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Introduction

The presented work concerns two wide branches of theoretical investigation of grav-
itational waves. Namely, the first three chapters concentrate on approximate tech-
niques, although, in the second chapter the relation to exact solutions is mentioned.
The final part is devoted to asymptotic behaviour in a certain class of exact radiative
spacetimes.

In the first chapter the Efroimsky perturbation scheme for consistent treatment
of gravitational waves and their influence on the background is summarized and
compared with classical Isaacson’s high-frequency approach. We demonstrate that
the Efroimsky method in its present form is not compatible with the Isaacson limit
of high-frequency gravitational waves, and we propose its natural generalization to
resolve this drawback.

In the second chapter a formalism is introduced which may describe both stan-
dard linearized waves and gravitational waves in Isaacson’s high-frequency limit.
After emphasizing main differences between the two approximation techniques we
generalize the Isaacson method to non-vacuum spacetimes. Then we present three
large explicit classes of solutions for high-frequency gravitational waves in partic-
ular backgrounds. These involve non-expanding (plane, spherical or hyperbolical),
cylindrical, and expanding (spherical) waves propagating in various universes which
may contain a cosmological constant and electromagnetic field. Relations of high-
frequency gravitational perturbations of these types to corresponding exact radiative
spacetimes are described.

In the third part we concentrate on solving the wave equation describing the
propagation of high-frequency waves which was derived by Isaacson [3]. Although
the complete Isaacson formalism incorporates also the reaction of the background
to the wave, we will not consider this effect here. Rather, we will explicitly present
spectra of high-frequency waves which may propagate in some fundamental cosmo-
logical models, in particular the Friedmann—Robertson—Walker spacetimes and in
the anisotropic Kasner universe.

The last chapter is devoted to the analysis of a class of exact type II solutions
of the Robinson-Trautman family which contain pure radiation and (possibly) a
cosmological constant. It is shown that these spacetimes exist for any sufficiently s-
mooth initial data, and that they approach the spherically symmetric Vaidya—(anti-)
de Sitter metric. We also investigate extensions of the metric, and we demonstrate
that their order of smoothness is in general only finite. Some applications of the
results are outlined.



Chapter 1

The Efroimsky formalism adapted
to high-frequency perturbations

Some time ago Efroimsky introduced and developed new formalism for a consistent
treatment of weak gravitational waves [1,2]. This interesting mathematical frame-
work is remarkable mainly due to the possibility to ascribe stress-energy tensor even
to low-frequency gravitational waves influencing the background, which is in contrast
to standard linearization approach where the background is kept fixed.

On the other hand, in a now classic paper [3] Isaacson (inspired by previous
works [4,5]) presented a perturbation method which can be used for studies of high-
frequency gravitational waves. Such waves also influence the cosmological back-
ground in which they propagate.

In our present work we first briefly summarize and compare the two above men-
tioned perturbation schemes. In particular, it is shown that the Efroimsky method
is not consistent if high-frequency gravitational waves are considered. We propose a
possible modification of the Efroimsky formalism which may resolve this drawback.

1.1 The formalism

Efroimsky’s approach [1,2] is based on introducing three different smooth, non-
degenerate, symmetric metrics on a differentiable manifold M, namely:

1. v, — the “premetric”: vacuum metric corresponding to initial pure back-

ground without gravitational waves,

2. gy — the “physical metric”: full vacuum metric which describes both the
background and the waves,

3. qu — the “average metric”: non-vacuum metric representing the background
plus its perturbations with wavelength greater than L.
Next step is to define the Ricci and Einstein tensors for an arbitrary metric ¢ as
Ru(9) = 159" Govu + Gouw = Guo)) v = 1597 Gprn + Goury = Guvo)
+[%975(9ﬂ5,7 + 9oy, — 97&;1)][%96’}(9;1%# + Gy — G| (1.1)
_[%gw(gmﬁ,v + Gpvs — gvé,p)][%gép(gm,u + Gouy = Gurp)] s
Gul9) = Ru(9) — 59uw9* Ras(9) |

3
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where ¢’ = (g);Tl, the same expressions apply to v and ¢q. From the proposals
(i)-(iii) it follows that G, (v) =0=G,.(9),Gu(q) # 0.

Now, the differences between the covariant components of the above metrics are
introduced,

h;w = guu - qiw ) (12)
Nuv Quv — Yuv -

It is necessary to specify the semi-Riemann space: for raising or lowering indices and
for covariant differentiation the averaged non-vacuum metric ¢ will be used. Treating
h,, as a perturbation of the metric ¢, the Ricci tensor (1.1) can be expanded in a
powers series

R (9) = RO (q) + R(q,h) + RY(q,h) + R$) (¢, h) + O(h*) . (1.3)
Analogously,
R, (7) = R (q) + RY)(q. (—n)) + R2(g, (—n)) + O(n*) . (1.4)

It is obvious that R (q,(—n)) = —Ru (¢,n) and R (q,(—n)) = R (q,n). Ac-
cording to assumptions that both g and v are vacuum metrics the following relation
holds

0 = Ruu(g) - RMV(,Y)
= R{)(q.h) + RE)(q.h) + R (q.m) + R (q,h) + O(h') + O(n?) . (1.5)

ny
At this point Efroimsky sets three assumptions:

Assumption 1. The perturbations A and 7 are small in the sense that the
terms of the orders O(h*) and O(n?) are negligible.

Assumption 2. The perturbations n and h? are of the same order.

Assumption 3. The tensor field h consists of modes with short wavelengths
which do not exceed the given maximal value L.

Thus h,, characterizes measurable gravitational waves whereas 1, is a shift of the
background geometry from vacuum premetric v to nonvacuum effective average met-
ric ¢ due to the presence of gravitational waves. The equation (1.5) is the wave
equation for perturbations h on the background ¢ = v + n. Using the Brill-Hartle
averaging procedure [5] we obtain

RG)(q,n) = —(RE) (g, h)) - (1.6)
Using (1.4), the effective stress-energy tensor of gravitational waves is defined as
Gu(q) = SWT;Srg/w) = RE}V) (q,n) — %quvqaﬁR% (q,n) . (L.7)

From (1.6) it follows that this tensor fully agrees with that of Isaacson [3].

The main advantage of the above Efroimsky’s perturbation method is the pos-
sibility to consistently treat all low-frequency gravitational waves, and to explicitly
derive effective stress-energy tensor (influencing the background) in this case. It
can be extended to non-vacuum spacetimes with 7),, of ideal fluid and/or with a
possible cosmological constant A, see [1,2].
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1.2 Modification to include high-frequency waves

Let us start with observation that it is the nonvacuum background curved by the
presence of gravitational waves — not the vacuum premetric v — which is the basis
of Isaacson’s non-linear approach [3]. Therefore, the nonvacuum average metric
q is considered as the background on which high-frequency gravitational waves h
propagate.

