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Abstract
Recently, it was shown that type D black holes, encompassed in the large Plebanśki–
Demiański (PD) family, exhibit a wide class of algebraically general generalizations
via the application of Ehlers and Harrison transformations. In this work, we first dis-
cuss some mathematical details behind the composition of such transformations, and
next, we introduce a qualitative picture of the most general type I generalization of
the PD family, dubbed “Enhanced Plebanśki–Demiański” spacetime. We provide the
exact form of the solution in the original PD coordinates, obtained via the simultane-
ous action of an Ehlers and a Harrison transformation on the vacuum PD geometry.
In order to make the physics more transparent, we explicitly construct a rotating and
accelerating black hole which further has NUT parameter and electric charges, both of
them entering, not only the event horizon, but the Rindler horizon as well. This solu-
tion is directly obtained in the “physical” coordinates recently proposed by Podolský
and Vrátny. Finally, a pedagogical appendix is thoughtfully included, providing read-
ers with a user-friendly step-by-step guide to the Ernst formalism, in an attempt to
address and resolve various minor inconsistencies frequently appearing in the relevant
literature.
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1 Introduction

The Kerr black hole is a particularly noteworthy exact solution of Einstein’s field
equations, especially from an astrophysical point of view. Realistic celestial bodies
generally exhibit rotational motion. Even if their rotation is minimal, the conserva-
tion of angular momentum turns out to play an important role during gravitational
collapse. Consequently, an analytical expression for the exterior spacetime around
rotating sources is mandatory for studying such scenarios, a fact (among others) show-
casing the overall significance of studying exact solutions within the framework of
General Relativity (GR).

The Plebanśki–Demiański (PD) family of solutions [1–3] plays a crucial role in
understanding the Einstein–Maxwell field equations. This family is considered the
most general solution of type D spacetimes, a classification based on the Petrov clas-
sification scheme [4]. The PD family encompasses awide range of solutions, including
well-known black hole solutions like the Kerr and Reissner–Nordström (RN) metrics.
Its causal structure is particularly interesting as it models scenarios involving two
rotating and charged black holes that are accelerating away from each other [5–9].

A distinctive observation has been made concerning the PD hierarchy of solutions,
revealing the absence of a nonrotating limit when both acceleration and NUT charge
are present [10]. This led to the conjecture that accelerating NUT black holes may
not exist, or, if they do exist, that they do not belong to the PD class, suggesting that
they might not be found among algebraically special spacetimes. Despite the inherent
challenges in understanding accelerating NUT spacetimes, Chang, Mann, and Stelea
managed to construct a sort of accelerating NUT black hole in their seminal work [11],
employing intricate solution-generating techniques. Based on the SL(2,R) symmetry
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of a reduced Lagrangian obtained via dimensional reduction of the four-dimensional
GR Lagrangian along the time direction, they successfully demonstrated that, with
an accelerating version of the Zipoy–Voorhees line element [10] as a seed, one can
obtain a new solution which correctly reduces to the Taub–NUT black hole in the zero-
acceleration limit, while it also assumes the standard form of the C-metric in a certain
parameter limit. Thorough analysis of this solution was later conducted by Podolský
and Vrátny [12], showing that it represents a genuine accelerating NUT black hole,
and, moreover, that it falls under algebraic type I, thereby being algebraically general.
Consequently, the aforementioned solution is not included in the PD family. Remark-
ably, the NUT parameter not only enters the black hole horizons but the accelerating
horizons as well, as it can be directly observed from the structure of the lapse function
[12–14].

Recently, a highly efficient mechanism for introducing NUT charge to accelerating
spacetimes has been proposed [13, 14]. This innovative approach is based on the
utilization of Ehlers transformations [15–17], part of the Lie point symmetries inherent
in the Einstein–Maxwell system, which become apparent when expressing the action
in terms of the Ernst potentials [18, 19]. Through the application of the so-called
electric Ehlers transformation, the proposedmethod adds aNUT charge to a given seed
spacetime. In particular, it allows the introduction of a single NUT charge [13], or even
two such charges [14], to any stationary axially symmetric spacetime in electrovacuum.

In [13], it has been demonstrated how the above machinery accurately provides
the Chang, Mann, and Stelea solution [11] with remarkable simplicity, following the
approach proposed by Podolský and Vrátny [12]. Additionally, a Reissner–Nordström
C-metric NUT black hole that faithfully reduces to the RN-C-metric and RN-NUT
configurations in certain limits, has been also presented.1 While electric Ehlers trans-
formations were readily known to add NUT charge to a given seed [20], the primary
focus was directed towards static spherically symmetric seeds. As a result, the intricate
interplay between NUT charge and the accelerating nature of a given seed has not been
given much attention. The principal novelty of considering accelerating seeds lies in
the emergence of Rindler horizons, representing the causal obstructions experienced
by any accelerating observer along her/his trajectory. An Ehlers transformation does
not only affect the black hole horizons but also the Rindler horizons, yielding novel
backreactions involving a NUT-enhanced background.

A valuable understanding of the altered Rindler horizons that these type I accelerat-
ing black holes exhibit can be gained by considering these solutions as given by taking
a specific limit on the metric of black hole binaries [21, 22]. It’s worth recalling that
the near-horizon structure of a Schwarzschild black hole is delineated by the Rindler
metric, characteristic of an accelerating observer. A mathematically valid approach to
focus on the near horizon geometry is to actually perform the infinite mass limit of the
solution. Visualizing an accelerating Schwarzschild black hole as a binary system of
two Schwarzschild black holes, effectively described by the Bach-Weyl solution [23,
24], involves one of the two black holes growing infinitely large (achieving infinite
mass) while maintaining a finite distance from the other. The event horizon of the

1 Extension of these solutions by including a conformally coupled scalar in the matter sector, has also been
studied in [13].
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“big” black hole then manifests as an accelerating horizon to its smaller counterpart.
Consequently, the Bach-Weyl solution takes on the appearance of a C-metric in this
limit, as was shown byWang [25]. Similarly, these type I accelerating black holes, fea-
turing Rindler horizons dependent on transformation parameters, among other factors,
can be envisioned as a limit of the NUTty and/or charged extension of the Bach-Weyl
spacetime. This argument support what was naively understood from the structure of
the Rindler horizons of the accelerating-NUT black hole described [13, 14], where it
can be seen via the different changes of coordinates how the geometry is centered along
the inner horizon r− = m − √

m2 + l2, therefore how the NUT parameter pervades
the Rindler horizon.

The investigation of incorporating a second NUT parameter, into a solution that
already carries NUT charge, has been explored in [14]. As expected, in the case of
nonaccelerating seeds, the introduction of a secondNUTparameter proves to be redun-
dant, as the latter can be absorbed by the NUT charge already present in the spacetime.
However, for accelerating seeds with angular momentum, a distinct scenario unfolds;
both NUT charges, the one confined to the horizon, and the other permeating through-
out thewhole spacetime, can in general coexist. Tuning bothNUTcharges, doable only
in the presence of angular momentum, proves to be useful for removing the Misner
string. Such a scenario has been studied considering the full PD class.

The discovery of these findings has sparked a renewed interest in probing the black
hole spectrum of GR beyond the well-explored type D class, leading to novel ways for
constructing algebraically general black hole solutions. Among the evident extensions
to be considered, lies the application of electric Harrison transformations [17], which
are known to introduce electric and magnetic monopolic charges to a given seed.
Indeed, when applying a Harrison transformation to add electric charge to a C-metric
seed, it becomes apparent that the resulting solution is not algebraically special, but
of algebraically general nature instead. Once again, a key element in this construction
revolves around the occurrence of Rindler horizons. Both event and Rindler horizons
are imbued with electric charge, a fact strongly affecting the spacetime geometry. The
newly obtained charged accelerating solution is different from the well-known RN-
C-metric present in the PD family. This indicates that the addition of electric charge
to an accelerating seed leads to a unique class of type I black holes with distinctive
properties. The construction of such type I charged accelerating black holes has been
initially addressed in [21], with a particular emphasis given on the RN-C-metric and
RN-C-metric-NUT cases.

In this study, we present a qualitative picture of the most general type I extension of
the PD family, achievable by the sequential application of Ehlers and Harrison trans-
formations, a direct application of their composition that is. The resulting spacetime
does in general feature two distinct NUT parameters and two sets of electromag-
netic charges. We term this final configuration the “Enhanced Plebanśki-Demiański”
spacetime (EPD). In the physical spherical-like coordinates introduced by Podolský
and Vrátny [2, 3], its most general form would be described by nine parameters, the
six parameters contained in the original PD spacetime, i.e., the mass m, Kerr-like
rotation parameter a, acceleration parameter A, NUT charge l and electromagnetic
charges e and g, together with a second NUT parameter l̄ and a second pair of elec-
tromagnetic charges ē and ḡ, induced by the Ehlers and Harrison maps, respectively.
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The latter three are henceforth dubbed Ehlers–Harrison charges. Notice that l̄, ē and
ḡ will correspond to a reparametrization of the original parameters introduced via the
Ehlers–Harrison map. Due to the high computational complexity of the task, we are
able to provide the explicit form of the EPD spacetime in the original PD coordinates,
only for a neutral PD seed. Despite this, the solution we present is sufficiently general
and novel. Although the use of the original PD coordinates (and parameters) proves to
be mandatory for the integration of the solution, regarded as a computational problem
per se, the physical meaning is more or less obscure. For this reason, we also explicitly
provide the full spacetime of an accelerating and rotating black hole carrying Ehlers–
Harrison charges, using the physics-wise transparent form of the PD metric [2, 3] as
the seed.

