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Abstract
Impulsive gravitational waves are theoretical models of short but violent bursts of
gravitational radiation. They are commonly described by two distinct spacetime met-
rics, one of local Lipschitz regularity and the other one even distributional. These two
metrics are thought to be ‘physically equivalent’ since they can be formally related by
a ‘discontinuous coordinate transformation’. In this paper we provide a mathematical
analysis of this issue for the entire class of nonexpanding impulsive gravitationalwaves
propagating in a background spacetime of constant curvature.We devise a natural geo-
metric regularisation procedure to show that the notorious change of variables arises
as the distributional limit of a family of smooth coordinate transformations. In other
words, we establish that both spacetimes arise as distributional limits of a smooth
sandwich wave taken in different coordinate systems which are diffeomorphically
related.
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1 Introduction

Impulsive gravitational waves are exact general relativistic spacetimes providing theo-
retic models of short but strong bursts of gravitational radiation. Originally introduced
by R. Penrose (e.g. [31]), they have since attracted the attention of researchers in
exact spacetimes (who have widely generalised the original class of solutions, see,
for example, [33]), of theoretical physicists (who have considered quantum scattering
and the memory effect in these geometries as well as their astrophysical applications,
see, for example, [4, 46]), and of mathematicians (who have used them as relevant
key-models in low regularity Lorentzian geometry). For a pedagogical introduction
of the various constructions and models as well as their physical properties, see [15,
Chapter 20].

Herewe focus on a fundamentalmathematical issue related to the fact that impulsive
gravitational waves aremetrics of low regularity. Indeed, they are commonly described
by two ‘forms’ of the metric, one (locally Lipschitz-)continuous and the other one dis-
tributional. The ‘physical equivalence’ of these two descriptions has been established
in several families of these models in a formal way, leaving open some quite subtle
problems in low regularity Lorentzian geometry. In fact, both ‘forms’ of the metric are
connected via a ‘discontinuous coordinate transformation’ which reflects the Penrose
junction conditions used to vividly construct these spacetimes in the first place. This
‘scissors and paste’ approach [31] was recently generalised to the � �= 0-case [39].

In this work we completely solve these mathematical issues for the class of all
nonexpanding impulsive gravitational waves propagating on backgrounds of constant
curvature, i.e. Minkowski space and the (anti-)de Sitter universe.We do so by employ-
ing nonlinear distributional geometry, a method which is based on regularisation of
the rough metrics and which also brings to light new insights into the geometry and
the physics of these spacetimes. We build upon the (nonlinear) distributional analysis
of the geodesics in these spacetimes carried out in [43, 45]. Thereby, the current work
concludes this long-term research effort in a completely satisfactory way.

This article is organised in the following way. In the next section we recall the
relevant aspects of the class of solutions we are working with. In particular, we dis-
cuss explicitly the ‘discontinuous coordinate transformation’ thereby also fixing our
notations and conventions. We also outline how our results and methods are related
to previous works in the case � = 0 [20]. Then, in Sect. 3, we collect the neces-
sary results from the nonlinear distributional analysis of the geodesics in the class of
solutions at hand and fix our notation concerning nonlinear distributional geometry.
Next, in Sect. 4 we study a special class of null geodesics, namely the null generators
of (anti-)de Sitter space in a five-dimensional flat space with impulsive wave which
provides us with a natural geometric regularisation of the notorious transformation.
In Sect. 5 we analyse the regularised transformation and show that it is a generalised
diffeomorphism in the sense of nonlinear distributional geometry. We close with a
discussion of our results in Sect. 6.
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2 Nonexpanding impulsive waves with3

Here we describe the class of nonexpanding impulsive waves with an arbitrary value
of �. These geometries have come into focus with the landmark work of Hotta and
Tanaka [19], where in analogy with the classical Aichelburg–Sexl approach [3], the
Schwarzschild–(anti-)de Sitter solution is boosted to ultrarelativistic speed to obtain
a nonexpanding impulsive gravitational wave generated by a pair of null monopole
particles. For an overview of the manymore such solutions that have been found since,
see, for example, [37, Section 2].

2.1 Metric representations and the ‘discontinuous transformation’

In conformally flat coordinates these solutions for anyvalue of� take thedistributional
form [35]

ds2 = 2 dη dη̄ − 2 dU dV + 2H(η, η̄) δ(U) dU2

[ 1 + 1
6�(ηη̄ − UV) ]2 , (2.1)

where H is a real-valued function and δ is the Dirac-distribution. Due to the occur-
rence of a distributional coefficient, (2.1) lies far beyond the Geroch–Traschen class
of metrics [12], which is defined by possessing Sobolev regularity W 1,2

loc ∩ L∞
loc.

It is known to be the largest class which allows one in general to stably define
the curvature in distributions (see also [27, 50]). Nevertheless, due to its simple
structure the curvature of (2.1) can be computed explicitly to give the impulsive
Newman–Penrose components �4 = (1 + 1

6�ηη̄)2H,ηηδ(U), and �22 = (1 +
1
6�ηη̄)

(
(1 + 1

6�ηη̄)H,ηη̄ + 1
6�(H − ηH,η − η̄H,η̄)

)
δ(U).

The corresponding continuous form of the metric is given by [32, 35]

ds2 = 2 |dZ + u+(h,Z Z̄dZ + h,Z̄ Z̄d Z̄)|2 − 2 dudv

[ 1 + 1
6�(Z Z̄ − uv + u+G) ]2 , (2.2)

where1 G(Z , Z̄) = Zh,Z + Z̄h,Z̄ − h, and h is a real-valued function. Finally, u+ =
u+(u) = 0 for u ≤ 0 and u+(u) = u for u ≥ 0 is the kink function. The metric
(2.2), possessing a Lipschitz continuous coefficient, is of local Lipschitz regularity,
which we denote byC0,1. This is still beyond the reach of classical smooth Lorentzian
geometry, which roughly reaches down toC1,1 at least as far as convexity and causality
is concerned [13, 24, 25, 29]. However, the Lipschitz property is decisive since it
prevents the most dramatic downfalls in causality theory which are known to occur
for Hölder continuous metrics [6, 14, 17, 30, 44]. More specifically, in the context of
the initial value problem for the geodesic equation, the Lipschitz property guarantees
the existence of C1,1-solutions [26, 49] which, due to the special geometry of the
models at hand, are even (globally) unique [37].

1 This choice of sign of G is in accordance with [36, 39, 43, 45], which are our main points of reference,
but different, for example, from [37].
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A very useful way of thinking about the above metrics is the following. Starting
with the conformally flat form of the constant curvature backgrounds,

ds20 = 2 dη dη̄ − 2 dU dV
[ 1 + 1

6�(ηη̄ − UV) ]2 (2.3)

we apply the transformation

U = u , V =
{

v for U < 0

v + h + uh,Z h,Z̄ for U > 0
, η =

{
Z for U < 0

Z + uh,Z̄ for U > 0
(2.4)

to (2.3) separately for negative and positive values of U to formally obtain (2.2). The
corresponding distributional form (2.1) is formally derived bywriting (2.4) in the form
of a ‘discontinuous coordinate transform’ using the Heaviside function �, i.e.

U = u , V = v + � h + u+ h,Zh,Z̄ , η = Z + u+ h,Z̄ . (2.5)

Then applying (2.5) to (2.2) and retaining all distributional terms one arrives at (2.1).
This transformation has first been given in [31] for plane waves and in [2, 41] for the

general pp-wave case, i.e. nonexpanding impulsive waves propagating in aMinkowski
background, hence � = 0 in the above metrics (2.2), (2.1). Clearly, a mathematically
sound treatment of the transformation (2.5) is a delicate matter, and it is the topic of
this paper to completely clarify the situation.

2.2 Results in the pp-wave case

A first rigorous result in this realm has been established in [21] in the special case of
impulsive pp-waves. There, nonlinear distributional geometry [16, Chapter 3] based
on algebras of generalised functions [7] has been employed to show the following: The
‘discontinuous coordinate change’ (2.5) relating the distributional Brinkmann form of
the metric, i.e. (2.1) with � = 0 to the continuous Rosen form, i.e. (2.2) with � = 0
is the distributional limit of a generalised diffeomorphism, a concept to be detailed
below. Intuitively speaking this approach consists in viewing the impulsive wave as a
limiting case of a sandwichwavewith an arbitrarily regularisedwave profile, where the
two forms of the metric arise as its (distributional) limits taken in different coordinate
systems. This result rests on two pillars:

(A) The realisation that a special family of null geodesics in the distributional form of
the metric precisely gives the coordinate lines of the coordinate system underly-
ing the continuous form of the metric [47]. In simpler words, the transformation
(2.5) is given by a special family of null geodesics.

(B) A fully nonlinear distributional analysis of the geodesics of the distributional
metric. This is even a prerequisite to make (mathematical) sense of item (A):
There is no valid solution concept for the geodesic equations of (2.1) with � =
0 in classical distribution theory. Hence, in [20, 47] nonlinear distributional
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geometry has been employed to show existence, uniqueness and completeness2

of geodesics.