We wish to use the Efroimsky formalism in the high-frequency regime such that
the tensor field h contains high-frequency modes. We assume that they have short
wavelengths A, and a small amplitude h = O(e), where ¢ = A\/S < 1 is a small
parameter because A < S, S denoting a typical scale on which the background
changes substantially, and f = O(g") if there exists a constant C' > 0 such that
|f| < Ce™ as e — 0.

Since we can consider S = O(1) it follows that O(¢) = O(\) and 0h ~ h/\ =
O(1). This results in the orders of magnitude of the terms in the Ricci tensor
expansion (1.3) as

RY =0(1), RY =01, RZ=0(1), R®=0(%). (1.8)

To apply the Efroimsky approach in this case we must consider the decomposition
q = v+n, where v is the vacuum premetric and 7 represents (in this case) substantial
shift of the background geometry due to the presence of high-frequency gravitational
waves h.

Of course, the geometry shift n does not contain high-frequency perturbations.
Considering the wave equation (1.5) and using the Brill-Hartle averaging to obtain
the equation (1.6) we get in a conflict with the Assumption 1. and Assumption 2.,
since n = O(1). In fact, it disables any consistent perturbation expansions in the
powers of 7.

Let us now suggest a modification of the Efroimsky formalism which will incor-
porate also the above case of a “substantial” change of the background geometry due
to the presence of high-frequency waves. Instead of the perturbation expansion (1.4)
we consider a formal decomposition of the Ricci tensor of the premetric v = g — 1,
namely

0= Ru(v) = Buw(q) + ARu (g, (=1)) , (1.9)

by which equation the expression AR, is defined. Both terms on the right-hand
side of (1.9) are of the same order O(1).

The question concerning the gauge invariance of AR, with respect to generalized
gauge transformations has been recently analyzed in detail by Anderson [16] in
connection with possible definitions of the wave equation and stress-energy tensor
for gravitational waves. Let us consider an arbitrary coordinate transformation of
the type

Th =t 4 (1.10)

that does not change the functional form of the background geometry ¢, i.e.

4(T) = q(T) so that v(x) — 7(T) = ¢(T) — 7(T). Performing the above coordinate
transformation (1.10) of the Ricci tensor (1.9) we can derive

AR (q(x), (=n(2))) = ARy (q(z), (=7(x))) - (1.11)
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A generalized gauge transformation is defined in [16] as a transformation in which
the quantity 7j(x) is substituted for n(z) into the tensor expressions of interest.
Obviously, the equation (1.11) expresses a generalized gauge invariance of AR,,.

After introducing the above decomposition (1.9) and demonstrating its invariance
we can now present modification and generalization of the Efroimsky formalism
expressed in the following relations,

ARy (¢, (=n)) = (R (0, 1))z (1.13)
Guu(a) = 87T5") = AR, (¢, (=) + 564"  ARap(q. (—n)) . (1.14)

R (a,h) + R (q,h) — AR, (q, (=n)) + R (q,h) + O(h') =0, (1.12)
2

In case when gravitational waves do not have high-frequency modes it is still possible
to employ the expansion of —AR,,(q,(—n)) in powers of 1 and use its dominant

term Rfll,,)(q,n) instead. Thus we recover Efroimsky’s previous results, cf. (1.5),
(1.6), (1.7).

In general, however, expressing 7 in terms of & from the equation (1.13) becomes
an extremely difficult task because it is no longer a linear equation for . To over-
come this problem we can use the equation (1.13) and substitute for AR, into the
remaining equations (1.12) and (1.14). We obtain the relations

Ri)(a,h) + RE) (0, h) = (RE) (@, M)s + R (g, h) + O(h) =0, (1.15)

~Gu (@) = (R(@: M1 ~ 500" (RO (0, 1)) = —8a T (1.16)
The equation (1.16) is obviously in perfect accordance with the Isaacson result [3].
In the highest order of high-frequency approximation the equation (1.15) clearly
reduces to Rf},,) = 0 which also fully reproduces Isaacson’s result. Additional terms
in (1.15) can be used for study of nonlinear effects on the wave propagation.

Finally the equations (1.13) and (1.11) guarantee the gauge invariance of the
stress-energy tensor 7,/ defined in (1.16) (in the highest order). Proof of this
property was presented already in the classic work [3], using however much more
complicated method.



Chapter 2

Some high-frequency gravitational
waves related to exact radiative
spacetimes

In classic work [3] Isaacson presented a perturbation method which enables one to
study properties of high-frequency gravitational waves, together with their influ-
ence on the cosmological background in which they propagate. It is this non-linear
“back-reaction” effect on curvature of the background spacetime which distinguishes
the high-frequency approximation scheme from other perturbation methods such as
the standard Einstein’s linearization of gravitational field in flat space [17,18] or
multipole expansions [19] that were developed to describe radiation from realistic
astrophysical sources.

On the other hand, many ezact solutions of Einstein’s equations are known which
represent gravitational radiation. Among the most important classes are planar
pp-waves [22, 23] which belong to a large family of non-expanding radiative space-
times [24,25], cylindrical Einstein-Rosen waves [26], expanding “spherical” waves of
the Robinson-Trautman type [27,28], spacetimes with boost-rotation symmetry rep-
resenting radiation generated by uniformly accelerated sources [29-31], cosmological
models of the Gowdy type [32].

However, there are only several works in which relation between exact grav-
itational waves and those obtained by perturbations of non-flat backgrounds has
been explicitly investigated and clarified, see e.g. [12,14,38]. The purpose of our
contribution is to help to fill this “gap”.

We first briefly summarize and generalize the Isaacson approach [3] to admit
non-vacuum backgrounds, the cosmological constant A in particular. Modification of
[saacson’s formalism allows us to incorporate also standard linearized gravitational
waves into the common formalism.
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2.1 High-frequency approximation versus
standard linearization

Let us assume a formal decomposition of the vacuum spacetime metric g, into the
background metric v,, and its perturbation A,
v = Vv +€hpy (2.1)

where, in a suitable coordinate system, v, = O(1) and h,, = O(e). The two dis-
tinct non-negative dimensionless parameters € and € have the following meaning: ¢
is the usual amplitude parameter of weak gravitational perturbations whereas the
frequency parameter € denotes the possible high-frequency character of radiation de-
scribed by hy,,. The parameter € = A\/L represents the ratio of a typical wavelength
A of gravitational waves and the scale L on which the background curvature changes
significantly. Since L can be considered to have a finite value of order unity, we may
write O(e) = O(\).