Our paper is structured as follows: in Sect. 2, we provide a concise introduction to
Ehlers and Harrison transformations and discuss their crucial role in generating novel
stationary axially symmetric solutions within the Einstein–Maxwell framework. Fur-
thermore, we thoroughly investigate compositions of these transformations, disclosing
an interesting equivalence (under certain assumptions) between the composition of two
Harrison transformations and that of an Ehlers transformation with a Harrison one.
In Sect. 3, we present the Enhanced Plebanśki–Demiański type I hierarchy of solu-
tions and explicitly construct the EPD spacetime in PD coordinates, starting from a
neutral PD seed. Next, we provide (in spherical-like coordinates) an exact expression
for the metric representing an accelerating and rotating black hole with both Ehlers
and Harrison charges, together with an expression for the gauge field supporting it.
Various limits are discussed. We conclude our study in Sect. 4, where we highlight the
significance of the new findings and discuss promising ways for further exploration
using these innovative techniques. Lastly, in Appendix B, we offer a user-friendly
rederivation of the Ernst equations, in an attempt to address sign inconsistencies often
appearing in the relevant literature.

2 Ernst equations and the SU(2,1) symmetry

The mathematical framework developed by Ernst in the 1960s [18, 19] has been a
particularly valuable tool for studying stationary axisymmetric electrovacuum fields.
Its remarkable novelty is the disclosure of additional symmetries in the Einstein–
Maxwell system which remain elusive in the standard formulation. By casting the
Einstein–Maxwell field equations into a set of two complex equations for the complex
Ernst potentials, one ends up finding a collection of symmetry transformations which
form a Lie group with eight real parameters [26, 27], isomorphic to SU(2,1).

In a nutshell, the formulation works as follows.2 The most general stationary and
axially symmetric spacetime within the Einstein–Maxwell framework is represented
by the well-known Lewis–Weyl–Papapetrou (LWP) line element and the gauge field

2 See Appendix B for a detailed derivation of the Ernst equations. Here, we are assuming the so-called
“electric” version of the LWP spacetime, and we have set p = 0 and s = 1.
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accompanying it,

ds2 = − f (dt − ω dϕ)2 + 1

f

[
ρ2 dϕ2 + e2γ

(
dρ2 + dz2

)]
, (2.1a)

A = At dt + Aϕ dϕ, (2.1b)

respectively, where f , ω, and γ are functions of Weyl’s coordinates ρ and z. It can be
shown (seeAppendixB for details) that, defining the pair of (complex) Ernst potentials

E = f − |�|2 + iχ, � = At + i Ãϕ, (2.2)

the Einstein–Maxwell field equations are cast into two complex three-dimensional
equations, namely

(
Re E + |�|2

)
∇2E = ∇E · (∇E + 2�∗∇�

)
, (2.3a)

(
Re E + |�|2

)
∇2� = ∇� · (∇E + 2�∗∇�

)
. (2.3b)

Here, all vector quantities are understood as vectors in flat space with cylindrical
coordinates {ρ, z, ϕ}. The so-called twisted potentials Ãϕ and χ are then given by

ϕ̂ × ∇ Ãϕ = f

ρ

(∇Aϕ + ω∇At
)
, (2.4a)

ϕ̂ × ∇χ = −
(

f 2

ρ
∇ω + 2ϕ̂ × Im

(
�∗∇�

))
, (2.4b)

respectively.
Equation (2.3) enjoy certain symmetries, which must then be inherent in the

Einstein–Maxwell system. These symmetry transformations, which are henceforth
referred to as Ernst symmetries, are

T1b : E = E0 + ib , � = �0 , (2.5a)

T2α : E = E0 − 2α∗�0 − |α|2 , � = �0 + α , (2.5b)

T3λ : E = |λ|2E0 , � = λ�0 , (2.5c)

Ec : E = E0
1 + icE0 , � = �0

1 + icE0 , (2.5d)

Hβ : E = E0
1 − 2β∗�0 − |β|2E0 , � = βE0 + �0

1 − 2β∗�0 − |β|2E0 , (2.5e)

where α, β and λ are complex parameters, while b and c are real.3 Not all of these
transformations can be used to generate novel spacetimes. In fact, (2.5a) and (2.5b)

3 In this section, latin letters a, b, . . . are reserved for real parameters, whereas Greek letters α, β, . . . stand
for complex ones.
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are nothing else than gravitational and electromagnetic gauge transformations, while
(2.5c) corresponds to a coordinate rescaling combined with an electromagnetic duality
rotation. However, the remaining symmetries, (2.5d) and (2.5e), the so-called Ehlers
[15] and Harrison [17] transformations, act in a nontrivial way, thereby producing
new nonequivalent spacetimes which, of course, are again solutions of the Einstein–
Maxwell field equations.

Additionally, the Ernst equations also possess a discrete “inversion” transformation,
namely

I : (E0,�0) �→
(

1

E0 ,
�0

E0

)
. (2.6)

With these at hand, it is quite straightforward to observe that a certain composition of
the above transformations leads to the Ehlers and Harrison transformations [4].

In the next subsection, we focus on compositions of Ehlers and Harrison transfor-
mations, which will later be used in Sect. 3 to construct new stationary and axially
symmetric solutions of the Einstein–Maxwell system, which are algebraically general.

2.1 Compositions

Due to the fact that the composition of two inverse transformations equals the identity
transformation, i.e., I◦I = I, and since gravitational gauge transformations commute,
namely T1b ◦ T1c = T1b+c, it easily follows that Ehlers transformations form a one-
parameter subgroup; they satisfy the group property Eb ◦ Ec = Eb+c. Moreover, since,
in general, T1c ◦ T2β = T2β ◦ T1c , it also follows that Ehlers transformations commute
with Harrison ones, viz., Ec ◦Hβ = Hβ ◦ Ec. Actually, since in the next section we are
going to use this particular composition to build the new solutions, let us be proactive
and display this map here,

Ec ◦ Hβ : (E0,�0) �→
(

E0
1 − 2β∗�0 + (

ic − |β|2) E0
,

βE0 + �0

1 − 2β∗�0 + (
ic − |β|2) E0

)
.

(2.7)

On the other hand,we observe thatHarrison transformations fail to form a subgroup,
this due to the fact that the electromagnetic gauge transformations do not commute,

(
T2β ◦ T2α − T2α+β

)
(E0,�0) = βα∗ − αβ∗. (2.8)

Indeed, T2β ◦ T2α = T1i(αβ∗−βα∗)T
2
α+β , which implies that two general Harrison trans-

formations amount to a particular Ehlers–Harrison one, namely,

Hα ◦ Hβ = Ei(αβ∗−βα∗)Hα+β. (2.9)

This is quite an interesting observation. Recall that the Harrison map is thought of as
a charging transformation rendering vacuum into electrovacuum solutions. But what
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does really happen when the seed is an electrovacuum one?4 The above composition
property seems to tell us that the application of a Harrison transformation on a static
electrovacuum seed will lead to a stationary electrovacuum spacetime—albeit suffer-
ing from a NUT-like singularity. Of course, this NUT parameter will not be free; it is
rather determined by the other parameters and charges at play.

All of this is well understood in the light of Eq. (2.9). Two general Harrison trans-
formations applied to a vacuum seed amount to charging this seed and simultaneously
adding a fixed NUT parameter to it. Therefore, without resorting to further composi-
tions of the Harrison map with the other symmetries, the only way to avoid the cross
term in the target metric is if α, β satisfy the relation

Reβ = Reα
Imα

Imβ, (2.10)

in which case Hβ ◦ Hα = Hα+β . For example, assuming Imα �= 0, we have that

Hc(Reα/Imα+i) ◦ Hα = Hα(1+c/Imα), (2.11)

where we remind the reader that α is complex whereas c is real. The generalization
is straightforward; since a composition of Ehlers transformations is again an Ehlers
transformation, and since Ehlers transformations commute with Harrison ones, from
Eq. (2.9) we can conclude that

Hαp ◦ . . . ◦ Hα2 ◦ Hα1 = Ec ◦ Hα1+α2+...+αp , (2.12)

where the real parameter c is fixed in terms of the parts of α1, α2, . . . , αp.
Aswe are going through the various composition properties, and since the enhanced

transformations presented in [21] and [28] prove to be convenient, it is worth studying
the latter in the above spirit. The so-called enhanced Ehlers transformation

EEc : (E0,�0) �→
( E0 + ic

1 + icE0 ,�0
1 + ic

1 + icE0

)
, (2.13)

which directly provides purely the NUT extension of a given seed, is nothing else than
the composition

EEc = T1c ◦ T31+ic ◦ Ec. (2.14)

Enhanced Ehlers transformations retain the properties of the original Ehlers transfor-
mations in the sense that they also form a one-parameter subgroup,

EEb ◦ EEc = EE(b+c)/(1−bc). (2.15)

4 Remember that an electrovacuum solution can always be obtained via a Harrison transformation of a
vacuum seed.
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It is also fortunate that the enhancing itself is an operation which can be applied after
transforming the solution à la Ehlers. However, this is not the case for the enhanced
version of the Harrison transformation presented in [21], which reads

EH{α,b} = T2−cα ◦ Hα ◦ T3ceib , c =
√
1 + 4|α|2 − 1

2|α|2 , (2.16)

for the Harrison transformation does not commute with T3.5 The enhanced version
introduces one additional real parameter b, besides theHarrison transformation param-
eter α. The former can be appropriately fixed to nullify the cross-term contribution
from the Harrison operation in the target metric, if seed charges are present.