Herewe set out to apply an analogous strategy to dealwith themore involved� �= 0-
case. In fact, building on earlier results we provide the keystone of this approach: In
[43] a nonlinear distributional analysis of the geodesic equation, see item (B) above,
has been established. These results are in turn based on the formal analysis of the
geodesics in [36] and the fixed point techniques put forward in [45]. We will collect
the relevant statements in Sect. 3.3, below.

On the other hand, the geometric issue (A) has recently been resolved in [39] and
we will review the results relevant for the present work in Sect. 4.1, below.

In the nonlinear distributional analysis of the geodesics of [43, 45], it has, however,
turned out that a five-dimensional approach ismuch better suited than a direct approach
using the metric (2.1). Indeed since [36] all works relevant for us have used this five-
dimensional formalism and we close this section by briefly recalling it. The basic
idea is to describe an impulsive wave in (anti-)de Sitter space as a hyperboloid in a
five-dimensional flat space with impulsive wave [34, 35].

2.3 The five-dimensional formalism

One starts out with the five-dimensional impulsive pp-wave manifold

ds2 = −2dUdV + dZ2
2 + dZ2

3 + σdZ2
4 + H(Z2, Z3, Z4)δ(U )dU 2 , (2.6)

with the constraint

−2UV + Z2
2 + Z2

3 + σ Z2
4 = σa2 , (2.7)

and parameters σ = ±1 = sign� and a =
√

3
σ�

. The metric (2.6) with (2.7) thus
represents an impulsivewavewith the impulse located on the null hypersurfaceU = 0,

Z2
2 + Z2

3 + σ Z2
4 = σa2 , (2.8)

corresponding to a nonexpanding 2-sphere for � > 0 and a hyperboloidal 2-surface
for � < 0.

Now, to relate (2.6), (2.7) to the four-dimensional distributional form (2.1) we may
use the transformation

U = U
	

, V = V
	

, Z2+i Z3=
√
2 η

	
= x

	
+i

y

	
, Z4=a

(
2

	
−1

)
, (2.9)

2 Observe that—although not stressed in the original works—especially the completeness result is remark-
able, since it proves that the analytically ‘very singular’ distributional spacetime is nonsingular in view of
the standard definition [18].
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where we have used

	 = 1 + 1
6�(ηη̄ − UV) = 1 + 1

12�(x2 + y2 − 2UV) , (2.10)

and the associated real coordinates x, y with η = 1/
√
2(x + iy). Finally, the profile

functions are related by

H = 2H
1 + 1

6�ηη̄
= 2H

1 + 1
12�(x2 + y2)

. (2.11)

3 Nonlinear distributional analysis of the geodesics

In this section we collect the results from the nonlinear distributional analysis of
the geodesic equation in nonexpanding impulsive gravitational waves which we are
going to use in the course of our work, cf. item (B) above. To keep this manuscript
self-contained, we start with a very terse review of the main elements of nonlinear
distributional Lorentzian geometry.

3.1 Nonlinear distributional geometry

The theory we are going to summarise (for all details see [22, 23], [16, Section 3.2])
rests on J.F. Colombeau’s construction of (so-called special) algebras of generalised
functions [7]. These provide an extension of the linear theory of Schwartz distributions
to the nonlinear realm retainingmaximal consistencywith classical analysis. The basic
idea of the construction is regularisation of distributions via nets of smooth functions
combined with asymptotic estimates in terms of a regularisation parameter.

On a smooth (second countable and Hausdorff) manifold M denote by E(M) the
set of all nets of smooth functions (uε)ε∈(0,1]=:I which in addition depend smoothly3

on ε. The algebra of generalised functions on M is defined as the quotient G(M) :=
EM(M)/N (M) of moderate modulo negligible nets in E(M), which are defined via
the following asymptotic estimates

EM(M) := {(uε)ε ∈ E(M) : ∀K � M ∀P ∈ P ∃N : sup
p∈K

|Puε(p)| = O(ε−N )} ,

N (M) := {(uε)ε ∈ EM(M) : ∀K � M ∀m : sup
p∈K

|uε(p)| = O(εm)} .

Here P denotes the space of all linear differential operators on M and K � M means
that K is a compact subset of M . We write u = [(uε)ε] for the elements of G(M) and
call (uε)ε a representative of the generalised function u. With sums, products, and the
Lie derivative defined componentwise (i.e. for fixed ε) G(M) becomes a fine sheaf of
differential algebras.

3 Smooth dependence on the parameter renders the theory technically more pleasant but was not assumed
in earlier references, for details see [5, Section 1].
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The space of distributions D′(M) can be embedded into G(M) via sheaf homo-
morphisms ι that preserve the product of C∞(M)-functions. A coarser way of relating
generalised functions inG(M) to distributions is as follows: u ∈ G(M) is called associ-
ated with v ∈ G(M), written u ≈ v, if uε −vε → 0 inD′(M). Moreover, w ∈ D′(M)

is called associated with u if u ≈ ι(w). More generally, the space of generalised sec-
tions of a vector bundle E → M is defined as�G(M, E) = G(M)⊗C∞(M)�(M, E) =
LC∞(M)(�(M, E∗),G(M)). It is a fine sheaf of finitely generated and projective G-
modules. For generalised tensor fields of rank r , s we use the notation

Gr
s (M) ∼= LG(M)(G0

1 (M)r ,G1
0(M)s;G(M)). (3.1)

Observe that it is possible to insert generalised vector fields and one-forms into gen-
eralised tensors, which is not possible in the distributional setting, cf. [8, 28]. This in
turn allows one to work with generalised metrics much as in the smooth setting. Here
a generalised pseudo-Riemannian metric is a section g ∈ G0

2 (M) that is symmetric
with determinant det g invertible in G (equivalently | det(gε)i j | ≥ εm for some m on
compact sets), and a well-defined index ν (the index of gε equals ν for ε small). By
a ‘globalization Lemma’ in [25, Lemma 2.4, p. 6] any generalised metric g possesses
a representative (gε)ε such that each gε is a smooth metric globally on M . We call a
pair (M, g) consisting of a smooth manifold and a generalised pseudo-Riemannian
(Lorentzian) metric a generalised pseudo-Riemannian (Lorentzian) manifold, and a
generalised spacetime if, in addition to being Lorentzian, it can be time oriented by a
smooth vector field. This setting consistently extends the ‘maximal distributional’ one
of Geroch and Traschen, see [48, 50]. In particular, any generalised metric induces an
isomorphism between generalised vector fields and one-forms, and there is a unique
Levi–Civita connection ∇ corresponding to g.

Next, to speak of geodesics one uses the space of generalised curves G[J , M]
taking values in M , defined on an interval J . It is again a quotient of moderate modulo
negligible nets (γε)ε of smooth curves, where we call a net moderate (negligible) if
(ψ ◦ γε)ε is moderate (negligible) for all smooth ψ : M → R. In addition, (γε)ε is
supposed to be c-bounded, whichmeans that γε(K ) is contained in a compact subset of
M for ε small and all compact sets K � J . Observe that no distributional counterpart
of such a space exists and it has long been realised that regularisation is a possible
remedy, cf. [28].

The induced covariant derivative of a generalised vector field ξ = [(ξε)ε] ∈ G1
0(M)

on a generalised curve γ = [(γε)ε] ∈ G[J , M] is defined componentwise (i.e. by the
classical formulae for fixed ε) and gives again a generalised vector field ξ ′ on γ . In
particular, a geodesic in a generalised spacetime is a curve γ ∈ G[J , M] satisfying
γ ′′ = 0. Equivalently, the usual local formula holds, i.e.

[ (d2γ k
ε

dλ2
+

∑

i, j

�ε
k
i j

γ i
ε

dλ

γ
j

ε

dλ

)

ε

]
= 0, (3.2)
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where �k
i j = [(�ε

k
i j )ε] denotes the Christoffel symbols of the generalised metric g =

[(gε)ε]. Finally we say that a generalised spacetime (M, g) is geodesically complete
if every geodesic γ can be defined on R [42, Definition 2.1, p. 240].

3.2 Impulsive waves as generalised spacetimes and the geodesic equation

In this section we introduce the generalised metric form of nonexpanding impulsive
waves for arbitrary values of �, using the five-dimensional formalism of Sect. 2.3.
Indeed, starting with themetric (2.6) we replace the Dirac-delta with a generic regular-
isation: Choose any smooth function ρ on R with unit integral and support in [−1, 1]
and for ε ∈ (0, 1] set δε(x) := (1/ε) ρ(x/ε). Such a net (δε)ε is called a model delta
net andwe use it to define the regularised pseudo-Riemannianmanifold (M̄ = R

5, ḡε)

with line element

ds̄2ε = dZ2
2 + dZ2

3 + σdZ2
4 − 2dUdV + H(Z2, Z3, Z4)δε(U )dU 2 . (3.3)

Hence, (M̄, ḡε) is a smooth sandwich wave which is flat space outside the wave zone
given by |U | ≤ ε. The regularised impulsive wave spacetime of our interest (M, gε)

is now given by the (anti-)de Sitter hyperboloid (2.7) embedded in (M̄, ḡε).
To obtain an impulsive wave metric in G0

2 (R
5), we use a model delta function, that

is an element D ∈ G(R) that has a model delta net as a representative, D = [(δε)ε].
Next we consider the five-dimensional generalised impulsive pp-wavemanifold (M̄ =
R
5, ḡ) with

ds̄2 = dZ2
2 + dZ2

3 + σdZ2
4 − 2dUdV + H(Z2, Z3, Z4)D(U )dU 2 . (3.4)

One easily checks that this defines a generalised metric with representative (3.3). At
this point we specify the (A)dS hyperboloid M in (M̄, ḡ) as usual, explicitly by

M := {(U , V , Z2, Z3, Z4) ∈ M̄ : F(U , V , Z2, Z3, Z4) = 0} , where

F(U , V , Z2, Z3, Z4) := −2UV + Z2
2 + Z2

3 + σ Z2
4 − σa2 .