To derive the dynamical field equations we start with the order-of-magnitude
estimates which indicate how fast the metric components vary. Symbolically, the
derivatives are of the order 0y ~ /L, Oh ~ h/\. Next, we expand the Ricci tensor
in powers of h,

Ru(9) =R +eRY +*RY) + ..., (2.2)
where
R = Ru(),
RE}V (,}/7 h) = %,}/lﬂ' (hTu;Vp + hﬂ/;up - hp'r;;w - huu;pr) ) (23)
RI(LQV (,}/’ h’) = % [%hm—ﬂ’hﬂ‘r;# + h’pT (h’TﬂWV + h’l“’ﬂ'ﬂ - h"'lt;l’p

_h’”’%#ﬂ) + th/;p (h'ru;p - hpu;'r)
_ (hpr;p _ %h;r) (Prpw + hrvpy — Py

The semicolons denote covariant differentiation with respect to the background met-
ric v,,,, which is also used to raise or lower all indices. The orders of the terms (2.3)
are

0) _ 1 _ —1 2p(2) _ 2y 3pB) _ 3
R, =0(), eR,) =O0(c “¢), e°R;) = O(e”), "R;;) = O(ec”). (2.4)

Two limiting cases thus arise naturally. For the standard linearization (¢ < 1,
€ = 1) the dominant term of R, (g) is R Tts first correction representing linearized

(purely) gravitational waves is governed by
RO)(v,h) =0, (2.5)

which is a dynamical equation for perturbations h,, on the fixed background ~,,.

The next term R,(f,,) (7,h) can then be used to define energy-momentum tensor of
these gravitational waves, but the background metric is not assumed to be influenced
by it.

In the high-frequency approzimation (¢ < 1, & = 1) the dominant term is RE},,) =
O(e™!') which gives the wave equation (2.5). The two terms of the order O(1),
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namely REE,) and RELQ,,), are both used to give the Einstein equation for the background
non-vacuum metric, which represents the essential influence of the high-frequency
gravitational waves on the background. Of course, to obtain a consistent solution,
one has to use both the wave equation and the Einstein equation for the background
simultaneously.

2.1.1 Linear approximation

In analogy with the well-known theory of massless spin-2 fields in flat space [19] we
wish to impose two T'T gauge conditions,

h,'" = 0,
h, = 0.

I

In this gauge we arrive at the following wave equation

Ol = hy” 5 — 2R 077 — RO b, — RO B, =0, (2.8)
where the operator { is the generalization of flat-space d’Alembertian.

In case of standard linearized waves (e = 1) there is an inconsistency between
(2.8) and (2.6), except for backgrounds with a covariantly constant Ricci tensor (e.g.,
for the Einstein spaces). On the other hand, in the high-frequency limit (¢ = 1),
the inconsistency is negligible. Moreover, for all background metrics of constant
curvature the equations are fully consistent.

2.1.2 Generalization to non-vacuum spacetimes

Before considering the second-order terms we now extend the formalism to be appli-
cable to a larger class of spacetimes with (possibly) non-vanishing energy-momentum
tensor T),,. Namely, g,, satisfies Einstein’s equations

Ruu(g) = 87T Tuu(ga 50) . (29)

Here T, = T, — 9w T" s, such that T,,(g,¢) depends on non-gravitational fields
¢ and on the full metric g,, but it does not contain the derivatives of g,,. Note
that this admits as particular cases a presence of electromagnetic field, and also
Einstein spaces when T, = é Agu,. We expand both sides of the equation (2.9)
as in (2.2). For ordinary linearization we thus get the equations Ry = 87T in
each order n =0,1,2,.... For the high-frequency approximation we obtain, in the
leading order, the equation (2.5) which is identical with the wave equation in the
vacuum case. The second-order contributions, that are O(1), represent an influence
of the high-frequency gravitational waves and matter fields on the background, and
can be rewritten in the form of Einstein’s equation for the background as

G (v) =81 TR (v, 9) = =[R2 (v, h) = 37w BP (v, W) = 8a TG . (2.10)
This defines the effective energy-momentum tensor 7/;"" of high-frequency gravita-
tional waves.
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2.1.3 The WKB approximation

In the following we shall restrict ourselves to the Isaacson approximation (¢ =1,
€ < 1), i.e. on study of high-frequency gravitational waves on curved backgrounds.
Inspired by the plane-wave solution in flat space, the form h,, = Ae,, exp(i¢) of
the solution is assumed. The amplitude A = O(e) is a slowly changing real function
of position, the phase ¢ is a real function with a large first derivative but no larger
derivatives beyond, and e, is a normalized polarisation tensor field. Substituting
this into the conditions (2.6), (2.7), and the wave equation (2.8) we obtain, in the
two highest orders which are gauge invariant,

Kk, =0, ke, =0, k%u,.n=0,
eew =1, Meu =0, (A%’), =0. (2.11)

Moreover, using the WKB approximation of TfVW and the Brill-Hartle averaging
procedure [5] (which guarantees the gauge invariance) Isaacson obtained the energy-
momentum tensor [3]

T = s=Akuk, . (2.12)

The energy-momentum tensor of high-frequency waves thus has the form of pure
radiation.

2.2 Examples of high-frequency
gravitational waves

Now we present some explicit classes of high-frequency gravitational waves. These
are obtained by the above described WKB approximation method considering spe-
cific families of background spacetimes with a privileged geometry.

2.2.1 Non-expanding waves
As the background we first consider the Kundt class [24,33] of non-expanding, twist-

free spacetimes in the form [40]

2
1
ds* = F du® — 2 % dudv + o (dz® + dy?) , (2.13)

with

P:1+%(x2+y2),

Q= 1+§(x2+y2) e+Cix+Cyy, (2.14)
Q° (@) Q@
F:Dﬁqﬂ— 5 U—FH,

where «, (3, and e are constants (without loss of generality e = 0 or e = 1), Cy, Cs
and D are arbitrary functions of the retarded time u, and H(x,y,u) is an arbitrary
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function of the spatial coordinates x, y, and of u. In particular, these are Petrov
type N when o = =3 = A and D = —2f3e + C} + C3.