3 Enhanced Plebanśki–Demiański metric: the type I hierarchy

Having delineated the transformations in Sect. 2 and armed with a clear understanding
of the effect that the Ehlers–Harrison transformation has on the accelerating horizons,
we are well-positioned to seek the explicit integration of the all-inclusive family of
type I geometries, herein referred to as the Enhanced Plebanśki–Demiański spacetime,
or EPD for short. As the task of integrating Eq. (2.4) for the twisted potentials in this
most general case, proves to be a rather daunting computational challenge in spherical-
like coordinates, we shall use a “lighter” form of the PDmetric, the one in the original
PD coordinates. We banish the details to Appendix A, with the immensity of the
expressions justifying us in doing so. Based on the findings therein, we are well-
equipped to provide a description of the entire hierarchy tree of solutions within this
new EPD family, which features in Fig. 1 as the “parent” spacetime. Although we
lack an analytic form for the full EPD spacetime, the one with all seed parameters and
charges switched on, we nevertheless corroborate the tree structure in Fig. 1 with our
results in Appendix A, at least up to a case directly next to the most general one, in
particular, the EPD solution without seed electromagnetic charges.

It is worth noting that, in the hierarchy diagram, the root node (the EPD spacetime)
is characterized by a set of physical parameters {m, a, A, l, e, g} of the PD seed and
by an additional parameter triplet introduced via the Ehlers–Harrison operation and
denoted as {c, be, bm} hereafter. The parameters be and bm are the real and imaginary
parts, respectively, of a Harrison parameter β, whereas c stands for a real Ehlers
transformation parameter. Recall that be is then associatedwith the inclusion of electric
charge,whilebm with the inclusionof amagneticmonopolic charge. Since the results in
AppendixA have been derived using the original PD coordinates, it is worth remarking
that establishing the relationships between the parameters in the à la PD form of the
target metric and the physical parameters we actually use in the hierarchy structure,
can be tricky at times, yet a definitely feasible task. Therefore, the use of the physical
parameters in Fig. 1 is ipso facto justified.

5 Note here that Ehlers and Harrison transformations do not in general commute with the gauge transfor-
mations.
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Moreover, the explicit parametrizations of the Ehlers–Harrison parameters {c,
be, bm} in terms of the extra NUT and electromagnetic charges {l̄, ē, ḡ}, and vice
versa, which necessarily contain (some of) the seed parameters, may vary between the
various nodes in the hierarchy tree. Thus, we prefer to adhere to the use of {c, be, bm}
in most cases. In general, a zoo of reparametrizations is usually necessary to present
the various metrics in the standard form, or in a desired form in lack of a standard one.
Having said that, the unfortunate occurrence of the same symbols in various “children”
of the EPD spacetime in Fig. 1, should not mislead the reader into believing that the
parameters are actually the same (although such cases are not excluded). They should
rather be understood in terms of the “physical” properties they characterize, these
being the same in all cases included. Then, finding the specific reparametrizations, is
a work better undertaken on a case-by-case basis.

We shall also remark that the term “enhanced” is used to convey the action of an
Ehlers–Harrisonmap, thereby effecting a nontrivial transformation of the background,
in which the original PD spacetime resides. Here, all the extra parameters, that is, c,
be, and bm , appear. When we only operate with one of the two maps, we refer to
the resulting family as either “Ehlers”, or “Harrison”, with c entering the solution
in the former case, and be and bm in the latter. For example, Ehlers-RN-C-metric
corresponds to an RN-C-metric black hole in a background with NUT parameter
c, brought in via the Ehlers transformation. Similarly, Harrison PD indicates a PD
spacetime in a background featuring electromagnetic charges be and bm , added via
the Harrison operation.

At this stage, it is also important to mention two key cases. First, in the vanishing-
acceleration limit, keeping two sets of NUT and electromagnetic charges (seed and
Ehlers–Harrison), is redundant. After an appropriate reparametrization, only one set
of charges should remain. Second, exclusively in the presence of rotation, that is
a �= 0, the seed NUT parameter l can coexist with the Ehlers NUT. When a = 0,
the presence of two NUT parameters is again superfluous, and only a single effective
NUT parameter should remain. On the other hand, the seed electromagnetic charges
e and g can exist as independent charges, along the Harrison charges, even for a
nonrotating seed. Consequently, in an attempt to have a consistent notation for all
cases depicted in Fig. 1, we lastly adhere to the following rule. For effective NUT
and electromagnetic charges, i.e., combinations of seed NUT with Ehlers NUT and
combinations of seed charges with Harrison charges, respectively, we use a bar accent.
Thus, since we previously agreed to use of c, be, bm in the hierarchy tree, we shall
also use c̄, b̄e, and b̄m to denote the effective quantities.

Finally, when classifying the solutions, a convenient criterion to distinguish if a
given spacetime is algebraically general or special, is to examine the relation

I 3 = 27J 2, (3.1)

where

I = �0�4 − 4�1�3 + 3�2
2 , J =

∣∣∣∣∣∣
�0 �1 �2
�1 �2 �3
�2 �3 �4

∣∣∣∣∣∣
. (3.2)
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Fig. 1 Hierarchy of solutions for the Enhanced-Plebanśki–Demiański spacetime

A spacetime is said to be algebraically general, ergo of Petrov type I, whenever the
identity (3.1) is not satisfied. Otherwise, the spacetime is said to be algebraically
special. Then, a convenient strategy to follow here, is to choose a tetrad, for which,
the invariants �1 and �3 vanish, with �0, �4 �= 0. This allows one to write Eq. (3.1)
in the simpler form

�0�4

(
�0�4 − 9�2

2

)2 = 0, (3.3)

which implies that, if �0�4 �= 9�2
2 , the spacetime is algebraically general.

In the subsequent subsection, we construct an accelerating and rotating black hole
endowed with NUT and electromagnetic charges entering both horizons, Rindler and
black hole ones. We attain this solution by acting with the Ehlers–Harrison map on a
neutral NUTless PD seed. This time, we derive the solution in the physical spherical-
like coordinates ab initio, a fact compensating for the sacrifice of yet another seed
parameter.
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3.1 Enhanced Kerr: accelerating and rotating black hole with NUT parameter and
electromagnetic charges

Considering the coordinates presented in [2, 3] and the subsequent correction of the
gauge field introduced in [14], we start by writing down the PD metric as

�2ds20 = − Q

R2 [dt − (1 − x) (a + 2l + ax) dϕ]2 + R2

1 − x2

(
dx2

P
+
(
1 − x2

)
dr2

Q

)

+
(
1 − x2

)
P

R2

{
a dt −

[
r2 + (a + l)2

]
dϕ
}2

, (3.4)

where

�(r , x) = 1 − aA

a2 + l2
r (l + ax) (3.5a)

R2(r , x) = r2 + (l + ax)2 , (3.5b)

P(x) = �(r+, x)�(r−, x), (3.5c)

Q(r) = (r − r+) (r − r−)

(
1 + aA

a − l

a2 + l2
r

)(
1 − aA

a + l

a2 + l2
r

)
, (3.5d)

with

r± = m ±
√
m2 + l2 − a2 − e2 − g2, (3.6)

denoting the locations of the black hole horizons. The parameters appearing above are
the “physical” ones: the mass m, the Kerr-like rotation parameter a, the acceleration
parameter A, the NUT parameter l, and the electromagnetic charges e and g.

