to a higher dimensional counter-
part pertaining to Einstein theory in dimension d + 1, the
uplifted geometry is given by

ds2
d+1 = e2α�ds2

d + e2γ�dz2, (4.4)

being z the extra spacetime coordinate and where

α2 = 1

2(d − 1)(d − 2)
, γ = −(d − 2)α. (4.5)

It is therefore natural to inquire what the higher dimensional
extension of the FJNW-Levi-Civita solution (4.1) is and dis-
cern the potential geometrical insights stemming from such
an extension. To embark upon this endeavor, let us commence
with the FJNW-Levi-Civita solution expressed in cylindrical
coordinates

ds2
FJNWLC = ρ2(β+1)ds2

3 + dϕ2

ρ2β
,

� = −
√

1 − β2 ln(ρ2),

(4.6)

where we have used

ds2
3 = −

√
ρ2 + z2 − 2M√

ρ2 + z2
dt2

+
√

ρ2 + z2√
ρ2 + z2 − 2M

× (ρdρ + zdz)2

ρ2 + z2 + (zdρ − ρdz)2

ρ2 + z2 . (4.7)

To align with the conventions of [34], we set κ = 1/2. Con-
sequently, the Kaluza–Klein five-dimensional extension of
(4.1) is given by

ds2
5 = ρ2(β+1)−4αλds2

3 + ρ−4αλ−2βdϕ2 + dz2

ρ4γ λ
, (4.8)

where we have introduced λ = √
1 − β2, while in four

dimensions, we set α = 1/
√

12 and γ = −2/
√

12. This
geometry reveals particularly insightful characteristics when
opting for the hair parameter β = −1/2. Specifically, for
this choice, we find that 2(β + 1) − 4αλ = 0 = −4αλ − 2β

and 4γ λ = −1, thereby resulting in

ds2
5 = −

(
1 − 2M

r

)
dt2 + dr2(

1 − 2M
r

)
+r2dθ2 + r2 sin2 θdz2 + dϕ2, (4.9)

where for the sake of the physical interpretation of this line
element we have turned back to the use of spherical coordi-
nates. Consequently, it becomes evident that for β = −1/2,
the Kaluza–Klein reduction from five to four dimensions
of the standard homogeneous Schwarzschild black string,
conducted along the angular direction ϕ, naturally yields
the FJNW-Levi-Civita solution (4.1). In simpler terms, the
FJNW-Levi-Civita solution can be entirely regularized (for
β = −1/2) through its uplift to five dimensions, where it
manifests as the well-known homogeneous Schwarzschild
black string. It would be interesting to explore the stability of
the dimensionally reduced configuration, given the fact that
the five-dimensional uplift is unstable under long-wavelength
perturbations.

It is now natural to inquire whether a charged extension
of this geometry can be devised following the framework
of the JRW theorem [11]. The JRW theorem offers a means
to extend a nontrivial solution of the Einstein-Scalar system
to incorporate electric charge, while leaving the scalar field
profile unaffected by the electric field. In direct parallel to
this theorem, we introduce the following construction: Let

ds2 = e2U hαβdxαdxβ + e−2U dϕ2, (4.10)

be a four-dimensional metric that is “static” with respect to
ϕ and is a solution to the vacuum Einstein equations. Hence,

(i) The reciprocal metric

ds2 = e−2U hαβdxαdxβ + e2U dϕ2, (4.11)

is also a solution to the vacuum Einstein equations.
(ii) If a vacuum solution to the Einstein equations is given by

ds2 = e2V hαβdxαdxβ + e−2V dϕ2, (4.12)

then the metric (4.10) is enhanced to be a solution to the
Einstein-Scalar equations (1.4), where

� =
√

2

κ

1 − β2

β2 U, U = βV . (4.13)
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(iii) In addition, if a static solution to the Einstein-Scalar equa-
tions (1.4) is given by (4.10) and (4.13), then a solution
to the Einstein-Scalar-Maxwell equations