We consider the phase of high-frequency gravitational waves given by ¢ = ¢(u),
and we seek solution in the WKB form, namely

hu, = Aey, exp (z¢(u)> , (2.15)

where the amplitude .4 and polarization tensor e, are functions of the coordinates
{u,v,z,y}. Applying now the equations (2.11) we obtain

A= Au,z,y) , (2.16)

The fact that the amplitude A is independent of the coordinate v expresses non-
expanding character of the waves. The polarisation tensor is analogous to those
used in the standard theory of linearized waves in flat space.

Using the Einstein tensor for the metric (2.13) with the cosmological term in
equations (2.10) and (2.12), we determine the reaction of the background on the
presence of the above high-frequency gravitational perturbations, namely

Qlp (0 07\ 2 e )
P {P (3x2+8y2 +3A H(u,z,y) = ;A (u, z,y)¢" . (2.17)

These approximate solutions can obviously be compared to specific exact radiative
vacuum solutions which are given by H solving the field equation (2.17) with a
vanishing right-hand side (when A = 0, i.e. high-frequency perturbation waves are
absent).

The above waves are non-expanding with the wave-fronts u = const. being two-
dimensional spaces of constant curvature given by o = ¢A, cf. (2.13).

Another interesting subclass of the Kundt spacetimes of the form (2.13), (2.14)
are explicit Petrov type II (or more special) metrics given by  =a,e=1,C =0
and D = 2(A — «), namely

1
ds* = | 2(A —a)v® — H | du® — 2dudv + 22 (dz? + dy?) . (2.18)

For H = 0 these are electrovacuum solutions with the geometry of a direct product
of two 2-spaces of constant curvature, in particular the Bertotti-Robinson, (anti-
)Nariai or Plebanski-Hacyan spaces [44-47]. Considering again (2.15) we obtain
the results (2.16) as in the previous case. However, the reaction of high-frequency
waves on the background is now different. It is determined by the equations (2.10)
and (2.12) with the energy-momentum tensor consisting of a cosmological term plus
that of a uniform non-null electromagnetic field described by the complex self-dual

Maxwell tensor F* = 4®; (mlm*) —kl#1"), where ®; = /o — & €'¢, ¢ = const., and

m=Pd, k=0,1= %F 0y + 0, form the null tetrad. Straightforward calculation
gives
s 0 142 12
Since the background spacetime is not vacuum but it contains electromagnetic
field, we have to analyze the perturbation of the complete Einstein-Maxwell system,
and its consistency.
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The Einstein equations in the two highest orders (2.5) and (2.10) have already
been solved. The Maxwell equations are also satisfied in the high-frequency limit,
namely F*|, = O(¢), where | denotes the covariant derivative with respect to the
full metric g,,,, because

P, =F" , — Lhhs , F" + O() | (2.20)

and considering that F*”,, =0 (an electrovacuum background). In addition, the
field equations are valid also in the next order O(¢) for the new electromagnetic field

F = (14 1h*Phgg) P (2.21)

since using (2.20) we obtain F*”|, = O(€®). Both the Einstein and Maxwell equa-
tions are then satisfied in the two highest perturbative orders. Interestingly, these
results hold for high-frequency perturbations of any “seed” electrovacuum back-
ground spacetimes.

2.2.2 Cylindrical waves

Next we consider the class of cylindrical Einstein-Rosen waves using the following
metric in double null coordinates,

ds? = e 2 (—dt? + dp?®) + e*d2® + pPe P dp? . (2.22)

These are exact radiative spacetimes of the Petrov type I (see, e.g. [26], [33], or
equations (2.24)-(2.26) below).

We assume again ¢ = ¢(u) implying the wave vector k, = (4,0,0,0), i.e. the
WKB perturbation of the form (2.15). By applying the conditions (2.11) we obtain

L U
- \/’U—'LL’
0 0 0 0
1 00 0 0
+ Loy
€ = \/56 00 %(U_U)Q 0 , (2.23)
00 0 _eW
000 0
1 000 0
X _ - _ .
ew = FW—u)f g g g g |
0010

notice that v — u = \/§p > 0.
The back-reaction on the background (contained in a specific modification of the
metric functions v and 1)) is given by the following equations, cf. (2.12),

(v —u) ¢?u +Yu = —%(v —u) A2q-52 , (2.24)
(v—u)vi =7 = 0, (2.25)
w,uv - ! (w,v - w,u) = 0. (226)

2(v — u)
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This set of equations is consistent for the amplitude satisfying (2.23).

The above described perturbations depend on the null “retarded” coordinate u
so that the high-frequency gravitational waves are outgoing (p is growing with ¢, on
a fixed u). However, since the background metric (2.22) is invariant with respect to
interchanging v with v, it is straightforward to consider also ingoing perturbations
by assuming the phase to depend on the “advanced coordinate” v. This results in
an interesting possibility to introduce ingoing high-frequency gravitational cylindrical
waves into the background of outgoing Einstein-Rosen waves or vice versa.

Moreover, all the above results can further be extended to a class of general-
ized Einstein-Rosen (diagonal) metrics [34,49] which describe Go inhomogeneous
cosmological models,

ds? = 272 (—dt? + dp?) + 2V d2® + e dp? . (2.27)

If the three-dimensional spacelike hypersurfaces are compact, the corresponding
model is the famous Gowdy universe with the topology of three-torus [32,34]. The
only modification of the above results (in the double null coordinates) consists of
replacing the factor (v — u) with (v + u), and each derivative with respect to u

changing sign (e.g. vy — —Vu OF Yy = =V ).

2.2.3 Expanding waves

Finally, we assume that the background is an expanding Robinson-Trautman space-
time. The metric (generally of the Petrov type II) in the standard coordinates has
the form, see e.g. [27,28,33,43],

2 (g — Py o™ A g L 2
ds® = K —-2r(lnP), —2 57 du” — 2dudr + — (dn” +d&%) ,  (2.28)
r P

where K = A(InP), A = PZ(g—T; + g—;), and m(u). When P(u,n, &) satisfies the
Robinson-Trautman equation AK + 12m (InP), — 4m, = 0, the metric (2.28) is
an exact vacuum solution of the Einstein equations.

In view of the existence of privileged congruence of null geodesics generated by
0, we introduce the phase ¢ = ¢(u). Applying the equations (2.11) we obtain

A= —Un,6), (2.29)

and the two polarization modes are easily inferred from (2.28).
The reaction of the waves on background is determined by the equations (2.10)

and (2.12) with TlEB) = —2-Av,,. From the only nontrivial component we immedi-
ately obtain the following equation
om :
30+ 3m(InP), + 1AK = LU?¢ , (2.30)

where m(u), ¢(u), whereas the remaining functions depend on coordinates {u,n, £}.
Notice that this is independent of the cosmological constant A.