We can cast (3.4) into the LWP form (2.1a) with Weyl’s canonical coordinates ρ, z
expressed in terms of r , x via6

ρ(r , x) =
√(

1 − x2
)
PQ

�2 , (3.7a)

2Aa2r2z(r , x) =
(
a2 + l2

) [
r (r+ + r−) − 2r+r−

]+ 2aAlr+r−r

+2
[
a2 + l2 − 2aA (l + ax) r

]
Q − � Q′ (a2 + l2

)
r

�2 ,(3.7b)

and the seed functions being

f0(r , x) = Q − a2
(
1 − x2

)
P

�2R2 , (3.7c)

ω0(r , x) = (1 − x)

[
2l + a (1 + x)

(
1 − P

�2 f0

)]
, (3.7d)

6 For functions with a single argument, a prime accent denotes differentiation with respect to that argument.
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γ (r , x) = 1

2
ln

R2 f0
�2
[
(∂r z)2 + (∂rρ)2

]
Q

. (3.7e)

Finally, the seed gauge field A0 has nonvanishing temporal and azimuthal components,

At,0(r , x) = −er + g (l + ax)

R2 , (3.8a)

Aϕ,0(r , x) = gx − (1 − x) (a + 2l + ax) At,0, (3.8b)

respectively.
This information almost suffices to identify the seed Ernst potentials. We also need

to solve Eq. (2.4) for the seed twisted potentials Ãϕ,0 and χ0. To do so, we need to
write the gradient of a function F(r , x) in the coordinate system {t, r , x, ϕ}; it reads

∇F = 1

hr
∂r F r̂ + 1

hx
∂x F x̂, (3.9)

where the scale factors hr (r , x) and hx (r , x) are given by

hr = R

�
√
Q

= hx

√(
1 − x2

)
P

Q
. (3.10)

Then, the differential equations via which we are to determine Ãϕ,0 become

∂x Ãϕ,0 = a ∂r At,0, (3.11a)

∂r Ãϕ,0 = −∂x At,0

a
, (3.11b)

admitting the solution

Ãϕ,0(r , x) = −gr − e (l + ax)

R2 , (3.12)

up, of course, to the addition of an integration constant, which we set to zero. The
differential equations determining χ0, i.e., the second equation in the set (2.4), admit
the solution

χ0(r , x) =
2
(
a2 + l2

)
[amx − l (r − m)] − 2aA

[(
a2 − l2

)
(r − m) r + a (2m − r+) r+ (l + ax) x

]

R2
(
a2 + l2

)
�

,

(3.13)

again, up to the addition of an integration constant, whichwe also neglect for simplicity
without loss of generality. The seed Ernst potentials are found by simply substituting
the above functions into (2.2), and there is no reason to display them explicitly here.
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Before proceeding with the Ehlers–Harrison transformation, let us communicate a
somewhat interesting observation which will prove pertinent also in the target case.
Notice that Ãϕ,0 is obtained from At,0 via a duality transformation of the charges
(e, g) �→ (g,−e). Indeed, the previous exchange of the charges generates a discrete
phase transformation �0 �→ −i�0 which maps At,0 �→ Ãϕ,0 and Ãϕ,0 �→ −At,0.
Since |�0|2 and e2 + g2 are then invariant under such transformations, it follows that
E0 is preserved. Therefore, looking at the target potentials (2.7), it becomes apparent
that, if we simultaneously perform a duality transformation of the Harrison parameter
β = be + ibm , i.e., (be, bm) �→ (bm,−be), or equivalently β �→ −iβ, the target
gravitational potential E is preserved whereas � �→ −i�, exactly as in the seed case.
In other words, the particular exchanges of charges and parameters end up inducing
a T3−i transformation of the potentials which, of course, leaves the Ernst equations
invariant. Further looking at the twist Eq. (2.4), the differential equation determining
ω does not transform, in contrast to the one determining the azimuthal component of
the target gauge field. One can basically see where this is going; the target metric will
be invariant under the simultaneous charge andHarrison-parameter duality exchanges,
but the target Maxwell field will not, an after all quite expected result.

Let us now operate on the seed potentials with a combined Ehlers–Harrison trans-
formation via the composition Ec ◦ Hβ . The new potentials read

E = E0
�

, � = �0 + (be + ibm) E0
�

,

� = 1 +
(
ic − b2e − b2m

)
E0 − 2 (be − ibm) �0, β = be + ibm . (3.14)

Using the definitions (2.2), we can readily identify some of the new functions. In
particular,

f (r , x) = f0
|�|2 , (3.15a)

|�|2χ(r , x) = χ0 − c|E0|2 − 2be
(
χ0At,0 − Ãϕ,0ReE0

)
− 2bm

(
χ0 Ãϕ,0 + At,0ReE0

)
, (3.15b)

|�|2At (r , x) = At,0 +
(
bmc − beb

2
m − b3e

)
|E0|2 + (4bebm − c)

(
χ0At,0 − Ãϕ,0ReE0

)

−
(
3b2e − b2m

) (
χ0 Ãϕ,0 + At,0ReE0

)
+ be

(
ReE0 − 2|�0|2

)
− bmχ0, (3.15c)

Ãϕ(r , x) = At | {�0 �→ −i�0, β �→ −iβ} , (3.15d)

while γ remains the same. We once again remind the reader that be and bm are the real
and imaginary parts of the Harrison parameter β, and c is the real Ehlers parameter.
Now, we still have to solve for ω and Aϕ . Ideally, we would like to obtain the result
with all the seed charges and parameters switched on, but this turns out to be an
extremely demanding task, computation-wise, in these coordinates. Therefore, we
restrict ourselves to discussing a particular case whose novelty is sufficient in the
sense that it corresponds to an accelerating and rotating black hole of Petrov type I
with NUT parameter and electric charge, both coming from the Ehlers–Harrison map.

To this end, we switch off bm , the seed NUT parameter l and the initial charges e, g
in order to greatly simplify things. With these assumptions, one can indeed first get
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ω,

ω = ω0 + C1 − a
(
b4e + c2

)

x2

(
1 −

(
1 − x2

)
PF

�5R2 f0

)

−2c
[
a2 + r (r − 2m)

]
H

�4R2 f0
, (3.16)

where
F(r , x) = R2

{
1 − 3Axrx − A2

[
r2 + a2

(
1 + 3x2

)]
+ A3

[
3r2 + a2

(
3 + x2

)]
xr
}

− 2m
(
1 − A2r2

) [
r
(
1 − x2

)
+ 2x2m − 2A (2r − m) xr − a2A

(
1 + 3x2

)
x
]
, (3.17a)

H(r , x) = A
(
1 − x2

)
R2
{
1 + A2

[
a2
(
1 + x2 − 2Axr

)
− r2

]}

− 2m
{
1 − 2Axr + a2A2

(
1 − x4

)
+ 2A3

[
r2 − a2

(
1 − x2

)]
xr − A4r4

}
x, (3.17b)

are functions of r , x which depend only on the seed parameters, and where ω0 is given
in Eq. (3.7d). Note that the integration constant has been already shifted as to have a
nonsingular A → 0 limit. Having obtained ω, we can now integrate the first equation
in (2.4) for the azimuthal part of the target gauge field, finding

Aϕ = G − ωAt + C2, (3.18)

where

G = abe3

x2

(
1 + 2m

(
1 − x2

)
P
(
1 − A2r2

) [
r
(
1 − x2

)− 4Ar2x − a2A
(
1 + 3x2

)
x + 2m (x + r A) x

]

�5R2 f0

−
(
1 − x2

)
P
{
1 − 3Arx − A2

[
r2 + a2

(
1 + 3x2

)]+ A3x
[
3r2 + a2

(
3 + x2

)]
r
}

�5 f0

)
, (3.19)

and C2 is another integration constant.
Therefore, the target solution is given by

ds2 = − f0
|1 + (

ic − b2e
) E0|2 (dt − ω dϕ)2 + |1 + (

ic − b2e
) E0|2

(
1 − x2

)
PQ

�4 f0
dϕ2

+|1 + (
ic − b2e

) E0|2R2

�2Q

[
dr2 + Q(

1 − x2
)
P
dx2

]
, (3.20a)

and the gauge field

A = −be
b2e |E0|2 − f0

|1 + (
ic − be2

) E0|2 dt + (G − ωAt + C2) dϕ. (3.20b)

With the restrictive assumptions e = 0 = g = l we have made so far, we have

P(x) = 1 + A
(
a2Ax − 2m

)
x, (3.21a)
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Q(r) =
(
1 − A2r2

) [
a2 + (r − 2m) r

]
, (3.21b)

�(r , x) = 1 − Axr , (3.21c)

R(r , x) =
√
r2 + a2x2. (3.21d)

The seed function f0 is given in (3.7c), whereas χ0 assumes the neat form

χ0(r , x) = 2a
[
m (x + Ar) − AR2

]

�R2 . (3.22)

Thus, E0 = f0 + iχ0, since the complex electromagnetic seed potential �0 is zero
(At,0 = 0 = Aϕ,0 = Ãϕ,0).

Although the objective of providing explicit expressions is completed, the
form (3.20a) of the metric may not be the most convenient when discussing certain
limits. Therefore, we also propose the alternative form

�2ds2 = − Q − a2 P̃

R2

⎡
⎣dt −

⎛
⎝ω̃ + A

(
1 − x2

) (
r2 − 2r

√
m̃2 + l̃2 + a2

)
W

4
(
m̃2 + l̃2

) (
r2 − 2r

√
m̃2 + l̃2 + a2x2

)
�5R2 f0

⎞
⎠ dϕ

⎤
⎦
2

+R2

(
P̃Q

Q − a2 P̃
dϕ2 + dr2

Q
+ dx2

P̃

)
,

(3.23)

where

R2(r , x) =
∣∣∣∣∣1 −

(
b2e + i

l̃

2
√
m̃2 + l̃2

)
E0
∣∣∣∣∣
2

R2, P̃(x) =
(
1 − x2

)
P, (3.24)

ω̃(r , x) = 2l̃ (1 − x)

−a
8m̃2

(
m̃r + al̃x

) (
1 − x2

)
+
(
l̃2 + 4m̃2b4e

) {
(r − 2m̃)2 +

[
2m̃ (r − 2m̃) + a2

]
x2
}

4m̃2
[
r (r − 2m̃) + a2x2

] .