Rμν = κ

(
∂μ�∂ν� + FλμFλ

ν − 1

4
gμν Fλρ Fλρ

)
,

�� = 0, ∇μFμν = 0, (4.14)

is given by (4.13) along with

ds2 = e2W hαβdxαdxβ + e−2W dϕ2,

Fμν =
√

8

κ
e−2W (

U,μδϕ
ν − U,νδ

ϕ
μ

)
,

(4.15)

where W = ln |2 cosh(U − U0)|, being U0 a constant
relevant for the determination of the nature of the mag-
netic configuration.4

Thus, from (ii) solution (4.1) is straightforwardly con-
structed, while from (iii) the magnetized extension of (4.1)
is obtained, yielding

ds2 = �2
(

r2 sin2 θ
)β+1

[
−

(
1 − 2M

r

)
dt2

+ dr2

1 − 2M
r

+ r2dθ2

]
+ 1

(r2 sin2 θ)β�2
dϕ2,

� =
√

1 − β2

2κ
ln

(
1

r2 sin2 θ

)
,

A = B

�

(
1

r2 sin2 θ

)β

dϕ.

(4.16)

Here it has been defined � = 1 + B2
(

1
r2 sin2 θ

)β

. The

limit β = 1 enables the recovery of the hairless magnetized
Schwarzschild–Levi-Civita black hole (2.6), while β = −1
yields the Schwarzschild–Melvin black hole. In contrast to
the approach in [11], our construction (iii) introduces a mag-
netic field rather than an electric one. Specifically, it embeds
the FJNW-Levi-Civita black hole within a Melvin universe,
consistent with the “magnetic” nature of the Levi-Civita
black hole. However, it’s important to note that this repre-
sentation is essentially a concise depiction of the magnetized
solution attainable through the application of magnetic Har-
rison transformations [8], which are valid in the presence
of a minimally coupled scalar field. While an electric Harri-
son transformation would also introduce a monopole electric

4 This has been noticed in [35] for the higher dimensional electric case,
as it has been unnoticed in the original construction [11]. Additionally,
in [36] a detailed classification of higher-dimensional Einstein-Scalar-
Maxwell solutions with Einstein base manifolds has been provided.

charge, the compact construction (iii) would not be applica-
ble. Instead, the approach of [11] would be employed, which
is formulated in an “electric” context, as the Buchdahl trans-
formations are applied with respect to the timelike Killing
vector ∂t . Contrary to the hairless case (2.6), the magnetic
field does not regularize the axis of symmetry in the geom-
etry (4.16). The curvature singularity persists at the locus of
the symmetry axis.

4.2 Conformal frame

Up to this point, our focus has been on solutions within
the Einstein-Scalar system. However, it is widely recognized
that the Einstein-Scalar theory is conformally related to the
Einstein-Conformal-Scalar theory.

IEC S =
∫

d4x
√

ḡ

[
R̄

2κ
− 1

2

(
∂̄�

)2 − 1

12
R̄�2

]
, (4.17)

via the so-called Bekenstein transformations [21]

ḡμν = cosh2
(√

κ

6
�

)
gμν, � =

√
6

κ
tanh

(√
κ

6
�

)
.

(4.18)

Hence, given a solution (gμν,�) of the Einstein-Scalar sys-
tem, the set of transformations (4.18) promptly furnishes a
solution (ḡμν,�) for the improved set of field equations

Ḡμν = κ

[
∂̄μ�∂̄ν� − 1

2
ḡμν

(
∂̄�

)2 + 1

6

(
ḡμν�̄ − ∇̄μ∇̄ν

+ Ḡμν

)
�2

]
, �̄� = 1

6
R̄�.

(4.19)