The expressions (2.29),(2.30) agree with results obtained by MacCallum and
Taub [7] or recently by Hogan and Futamase [14] who used Burnett’s technique [11].
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Our results, which were derived by a straightforward approach, are slightly more
general because they are not restricted to a constant frequency gb = const. Particular
subcase of the Vaidya metric has already been studied before by Isaacson [3] and
elsewhere [21].

2.3 General considerations

For construction of high-frequency gravitational perturbations we have employed the
fact that all these spacetimes admit a non-twisting congruence of null geodesics. The
corresponding tangent vectors k* are hypersurface orthogonal so that there exists
a phase function ¢ which satisfies ¢ , = k,. The last equation in (2.11) can be put
into the form %(ln A) = —0©, where [ is the affine parameter, and © = %k“ﬂ is the
expansion of the null congruence. This determines the behaviour of the amplitude
A in the above spacetimes (2.16), (2.23), (2.29). The remaining equations (2.11)
enables one to deduce the polarization tensors.

It has been also crucial that all the classes of spacetimes discussed admit exact
solutions with the energy-momentum tensor of pure radiation, i.e., G, — 87T, =
& A?k,k,, where T, is either constant (representing the cosmological constant) or
it describes an electromagnetic field. The relation between high-frequency pertur-
bations and exact radiative solutions of Einstein’s equations in each class is thus
natural. In particular, it is possible to determine explicitly the reaction of the back-
ground on the presence of high-frequency gravitational waves.



Chapter 3

Spectra of high-frequency waves

In this part we will concentrate on solving the wave equation describing the prop-
agation of high-frequency waves which was derived by Isaacson [3]. Although the
complete Isaacson formalism incorporates also the reaction of the background to
the wave, we will not consider this effect here. Rather, we will explicitly present
spectra of high-frequency waves which may propagate in some fundamental cosmo-
logical models, in particular the Friedmann—Robertson-Walker spacetimes and in
the anisotropic Kasner universe.

3.1 The Isaacson formalism

Isaacson’s formalism [3] is based on the decomposition of the spacetime metric g,

into the background metric v,, and its perturbation h,,,,

Juv = Vv + h;w ) (31)

where, in a suitable coordinate system, v,, = O(1) and h,, = O(€). By definition,
[ = O(€") if there exists a constant C' > 0 such that |f| < Ce" as ¢ — 0. The
quantity f need not necessarily be proportional to €, it can be even smaller than
Ce™ for € — 0. Therefore, the assumption h = O(e) does not automatically imply
that h ~ €. The spectrum of possible high-frequency waves is thus not a priori
restricted, it is only required that their amplitudes fall to zero at least linearly
with €, i.e. |h(e)| < Ce.

The non-negative dimensionless parameter ¢ is the ratio of a typical wavelength
A of gravitational waves and the scale L on which the background curvature changes
significantly. Isaacson’s high-frequency approximation thus arises when A < L, i.e.
€ < 1. Since L can be considered to have a finite value of order unity, we may write
O(e) = O(N).

To derive the dynamical field equations we expand the Ricci tensor in powers
of h,

Ryl(g) = RO+ RO + R 4 .. (3.2)

Using the results from section 2.1 we obtain (in the high-frequency approximation

(e < 1)) that the dominant term is R} = O(e™") which gives the wave equation
RU)(7,h) =0, i.e.

o (hm;vp + Mz = o — huV;pT) =0, (3-3)

15
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for the perturbations h,, on the curved background 7,, (considering the case of a
vacuum full metric g,,). The two terms of the order O(1), namely REE,) and ng,),
can be used to give the equation for the background (non-vacuum) metric, which
represents the essential influence of the high-frequency gravitational waves on the
background.

Of course, to obtain a consistent solution, one has to use both the wave equation
and the equation for the background simultaneously. We analyzed this problem ex-
plicitly in chapter 2 for spacetimes with preferred null directions, after simplification
of the equations by the WKB approximation, see [15]. However, in this chapter we
wish to concentrate on the equation (3.3). Our aim is to obtain spectra of high-
frequency gravitational radiation propagating in an arbitrary direction in various
cosmological models.

Now we impose the gauge conditions (2.6), (2.7). In this gauge the equation
(3.3) reduces to the following wave equation,

Ol = hy” 5 — 2R 077 — RO b, — RO B, =0, (3.4)

ovpB po

where the operator { is the generalization of flat-space d’Alembertian.
The gauge conditions (2.6),(2.7) still do not completely exhaust the gauge free-
dom, and we can thus demand the following additional condition,

hyo =0, (3.5)

to simplify the calculations.

3.2 High-frequency waves in cosmological models

Now, we will investigate the solutions of the wave equation (3.4), subject to the gauge
conditions (2.6) and (2.7), in some cosmologically relevant models with high degree
of symmetry, namely the Friedmann-Robertson-Walker (FRW), anti-de Sitter, and
anisotropic Kasner universes. As we shall see, the full spectrum of gravitational
waves which propagate in an arbitrary direction is obtained explicitly for spacetimes
with isotropic time slices (FRW models with K = 0,1, —1) or with a spatial metric
that is transformable to isotropic at each instant of time (Kasner), in contrast to
anti-de Sitter universe which is globally only conformally isotropic in the metric
form used below.

3.2.1 FRW models with spatial curvature K = 0

First, we will study spatially homogeneous and isotropic FRW spacetimes with a
vanishing spatial curvature, and with the stress-energy tensor of an ideal fluid. As
shown in [15], this tensor does not contain a derivative of the metric tensor, so that it
satisfies the conditions of the Isaacson approximation generalized to the non-vacuum
case, so that equations (2.6), (2.7), (3.4) are still valid.