(3.25)

with new parameters

l̃ = −2cm, m̃ = m
√
1 − 4c2. (3.26)

Here, we have set C1 = 2l̃ in order to avoid transforming the time coordinate which
is the alternative course of action to obtain the above form if one wants to keep C1
arbitrary. Moreover, the function W (r , x) is quite involved. In particular,

W (r , x) = −4m2aR2�3
(
R2A − 2mx

)
+ a

(
l̃2 + 4m2b4e

)
F̃ + 4ml̃�H̃ , (3.27)

with
F̃(r , x) = 8m3 (x + r A)

(
1 − r2A2

)

+ 2R2m
{
3x + 3r

(
2 − x2

)
A + x

[
2a2

(
1 + 3x2

)
− r2

(
4 − x2

)]
A2
}
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− 2R2m
{
r
[
3r2

(
2 − x2

)
− a2

(
1 − x2 − 4x4

)]
A3 + r2x

[
a2
(
4 + x2 − x4

)
− r2

(
1 − x2

)]
A4
}

− R4A
(
3 − A

{
r x +

[
3r2 − a2

(
1 + 3x2

)]
A − r x

[
r2 − a2

(
3 + x2

)]
A2
})

+ 4m2
[
r4
(
4 − 3x2

)
A3 − a2x2

(
2 + 3x2

)
A + r5x3A4 + r3x A2

(
4 − x2 + a2A2

)]

+ 4m2
(
r2A

{
x2
[
3 + a2

(
5 + x2 − x4

)
A2
]

− 4
}

− r x
[
4 + a2

(
2 + 2x2 − 3x4

)
A2
])

, (3.28a)

H̃(r , x) = 2R2m
{
−r − x

[
r2 + a2

(
2 + x2

)]
A + r

[
r2 − a2

(
1 − 3x2

)]
A2 + r2x

[
r2 + a2

(
2 − x2

)]
A3
}

+ 4m2x
(
r3A − r5A3 + a2

{
x + r A − r x A

[
x + r

(
2 − x2

)
A
]})

− R4
{
A2
[
r2 − a2

(
1 + x2 − 2r x A

)]
− 1

}
. (3.28b)

Observe that in some of the preceded equations, we used m instead of m̃; this is not a
typographical error. We rather did so only for brevity. Keep in mind that, whenever we
express the metric in this form, the NUT parameter and the mass are given by l̃ and
m̃ in Eq. (3.26), respectively, not by c and m. This particular form of the target metric
with the redefined parameters will be more suitable for various important limits, as
we will see below.

In passing, we also remark that, unfortunately, the Misner string is not removable
for l̃ �= 0, or c �= 0 in the original form (3.20a), since

�ω = lim
x→1

ω − lim
x→−1

ω = −4l̃. (3.29)

However, switching on the seed charges, we know that they will interact with the
Harrison parameter be, contributing to the above discontinuity in such a way, that the
latter becomes eliminable via proper tuning [21]. Let us now start from this exotic
enhanced Kerr metric of type I (a subfamily of the enhanced PD for e = 0 = g = l),
and discuss some limiting cases.

3.1.1 Vanishing acceleration limit

In the case of vanishing acceleration, one expects to be able to recover the Kerr–
Newman–NUT metric (type D). Indeed, after proper coordinate transformations and
parameter redefinitions, the metric (3.20a) acquires the form7

ds2 = − Q

R2

[
dt̄ − (1 − x)

(
ā + 2l̄ + āx

)
dϕ
]2 + R2

1 − x2

(
dx2 +

(
1 − x2

)
dr̄2

Q

)

+
(
1 − x2

)

R2

{
ā dt̄ −

[
r̄2 + (

ā + l̄
)2]

dϕ
}2

, (3.30)

with

R2(r , x) = r̄2 + (
l̄ + āx

)2
, (3.31a)

Q(r) = (r̄ − r̄+) (r̄ − r̄−) , (3.31b)

7 Kerr–Newman–NUT metric as displayed in [2].
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r̄± = m̄ ±
√
m̄2 + l̄2 − ā2 − ē2, (3.31c)

where

t̄ = 1√(
1 − b2e

)2 + c2

{
t +

[
a
(
b2e + c2

)
− 4cm − C1

]
ϕ
}

, (3.32a)

r̄ = r
√(

1 − b2e
)2 + c2 − 2m

[
c2 − b2e

(
1 − b2e

)]
√(

1 − b2e
)2 + c2

, (3.32b)

ā = a
√(

1 − b2e
)2 + c2, (3.32c)

l̄ = − 2cm√(
1 − b2e

)2 + c2
, (3.32d)

m̄ = m
(
1 − c2 − b4e

)
√(

1 − b2e
)2 + c2

, (3.32e)

ē = 2mbe. (3.32f)

Clearly, the new NUT parameter and the new seed electric charge are proportional to
the transformation parameters c and be, respectively.8 There is no need to display the
gauge field here, for it will actually be misaligned with respect to the standard form
in the Kerr–Newman–NUT solution. However, this issue is known, and its resolution
is given by acting with an additional duality rotation on the Ernst electromagnetic
potential [28].

3.1.2 Vanishing rotation limit

The case of vanishing rotation corresponds to the enhanced C-metric (type I), i.e., a
C-metric into which, NUT and electromagnetic charges enter via the Ehlers–Harrison
map. Here, we choose to consider the alternative form (3.23) of the target metric which
is the most befitting for the task at hand. Therefore, our parameters are l̃, m̃, a, A, be.
When a → 0, the metric (3.23) becomes

�2ds2 = − Q

R2

{
dt − l̃

[
2 (1 − x) + A

P̃r2

�2
√
m̃2 + l̃2

]
dϕ

}2

+R2
(
P̃ dϕ2 + dr2

Q
+ dx2

P̃

)
, (3.33)

where

Q(r) = r

(
r − 2

√
m̃2 + l̃2

)(
1 − A2r2

)
, P̃(x)

8 Do not confuse m̄ with the m̃ we previously introduced.
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=
(
1 − x2

)(
1 − 2Ax

√
m̃2 + l̃2

)
, �(r , x) = 1 − Axr , (3.34a)

and

R2(r , x) =
l̃2Q2 + 4

(
m̃2 + l̃2

) (
r2�2 − b2e Q

)2

4
(
m̃2 + l̃2

)
�4r2

. (3.34b)

The solution further contains a gauge field

A = be

(
r2�2 − b2e Q

)
Q

R2�4r2
dt +

{
C2 −

[
2l̃ (1 − x) + A l̃

P̃r2

�2
√
m̃2 + l̃2

]
At

}
dϕ.

(3.35)

The explicit form (3.33) of the enhanced C-metric is particularly suitable for taking
further limits. In fact, it is not hard to observe that by killing the Harrison parameter
be, the spacetime configuration assumes the form of the accelerating NUT black hole
described in [13, 14]. On the other hand, killing l̃, the solution reduces to the accel-
erating charged black holes described in [21]. For pedagogical clarity, we explicitly
highlight the limit pertaining to the accelerating-NUT spacetime discussed in reference
[13]. It is pertinent to note that the limit governing the spacetime outlined in reference
[21] follows a similar logic. It proves convenient to start with the line element

�2ds2 = − Q

R2

{
dt + 2c

[
2m (1 − x) + A

P̃r2

�2

]
dϕ

}2
+ R2

(
P̃ dϕ2 + dr2

Q
+ dx2

P̃

)
,

(3.36)

where

R2 = r2 + c2
Q2

�4r2
, (3.37)

and that simply descents from (3.33) by reverting the reparametrizations (3.26). Defin-
ing

m̃ =
√
m2 − l̄2, r± = m̃ ±

√
m̃2 + l̄2, c = l̄

r+
, (3.38)

and performing the coordinates transformations

t = r+ − r−
r+

(τ̃ − 2l̄ϕ), r = r̃ − r−, (3.39)

123



111 Page 20 of 33 J. Barrientos

the spacetime metric converts into

r+
r+ − r−

�̃2ds2 = − Q̃

R̃2

[
dτ̃ − 2l̄

(
x − A

P̃(r̃ − r−)2

(r+ − r−)�̃2

)
dϕ

]2

+R̃2
(
P̃ dϕ2 + dr̃2

Q̃
+ dx2

P̃

)
, (3.40)

where the metric polynomials has been defined via

�̃ = 1 − A(r̃ − r−)x,

P̃ = 1 − A(r+ − r−)x,

Q̃ = (1 − A2(r̃ − r−)2)(r̃ − r+)(r̃ − r−),

R̃2 = 1

r2+ + l̄2

(
r2+(r̃ − r−)2 + l̄2

(r̃ − r+)2(1 − A2(r̃ − r−)2)2

�4

)
.

(3.41)

Up to a standard rescaling of the whole metric by a constant conformal factor, this
line element correctly reproduces the desired limit to the accelerating-NUT black
hole [13]. After implementing the aforementioned reparametrizations, it is essential
to recall that the limit of vanishing mass leads us to the line element characterizing
the massless accelerating-NUT black hole, and not, as naively expected, to the Ehlers
Rindler spacetime.