(3.5)

Note that M is a (classical) smooth hypersurface. Finally, we restrict the metric ḡ
(again componentwise, that is for fixed ε) to M to obtain the generalised spacetime
(M, g) which we take as our model of nonexpanding impulsive waves propagating in
a(n anti-)de Sitter universe.

To derive the geodesic equations in (M, g) we use the fact that in nonlinear
generalised functions all classical formulae hold for fixed ε. So, we derive the M-
geodesics from the condition that their M̄-acceleration is normal to M , ∇̄T T =
−σ g(T , ∇̄T N )N/g(N , N ). Here ∇̄ is the generalised Levi–Civita connection of
(M̄, ḡ), and T and N denote the geodesic tangent and the (non-normalised) normal
vector to M defined via its representative Nα

ε = gαβ
ε dFβ , respectively. In this way we
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arrive at the geodesic equations for γ = (U , V , Z p):

Ü = −
(
e + 1

2
U̇2 G̃ − U̇

(
H DU

)̇) U

σa2 −U2HD
,

V̈ − 1

2
H Ḋ U̇2 − δ pq H,p Żq D U̇ = −

(
e + 1

2
U̇2 G̃ − U̇

(
H DU

)̇
)

V + H DU

σa2 −U2HD
,

Z̈i − 1

2
H,i D U̇2 = −

(
e + 1

2
U̇2 G̃ − U̇

(
H DU

)̇
)

Zi

σa2 −U2HD
,

Z̈4 − σ

2
H,4 D U̇2 = −

(
e + 1

2
U̇2 G̃ − U̇

(
H DU

)̇
)

Z4

σa2 −U2HD
.

(3.6)

Here e = |γ̇ | = ±1, 0 for which it is natural to be fixed independently of ε and we
have used the usual convention for spatial coordinates, i.e. Z p for p = 2, 3, 4 and Zi

for i = 2, 3. Moreover, we used the abbreviation G̃ = δ pq Z pH,q − H .

3.3 Existence and uniqueness of geodesics

Next we briefly indicate how one proves unique solvability of the initial value problem
for differential equations like (3.6) in generalised functions. This is basically done in
three steps:

(1) One proves existence of a so-called solution candidate, in our case a net of smooth
functions γε = (Uε, Vε, Z pε) : J → M depending smoothly on the parameter ε

and solving the corresponding equation componentwise, i.e. for fixed (small) ε. In
our case this means γε solves

Üε = −
(
e + 1

2
U̇2

ε G̃ε − U̇ε

(
H δε Uε

)̇) Uε

σa2 −U2
ε Hδε

,

V̈ε − 1

2
H δ

′
ε U̇

2
ε − δ pq H,p δε Żqε U̇ε = −

(
e + 1

2
U̇2

ε G̃ε − U̇ε

(
H δε Uε

)̇) Vε + H δεUε

σa2 −U2
ε Hδε

,

Z̈iε − 1

2
H,i δεU̇

2
ε = −

(
e + 1

2
U̇2

ε G̃ε − U̇ε

(
H δε Uε

)̇) Ziε

σa2 −U2
ε Hδε

,

Z̈4ε − σ

2
H,4 δεU̇

2
ε = −

(
e + 1

2
U̇2

ε G̃ε − U̇ε

(
H δε Uε

)̇) Z4ε

σa2 −U2
ε Hδε

,

(3.7)

where we (again) have suppressed the parameter λ as well as the dependencies on
the variables. However, note that always

δε = δε(Uε(λ)) , δ′
ε = δ′

ε(Uε(λ)) ,

G̃ε = G̃ε

(
Uε(λ), Z pε(λ)

)
, H =H

(
Z pε(λ)

)
, and H,p =H,p

(
Zqε(λ)

)
. (3.8)

Observe that a solution candidate (γε)ε actually is comprised of geodesics γε of
the regularised spacetime (M, gε), cf. (3.3).

(2) One shows existence of a generalised solution by establishing c-boundedness and
moderateness of the solution candidate, i.e. γ := [(γε)ε] ∈ G[J , M].

(3) To show uniqueness in G, one solves a negligibly perturbed version of the
equations—in our case (3.7), with negligible nets added at the right hand side
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of every equation—and shows that the corresponding net of solution (γ̃ε)ε only
differs negligibly from (γε)ε, i.e. [(γ̃ε)ε] = [(γε)ε]. Observe that this amounts to
an additional stability statement for the solutions of the regularised equation.

With this let us turn to initial conditions for solutions of the system (3.6) appropriate
for our purpose, see also Fig. 1. Consider a geodesic γ − = (U−, V−, Z−

p ) of the
background (anti-)de Sitter universe without impulsive wave but reaching U = 0 and
assume that we have chosen an affine parameter such thatU−(0) = 0 and U̇−(0) = 1.
Further, since we will only be interested in null geodesics, we have that γ̇ − is null, i.e.
e = 0. Now we conveniently prescribe initial data at the affine parameter value λ = 0,

γ −(0) = (0, V 0, Z0
p) , γ̇ −(0) = (1, V̇ 0, Ż0

p) , (3.9)

where the constants satisfy the constraints

(Z0
2)

2 + (Z0
3)

2 + σ(Z0
4)

2 = σa2, Z0
2 Ż

0
2 + Z0

3 Ż
0
3 + σ Z0

4 Ż
0
4 − V 0 = 0 , (3.10)

and the normalisation

− 2V̇ 0 + (Ż0
2)

2 + (Ż0
3)

2 + σ(Ż0
4)

2 = e = 0 . (3.11)

We will refer to γ − as seed geodesics and start to think of it as geodesics in the
impulsive wave spacetime (2.6), (2.7) ‘in front’ of the impulse, that is for U− < 0.
Also,γ − is a geodesic in the regularised spacetime (3.3), (2.7) ‘in front’ of the sandwich
wave, that is for U− ≤ −ε. We will denote the affine parameter time when γ − enters
this regularisation wave region by αε, i.e.

U−(αε) = −ε . (3.12)

Observe that αε → 0 from below as ε → 0. Finally, we come to setting up the data
for the solution candidate γε of the system (3.6) by

γε(αε) = γ −(αε), γ̇ε(αε) = γ̇ −(αε), (3.13)

i.e. as the data the seed geodesic assumes at αε. We will frequently refer to these data
(3.13) as initial data constructed from the seed geodesic γ − with data (3.9).

The central result on the solvability of the geodesic equations for the generalised
spacetime (3.4), (3.5) now is the following, cf. [43, Thms. 3.6, 3.7].

Theorem 3.1 (Global existence and uniqueness). The geodesic equation (3.6) with
initial data (3.13) (constructed from the seed geodesic γ − with data (3.9)) possesses
a global unique solution γ = (U , V , Z p) = [(γε)ε] ∈ G[R, M].

3.4 Associated geodesics

Here we recall the associated geodesics of the solutions [(γε)ε] of Theorem 3.1 which
were given in [43, Sec. V] based on the explicit calculations in [45, Sec. 5, Appendix
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Fig. 1 The U -component of the seed geodesic γ − is depicted in black until it reaches the regularisation
sandwich at parameter time λ = αε , i.e. U−(αε) = −ε. While in the background spacetime it would
continue as the dotted red line to U = 0 at λ = 0, in the regularised spacetime it continues as a solution
γε of (3.7) with data (3.13) (depicted in green). Theorem 3.1 guarantees that γε (for ε small) leaves the
regularisation sandwich at λ = βε and continues as a background geodesic (colour figure online)

B], see also [36, Eqs. (38), (39)] for a formal approach. These are calculated as the
(distributional) limits of the representatives γε = (Uε, Vε, Z pε) of the solutions of
Theorem 3.1.