In this special case of FRW spacetimes it is possible to write the metric using
conformal time 7 in the usual form [19],

ds* = a*(n) (—dn® + dz® + dy” + d2”) . (3.6)
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Next, we insert the covariant derivatives and the corresponding curvature tensor of
this metric into the gauge conditions (2.6), (2.7) and in the wave equations (3.4).
Using the additional freedom (3.5), the gauge condition h*, = 0 is simplified to
h = hi; = 0 (considering latin indices to take the values i,j,k = 1,2,3 and using
the (flat-space) summation convention over the same indices, but only when one of
them is an upper and the other is a lower index), while the condition h,,"* = 0
implies

by = 0 (for u=0),
hii = 0 (for p=j). (3.7)

The only non-trivial components of the wave equation (3.4) can thus be put into
the following form,

a’(—hijoo + hijx") + 2aah;j — 4a*hi; = 0 (3.8)

and @ = g—f]. The components (0,0) and (0,4) of the wave equation are fulfilled
identically due to the gauge conditions (3.7). Using (3.7) to also modify the dy-
namical equations (3.8), it is possible to transform equations for all the six non-zero

components of the perturbation tensor into the common form,

2 (_82f L0 B OFY L, 0f

+ —4a*f =0, (3.9)

of T ox2 T oy 8z2> 2005,
where f(n,z,y, z) represents an arbitrary component h;;. It is interesting to notice
that the first gauge condition (3.7) restricts the number of independent components
of the perturbation tensor to five which is in agreement with the number of inde-
pendent components of a spin-2 field. Wave equation (3.9) can further be rewritten
by introducing the covariant d’Alembertian operator,

Of=f",=a? <—62f + i + i + 82f> - 2a3dg—£ ,

on?>  0x?  0y? 022
4 (f\
Df—i—;(E) =0. (3.10)

By applying the Fourier transform in the coordinates ¥ = (z,y, 2),

into the form

F=Ffln ) = [ 0.7 exp (F - ) d

the equation (3.10) is converted to the form

[(8822+|k|2>_298277+4‘2}f:0' (3.11)

An explicit solution of this second—order ordinary differential equation depends on
the specific expansion function a(n) which determines the background spacetime on
which the waves propagate. The function f(n, IZ), which is the solution of (3.11),
represents a time dependent spectrum of high-frequency gravitational perturbations.
Next, we will present the explicit solution for the particular case of the de Sitter
spacetime.
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Gravitational waves in the de Sitter spacetime

The de Sitter metric, which is the maximally symmetric spacetime with constant
positive curvature R = 4A when A > 0 is a cosmological constant, has in standard
conformally flat coordinates the form (see e.g. [33])

[\

ds* = a—(—d772 +da? + dy? + d2?) , (3.12)

3

where o = y/3/A. Therefore, in this case the expansion function is simply a(n) =
a/n.

Note, that the de Sitter manifold can be viewed as a four-dimensional hyperboloid
embedded into five-dimensional flat spacetime. Depending on the choice of a specific
spacelike section through this hyperboloid, one obtains all cases of FRW models
of constant spatial curvature K = 0,+1 or —1, see [37,50]. The metric (3.12)
corresponds to the case K = 0.

Inserting this special form of the function a(n) into equation (3.11) we obtain

o2f  20f 4 =0\ -
S+ -—+ |+ f=0. 3.13
5i ot (R T (313)
A general solution to this differential equation can be expressed using cylindric
Bessel functions of the first kind .J, and second kind Y, with an imaginary index,
namely
- 1 - - - -
F == [AG) T,y (Eli) + BOR)Y, o35 (|ln)
\/ﬁ 1% 1%
where A, B are arbitrary functions. This expression is in a complete agreement
with the result obtained previously using synchronous coordinates for the de Sitter
metric [51]. Note that synchronous coordinates cover only half (n > 0) of the de
Sitter hyperboloid and therefore are not geodetically complete [50]. An inverse

Fourier transform of equation (3.14) in the case of a monochromatic wave, A(k) =
Agd(k — ko), B = Bod(k — ko) leads to the following result

[ I

, (3.14)

1 - - -
=)= [d, s (sl + B, s (i) €94, (319

which represents a time evolution of the spectrum of high-frequency gravitational
waves in the de Sitter “inflationary” universe. The typical plot for |ko| = 1 of the
basic modes is given in figure 3.1.

3.2.2 Gravitational waves in the anti—de Sitter spacetime

Anti-de Sitter spacetime is a maximally symmetric spacetime with a constant neg-
ative curvature R=4A< 0. It may be viewed as a four-dimensional hyperboloid
embedded into five-dimensional flat spacetime with metric signature (—,—,+,+,+),
having thus two time axes [52]. We will use the conformally flat form of metric

BQ

€xr2

ds* (—dn® + dz® + dy* + d2°) | (3.16)
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Figure 3.1: The figure (a) is a plot of the function Re {— J. 5 (77)} and the figure

1
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(b) of the function Re {ﬁ Ylg(n)}

=

where 3 = /—3/A. These coordinates cover the whole manifold. It is easily
seen that using the formal transformation & = in, 7 = iz, & = i (i being the
imaginary unit), and omitting the hats, we obtain the metric (3.12) of de Sitter
spacetime. This offers the possibility to adopt the results obtained for the de Sitter
spacetime, and to arrive at the spectrum of high-frequency perturbations for the
anti-de Sitter spacetime. Unfortunately this would mean setting the components
hy,, of perturbation tensor to zero due to gauge condition hy, = 0 applied in new
coordinates. The general form of this condition is h,,v" = 0, where v” is the four—
velocity of an observer. Therefore, the condition /;, = 0 implies that the observer
moves faster than the speed of light in the direction of % (in the coordinates of
metric (3.16)). Moreover, the new coordinate # is purely imaginary and it would
thus be impossible to use the Fourier transform.

Hence we will attempt to solve the problem directly using the metric (3.16) and
assuming h,o = 0. The gauge condition h*, = 0 simplifies to the form (using the
summation convention introduced in section 3.2.1)

Non-trivial components of the gauge condition h,, " are the following
T hij,i — 2h1j =0.

Using the gauge conditions to simplify the dynamical equations (3.4) for perturba-
tions h,, we obtain the following system

hll =0 ) h22 - _h33 ) h21,0 =0 ) h31,0 =0 )

ho1o + hs13 =0,
7’ h21,kk +4hgy =0,
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12 hgl’kk + 4h31 =0 y (317)
2% (—has,0 + h22,kk) + 2xhooy — 4xhor o 4+ 4hoy =0,
1‘2(—h23,00 + h23,kk) + 21‘h23’1 — 21‘(h31,2 + h21,3) + 4h23 =0.