3.1.3 Transforming the rindler spacetime

Looking at the original form of the metric, Eq. (3.20a), with the involved parameters
being m, a, A, c, be, we can proceed by directly killing the mass m and the angu-
lar momentum a, this before any further reparametrizations, to obtain the Enhanced
Rindler metric

�2ds2 = − Q

R2

[
dt + 2cAr2

�2

(
1 − x2

)
dϕ

]2
+ R2

[(
1 − x2

)
dϕ2 + dr2

Q
+ dx2

1 − x2

]
, (3.42)

where

Q(r) = r2(1 − A2r2), �(r , x) = 1 − Axr , R2(r , x) =
c2Q2 +

(
r2�2 − b2e Q

)2

�4r2
.

(3.43)

The gauge field accompanying it, reads

A = be

(
r2�2 − b2e Q

)
Q

R2�4r2
dt +

{
C2 + 2cAr2

�2

(
1 − x2

)
At

}
dϕ. (3.44)
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Interestingly, this spacetime is obtainable by essentially operating with a combined
Ehlers–Harrison map on a Rindler spacetime. Therefore, it is evident that, if we
switch off the acceleration, we recover Minkowski spacetime. Indeed, after a Weyl
rescaling of the metric, ds2 → ds̄2 = ds2/

(
1 − b2e + c2

)
, and a time rescaling

t → (
1 − b2e + c2

)
t̄ , this utterly proves to be the case. Of course, the Maxwell field

also vanishes up to the choice of gauge. Similar to black holes in the previous sec-
tions, it can be demonstrated that the accelerating horizons are characterized by the
incorporation of the Ehlers and Harrison parameters. This is achieved through appro-
priate reparametrizations and changes of coordinates. This outcome appears to be an
inherent characteristic of these solutions, stemming from their conceptualization as
accelerating black holes derived from a non-accelerating black hole binary wherein
one of the black holes undergoes indefinite growth.

4 Further comments

The present study endeavors to contribute to the discussion surrounding algebraically
general black holes within the framework of Einstein–Maxwell theory. These type I
spacetimes have recently gained substantial attention, mainly because they arise via
a highly nontrivial action of the Ehlers or Harrison transformations on spacetimes
featuring accelerating horizons. Specifically, operating on an accelerating seed with
an Ehlers map, or a Harrison map, or both, has the remarkable effect of altering the
algebraic properties of the seed, this due to the transformation parameters—a NUT
parameter in the case of Ehlers, or electromagnetic charges in the case of Harrison—
penetrating the Rindler horizon.

In this work, we presented a complete hierarchical structure for the type I solutions
arising via the combined action of Ehlers andHarrisonmaps. The graphical form of the
hierarchywasgiven inFig. 1,with the graph’s root nodebeing theEnhancedPlebanśki–
Demiański spacetime, or EPD for short.Wemanaged to provide an explicit form of the
solution, at least up to the case of neutral seeds, a task computationally feasible only at
the (minor) cost of using the original PD coordinates. However, in the case of a neutral
NUTless PD seed, viz., the accelerating Kerr, we were able to integrate the equations
directly in the physical spherical-like coordinates, thereby obtaining the explicit form
of a novel type I spacetime representing accelerating and rotating black holes, endowed
with both NUT and electromagnetic charges via the Ehlers–Harrison map. On top of
that, we further scrutinized some limits of this solution, demonstrating how various
spacetimes, previously presented in the pertinent literature, arise as limiting cases.

Before bringing forth the hierarchy of these type I solution, we engaged in a detailed
investigation of the Ernst symmetries, particularly focusing on the Ehlers and Harri-
son maps. After reviewing how these two maps emerge from proper compositions of
gravitational and electromagnetic gauge transformations with the inversion symmetry,
inherent in the Ernst equations, we discussed their composition properties. It turned
out that, although the Ehlers transformations form a subgroup, the Harrison ones do
not, with the reason behind this failure made manifest. These insights into the trans-
formations, as mathematical operations per se, provided a better understanding also of
the physical effects they produce when acting on spacetimes. Finally, we thoughtfully
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included a user-friendly rederivation of the Ernst equations in Appendix B, purely for
pedagogical purposes, and in order to deal with minor inconsistencies, often encoun-
tered in the literature, regarding signs in the definitions of the Ernst potentials and the
twisted-potential equations.

In consideringways to further enrich this type I hierarchy of solutions, an interesting
prospect is the introduction of angular momentum into a given seed through a suitable
solution-generating technique, as conjectured in [21]. A promising approach would
involve the inverse scatteringmethod [29], amechanism known for generating, e.g. the
Kerr spacetime from the Minkowski metric. If the Rindler horizon somehow interacts
with the external angular momentum, one can speculate that the entire type I hierar-
chy, as presented here, would be further extended to allow for two distinct angular
momenta, the seed one and the one introduced via the solution-generating technique.
Consequently, the intriguing thought of a Rindler–Kerr background may ultimately
materialize, inter alia becoming a fertile soil for exploring novel interactions between
all parameters within this generalized family.

Although searching for ways to extend this hierarchy is definitely tempting, it
is readily evident that there are numerous novel geometries within the EPD family,
which need to be thoroughly examined. A comprehensive investigation of their causal
structure, along with a satisfactory geometric description of how they extend beyond
their type D counterparts, is imperative. In addition, given the presence of accelera-
tion, delving into their thermodynamics constitutes an intriguing challenge. A succinct
framework for understanding the thermodynamics of accelerating black holes, remains
yet elusive, recent commendable contributions towards this direction [30–34] notwith-
standing.9 Last but not least, it is necessary to fully probe and understand the intricate
mechanism behind the change in the algebraic nature of an accelerating seed, effected
by Ehlers or Harrison transformations acting on the latter—namely how these oper-
ations alter the principal null directions of the Weyl tensor, etc.—, in an attempt to
solidify a consistent framework for generating algebraically general black holes.

AppendixA: EPDspacetime in theoriginalPDcoordinates: theneutral-
seed case

In this section, we present a detailed construction of the Enhanced Plebanśki–
Demiański spacetime. To facilitate this task, two key assumptions are made. First,
we employ the original PD coordinates to lighten the computational burden. Second,
in order to obtain an analytic non-integral form of the target twisted potentials, we
shall switch off the seed electromagnetic charges, e and g. Despite these simplify-
ing assumptions, our setup is yet general enough to accommodate, for the first time,
an explicit integration of the solution obtained by acting on a rotating seed with the
Ehlers–Harrison map.

9 Recently the thermodynamics of accelerating black holes in three-dimensions has been also explored,
opening a new road towards exploring the holographic properties of accelerating spacetimes [35–38].
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Let us start by writting down the line element of the PD spacetime, and the gauge
field supporting it, in the following way,

ds20 = − f0 (dt − ω0 dϕ)2 + ρ2 dϕ2

f0
+ R2

�2

(
dr2

Q
+ dx2

P

)
, (A1a)

A0 = −er + ω̂gx

R2 dt + eω̂r x2 − gxr2

R2 dϕ, (A1b)

where we have introduced the functions

f0(r , x) = Q − ω̂2P

�2R2 , (A2a)

ω0(r , x) = ω̂
x2Q + r2P

Q − ω̂P
, (A2b)

ρ(r , x) =
√
PQ

�2 , (A2c)

Q(r) = ω̂2k + e2 + g2 − 2mr + εr2 − 2Anr3

ω̂
− k A2r4, (A2d)

P(x) = k + 2nx

ω̂
− εx2 + 2Amx3 − A2

(
kω̂2 + e2 + g2

)
x4, (A2e)

R(r , x) =
√
r2 + ω̂2x2, (A2f)

�(r , x) = 1 − Axr . (A2g)

Note that the above form of the PD family depends on seven parameters (m, n, e, g,
A, ω̂, k). It is often assumed that m, n, e, and g represent the mass, NUT, electric
and magnetic charges, respectively. The parameter ω̂, often called the twist parameter,
plays a crucial role. It is associated with both angular momentum and NUT charge
[7–9]. A reconstruction of the same spacetime was performed later by Podolský and
Vrátný [2, 3], where they introduced a refined coordinate system where the twist
parameter ω̂ can be effectively absorbed, simplifying the analysis of these spacetimes.
Specifically, it was determined in [39], and subsequently utilized in [2, 3], that the
most convenient choice for the twist parameter is ω̂ = (a2 + l2)/a2. By adopting this
particular value for ω̂ we arrive at the PD metric as described by Eqs. (3.4) and (3.5)
which involves only six parameters (m, l, e.g, A, a).