Now to formulate a precise result we first establish a notation for the limiting
geodesics. Clearly in front of the impulse, that is for λ < 0 corresponding to Uε < 0,
γε will converge to the seed geodesic γ −. Similarly, behind the impulse, that is for
λ > 0 corresponding to Uε > 0, γε will also converge to a geodesic γ + of the
background (A)dS space. Here γ + = (U+, V+, Z+

p ) is specified by the values of γε

and γ̇ε upon leaving the regularisation zone: Indeed, it is shown in the course of the
proof of Theorem 3.1 (cf. [43, eq. (34) and below]) that there is a parameter value
βε > 0 such thatUε(βε) = ε and thatβε ↘ 0 for ε → 0, c.f. [45, Lem.A2].Moreover,
the corresponding values of γε(βε) and γ̇ε(βε) converge (cf. [45, Prop. 5.3]). More
precisely, we have

γε(βε) = (
Uε(βε), Vε(βε), Z pε(βε)

) → (0, B + V 0, Z0
p),
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γ̇ε(βε) = (
U̇ε(βε), V̇ε(βε), Ż pε(βε)

) → (1,C + V̇ 0, Ap + Ż0
p), (3.14)

where V 0, Z0
p, V̇

0, Ż0
p are the corresponding seed data (3.9), and

Ai = 1

2

(

H,i (Z
0
r ) + Z0

i

σa2
(
H(Z0

r ) − δ pq Z0
pH,q (Z0

r )
)
)

,

A4 = 1

2

(

σH,4(Z
0
r ) + Z0

4
σa2

(
H(Z0

r ) − δ pq Z0
pH,q (Z0

r )
)
)

,

B = 1

2
H

(
Z0
p
)
, (3.15)

C = 1

8

(
H,2(Z

0
r )2 + H,3(Z

0
r )2 + σH,4(Z

0
r )2 + 1

σa2
H(Z0

r )2 − 1

σa2

(
δ pq Z0

pH,q (Z0
r )

)2 )

− 1

2σa2

(
δ pq Z0

pH,q (Z0
r ) − H(Z0

r )
)
V 0 + 1

2
δ pq H,p(Z

0
r )Ż0

q .

Now we explicitly fix the limiting geodesic behind the wave γ + by prescribing the
data

γ +(0) = (0, B + V 0, Z0
p) , and γ̇ +(0) = (1,C + V̇ 0, Ap + Ż0

p) , (3.16)

and denote the corresponding global limiting geodesic by

γ̃ (λ) = (Ũ , Ṽ , Z̃ p)(λ) :=
{

γ −(λ), λ ≤ 0

γ +(λ), λ > 0 .
(3.17)

Then we have by [43, Thm. 5.2] and [45, Thm. 5.1], respectively, the following con-
vergence result.

Theorem 3.2 (Associated geodesics). The solution γ = (U , V , Z p) = [(γε)ε] of
Theorem 3.1 is associated with the limiting geodesic γ̃ of (3.17). Moreover, we have
U ≈1 Ũ and Z p ≈0 Z̃ p.

Recall that, for example, V = [(Vε)ε] ≈ Ṽ means that limε→0
∫
R
Vε(x)ϕ(x) dx =

〈Ṽ , ϕ〉 for all test functions ϕ ∈ D(R) (and 〈 . , . 〉 denotes the distributional action).
Similarly, Ũ = [(Uε)ε] ≈k Ũ (k ∈ N) means that Uε → Ũ in Ck(R), i.e. uniformly
on all compact subsets of R up to derivatives of order k. Note that the convergences

given by Theorem 3.2 are optimal in the light of Ṽ and ˙̃Z p being discontinuous across
λ = 0, i.e. the limiting geodesics being refracted geodesics of the background suffering
a jump in the V -position and V -velocity as well as in the Z p-velocity, cf. [45, Section
5].

Note that the limiting geodesics γ̃ of (3.17) can be interpreted as the geodesics
of the distributional spacetime (2.6), (2.7). Keep in mind, however, that (3.17) does
not solve the (formal) geodesic equations of the distributional spacetime (see [45, Eq.
(2.6)], [36, Eq. (28)]) by the lack of a consistent solution concept. Indeed, the low
regularity of γ̃ does not allow one to insert it into these equations.
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Finally, we will mainly be interested in the null case where we can give a more
transparent form of γ̃ , cf. [39, Eq. (29)] due to the fact that the null geodesics of the
(A)dS background are just straight lines, cf. [36, Sec. 4]

γ̃ (λ) =

⎛

⎜⎜
⎝

λ

V 0 + V̇ 0λ + �(λ)B + Cλ+
Z0
p + Ż0

pλ + Apλ+

⎞

⎟⎟
⎠ . (3.18)

4 The null geodesic generators and the transformation

In this section we turn to issue (A) of Sect. 2.2 which has been resolved in the � �=
0-case in [39]. Briefly, the main result is that the null geodesic generators of the
(A)dS hyperboloid give rise to the notorious transformation (2.5). We will combine
this insight with the results of Sect. 3 to derive a geometric regularisation of the
transformation.

4.1 The null geodesic generators and the ‘discontinuous transformation’

To begin with, we relate the limiting null geodesics of (3.18) to the null geodesic
generators of the (A)dS hyperboloid. The latter are most conveniently found using the
conformally flat coordinates of the (A)dS background (2.3) to be (cf. [39, Eq. (18),
(19)]4)

γ
g
4D(λ) =

⎛

⎜⎜
⎝

U g(λ)

Vg(λ)

xg(λ)

yg(λ)

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

α2λ/(1 − βλ)

V0
x0
y0

⎞

⎟⎟
⎠ , (4.1)

where

α = 1 + �

12

(
x20 + y20

)
, β = −�

6
V0 . (4.2)

This family of null geodesics is parameterised by three real constants fixing the posi-
tions at the parameter value U = λ = 0, i.e. γ g

4D(0) = (0,V0, x0, y0).
Next we write the null generators (4.1) in the five-dimensional representation of

Sect. 2.3 but still parameterised by the 4D-data (V0, x0, y0) (cf. [39, Eq. (26)])

4 Where we have already set c = 1, see item (3) in [39, Subsec. III.B].
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γ
g
5D(λ) =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

Ug(λ)

V g(λ)

Zg
2 (λ)

Zg
3 (λ)

Zg
4 (λ)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

= 1 − βλ

α

⎛

⎜⎜
⎜⎜⎜
⎝

αλ/(1 − βλ)

V0
x0
y0

a
(
2 − α/(1 − βλ)

)

⎞

⎟⎟
⎟⎟⎟
⎠

. (4.3)

Observe from the first line thatUg(λ) = λ. Now we use the geodesics (4.3) for λ ≤ 0
as seed for the global limiting null geodesics (3.18), that is, according to (2.9), we set
the eight constants V 0, Z0

p, V̇
0, and Ż0

p of (3.9) to

V 0 = V0

α
, Z0

2 = x0
α

, Z0
3 = y0

α
, Z0

4 = a

(
2

α
− 1

)
,

V̇ 0 = −β

α
V0 , Ż0

2 = −β

α
x0 , Ż0

3 = −β

α
y0 , Ż0

4 = −2a
β

α
,

(4.4)

which relates them to the three parameters V0, x0, y0. Now we obtain the global lim-
iting geodesic (3.18) with seed given by the null geodesic generator of the (A)dS
hyperboloid with data (V0, x0, y0) as

γ5D[V0, x0, y0](λ) =

⎛

⎜⎜
⎝

λ

V 0 + V̇ 0λ + �(λ)B + Cλ+
Z0
p + Ż0

pλ + Apλ+

⎞

⎟⎟
⎠ , (4.5)

where we have to substitute (4.4) into (3.15). Finally, we express these geodesics in
the 4D coordinates (U ,V, x, y) of (2.1) (cf. [39, Eq. (40)]) as

γ4D[V0, x0, y0](U) =

⎛

⎜⎜
⎝

U
V0 + �(U)Hi + U+ 1

2

(
(Hi

,x )
2 + (Hi

,y)
2
)

x j
0 + U+Hi

, j

⎞

⎟⎟
⎠, (4.6)

where the profile function and its derivatives are explicitly related by, see (2.11)5

H i
, j = 2Hi

, j − Hi x j
0

σαa2
, H i

,4 = −1

a

(
x0Hi

,x + y0Hi
,y

)
+ 2Hi α − 1

αa
. (4.7)

Here H i andHi as well as the corresponding derivatives denote the respective values
at the instant of interaction of the geodesics with the impulse, i.e. at the parameter
value U = λ = 0. So, we, for example, have H i

, j = H, j (Z0
p). Also the constants Ap,

B, and C can explicitly be written in terms of H, cf. [39, Eqs. (33)–(35)]

A j = Hi
, j + x j

0

2σαa2
G, A4 = 1

σαa
G, B = 1

α
Hi ,

5 Here we use the relations � = 3σ/a2 and (x0)
2 + (y0)

2 = 4σa2(α − 1).
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C = 1

2

(
(Hi

,x )
2 + (Hi

,y)
2) + 1

2σαa2
(
(Hi + G)V0 + HiG)

, (4.8)

where G and the conformal factor take the form

G ≡ Hi − x0Hi
,x − y0Hi

,y and 	 = α

1 − βλ + �
6 G λ+

. (4.9)

The key observation at this point is that the limiting geodesics (4.6) exactly match
the transformation (2.5). More precisely (cf. [39, Sec. IV]), we may employ (4.6)
to transform the coordinates (u, v, Z) ≡ (u, v, X ,Y ) in which the metric is contin-
uous (cf. (2.2)) to the coordinates (U ,V, η) ≡ (U ,V, x, y) in which the metric is
distributional (cf. (2.1)) via

⎛

⎜⎜
⎝

u
v

X
Y

⎞

⎟⎟
⎠ �→ γ4D[v, X , Y ](u) =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

u

v + �(u)Hi + u+ 1
2

(
(Hi

,X )2 + (Hi
,Y )2

)

X + u+Hi
,X

Y + u+Hi
,Y

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

=

⎛

⎜⎜
⎝

U
V
x
y

⎞

⎟⎟
⎠ .