From equations (3.17) it is obvious that there are only two dynamical degrees of
freedom corresponding to hoy = —hgz and hos. The residual non-trivial components
hay and hs; are independent of conformal time and therefore play the role of (sup-
plementary) boundary conditions. The most natural choice is to put hy; = 0 = hg;.
The solution of the set of equations (3.17) can be interpreted as a wave propagat-
ing in the direction a% which is purely transversal and has two polarizations. In

contradistinction to the de Sitter case, we do not obtain the same results for pertur-
0

bations propagating in a general direction different from -. This is a consequence
of “anisotropy” of the anti-de Sitter spacetime in these coordinates.
Using the above choice of the boundary conditions we can write the following

unified form of equation for both degrees of freedom hoy = —hszz and hogs,

0? 0? 0? 0? 20 4

L AL S R L A

on?  0x?  0y?> 022 zxodx 2
where f stands for hoy or hoz. Performing the following separation of variables
F(1, 2,9, 2) = g(x) expi(—kon + kay + ks2), we obtain

g 20 4
_9+__9+<?+k§>g:o, (3.18)

0r?  x0x

where k% = k2 — k2 — k2. The equation (3.18) is formally equivalent to (3.13) (when
replacing = with 1, and k7 with |k|?). Therefore, the solution is a monochromatic
high-frequency gravitational wave

1
=7
which is analogous to the wave (3.15) in the de Sitter spacetime.

Let us finally mention an interesting connection of the above result to exact

gravitational waves in the anti-de Sitter spacetime described by the Defrise solution
[33,53]. The metric was investigated in [54] using the form

f A Jz’@ (k1x) + B Yl@ (k1) | expi(—kon + koy + k32) ,

ds> = [*(df? + sinh? Od¢?) + 83%(cosh @ + sinh 6 cos ¢)*dudv
163%(cosh @ + sinh 6 cos ¢)*d(u)du? (3.19)

where § € [0,00), ¢ € [0,27), u,v€ (—00,+00). The wavefronts u = const. are
two-dimensional hyperbolic surfaces with constant negative curvature —( parame-
terized by 6 and ¢. The solution (3.19) can be interpreted also in the perturbative
sense. The background is represented by the metric (3.19) with d(u) = 0, and the
component 7, of the metric proportional to d(u) corresponds to high-frequency
perturbations with small but rapidly varying function d(u)=0(¢). The gauge con-
ditions (2.6),(2.7) are fulfilled identically. The wave equation (3.4) is satisfied to
the order O(e), since each non-trivial component has the form d(u)f (6, ¢). This is
a satisfactory result implying that the exact solution (3.19) is consistent with the
high-frequency Isaacson approximation.
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3.2.3 FRW models with spatial curvatures K = +1

FRW metrics with a positive or negative constant curvature of spatial sections may
be written in the standard form [55]

ds® = a®(n)(—dn* + *v;da;dz;) | (3.20)

where the tensor 3v;; is the metric of homogeneous and isotropic three-space of
uniform spatial curvature K, and the usual choice of coordinates leads to

Syijdaidr; = dx® + f2(x)[d6? + sin® 0 d¢*] (3.21)

with f =sinx for K = 1, and f = sinh x for K = —1. Let 7,3 and ; denote the
FRW metric and the corresponding covariant derivative, respectively. The covariant
derivative with respect to 37;; will be denoted by |.

To look for the solution of the wave equation (3.4) in the way similar to the
flat-space FRW K = 0 models is complicated. Therefore, we consider a somewhat
simplified form of the metric perturbations which is widely used in literature (see,
e.g. [56]). The conformal time and spatial dependence of the perturbations are
separated in the following way

huu - f(77) Quu ) (322)

where @), satisfies Q)0 = 0, in accordance with the additional gauge (3.5). The
spatial components of @;; form a traceless, divergenceless tensor (thus ensuring that
h,. satisfies the gauge conditions (2.6),(2.7)) which is a solution of

Qi + K Qi =0. (3.23)

Such @);; are called a tensor harmonics, and the equation (3.23) is a generalized
Helmholtz equation with k representing the wave number which sets the scale of the
perturbations relative to the background coordinates. The expansion of perturba-
tions into tensor harmonics was investigated from the mathematical point of view
e.g. in [57].

To simplify the form of the curvature terms in the wave equation (3.4) one can
use the well-known decomposition of the Riemann tensor [33]

1
Rouwp = Couws + Voo Roy — Vuiw g = 3% Va1l? (3.24)

where Cy,5 is the traceless Weyl tensor. Using (3.24) and the fact that the spatial
part I;; of the Ricci tensor is a multiple of v;;, we derive that

1 1
Rypush?® = 3 <R”,, + RV, — §R> i (3.25)
(no summation over u, v here). From the FRW metric (3.20) we obtain

Ry =a *(da+a* +2Ka*)y; and R=6a G+ Ka),

where R = y*R,,,. Using the form (3.22) of the perturbation tensor h,, we derive
the following form of the curvature terms in the wave equation (3.4),

2Ryph’® + Ruph®, + Ryph?, = (2073 + 4a™"a” + 6Ka ) fQu, - (3.26)
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For the covariant d’Alembertian of the perturbation tensor we can write

huu;ﬂ;ﬁ = f;ﬂ;ﬂQuu + QfQuu;O’YOO + f(QuV;OfWOO + QW;iifyii) ’ (3.27)

where

f;a;oz = _a72f‘ - Zaai?)f; ) Q;w;() — _ZaailQuu ’
Q;w;OO - (6d2a_2 - 2&(1_1)@”” ) Qull;ii - Q;w|ii + 2a2a_47iiQuu .

Combining equations (3.26), (3.27) and using the Helmholtz equation (3.23), the
wave equation (3.4) is reduced to the second order ordinary differential equation for
the amplitude of the perturbations depending on the conformal time,

0? a 0 a?
—— 4+ k) —2-—+4=+6K| f=0. 3.28

[<3n2+ ) aon @ T f (3:28)
Notice that when K = 0, the equation (3.28) exactly reduces to (3.11), and we
observe that in this case the parameter & defined in the Helmholtz equation (3.23)
to the norm of the wavevector k.

Example: waves in the (anti—) de Sitter spacetime

Now we will solve the equation (3.28) explicitly in three special cases of non-flat
FRW spacetimes with the cosmological term.

We start with the de Sitter spacetime whose metric could be given in the FRW
form with any value of spatial curvature K, see the beginning of section 3.2.1 and
[50]. The value K =1 for metric in the form (3.20) corresponds to spatial sections
of the de Sitter hyperboloid being spheres S3. The expansion function then takes
the form o

a(n) = (3.29)

sinn ’

and the coordinates (3.21) cover the whole hyperboloid. Solution of the equation
(3.28) with the expansion function (3.29) takes the form

61'71'/4

\/sinn

fn) = 55

C1 P <\/3 + k2 — 1, i@; cos 77) (3.30)

1 1
+C5 Q, <v3+k2 — 5,@'?;0%77)] ,

where P;(u,v; 2), resp. Q,(u,v; 2) are Legendre functions of the first, or of the second
kind, respectively, which satisfy the differential equation

2
(1—z2)y”—2zy’+(u(v+1)—1ﬁz2>y:o, (3.31)

for y(z). The points z = 1, —1, oo are singularities of this equation (except in special
cases) and ordinary branch points of the Legendre functions in the complex domain.
When we take the branch cuts to be (—oo,—1) and (1,00), and if we compose
Legendre functions with cosine function, as in (3.30), we obtain standard spherical
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Figure  3.2: The  figure (a) is a plot of the function
Re {\/%nn P/(vV19 — 1, i@; cos 77)}, and the figure (b) of the same expression, only
with Q) instead of P;.

harmonics. The sample plot of the basic modes of the solution for £ = 4 is presented
in figure 3.2.