The most iconic solution obtained through this approach is
the renowned BBMB black hole [21,22], which essentially
corresponds to the FJNW solution translated to the conformal
frame, particularly for the specific value β = 1/2. Following
this analogy, let us execute the change of frame on the FJNW-
Levi-Civita spacetime (4.1), focusing on the case of β = 1/2.
This yields

ds̄2 = (1 + αr sin θ)2

[
r2 sin2 θ

[
−

(
1 − 2M

r

)
dt2

+ dr2(
1 − 2M

r

) + r2dθ2

]
+ dϕ2

r2 sin2 θ

]
,

� =
√

6

κ

1 − αr sin θ

1 + αr sin θ
,

(4.20)

where α > 0 is a constant that can be introduced after the
rescalings (t, r, ϕ) → (αt, αr, α3ϕ) together with M →
αM . The solution turns out to be of algebraic type I, retain-
ing a curvature singularity at the axis of symmetry, a charac-
teristic inherent in the solutions we have considered so far.
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However, the axis of symmetry can be regularized by immers-
ing the solution into an exterior magnetic field, see below
(4.23). At distances asymptotically distant from the symme-
try axis, both the kinetic term and energy density remain
finite. Conversely, the scalar field has been entirely regular-
ized, exhibiting regular behavior across the entirety of the
domain of outer communications, including the symmetry
axis.

An intriguing scenario unfolds when M = 0. In this
instance, the spacetime diverges from the Minkowski geom-
etry yet retains a nontrivial scalar field, deviating from the
behavior demonstrated by the BBMB solution. The solution
in this case can be represented as

ds̄2 = (1 + αr sin θ)2

×
[

r2 sin2 θ
(
−dt2 + dr2 + r2dθ2

)
+ dϕ2

r2 sin2 θ

]
,

� =
√

6

κ

1 − αr sin θ

1 + αr sin θ
. (4.21)

This solution also features a singularity along the symmetry
axis; however, it falls into type D in the algebraic classifica-
tion, unlike (4.20). Although the introduction of the param-
eter α may seem somewhat arbitrary, it proves instrumen-
tal in analyzing the spacetime emerging in the limit as α

tends to zero. The solution maintains its type I classifica-
tion in the Petrov scheme. Notably, it does not straightfor-
wardly connect with either the Schwarzschild or the Levi-
Civita black hole, partly due to the constant scalar field
present

ds̄2 = r2 sin2 θ

[
−

(
1 − 2M

r

)
dt2

+ dr2(
1 − 2M

r

) + r2dθ2

]
+ dϕ2

r2 sin2 θ
,� =

√
6

κ
.

(4.22)

The scalar field constant value is precisely the one that makes
the effective gravitational constant vanish. Therefore, this
solution solves the field equations (4.19) in the limit where
no Einstein term is present in the action.

As previously mentioned, (4.20) can be regularized along
its symmetry axis by embedding the solution into an exter-
nal magnetic field. The most direct method to achieve this
is by considering the already magnetized solution (4.16)
and applying the change of frame provided by (4.18). The
solution that solves the Einstein-Conformal-Scalar-Maxwell
equations then reads

ds̄2 = (1 + αr sin θ)2

×
[
�2

[
−

(
1 − 2M

r

)
dt2 + dr2(

1 − 2M
r

) + r2dθ2

]

+dϕ2

�2

]
, � =

√
6

κ

1 − αr sin θ

1 + αr sin θ
, A = 2

√
αB

�
dϕ,

(4.23)

where � = r sin θ + B2. The inclusion of the magnetic field
regularizes the symmetry axis and the curvature singularity
locates itself at r = 0 only. Hence, this geometry remains
regular everywhere within the domain of outer communica-
tions, as well as the scalar field profile. This stands in contrast
to the standard BBMB magnetized black hole.