(4.10)
We have hence formally recovered the ‘discontinuous transformation’ from a special
family of global limiting null geodesics, which can be interpreted as the geodesics of
the distributional spacetime (2.6), (2.7), cf. the penultimate paragraph of Sect. 3.4.

Moreover, the behaviour of these geodesics can be vividly depicted, see Fig. 2 (cf.
[39, Fig. 2], and [40, Fig. 6]) in a way that directly generalises Penrose’s original
illustration for the � = 0-case in [31, Fig. 2]: The null geodesic generators of (A)dS
starting in the ‘lower half’ (A)dS− (i.e. for U = λ < 0) due to their interaction with
the wave impulse do not continue as unbroken null generators into (A)dS+ (indicated
by the dashed line in the upper left parts). Rather they jump at {U = λ = 0}, cf. the
�-term in (4.6) (hence in (4.10)) but also get refracted, cf. the λ+-terms, to become
the appropriate null generators of (A)dS+.

The upshot is that these ‘broken geodesic generators’ basically are the coordinate
lines of the coordinate system in which the metric becomes continuous, i.e. (2.2). But
we do not only have these limiting geodesics at hand but also the generalised geodesics
of Theorem 3.1. This will allow us to geometrically regularise the transformation,
which we will explicitly do next.

4.2 The geometrically regularised transformation

Using the ideas laid out above, we now give the explicit form of the transformation
in nonlinear generalised functions. To begin with, note that we only have carried out
the nonlinear distributional analysis of the geodesics in the 5D-form.6 Therefore, we
split up the transformation in the following way: starting from the ‘continuous’ 4D-

6 As explained in [38, p. 3], the geodesic equations in the 4D-form are even wilder and a direct approach
seems to be out of reach.
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Fig. 2 The null geodesic generators of (A)dS and their interaction with the impulsive wave

coordinates (u, v, Z) ≡ (u, v, X ,Y ) of (2.2) we first use the transformation (2.9)7

to go to the 5D-coordinates (U , V , Z p). Then we use the regularised geodesics to
transform

(U , V , Z p) �→ Tε(U , V , Z p) := γ ε
5D[V , Z p](U ) =: (Ūε, V̄ε, Z̄ pε) , (4.11)

where8 [(γ ε
5D[V , Z p])ε] are the generalised solutions of the geodesic equations pro-

vided by Theorem 3.1 with data constructed from the seed geodesic γ
g
5D of (4.3), i.e.

the null generator with data (V , Z p, V̇ , Ż p) as in (4.4), but now derived from (v, X ,Y )

instead of (V0, x0, y0). We will specify this data explicitly below but first we turn to
the final part of the transformation. For this we use the inverse of (2.9), i.e.

U = 	Ū , V = 	V̄ , x = 	Z̄2 , y = 	Z̄3 , with 	 = 2a

Z̄4 + a
, (4.12)

componentwise (that is for fixed ε), to go from the 5D-coordinates (Ūε, V̄ε, Z̄ pε) to 4D
coordinates (Uε,Vε, xε, yε), which provide a regularisation of the 4D ‘distributional’
system. That is, overall the transformation we are going to employ takes the form

⎛

⎜
⎜
⎝

u
v

X
Y

⎞

⎟
⎟
⎠

(2.9)�−→
⎛

⎝
U
V
Z p

⎞

⎠ Tε�−→ γ ε
5D[V , Z p](U ) =

⎛

⎝
Ūε

V̄ε

Z̄ pε

⎞

⎠ (4.12)�−→

⎛

⎜
⎜
⎝

Uε

Vε

xε

yε

⎞

⎟
⎟
⎠ .

(4.13)

7 Observe that (2.9) literally transforms the conformally flat coordinates (U ,V, η) to the 5D-coordinates.
But here we transform data ‘in front’ of the wave, where (U ,V, η) are trivially related to (u, v, Z), cf. (2.4)
and so in (2.9) we have to replace (U ,V, η) with (u, v, Z).
8 We here write the regularisation parameter as a superscript rather than as a subscript to make the notation
more appealing.
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This is the sensible geometric regularisation of the ‘discontinuous transformation’
(4.10), which we have been aiming for.

Since the first and the third maps in the overall transformation (4.13) are (classical
smooth) diffeomorphisms, it is sufficient to restrict our nonlinear distributional analysis
of the transformation to Tε. Therefore, we do not need to take into account that the data
(V , Z p, V̇ , Ż p) of (4.3) is derived from the 4D-data (v, X ,Y ) (according to (4.4)).
We only have to observe the special form of the null geodesic generators γ

g
5D . In fact,

we have

γ
g
5D(0) = (0, V , Z p) and consequently γ̇

g
5D(0) =

(
1, −βV , −βZi , −β(Z4 + a)

)
, (4.14)

where β = −(�/6)	V , and 	 = (2a)/(Z4 + a).

Let us now derive the explicit form of Tε. According to (4.13) we set

Tε(U , V , Z p) = γ ε
5D[V , Z p](U ), (4.15)

where γ ε
5D solves (3.7) with data

γ ε
5D(U = −ε) = γ

g
5D(−ε) and γ̇ ε

5D(U = −ε) = γ̇
g
5D(−ε) , (4.16)

i.e. data constructed from the null geodesic generator γ
g
5D with data (4.14) as seed.

Since these data essentially reduce to the four parameters (V , Z p), we will refer to
γ ε
5D[V , Z p] as the global geodesics with data (V , Z p). Using (4.14) we find

γ ε
5D(−ε) =

(
− ε, (1 + βε)V , (1 + βε)Zi , (1 + βε)Z4 + βεa

)
, and (4.17)

γ̇ ε
5D(−ε) =

(
1, −βV , −βZi , −β(Z4 + a)

)
. (4.18)

Now we may write γ ε
5D[V , Z p](U ) = (Ūε, V̄ε, Z̄ pε )[V , Z p](U ) by using (3.7) as

γ ε
5D[V , Z p](U ) = γ ε

5D[V , Z p](−ε) + γ̇ ε
5D[V , Z p](−ε) (U + ε) +

U∫

−ε

s∫

−ε

γ̈ ε
5D[V , Z p](r) dr ds .

(4.19)
To do so, explicitly we use the following abbreviations for the terms appearing on the
r.h.s. of (3.7)

�ε(r) := 1

2
˙̄U2
ε (r) G̃ε(r) − ˙̄Uε(r)

d

dr

(
H

(
Z̄ pε(r)

)
δε

(
Ūε(r)

)
Ūε(r)

)
with (4.20)

G̃ε(r) := δ pq H,p
(
Z̄wε(r)

)
δε

(
Ūε(r)

)
Z̄qε(r) + H

(
Z̄wε(r)

)
δ′
ε

(
Ūε(r)

)
Ūε(r) , (4.21)

Nε(r) := σ a2 − Ū2
ε (r) H

(
Z̄ pε(r)

)
δε(Ūε(r)) . (4.22)
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With this we find

Ūε[V , Z p](U ) = U −
U∫

−ε

s∫

−ε

�ε(r)

Nε(r)
Ūε(r) drds , (4.23)

V̄ε[V , Z p](U ) = (1 − βU )V + 1

2

U∫

−ε

s∫

−ε

H(Z̄ pε)(r) δ′
ε

(
Ūε(r)

) ˙̄U 2
ε (r) drds

+
U∫

−ε

s∫

−ε

δ pq H,p
(
Z̄wε(r)

)
δε

(
Ūε(r)

) ˙̄Zqε(r)
˙̄Uε(r) drds

−
U∫

−ε

s∫

−ε

�ε(r)

Nε(r)

(
V̄ε(r) + H

(
Z̄ pε(r)

)
δε

(
Ūε(r)

)
Ūε(r)

)
drds ,

(4.24)

Z̄iε[V , Z p](U ) = (1 − βU )Zi + 1

2

U∫

−ε

s∫

−ε

H,i
(
Z̄ pε(r)

)
δε

(
Ūε(r)

) ˙̄U 2
ε (r) drds

−
U∫

−ε

s∫

−ε

�ε(r)

Nε(r)
Z̄iε(r) drds ,

(4.25)

Z̄4ε[V , Z p](U ) = (1 − βU )
2a

α
− a + σ

2

U∫

−ε

s∫

−ε

H,4
(
Z̄ pε(r)

)
δε

(
Ūε(r)

) ˙̄U 2
ε (r) drds

−
U∫

−ε

s∫

−ε

�ε(r)

Nε(r)
Z̄4ε(r) drds .

(4.26)

Finally, we observe that the ‘data parts’ of the above equations in fully explicit form
read

(1 − βU )V =
(
1 + �

3

a

Z4 + a
V U

)
V , (4.27)

(1 − βU )Zi =
(
1 + �

3

a

Z4 + a
V U

)
Zi , (4.28)

(1 − βU )
2a

α
− a = Z4 + a

(
1 + �

3
V U

)
− a . (4.29)
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5 Analysis of the regularised transformation

In this section we finally establish that the geometrically regularised transformation
(Tε)ε is a representative of a generalised diffeomorphism T = [(Tε)ε] in the sense
of nonlinear distributional geometry and thus give a precise mathematical meaning to
the physical equivalence of the distributional and the continuous form of the metric.