As it stands, the metric (A1a) is already in the Lewis–Papapetrou form (2.1a), albeit
in the chart {t, r , x, ϕ}, with Weyl’s coordinate ρ given above, and the z coordinate
given by

z(r , x) =
kω̂Ar2 + n (1 + Axr) r − ω̂A

[
A
(
e2 + g2 + kω̂2

)
x − m (1 + Axr) + εr

]
x

ω̂�2 . (A3)
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For completeness, we also display the function γ ,

γ (r , x) = 1

2
ln

Q − ω̂2P

�4
[
P (∂xρ)2 + Q (∂rρ)2

] . (A4)

To find the target metric we first need to solve Eq. (2.4) for the twisted potentials which
read

Ãϕ,0 = gr − eω̂x

R2 , (A5a)

χ0 = 2
nr − mω̂x + ω̂A

[
kr2 + (

e2 + g2 + kω̂2
)
x2
]

�R2 . (A5b)

With these at hand, the target metric functions, i.e., the ones obtained after the appli-
cation of the Ehlers–Harrison map, can be expressed as follows

f = f0
|�|2 , (A6a)

ω̂2|�|2R2�4χ = −2ω̂2(−1 + r x A)3
[
nr − mω̂x + kω̂(r2 + ω̂2x2)A

]

−c

(
4n2(ω̂2 + r4A2) + 4m2(ω̂2 + ω̂4x4A2)

−4nω̂
{−k A

[−ω̂4x3A + r5A2

+ ω̂2r(2 − 3r x A + r2x2A2)
]+(ω̂2x + r3A)ε

}

−4mω̂
{−2n(r2 + ω̂2x2)A

+ kω̂A
[−r3A + ω̂4x5A2 + ω̂2x(2 − 3r x A + r2x2A2)

]

+ω̂(r + ω̂2x3A)ε
}

+ ω̂2(r2 + ω̂2x2)
{
k2A2

[
r4A2 + ω̂4x4A2 + 2ω̂2(2 − 4r x A + r2x2A2)

]

− 2k(r2 − ω̂2x2)A2ε + ε2
})

, bpω̂2/be |�|2R2�4

At = ω̂(1 − Arx)2
{−2n(ω̂2x + r3A) − 2mω̂(r + ω̂2x3A)

}

+ω̂2(1 − Axr)2(r2 + ω̂2x2)
[
k(−r2 + ω̂2x2)A2 + ε

]

−b2e

(
4n2(ω̂2 + r4A2) + 4m2(ω̂2 + ω̂4x4A2) − 4nω̂

{−k A
[−ω̂4x3A + r5A2

+ ω̂2r(2 − 3r x A + r2x2A2)
]+(ω̂2x + r3A)ε

}

−4mω̂
{−2n(r2 + ω̂2x2)A

+ kω̂A
[−r3A + ω̂4x5A2

+ω̂2x(2 − 3r x A + r2x2A2)
]+ω̂(r + ω̂2x3A)ε

}

+ ω̂2(r2

+ω̂2x2)
{
k2A2

[
r4A2 + ω̂4x4A2 + 2ω̂2(2 − 4r x A + r2x2A2)

]

− 2k(r2 − ω̂2x2)A2ε + ε2
})

, (A6b)

Ãϕ = beχ. (A6c)
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The rotational functionω can be divided in two terms. The first term is the seed function
ω0, which stands for the rotational function of the Kerr–NUT black hole. The second
term contains all the couplings with the Ehlers and Harrison parameters. Thus,

ω = ω0 + � + C1, (A7)

where � reads

� = − 2c(kω̂ + 2nx) − b4e k
2ω̂2A − c2k2ω̂2A

ω̂x2A

−
{
kω̂(−1 + ω̂2x4A2) + x

[−2n + ω̂x(−2mx A + ε)
]}

ω̂x2A(−1 + r x A)3
{−2n(ω̂2x + r3A) − 2mω̂(r + ω̂2x3A) + ω̂(r2 + ω̂2x2)

[
k(−r2 + ω̂2x2)A2 + ε

]}

×
(
2c(−1 + r x A)

{
2mω̂r(−1 + 2r x A + ω̂2x4A2)

+2n
[
r3A(−1 + 2r x A) + ω̂2x(−1 + r x A + r2x2A2)

]

+ω̂(r2 + ω̂2x2)
[
k A2(−r2 − ω̂2x2 + 2r3x A) + ε − 2r x Aε

]}

+b4e A
{
k2ω̂2(r2 + ω̂2x2)

×A2(−r2 − 3ω̂2x2 + 3r3x A + ω̂2r x3A)

+kω̂
[
2nr3A(−1 + 4r x A) + 2nω̂2x(−1 − r x A + 3r2x2A2)

+2mω̂(−r + 3r2x A + 3ω̂2x3A − r3x2A2) − ω̂(r2 + ω̂2x2)(−1 + 3r x A)ε
]

+2x(nr − mω̂x)
[
2mω̂ + r(2nr A − ω̂ε)

]}

+c2A
{
k2ω̂2(r2 + ω̂2x2)A2(−r2 − 3ω̂2x2 + 3r3x A + ω̂2r x3A)

kω̂
[
2nr3A(−1 + 4r x A) + 2nω̂2x(−1 − r x A + 3r2x2A2)

+2mω̂(−r + 3r2x A + 3ω̂2x3A − r3x2A2)

−ω̂(r2 + ω̂2x2)(−1 + 3r x A)ε
]+2x(nr − mω̂x)

[
2mω̂ + r(2nr A − ω̂ε)

]})
. (A8)

Finally, it remains to integrate themagnetic component of the target gauge field, which
is found to be

Aϕ = G − ωAt + C2, (A9)

with

G(r , x)

= b3e
{
kω̂(−1 + ω̂2x4A2) + x

[−2n + ω̂x(−2mx A + ε)
]}

ω̂x2(−1 + r x A)3
{−2n(ω̂2x + r3A) − 2mω̂(r + ω̂2x3A) + ω̂(r2 + ω̂2x2)

[
k(−r2 + ω̂2x2)A2 + ε

]}

×
(
k2ω̂2(r2 + ω̂2x2)A2(−r2 − 3ω̂2x2 + 3r3x A + ω̂2r x3A)

+kω̂
[
2nr3A(−1 + 4r x A)

+ 2nω̂2x(−1 − r x A + 3r2x2A2) + 2mω̂(−r + 3r2x A + 3ω̂2x3A − r3x2A2)

− ω̂(r2 + ω̂2x2)(−1 + 3r x A)ε
]+2x(nr − mω̂x)

[
2mω̂ + r(2nr A − ω̂ε)

])

− b3e k
2ω̂

x2
, (A10)

and C2 being yet another integration constant.
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Appendix B: A user-friendly guide to the Ernst formalism

In this section, we present a detailed derivation of the renowned Ernst equations. It all
starts with the Einstein–Maxwell action10

IEM
[
gμν, Aμ

] = 1

4

∫
d4x

√−g
(
R − FμνF

μν
)
. (B1)

Varying with respect to the metric and the gauge field we obtain the field equations

Gμν = 2

(
Fμ

λFνλ − 1

4
Fλσ F

λσ gμν

)
, (B2a)

∂ν

(√−gFνμ
) = 0, (B2b)

respectively. Since the trace of the energy-momentum tensor vanishes, the metric field
equations admit a particularly simple Ricci form,

Rμν = 2

(
Fμ

λFνλ − 1

4
Fλσ F

λσ gμν

)
=: 2Tμν. (B3)

4.1 Field equations with the“electric" LWP ansatz

Now, since we are interested in stationary and axisymmetric spacetimes characterized
by two commuting Killing vectors, ∂t and ∂ϕ , we consider the LWP metric ansatz

ds2 = − f (dt − ω dϕ)2 + 1

f

[
ρ2dϕ2 + e2γ

(
dρ2 + dz2

)]
, (B4)

together with a gauge field with the same symmetries

A = At dt + Aϕ dϕ, (B5)

where f , ω, γ and At , Aϕ are functions of ρ and z.
The simplest equations to tackle first are the field equations for the Maxwell field

Aμ. One can easily show that

Fμν = δρt
μν A

′
t + δztμν Ȧt + δρϕ

μν A
′
ϕ + δzϕμν Ȧϕ, (B6)

where our convention for the rank-4 skew-symmetricKronecker delta is δλσ
μν = δλ

μδσ
ν −

δλ
ν δσ

μ. A prime accent ′ denotes a derivative with respect to ρ, and a dot accent · denotes
a derivative with respect to z. Since ∂t , ∂ϕ are Killing vectors, we have that only the
vectors Fρμ and Fzμ appear in the Maxwell field equations. These read

√−gFρμ = ρ

[
− A′

t

f
+ ω f

ρ2

(
A′

ϕ + ωA′
t

)]
δ
μ
t + f ρ

A′
ϕ + ωA′

t

ρ2 δμ
ϕ =: ρ F̂μ, (B7a)

10 We use natural units, and we further have set G = (4π)−1.
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√−gFzμ = ρ

[
− Ȧt

f
+ ω f

ρ2

(
Ȧϕ + ω Ȧt

)]
δ
μ
t + f ρ

Ȧϕ + ω Ȧt

ρ2 δμ
ϕ =: ρFμ. (B7b)

Then, the Maxwell field equations are given by

1

ρ

(
ρ F̂μ

)′ + Ḟμ = 0. (B8)

Given that the divergence of a vector V(ρ, z) in cylindrical coordinates reads

∇ · V = 1

ρ
(ρVρ)′ + V̇z, (B9)

it turns out the Maxwell field equations can be written as

∇ · Fμ = 0, (B10)

where

Fμ :=
(
F̂μ, Fμ, 0

)
=
[
−∇At

f
+ ω f

ρ2

(∇Aϕ + ω∇At
)]

δ
μ
t + f

∇Aϕ + ω∇At

ρ2 δμ
ϕ .