5 Further comments

In this work, we have revisited Buchdahl transformations
[9,10], specifically exploring scenarios where the transfor-
mations are applied with respect to the typical azimuthal
spacelike Killing vector, as opposed to the customary time-
like Killing vector. This has allowed us to identify an infinite
dimensional, numerable, non-Abelian subgroup of the group
of hidden symmetries of the Einstein equations for stationary,
axisymmetric spacetimes. This seemingly minor adjustment
has paved the way for the construction and examination of
novel black hole solutions in both vacuum and the Einstein-
Scalar system, as well as its conformally related framework.
Indeed, we have elucidated the origin of the recently intro-
duced spacetime [14] and delved into Buchdahl transforma-
tions of the first kind [9] in cases where the seed geome-
try possesses two different Killing vectors. Additionally, we
have composed Buchdahl and Kerr–Schild transformations
to unveil the Kerr–Schild form of these newly discovered
algebraically general geometries, which, to the best of our
knowledge, constitute the first vacuum Kerr–Schild geome-
tries of type I.

This composition has provided valuable insights into the
construction of new vacuum rotating black holes, particularly
exemplified by what we have termed the Levi-Civita exten-
sion of the Myers–Perry geometry [17]. Moreover, we have
identified an algebraically general double copy framework.

Within the realm of Buchdahl transformations of the sec-
ond kind [10], we have devised novel black hole solutions
in the Einstein-Scalar and Einstein-Scalar-Maxwell theories.
Notably, we have introduced what we refer to as a Levi-Civita
extension of the FJNW solution [12,13], or alternatively, a
hairy extension of the Schwarzschild–Levi-Civita black hole
[14]. Furthermore, we have extended the JRW theorem [11]
to embed this geometry within an external magnetic field.
Finally, these Einstein-Scalar solutions have been uplifted to
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the Einstein-Conformal-Scalar framework, yielding a gener-
alization of the well-known BBMB geometry [21,22].

Numerous avenues of exploration emerge from these find-
ings. The study of spacetime with acceleration [37,38] proves
to be particularly promising, offering a highly nontrivial
static seed spacetime for investigation in this context. This
could potentially lead to a C-metric spacetime embedded
within a Levi-Civita-like background, possibly altering the
form of the standard conical singularities presented in the
metric. Since these are vacuum solutions, Harrison transfor-
mations [8] can be readily applied, facilitating the straightfor-
ward construction of their charged extensions with both elec-
tric and magnetic monopolic charges. Furthermore, it would
be feasible to embed them within an electromagnetic back-
ground [24,25]. Similarly, employing Ehlers transformations
[6,7], these solutions could acquire properties of stationarity,
such as NUT charge or vortex-like background characteris-
tics [39]. Investigating the causal structures and geometric
features of these spacetimes would undoubtedly represent
a significant advancement in determining the spectrum of
solutions of Einstein vacuum gravity. Transitioning to sce-
narios involving rotation, a comprehensive geometrical anal-
ysis of the Levi-Civita extension of the Myers–Perry black
hole appears imperative. Moreover, given that we have access
to Buchdahl transformations of the second kind and that the
use of Ehlers and Harrison transformations is ensured within
the Einstein-Scalar framework, all aforementioned construc-
tions can be executed in the presence of a massless mini-
mally coupled scalar field. Consequently, within the realm
of very minimalistic scalar-tensor theories, the spectrum of
exact solutions seems notably enriched by these discoveries,
particularly when considering the utilization of frame trans-
formations [21,40]. A subsequent step could involve aug-
menting the theory by including a cosmological constant,
as demonstrated in [41]. With this extension, not only can
solutions of the type considered and mentioned here be uti-
lized as seeds, but also cylindrically symmetric black holes
[42]. It would then be feasible to apply transformations along
the translational symmetry Killing vector ∂z , either indepen-
dently or in combination with the usual Killing vectors ∂t

and ∂ϕ .
We anticipate that exploring these additional avenues of

research will provide us with a more comprehensive under-
standing of the spectrum of exact solutions in Einstein and
Einstein-Scalar theories.
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