The main issue here is of course the subtle interplay between the image of Tε and
the domain of the inverse. In particular, we have to make sure that the intersection of
all images∩ε>0 imTε contains an open set, which can act as the domain of the inverse.
More precisely, we use the following definition.

Definition 5.1 (Generalised diffeomorphism) Let 	 ⊆ R
n be open. We call T ∈

G[	,Rn] a generalised diffeomorphism if there exists η > 0 such that

(i) There exists a representative (tε)ε of T such that tε : 	 → tε(	) =: 	̃ε is a
diffeomorphism for all ε ≤ η and there exists 	̃ ⊆ R

n open with 	̃ ⊆ ⋂
ε≤η 	̃ε.

(ii) The inverses (t−1
ε )ε are moderate and c-bounded, i.e. (t−1

ε )ε ∈ G[	̃,Rn] and
there exists 	1 ⊆ R

n open, 	1 ⊆ ⋂
ε≤η t

−1
ε (	̃).

(iii) Setting T−1 := [(t−1
ε |	̃)ε], the compositions T ◦T−1 and T−1◦T |	1 are elements

of G(	̃,Rn) respectively G(	1,R
n). (It is then clear that T ◦ T−1 = id	̃ and

T−1 ◦ T |	1 = id	1).

This definition, of course, extends the smooth theory, cf. [1, Supplement 2.5A] for
a version ‘quantifying’ the neighbourhoods in the classical inverse function theorem.

We will show that T is a generalised diffeomorphism and we will split up this task
in two subsections.

5.1 T as a generalised function

To begin with, we have to establish that the regularised transformation Tε gives rise
to a c-bounded generalised function on R

5, more precisely that [(Tε)ε] ∈ G[R5,R5].
Recall that by (4.15) we have Tε(U , V , Z p) = γ ε

5D[V , Z p](U ) and that so far we
have only considered γ ε

5D as a function of U . Indeed, Theorem 3.1 guarantees that
[(γ ε

5D)ε] ∈ G[R,R5], but now we have to additionally deal with the dependence of
γ ε
5D[V , Z p](U ) on V and Z p.

We first establish an appropriate ‘uniformity of domains’ of γ ε
5D in (V , Z p). To

this end we have to delve into the fixed point argument of [43, Sec. III A] that leads to
the construction of a local solution candidate for the geodesic equation. Recall from
there or observe from (3.6) that the V -equation decouples from the system and can
simply be integrated after the rest of the system has been solved. So, we only have
to consider the existence statement [43, Prop. 3.2] which guarantees a local solution
for small ε of a model system which neglects the V -equation. There the existence of
unique solutions is established on the interval [αε, αε + η] when ε ≤ ε0, where ε0
and η have to satisfy the explicit bounds given in equations [43, (29), (30)] and the
unnumbered equation on top of p. 9, respectively. These are explicit bounds in terms
of the coefficient functions of the system (local L∞-norms of H and DH , as well as
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the L1-norm of ρ and ρ′) and the seed data. The latter in our case simplifies to the
Z p-components of

γ
g
5D(0) = (0, V , Z p), γ̇

g
5D(0) =

(
1, −βV , −βZi , −β(Z4 + a)

)
, (5.1)

cf. (4.14). By inspection it becomes obvious that these estimates can be maintained if
the seed data (there x0 and ẋ0) vary in a neighbourhood (here of Z p) and that hence
η and ε0 can be chosen uniformly on compact neighbourhoods of Z p. Observing that
for αε + η ≥ βε the solution again reduces to a background geodesic and using a
simple exhaustion argument as in [10, Prop. 4.3] we obtain the following result.

Lemma 5.2 (Uniform domains). Given any compact set K in R
4 there is ε0(K )

such that γ ε
5D[V , Z p] is the unique globally defined geodesic of (4.15) for all data

(V , Z p) ∈ K and for all ε ≤ ε0(K ).

Next we deal with the c-boundedness of γ ε
5D[V , Z p]. Observe that c-boundedness

as a function of U is already provided by Theorem 3.1, essentially proved in [45,
Prop. 4.1 and Appendix A]. We now have to see that γ ε

5D is also uniformly bounded
if we vary V and Z p in a compact set. This, however, can also be accomplished by
an inspection. For the Z p-components we have to again look into the fixed point
argument, more precisely to [45, Appendix A]. The constant C2 of [45, (A.6)] that
bounds the solutions again depends on the coefficient functions of the system and the
seed data. It clearly can be chosen uniform on compact neighbourhoods of the data,
that is of Z p as theU -speed (there u̇0) in our case is anyways fixed to 1. So, we obtain
uniform boundedness of Ūε, and Z̄ pε on compact subsets, as well as of the derivatives
˙̄Uε = ∂UŪε, and

˙̄Z pε = ∂U Z̄ pε. Finally, for the V -component we have to inspect the
boundedness result in [45, Prop. 4.1(iii)]. Again it is easily seen that the constants in
[45, (4.1)] vary uniformly if (V , Z p) vary in a compact set. In total we have established
the following ‘uniformity of bounds’ result.

Lemma 5.3 (Uniform bounds). The global geodesics γ ε
5D[V , Z p] of (4.15) are uni-

formly bounded on compact subsets ofR5 for ε small enough. In addition, such bounds
also apply to ∂UŪε, and ∂U Z̄ pε.

The final task in this subsection is to establish moderateness. We first derive a
number of asymptotic estimates which we will also need later on.

Lemma 5.4 Denoting by ∇ any of the derivatives ∂V and ∂Z p , we have in the regular-
isation strip −ε ≤ r ≤ βε and (V , Z p) varying in a compact set

Nε(r) = O(1), G̃ε(r) = O
(1
ε

)
, �ε(r) = O

(1
ε

)
, (5.2)

∇Nε = O(1)∇Ūε + O(ε)∇ Z̄ pε , (5.3)

∇Gε(r) = O
( 1

ε2

)∇Ūε + O
(1
ε

)∇ Z̄ pε , (5.4)

∇�ε = O
( 1

ε2

)∇Ūε + O
(1
ε

)
(∇ Z̄ pε + ∇ ˙̄Uε) + O(1)∇ ˙̄Z pε . (5.5)
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Proof The estimates (5.2) follow direct from the definitions (4.20)–(4.22) observing
the boundedness results of Lemma 5.3. Similarly, we obtain

∇Nε(r) = −2Ūε∇ŪεHδε−Ū 2
ε DH∇Z pεδε−Ū 2

ε Hδ′
ε∇Ūε = O(1)∇Ūε+O(ε)∇ Z̄ pε ,

(5.6)
where we have omitted to write out the arguments of H , δε and the components of
γ ε
5D[V , Z p] explicitly. The result on ∇G̃ε simply follows in a similar vein. Finally, to

derive the estimate on �ε first observe that

d

dr
(HδεŪε) = O

(1
ε

)
, (5.7)

∇ d

dr
(HδεŪε) = O

( 1

ε2

)∇Ūε + O
(1
ε

)
(∇ Z̄ pε + ∇ ˙̄Uε) + O(1)∇ ˙̄Z pε . (5.8)

Now the result again follows along the same lines. ��
The next step is to apply Lemma 5.4 to obtain estimates on the first order derivatives

of Ūε,
˙̄Uε, Z̄ pε, and

˙̄Z pε. More precisely, we have.

Lemma 5.5 (Asymptotic estimates on the first order derivatives). We have in the reg-
ularisation strip −ε ≤ r ≤ βε and for (V , Z p) varying in a compact set

∂V Ūε = O(ε2) , ∂V ( ˙̄Uε, Z̄ pε) = O(ε) , ∂V
˙̄Z pε = O(1) , (5.9)

∂Zq Ūε = O(ε) , ∂Zq (
˙̄Uε, Z̄ pε) = O(1) , ∂Zq

˙̄Z pε = O(1/ε) , (5.10)

as well as

∂V Nε = O(ε2) , ∂Z p Nε = O(ε) , ∂V�ε = O(1) , ∂Z p�ε = O(1/ε) . (5.11)

Proof Since here the ∂V - and ∂Z p -derivatives will part ways, we introduce the follow-
ing notation: First we do not distinguish between the individual ∂Z p ’s (p = 1, 2, 3)
and simply write ∂Z .9 Moreover, we will write ∇ = (∇1,∇2) = (∂V , ∂Z ) and also
use the notation ∇A (A = 1, 2).