When K = —1, the spatial sections are hyperbolic and the expansion parameter
is
Q
= . 3.32
oln) = 5o (332)

These coordinates cover only part of the hyperboloid. Solution of the equation (3.28)
with the expansion function (3.32) is the following,

1

f(n) = Jenhn

1 15
C, P, (\/3 — k2 — 3 ig; cosh 77) (3.33)

1 1
+C5 Q, (\/3 — k2?2 — E’ig; coshn>]

When we take the branch cuts to be (—oco, —1) and (—1, 1), and compose Legendre
functions with hyperbolic cosine, as in (3.33), we obtain so called toroidal functions.
The sample plot of the basic modes of the solution for k£ = 4 is given in figure 3.3.

Finally, we give the solution for the anti-de Sitter spacetime represented by the
FRW metric with K = —1 and the following expansion parameter [50],

_ b
coshn

a(n) (3.34)

The corresponding coordinates cover only part of the hyperboloid mentioned in the
section 3.2.2. Solution of the equation (3.28) with the expansion function (3.34) has
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Figure  3.3: The figure (a) is a plot of the function
Re {\/%hn P/(v/-13 — 3, i@; cosh 77)}, and the figure (b) of the same expression,
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the form

1

1 15
C Py <\/3 — k2 — 2 ig;isinh 77) (3.35)

1 1
+C5 Q, (\/3 —k? — 5,i§;isinhn>]

The sample plot of the basic modes for k£ = 4 is presented in 3.4.

3.2.4 Waves in the anisotropic Kasner universe

The Kasner universe is a special case of the Bianchi type I class of homogeneous but
anisotropic spacetimes. Its metric in synchronous coordinates has the form [55]

ds? = —df? + 27 da? + 27 dy? + £27d2> (3.36)

where pq, p2, p3 are constants. This metric represents a solution of vacuum Einstein’s
equations if the following relations hold:

pr+pt+ps=1, pl+p’+p’=1. (3.37)

However, in fact we need not assume these relations. We may consider the matter
content, of the universe described by the energy-momentum tensor which does not
contain a derivative of the metric. This fulfills the conditions of a generalization
of the Isaacson approximation to non-vacuum spacetimes, as described in [15]. Let
us however mention that it has recently been shown [58,59] that it is impossible to
retain anisotropy when the Kasner universe is filled with a viscous fluid, dominant
energy condition holds, and entropy is nondecreasing. However the anisotropy is
permitted when it is filled with an ideal fluid satisfying the Zel’dovic equation of
state.
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Figure  3.4: The ﬁgure (a) is a plot of the function
Re {\/COT P/(v/—-13 — 3 z— ;isinhn) } and the figure (b) of the same expression,
only with P; replaced by Q-

As in the previous calculations we will use hy, = 0 as an additional condition.
The traceless gauge condition has the form (using the summation convention defined
in section 3.2.1)

t2ipt =0 . (3.38)

The gauge condition h,,”” = 0 results in the equations
Di t—QPihiZ, =0 y t_Qpihij,i =0. (339)

Using these gauge conditions we can simplify the dynamical equations (3.4) to the
following form (no summation over i, j in the second equation)

Di t_Qpihij’i =0 , (340)

_hij,OO t2 + (— Zpk + 2pz + 2p]> thij’o + t(72pk+2)hij,kk — 4pipj hij =0. (341)
k
Using the covariant d’Alembertian, the differential equation (3.41) can be rewritten

as
(pi + ;) b

O hyj + 2 50— 47

Let us denote an arbitrary component h;; of the perturbation tensor simply as f
(even though the wave equation (3.41) is different for different indices i, j) and let
us define

A= 2(p; + ) Zpk . B=pp;.
We will look for the solutions of (3.41) in the following special form,

ft,z,y,2)=X(t,x) +Y(t,y)+ Z(t, 2) . (3.42)
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When we insert (3.42) into the wave equation (3.41), its left-hand side splits into
three parts with each depending only on one spatial coordinate. The simplest pos-
sible solution is to equate each of these parts to zero, satisfying thus the equation.
For example, in spatial coordinate x we obtain

*X  A0X ., O°X 4B
52 " T o — 72 e +—X 0. (3.43)

Applying now the one-dimensional Fourier transform in the coordinate x on the
equation (3.43) we arrive at the ordinary differential equation

d2X  AdX ) 4B -
— 4t X 4+ — X =0 3.44
de2 t dt + + 12 ’ (3.44)

where X = F[X]. Making an ansatz X = t2+DF(¢) and using the coordinate
transformation s = ﬁkl t!=P1 we obtain the standard form of the Bessel equation

16B — (A + 1)?
4(]_ - p1)2
where G(s) = F(t), and the dot denotes differentiation with respect to s. Solving

(3.45) and transforming this back to X and ¢, the solution of equation (3.43) takes
the following form

52é+sé+( +52>G:0, (3.45)

X = (440

2 kg t(1=p1) 2 Ly t(1=p1)
y |:Cf_(k1)J<w/(A+1) 168 ki >+C (k)Y <\/(A+1) 168 ki )},

20=p1) 7 ] —p, 20=p1) 7 ] —p,

(3.46)
where J(v, z), and Y (v, 2), is the Bessel function of the first kind, and of the second
kind, respectively. For the vacuum Kasner universe (for which the relations (3.37)
hold) we obtain (A + 1)> — 16B = 4(p; — p;)?, and thus the index of the Bessel
functions is a real number. Generally, assuming that all p; are positive, it turns out
that for ), py < 1 the index is always real, but for ), p; > 1 it might be imaginary.

Proceeding in the same way for the functions Y, and Z, the form of the solution
(3.46) is reproduced except for the replacement of ki, py, C;", C7 with ky, ps, Cif, Cy
and k3, ps, Cf, Cy, respectively. The complete solution may thus be composed in
the following way

ft,my, 2) = Fo bt | X (8 k1) 0(ka)d(k3) + