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Within the framework of geometric inflation, where the Friedmann equation is modified to incorporate
an infinite series of higher curvature corrections, we describe the emergence of a de Sitter inflationary phase
near the poles of an arbitrary dynamical function. Our analysis is quite general and does not depend on any
specific choice of cosmological dynamics.
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I. INTRODUCTION

It was recently identified that an R3 correction to
general relativity (GR) provides a framework for geo-
metric inflation [1]. This specific combination of cubic
curvature invariants is determined by the requirement
that it leads to second-order field equations for a
Friedmann-Lemaître-Robertson-Walker (FLRW) cosmo-
logical ansatz. Such a combination has previously been
identified in the context of black holes in higher-
curvature gravity theories [2,3]. Quartic and quintic
invariants with similar properties in the FLRW ansatz
were determined in [4], where it was also shown that
scalar cosmological perturbations satisfy field equations
of second order in time. Assuming the existence of a
curvature invariant at any order, leading to second-order
equations in the FLRW ansatz, Ref. [5] explored various
scenarios leading to an early inflationary expansion for
the Universe, smoothly transitioning into a radiation-
dominated era, and subsequently to the ΛCDM model
(see also [6,7] for further explorations). The existence

of such models to all curvature orders was recently
demonstrated by Moreno and Murcia in [8], who also
proved that the equations for the scalar perturbations
of the FLRW ansatz can be made second order
in time.
On the other hand, in [4] we established a connection

between the aforementioned combinations of higher
curvature terms and five-dimensional theories known
as quasitopological gravities [9–13]. These theories
exhibit remarkably simple properties when applied to
spherically symmetric backgrounds. It was recently
observed in [14] that, in the context of effective field
theory, any combination of polynomial curvature invar-
iants can be rewritten as one of the quasitopological
class after a suitable field redefinition. Then, evaluating
the field equations on a spherically symmetric ansatz,
the authors were able to resum the series of contribu-
tions coming from the infinite number of higher curva-
ture corrections, leading to different models admitting
black holes with a de Sitter core, namely, regular black
holes purely supported by higher curvature contributions
and with no matter source whatsoever.
The aforementioned works put on firm ground the

exploration of four-dimensional cosmologies in sensible
theories containing an arbitrary number of higher
curvature corrections. This work aims to achieve this
objective. Remarkably, we show that regardless of the
precise values of the coefficient in front of each
curvature term, the early evolution of the Universe is
generically dictated by an inflationary de Sitter epoch,
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which can be smoothly connected with a radiation
dominated era.1

II. BASIC GEOMETRIC INFLATION SETUP

We describe a 3þ 1 dimensional homogeneous and
isotropic cosmology using the Friedman-Lemaître-
Robertson-Walker (FLRW) metric:

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2dΩ2

2

�
: ð1Þ

As usual, aðtÞ is the scale factor and k ¼ 0;�1 represents
the spatial curvature.
We focus on a gravitational dynamics where the equation

of motion for the scale factor aðtÞ is of second-order and
autonomous. This allows us to write a first integral in the
form of a Friedmann-like equation [4–6]

P

�
H2 þ k

a2

�
¼ κ

3

�
ρ0r
a4

þ ρ0m
a3

�
þ Λ

3
: ð2Þ

Here H ¼ ȧ=a is the Hubble parameter, and the right-
hand side includes the energy densities of radiation and
matter, and a cosmological constant. The function PðxÞ
encodes the specific gravitational theory, with x ¼ H2 þ
k=a2 representing the spacetime curvature.
The explicit form of PðxÞ arises from the coefficients in

the curvature expansion of the gravitational action, specific
examples can be found in the literature [1,4–7,18]. In
the present note we will keep PðxÞ as general as possible.
We can reabsorb any constant contribution to PðxÞ in the
cosmological constant Λ in order to set Pð0Þ ¼ 0. Since
we want to recover Einstein gravity at small curvatures, we
impose PðxÞ ≈ x for small x, where any proportionality
constant has been reabsorbed in the definition of κ.
As the cosmology evolves following Eq. (2), the space-

time curvature x changes. We assume that at any particular
point of the evolution x ¼ x̄ the function PðxÞ shows one of
two possible behaviors:
(1) It can be regular PðxÞ ∼ ðx − x̄Þp with p∈Zþ.
(2) It can have a pole of a given finite order PðxÞ ∼

ðx − x̄Þ−p with p∈Zþ.
Depending on which of the two possibilities is realized, the
cosmology around that particular point shows different
features that we describe in the forthcoming sections.
To organize the discussion, we start at present time t ¼ t0

and follow the cosmological evolution back in time. The
Universe is now nearly flatH2

0a
2
0 ≫ 1 and it is entering into

an accelerating phase. As time recedes, it first goes through
a matter dominated era, and then through a radiation

dominated era. We assume that nonlinearities start to affect
the left-hand side of (2) when the Universe is traversing one
of those two epochs. Thus we can write

PðH2Þ ¼ c
a2q

; ð3Þ

where q ¼ 2; 3=2 represents radiation or matter dominated
eras, and the proportionality constant has been fixed to
be c ¼ κρ0q=3.