We aim for a Gronwall estimate using the integral representation of the respective
components of the geodesics (4.23), (4.25), and (4.26). However, we will do so in a

nestedway startingwith∇Ūε ,∇ ˙̄Uε, and∇ Z̄ pε, while leaving∇ ˙̄Z pε for later treatment.
Setting

�A := max
(
|∇AŪε|, |∇A

˙̄Uε|, |∇A Z̄ pε|
)

, (5.12)

we obtain from (4.23) and from (5.3), (5.5)

|∇AŪε| =
βε∫

−ε

βε∫

−ε

(
O

(1
ε

)
�A + O(ε)|∇A

˙̄Z pε|
)
, (5.13)

9 In what follows we will estimate the Z -derivatives of the data-term in (4.25) simply by O(1), ignoring
the fact that ∂Zi Z̄ jε actually gives a term of the form O(1)δi j .
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|∇A
˙̄Uε| =

βε∫

−ε

(
O

(1
ε

)
�A + O(ε)|∇A

˙̄Z pε|
)

. (5.14)

Similarly, using (4.25), (4.26) we obtain by a lengthy calculation

|∂V Z̄ pε| = O(ε) +
βε∫

−ε

βε∫

−ε

(
O

(1
ε

)
�1 + O(ε)|∂V ˙̄Z pε|

)
, (5.15)

|∂Z Z̄ pε| = O(1) +
βε∫

−ε

βε∫

−ε

(
O

(1
ε

)
�2 + O(ε)|∂Z ˙̄Z pε|

)
. (5.16)

Summing up we therefore have

�1 = O(ε) +
βε∫

−ε

(
O

(1
ε

)
�1 + O(ε)|∂V ˙̄Z pε|

)
, (5.17)

�2 = O(1) +
βε∫

−ε

(
O

(1
ε

)
�2 + O(ε)|∂Z ˙̄Z pε|

)
, (5.18)

and a first appeal to the Gronwall inequality gives

�1 = O(ε)
(
1 +

βε∫

−ε

|∂V ˙̄Z pε|
)

, and �2 = O(1) + O(ε)

βε∫

−ε

|∂Z ˙̄Z pε| . (5.19)

Next we turn to ∇ ˙̄Z pε for which we find, again from (4.25), (4.26), and (5.3), (5.5)

|∂V ˙̄Z pε| =
βε∫

−ε

O
( 1

ε2

)
�1 +

βε∫

−ε

O(1)|∂V ˙̄Z pε| = O(1) +
βε∫

−ε

O(1)|∂V ˙̄Z pε| , (5.20)

|∂Z ˙̄Z pε| = O(1) +
βε∫

−ε

O
( 1

ε2

)
�2 +

βε∫

−ε

O(1)|∂Z ˙̄Z pε| = O
(1

ε

)
+

βε∫

−ε

O(1)|∂Z ˙̄Z pε| , (5.21)

where in both lines the second equality follows from (5.19). Now a second appeal to
the Gronwall inequality hence leaves us with

|∂V ˙̄Z pε| = O(1) , and |∂Z ˙̄Z pε| = O
(1

ε

)
, (5.22)
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which already gives the claim on ∇ ˙̄Z pε. Also, it allows us to improve the estimates
(5.19) on �A to

�1 = O(ε) , and �2 = O(1) , (5.23)

which upon inserting into (5.13)–(5.16) gives the claims on ∂Ūε , ∂
˙̄Uε, and ∂ Z̄ε. Finally,

we insert these estimates into (5.3) and (5.5) to obtain (5.11). ��
Lemma 5.6 (Asymptotic estimates on the higher order derivatives). Denoting by ∇
any of the derivatives ∂V and ∂Z p we have in the regularisation strip −ε ≤ r ≤ βε

and (V , Z p) varying in a compact set that for any n there is N such that

∇n(Ūε,
˙̄Uε, Z̄ pε,

˙̄Z pε) = O(ε−N ) . (5.24)

Proof We proceed by induction. Clearly Lemma 5.5 provides the basis of induction.

So, assume that we have ∇n(Ūε,
˙̄Uε, Z̄ pε,

˙̄Z pε) = O(ε−M ) for some M . We again
aim for a nested Gronwall argument for the highest order derivatives. Staring with Ūε,

and ˙̄Uε, we find using the integral representation (4.23)

∇n+1Ūε =
βε∫

−ε

O(ε2)∇n+1
(�ε

Nε

)
+

βε∫

−ε

O(1)∇n+1Ūε + O(ε−N ) , (5.25)

∇n+1 ˙̄Uε =
βε∫

−ε

O(ε)∇n+1
(�ε

Nε

)
+

βε∫

−ε

O
(1

ε

)
∇n+1Ūε + O(ε−N ) , (5.26)

where we have only retained the highest order terms explicitly and estimated all lower
order terms by some large inverse power of ε. Next we deal with the term ∇n+1 Z̄ pε

for which we find from (4.25), and (4.26)

∇n+1 Z̄ pε =
βε∫

−ε

(
O

(1
ε

) (
∇n+1Ūε + ∇n+1 ˙̄Uε + ∇n+1 Z̄ pε

)
+ O(ε)∇n+1

(�ε

Nε

))

+ O(ε−N ) ,

(5.27)

simply collecting all lower order terms in the final O(ε−N )-estimate. Observe that the
(critical) term involving δε(Ūε) does not produce any (high) inverse powers of ε in the

highest order terms ∇n+1(Ūε,
˙̄Uε, Z̄ pε).

Now we set � = max(|∇n+1Ūε|, |∇n+1 ˙̄Uε|, |∇n+1 Z̄ pε|) and obtain by collecting
the above estimates

� =
βε∫

−ε

(
O(ε)∇n+1

(�ε

Nε

)
+ O

(1
ε

)
�

)
+ O(ε−N ) , (5.28)
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and so by a first application of Gronwall’s inequality

� = O(ε2)∇n+1
(�ε

Nε

)
+ O(ε−N ) . (5.29)

Next we use the integral representations to obtain the following estimate on the (n+1)-
st derivative of the fraction �ε/Nε

∇n+1
(�ε

Nε

)
= O

( 1

ε2

)
∇n+1Ūε + O

(1
ε

)(
∇n+1 ˙̄Uε + ∇n+1 Z̄ pε

)
+ O(1)∇n+1 ˙̄Z pε + O(ε−N )

=
βε∫

−ε

O
(1

ε

)
∇n+1

(�ε

Nε

)
+ O(1)∇n+1 ˙̄Z pε + O(ε−N ) , (5.30)

where we have used the estimates (5.28), (5.29). So, another appeal to Gronwall’s
inequality yields

∇n+1
(�ε

Nε

)
= O(1)∇n+1 ˙̄Z pε + O(ε−N ) . (5.31)

Inserting this back into the �-estimate (5.29), we find

� = O(ε2)∇n+1 ˙̄Z pε + O(ε−N ) . (5.32)

Finally, we turn to the term ∇n+1 ˙̄Z pε, for which we find again from the integral
representation (4.25), and (4.26) (cf. (5.27))

∇n+1 ˙̄Z pε =
βε∫

−ε

(
O

( 1

ε2

)(
∇n+1Ūε + ∇n+1 ˙̄Uε + ∇n+1 Z̄ pε

)
+ O(1)∇n+1

(�ε

Nε

))
+ O(ε−N )

=
βε∫

−ε

O(1)∇n+1 ˙̄Z pε + O(ε−N ) , (5.33)

where we have used (5.32) as well as (5.31). So, a final appeal to Gronwall’s estimate

gives ∇n+1 ˙̄Z pε = O(ε−N ), and, upon inserting into (5.32), � = O(ε−N ), which is
the claim. ��

Now we finally obtain moderateness of the transformation. Indeed, we have the
following more specific result.

Proposition 5.7 (Moderateness of the transformation). The net of transformations
(Tε)ε is moderate and hence [(Tε)ε] is an element of G[R5,R5].
Proof Recall that we only have to argue inside the regularised wave zone −ε ≤
Ūε ≤ βε since outside of it γ ε

5D coincides with classical smooth solutions (depending
smoothly on ε). The c-boundedness (in this strip) was established in Lemma 5.3
and the moderateness estimates for ∂Uγ ε

5D[V , Z p](.) are due to Theorem 3.1. The
moderateness estimates for the V - and Zq -derivatives of Ūε, and Z̄ pε, as well as their
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mixed V -Zq -derivatives, have been established in Lemma 5.6. The mixed U -V -Zq -
derivatives follow suit by iteratively using the differential equation.10

Finally, since the V -equation is decoupled from the system and V̄ [V , Z p](.) is
obtained simply by integration of the other components its moderateness is a con-
sequence of moderateness of (Ū , Z̄ p) (and the well-definedness of the respective
operations in G[Rn,Rm]). ��

5.2 T as generalised diffeomorphism

We will now set out to show that the transformation (4.15), i.e.

(U , V , Z p) �→ [Tε](U , V , Z p) = [γ ε
5D][V , Z p](U ) ∈ G[R5,R5] , (5.34)

with its components given explicitly by (4.23)–(4.26) gives rise to a locally invertible
generalised function T = [(Tε)ε] on some open set containing the impulsive surface.
Hence, we will call it a generalised diffeomorphism or generalised coordinate trans-
formation. To do so we will extend the results of the � = 0-case of [20] and, in
particular, its more mathematically structured presentation in [10]. In fact, inspired by
[10] we will decompose the transformation in a convenient way by splitting Tε into a
‘singular’ and a ‘convergent’ part.