(B11)

Let us put now our attention on Einstein field equations. In particular, we have the t t
component

−2 f 3
(∇Aϕ + ω∇At

) · (∇Aϕ + ω∇At
)− ρ2∇ f · ∇ f + f 4∇ω · ∇ω

− f ρ2
(
2∇At · ∇At − ∇2 f

)
= 0, (B12)

and the tϕ component

− f 4ω∇ω · ∇ω + 2ω f 3
(∇Aϕ + ω∇At

) · (∇Aϕ + ω∇At
)

− f ρ2
[
ω
(
2∇At · ∇At + ∇2 f

)
+ 2

(
2∇Aϕ · ∇At + ∇ f · ∇ω

)]

− f 2ρ
(
ρ∇2ω − 2ω′)+ ωρ2∇ f · ∇ f = 0. (B13)

Looking at the form of these two, it becomes apparent that, multiplying Eq. (B12) by
ω and adding to Eq. (B13), we can obtain a simpler equation, namely,

2 f

ρ2

(
2ω∇At · ∇At + 2∇Aϕ · ∇At + ∇ f · ∇ω

)+ f 2

ρ2

(
∇2ω − 2ω′

ρ

)
= 0. (B14)

At this stage, and after cumbersome algebra, we can finally present the latter as

∇ ·
[
f 2

ρ2 ∇ω + 4 f

ρ2 At
(∇Aϕ + ω∇At

)] = 0, (B15)
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modulo the Maxwell field equations. Knowing all the other functions, we can also
determine γ via the equations

r
(
Rρz − 2Tρz

) = 0,
r

2

[
Rρρ − Rzz − 2

(
Tρρ − Tzz

)] = 0, (B16)

which directly provide us with expressions for γ̇ and γ ′, respectively. Do also note
that if the t t and tϕ components of the Einstein field equations are satisfied, then the
ϕϕ component vanishes identically.

4.2 Let’s twist again

Notice that if h is some function of ρ, z, then

∇ ·
(
1

ρ
ϕ̂ × ∇h

)
= 0, (B17)

regardless of how our triad is ordered. Therefore, in a fashion similar to “closed is
locally exact”, here we may argue that ∇ · V(ρ, z) = 0 implies that there exists a
function h(ρ, z) such that

V = 1

ρ
ϕ̂ × ∇h. (B18)

Such a function will be called a twisted potential. Now, recalling the definition of our
vectors Ft and Fϕ (B10), and considering one of the Maxwell field equations, namely
∇ · Fϕ = 0, we can always write

ρFϕ = (−)pϕ̂ × ∇ Ãϕ. (B19)

Here, p = 0, 1 is introduced just to keep track of the available sign freedom in the
definition of the twisted potential. Since ϕ̂ × (

ϕ̂ × V
) = −V for any vector V with

only ρ, z components, we may cross both sides of the above equation with ϕ̂ from the
left to get

(−)p

f
∇ Ãϕ + ω

ρ
ϕ̂ × ∇At = − 1

ρ
ϕ̂ × ∇Aϕ. (B20)

Using Eq. (B17), we can easily show that

∇ ·
(

(−)p

f
∇ Ãϕ + ω

ρ
ϕ̂ × ∇At

)
= 0, (B21)

which can freely replace the equation ∇ · Fϕ = 0. Remember that the other equation
in the Maxwell set reads

∇ ·
(

− 1

f
∇At + ωFϕ

)
= 0. (B22)

123
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Clearly, using the definition of the twisted potential, we can present it as

∇ ·
(

− 1

f
∇At + (−)p

ω

ρ
ϕ̂ × ∇ Ãϕ

)
= 0. (B23)

Hence, we have managed to cast the Maxwell field equations ∇ ·Fμ = 0 into a pair of
equations comprised of (B21) and (B23).Multiplying Eq. (B21) with i and subtracting
Eq. (B23) from it, we can express our pair as the single complex equation

∇ ·
(
1

f
∇� + iω

ρ
ϕ̂ × ∇�

)
= 0, (B24)

where � = At + i(−)p Ãϕ is the first complex potential we have introduced.
Let us now turn back our attention towards the gravity sector. Using the identity

(B17), we can show that

(−)p∇ ·
(
1

ρ
ϕ̂ × Ãϕ∇At

)
= −1

2
∇ ·

[
1

ρ
ϕ̂ × Im

(
�∗∇�

)]
. (B25)

Taking into account the above equation, then Eq. (B15) can be written as

∇ ·
(

f 2

ρ2 ∇ω + 4AtFϕ

)
= 0. (B26)

Using the definition (B19) together with the identity (B25), and considering that

Im
(
�∗∇�

) = (−)p
(
At∇ Ãϕ − Ãϕ∇At

)
, (B27)

one can cast Eq. (B15) into

∇ ·
[
f 2

ρ2 ∇ω + 2

ρ
ϕ̂ × Im

(
�∗∇�

)] = 0. (B28)

Following the same procedure as for Maxwell’s equations, we introduce another
twisted potential χ such that

f 2

ρ
∇ω + 2ϕ̂ × Im

(
�∗∇�

) = (−)s ϕ̂ × ∇χ, (B29)

where s = 0, 1 is another parameter introduced to keep track of the sign freedom in
the definition of the second twisted potential. If we cross now both sides of the above
equation with ϕ̂ from the left, then

1

f 2
[
(−)s∇χ − 2Im

(
�∗∇�

)] = − 1

ρ
ϕ̂ × ∇ω. (B30)
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Again, using the identity (B17), one can easily show that the equation

∇ ·
{

1

f 2
[
(−)s∇χ − 2Im

(
�∗∇�

)]} = 0, (B31)

may freely replace the Einstein equation (B15). For later use, we denote the above as
∇ · G = 0.

At this stage, we need to recall that for a vector V with only ρ, z components, it
holds that

(
ϕ̂ × V

) · (ϕ̂ × V
) = V · V. (B32)

Wemay look at the other Einstein equation, namely Eq. (B12), and use this knowledge
together with the definition of Fϕ , to write it as

−2ρ4 f Fϕ · Fϕ − ρ2∇ f · ∇ f + f ρ2∇2 f − 2 f ρ2∇At · ∇At + ρ2 f 4G · G = 0.
(B33)

Considering that

ρ2Fϕ · Fϕ = ∇ Ãϕ · ∇ Ãϕ, ∇� · ∇�∗ = ∇At · ∇At + ∇ Ãϕ · ∇ Ãϕ, (B34)

then Eq. (B33) becomes

− ∇ f · ∇ f + f ∇2 f − 2 f ∇� · ∇�∗ + f 4G · G = 0. (B35)

Multiplying Eq. (B31) with i f 2 and subtracting it from Eq. (B35), we combine the
two Einstein equations into one complex gravitational equation, namely

− ∇ f · ∇ f + f ∇2 f − 2 f ∇� · ∇�∗ + f 4G · G − i f 2∇ · G = 0. (B36)

4.3 The Ernst equations

Recall now that the defining equation for the twisted potential χ , Eq. (B29), can be
written as

1

ρ
∇ω = ϕ̂ × G, (B37)

and by using the identity (B17), the Maxwell equations (B24) can be brought to the
form

− 1

f 2
∇ f · ∇� + 1

f
∇2� + i

ρ
∇ω · (ϕ̂ × ∇�

) = 0. (B38)
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Remembering the product property

X · (Y × Z) = −Z · (Y × X) , (B39)

which holds true for arbitrary vectors X, Y, and Z, and using Eq. (B37), we finally
reach

f ∇2� = ∇ f · ∇� − i f 2∇� · G. (B40)

At this stage, if we make an educated introduction of a complex gravitational
potential

E = f − |�|2 − i(−)sχ, (B41)

we can show that Eq. (B40) can be written as

(
ReE + |�|2

)
∇2� = ∇� · (∇E + 2�∗∇�

)
. (B42)

Most interesting, however, is the fact that after the introduction of the potential E , the
complex gravitational equation (B36) also takes a similar form, namely

(
ReE + |�|2

)
∇2E = ∇E · (∇E + 2�∗∇�

)
, (B43)

—modulo Eq. (B42). The remaining pair of Einstein equations, which gives γ in terms
of integrals, can also be expressed in terms of the two complex potentials. The form of
these equations will not bother us here since we are going to determine γ in a different
manner via comparison.

Summing up the findings, we introduced two complex potentials,

E = f − |�|2 − i(−)sχ, � = At + i(−)p Ãϕ, (B44)

and two twisted potentials Ãϕ and χ , which are given by the equations

ϕ̂ × ∇ Ãϕ = (−)p f

ρ

(∇Aϕ + ω∇At
)
, (B45a)

ϕ̂ × ∇χ = (−)s
(

f 2

ρ
∇ω + 2ϕ̂ × Im

(
�∗∇�

))
, (B45b)

respectively.With these at hand,we showed that theEinstein–Maxwell systemassumes
the form of a pair of complex equations, known as the Ernst equations [18, 19],

(
ReE + |�|2

)
∇2E = ∇E · (∇E + 2�∗∇�

)
, (B46a)

(
ReE + |�|2

)
∇2� = ∇� · (∇E + 2�∗∇�

)
. (B46b)
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Recall that a similar construction can be performed in the so-called magnetic gauge.
After a double Wick rotation, the metric (B4) acquires the “magnetic” form

ds2 = f (dϕ − ωdt)2 + 1

f

[
e2γ

(
dρ2 + dz2

)
− ρ2dt2

]
. (B47)

From here an equivalent formulation of the Ernst equations can be executed straight-
forwardly.
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