III. SINGULARITY ANALYSIS

A. Cosmology close to a regular point

Assuming that, as the nonlinearities take over, the
Hubble paremeter x ¼ H2 is close to any given point x̄
at which the function PðxÞ is regular, then we can expand
the Friedmann equation (3) to obtain

Pðx̄Þ þ P0ðx̄ÞðH2 − x̄Þ ¼ c
a2q

: ð4Þ

This expression can be rewritten as an effective Friedmann
equation

H2 ¼ c̃
a2q

þ ¯̄x; ð5Þ

with the new constants being c̃ ¼ c=P0ðx̄Þ and ¯̄x ¼ x̄−
Pðx̄Þ=P0ðx̄Þ. Here we can identify the following possible
behaviors:

(i) If the cosmic evolution reaches the nonlinear regime
when the scale parameter is small enough, then the
radiation/matter term dominates over the constant
contribution ¯̄x, and we get a power law cosmology
aðtÞ ∼ ðt − t̃Þ1=q, where t̃ is a constant of integration.
As the resulting Hubble parameter is not constant
H2 ∼ 1=ðt − t̃Þ2, it moves away from x̄ quickly,
spoiling the approximation (4). For the new value
of H2 the solution takes the same form, but with
different values for c̃ and t̃. This regime can be
smoothly reached by receding in time from the
present day Universe.

(ii) If instead, the Universe reaches the nonlinear region
with a large scale parameter, equation (5) would be
dominated by its constant part ¯̄x, and we get a de

Sitter cosmology aðtÞ ∼ e
ffiffī̄
x

p
t. In this case the Hubble

parameter takes a constant value H2 ¼ ¯̄x. Consis-
tency with the initial assumptionH2 ∼ x̄ implies that
this regime is only realized when Pðx̄Þ ≪ P0ðx̄Þx̄.
The Hubble parameter remains constant for the
subsequent evolution and close to the value x̄, thus
the approximation (4) remains valid. This implies
that this solution cannot be reached going backward
in time from present day cosmology.

1We refer to [15,16] for the existence of nonperturbative de
Sitter solutions in String Theory to all orders in α0 coming from
Oðd; dÞ invariance restrictions, and [17] for a thorough explora-
tion of these solutions both in the Einstein and string frame.
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Notice that if we get close to a critical point of PðxÞ,
the term P0ðx̄Þðx − x̄Þ in equation (4) is replaced by
PðpÞðx − x̄Þp=p!. The de Sitter behavior does not change,
while the power law is instead given by aðtÞ ∼ ðt − t̃Þp=q.
As a conclusion, going back in time from the present day

the Universe matches a nonlinear regime in which the scale
factor behaves as a power law locally in time.
Notice that the presence of a spatial curvature contri-

bution would modify (4) as

Pðx̄Þ þ P0ðx̄Þ
�
H2 þ k

a2
− x̄

�
¼ c

a2q
: ð6Þ

This equation can be solved in the two limits stated above.
But now the de Sitter regime would be valid only locally
in time, since the curvature term would move the argument
of PðxÞ away from x̄ very quickly. In consequence, if the
curvature becomes relevant at some time in the evolution,
the locally de Sitter regime can also be matched with the
present cosmology.

B. Cosmology close to a pole

Now suppose that the cosmological evolution drives
the spacetime curvature x ¼ H2 close to a pole x̄ of the
function PðxÞ. In such a case Eq. (3) takes the form

rp
ðH2 − x̄Þp ¼ c

a2q
: ð7Þ

Here rp is the residue of PðxÞ around the order p pole at x̄.
This can be rearranged as an effective Friedmann equation

H2 ¼ c̃a2q=p þ x̄; ð8Þ

where now c̃ ¼ ðrp=cÞ1=p. We then get two possible
behaviors

(i) If the scale factor is small enough as the Hubble
parameter H2 reaches the pole, the evolution is that
of a de Sitter regime aðtÞ ∼ e

ffiffī
x

p
t. Then the Hubble

parameter H2 ∼ x̄ remains constant and close to the
pole, and so the Eq. (8) remains valid. However,
the scale factor aðtÞ grows, until a point in which
dominates the right-hand side of (8) and the de Sitter
phase ends.

(ii) If the Hubble parameter reaches the pole H2 ∼ x̄
when the scale factor aðtÞ is large, or if it has grown
away from the previously described de Sitter phase,
then we get into a regime in which the evolution
follows a power law aðtÞ ∼ ðt − t̃Þ−p=q. Interestingly,
the exponent is negative and drives the scale factor
down to small values. Whether the cosmology
gets then back into the de Sitter phase depends
on how much has the Hubble parameter H2 drifted
away from x̄ during the power law evolution
H2 ∼ 1=ðt − t̃Þ2. If it is far enough from x̄ and at

a regular point, then the approximation in (8) is not
valid anymore.

Again, the presence of curvature would turn the above
described de Sitter regime into an approximation which is
valid only locally in time, as it happens for the power law
regime.
Remarkably, the above behavior persists if instead

of a pole we have a sharp peak. Indeed, if we write the
Friedmann-like equation close to the peak using the
regularized expression

rpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH2 − x̄Þ2p þ ϵ2

p ¼ c
a2q

; ð9Þ

we can solve for H2 to get en effective Friedmann equation
as in (8), containing an additional term in the right hand
side of order ϵ2 proportional to a2qð1−pÞ=p. For a pole of
order p > 1 this contribution will become relevant at early
times, when the de Sitter evolution drives the system into
small values of aðtÞ, giving rise to a power law evolution.
In conclusion, we obtained a de Sitter phase which

shows up in an evolving cosmology, under the very general
requirement of approaching a pole with a small enough
scale factor and a small curvature contribution. It has a
natural exit mechanism into a power law cosmology, which
can then re-enter the de Sitter phase a few times before
leaving it definitively. Alternatively, if we approach a peak,
the same behavior appears, but it does not extends
indefinitely to the past. Notice that this behavior can be
smoothly reached by going back in time from the present
day Universe.

IV. DISCUSSION

To understand the implications of the above results, let us
analyze the evolution of the Universe starting from the
present state and going backward in time:
(1) The function PðxÞ being dominated by its linear

term, the near future, present, and recent past
evolution of the Universe follow the standard Fried-
mann equation. This results in a future de Sitter
phase, transitioning as time recedes first into a matter
dominated epoch and then into radiation dominated
epoch. These are characterized by a power law
behavior of the scale factor, which results in a
running Hubble parameter H ∼ 1=ðt − t̃Þ.

(2) At a given point in the past, the Hubble parameter
growth turn the nonlinear terms of PðxÞ relevant,
getting into a region where we can use the analysis
of Sec. III A. This cannot happen when the Universe
is still diluted enough so as the x̄ term would
dominate the right-hand side of (5), otherwise the
resulting de Sitter phase would still running nowa-
days. The conclusion is that the power law behavior
must persist locally in time, but with a power which
is slowly changing as we go to the past.
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(3) As the Hubble parameter H ∼ 1=ðt − t̃Þ continues to
grow and the scale factor shrinks, we may approach
a pole or a sufficiently marked peak of the function
PðxÞ. This would result in a de Sitter Universe that
would extend into the past. In the case of a pole, if
the curvature contribution is still mild this phase
would extend indefinitely to the past. If instead the
curvature is relevant, or if we are close to a peak, at
early times the Universe goes back to a power law
evolution.

(4) Depending on the characteristics of the function
PðxÞ, steps 2 and 3 can be repeated a number of
times as time recedes.

These results are summarized in Fig. 1. The general
conclusion is that, for very generic forms of the function
PðxÞ, the Universe evolves according to a power law
with a slowly running power whenever the value of the
Hubble parameter is around a regular point of PðxÞ. Such
epochs interpolate between successive de Sitter phases,
which appear at the values of the Hubble parameter where
the function PðxÞ has poles or peaks (the de Sitter behavior
also shows up at an isolated essential singularity, see
Appendix).
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APPENDIX: COSMOLOGY CLOSE TO AN
ISOLATED ESSENTIAL SINGULARITY

An isolated essential singularity satisfies

∀p∈Zþ∶ PðxÞðx − x̄Þp → ∞: ðA1Þ
To discuss the consequences on the cosmology of such a
singularity in the function PðxÞ, we restrict our analysis to
the special kind of essential singularities for which the
function PðxÞ close to the singular point x̄ can be written as

PðxÞ ≈ e
wp

ðx−x̄ÞpPpðxÞ; ðA2Þ

where wp is the weight of the singularity and PpðxÞ is a
function regular at x̄. The effective Friedmann equation
close to the singularity can be then written in the form

H2 ¼
�

wp

q logðc̃=aÞ
�

1=p
þ x̄; ðA3Þ

with the constant c̃ ¼ ðc=Ppðx̄ÞÞ1=q. In this case the de

Sitter regime aðtÞ ∼ e
ffiffī
x

p
t appears for aðtÞ ≪ c̃, which in an

expanding Universe corresponds to early times. Such phase
lasts until the time gets close to log c̃=

ffiffiffī
x

p
and the first term

starts to dominate the equation, moving H2 away from x̄
and ruining the validity of the approximation. This would
move the Universe into a regular point, at which the power
law regime analyzed in III A gets realized.
As it happened in the other cases, the presence of a

spatial curvature term would modify these considerations,
resulting in a power law exit from the de Sitter phase at
early times.

FIG. 1. An illustration of the relation between PðxÞ and the cosmological evolution. Left: a generic form for PðxÞ as a function of H2

(sideways). Right: the corresponding cosmological evolution.
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