To begin with, fix an open, relatively compact setW ⊆ R
5, which will be specified

further later, and observe that by Proposition 5.7 (Tε) is moderate and c-bounded and
therefore indeed T := [(Tε)ε] ∈ G[W ,Rn]. We decompose the V̄ε-component into
the initial data term Ṽε and the integral term, which we label as hε, so that we may
write

V̄ε = Ṽε + hε . (5.35)

To be precise, we have

Ṽε = (1 − βU )V ,

hε = 1

2

U∫

−ε

s∫

−ε

H(Z̄ pε)(r) δ′
ε

(
Ūε(r)

) ˙̄U 2
ε (r) drds

+
U∫

−ε

s∫

−ε

δ pq H,p
(
Z̄wε(r)

)
δε

(
Ūε(r)

) ˙̄Zqε(r)
˙̄Uε(r) drds

−
U∫

−ε

s∫

−ε

�ε(r)

Nε(r)

(
V̄ε(r) + H

(
Z̄ pε(r)

)
δε

(
Ūε(r)

)
Ūε(r)

)
drds .

10 Observe that it was precisely the tricky point in the proofs above that one cannot use the differential
equation beyond the integral representation when estimating the V -Zq -derivatives.
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Note that while hε does not converge, we have that hε = O(1), cf. the proof of
Proposition 4.1 in [45] and in particular equations (4.3) and (4.4). At this point we
define the converging sequence sε(U , V , Z) := (Ūε, Ṽε, Z̄iε, Z̄4ε).

We will use [9, Prop. 3.16 and Thm. 3.59] in order to establish injectivity of Tε, and
therefore, we need to find the asymptotic behaviour of DTε and Dsε.More specifically,
we need to estimate the behaviour of their determinant and all principal minors. The
Jacobian of sε is

Dsε =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 0
�
3

a
Z4+a V

2 1 + 2�
3

a
Z4+aUV 0 −�

3
a

(Z4+a)2
UV 2

�
3

a
Z4+a V Zi

�
3

a
Z4+aU Zi 1 + �

3
a

Z4+aUV −�
3

a
(Z4+a)2

UV Zi

�
3 aV

�
3 aU 0 1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

+ B ,

(5.36)
where B is a matrix with all entries O(ε), as we will see in Lemma 5.9 below. For the
following we denote

	 := {(U , V , Z) ∈ R
5 :

∣
∣∣∣
�

3

a

a + Z4
VU

∣
∣∣∣ ≤ 1

8
} . (5.37)

Lemma 5.8 There is ε0 > 0 such that on any closed rectangular subset of 	 and for
all ε < ε0, sε is injective.

Proof For ε small enough we only have to consider the matrix Dsε − B. Condition
(5.36) guarantees that all principal minors are bounded below by a fixed positive
constant on all of 	. Thus, [11, Thm. 4] gives the claimed injectivity. ��

Outside the regularisation strip {αε ≤ U ≤ βε} the transformation defaults to a
smooth coordinate transform independent of ε and hence possesses all the properties
needed in the following arguments. Thus, we may restrict ourselves to the regulari-
sation zone and there Ūε = O(ε) holds. As for Tε, being able to decompose its V
component into Ṽε + hε lets us more easily compute its Jacobian. First, we focus on
the regularisation strip {αε ≤ U ≤ βε}:
Lemma 5.9 (Asymptotics estimates for V̄ε).We have in the regularisation strip −ε ≤
r ≤ βε and (V , Z p) varying in a compact set

V̄ε = O(1), ∂V V̄ε = O(1), ∂V hε = O(ε), ∂Z phε = O(1) . (5.38)

Proof The asymptotics of V̄ε have already been noted in Proposition 5.7. We estimate
the V -component: As hε consists of three integrals, we split up the calculation, writing
hε = 1

2 I1 + I2 − I3. Then using the above we obtain that

∂V I1 =
∫ U

−ε

∫ s

−ε

DH(Z̄ pε)∂V Z̄ pεδ
′(Ūε)

˙̄U2
ε + H(Z̄ pε)δ

′′(Ūε)∂V Ūε
˙̄U2
ε + H(Z̄ pε)δ

′(Ūε)2
˙̄Uε∂V

˙̄Uε

=
∫ U

−ε

∫ s

−ε

O(1)O(ε)O

(
1

ε2

)
O(1) + O(1)O

(
1

ε3

)
O(ε2)O(1) + O(1)O

(
1

ε2

)
O(1)O(ε)
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=
∫ U

−ε

∫ s

−ε

O

(
1

ε

)
= O(ε) .

Similarly, we obtain that

∂V I2 =
∫ U

−ε

∫ s

−ε

O
(1

ε

)
= O(ε) . (5.39)

For the last term we need to be more careful. First we calculate

∂V I3 =
∫ U

−ε

∫ s

−ε

∂V �ε

(
V̄ε + H(Z̄ pε)δ(Ūε)Ūε

)

Nε

+ �ε

(
∂V V̄ε + DH(Z̄ pε)∂V Z̄ pεδε(Ūε)Ūε + H(Z̄ pε)δ

′
ε(Ūε)∂V ŪεŪε + H(Z̄ pε)δε(Ūε)∂V Ūε

)

Nε

− �ε

(
V̄ε + H(Z̄ pε)δε(Ūε)Ūε

)
∂V Nε

N2
ε

=
∫ U

−ε

∫ s

−ε
O

(
1

ε

)
+ O

(
1

ε

)
∂V hε = O(ε) +

∫ U

−ε

∫ s

−ε
O

( 1
ε

)
∂V hε .

Consequently, we get that ∂V hε = O(ε) and so ∂V V̄ε = O(1) as the V -derivative of
the initial conditions for the V -component is O(1). ��

At this point we observe that

DTε =
⎛

⎜
⎜⎜⎜⎜
⎝

1 0 0 0
�
3

a
Z4+a V

2 1 + 2�
3

a
Z4+aUV 0 −�

3
a

(Z4+a)2
UV 2

�
3

a
Z4+a V Zi

�
3

a
Z4+aU Zi 1 + �

3
a

Z4+aUV −�
3

a
(Z4+a)2

UV Zi

�
3 aV

�
3 aU 0 1

⎞

⎟
⎟⎟⎟⎟
⎠

+

⎛

⎜⎜
⎝

0 0 0 0
∂Uhε 0 ∂Zi hε ∂Z4hε

∂U Z̃iε 0 0 0
∂U Z̃4ε 0 0 1

⎞

⎟⎟
⎠ + B̃

= Dsε +

⎛

⎜⎜
⎝

0 0 0 0
∂Uhε 0 ∂Zi hε ∂Z4hε

∂U Z̃iε 0 0 0
∂U Z̃4ε 0 0 1

⎞

⎟⎟
⎠ + B̃ =: Dsε + Iε + B̃ ,

where the Z̃qε are the Z̄qε without the initial conditions, B̃ comes from B in (5.36) and
the additional ∂V hε-, ∂V Z̄qε-, ∂Z p Z̄qε-terms are all O(ε) by Lemma 5.9. Furthermore,

the (1, 2)-entry of B̃, which is ∂V Ūε is even O(ε2) (by Lemma 5.9), which is essential
in what follows. Thus, when calculating all the principal minors of DTε we need to
observe that
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Fig. 3 Schematics of the transformations and regularisations employed in this work

1. the factor ∂Uhε, which is O
( 1

ε

)
, is always multiplied by an O(ε2)-term,

2. the factors ∂U Z̃qε, which are O(1), are always multiplied by an O(ε)-term, and
3. the factors ∂Z phε, which are O(1) by Lemma 5.9, are always multiplied by an

O(ε)-term.

Thus, all the principal minors are of the form 1 + O(ε), and hence, in particular,
| det(DTε)| ≥ εN for some N ∈ N. Consequently, (T−1

ε )ε is moderate, and from
T−1

ε ◦ Tε = id we conclude that T−1
ε is c-bounded (on the image of Tε).

In conclusion, this gives that T = [(Tε)ε)] is a generalised diffeomorphism. We
are, however, interested in the overall transformation (4.13), i.e. the precomposition
of T with (2.9) and the postcomposition with (4.12). Since they both are (classical)
smooth diffeomorphisms on their respective domains, we only need to observe that
such a composition clearly is a generalised diffeomorphism. So in total we have:

Theorem 5.10 The discontinuous coordinate transform (4.13) is a generalised diffeo-
morphism.

6 Discussion

In this work we have studied the notorious discontinuous coordinate transformation
(2.5) relating the distributional and the continuous metric commonly used to describe
nonexpanding impulsive gravitational waves propagating in (anti-)de Sitter space.
Already in [39] it was shown that this transformation is geometrically given by the null
generators of the (A)dS hyperboloid in a 5D-description, which jump and are refracted
due to the wave impulse. Here we have put this formal analysis on firm mathematical
grounds using the nonlinear distributional analysis of the geodesics in these geometries
provided in [44, 45]. More precisely, we have established that a careful geometric
regularisation of the transformation leads to a generalised diffeomorphism in the sense
of nonlinear distributional geometry. In this way we have also generalised the analysis
of the far simpler� = 0-case of [21]. We have schematically displayed our procedure
in Fig. 3.

Physically speaking, our approach consists in viewing the impulsive wave as a
limiting case of a sandwich wave, where we have used the 5D-formalism to define at
a sensible regularisation of the spacetime, i.e. as the (A)dS hyperboloid in a 5D flat
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sandwich wave. From this point of view, the two forms of the impulsive metric arise
as the (distributional) limits of this sandwich wave in different coordinate systems,
once in the 4D-‘continuous system’ (u, v, Z), where the metric is (2.2) and the 4D-
‘distributional system’ (U ,V, η), where the metric is (2.1).
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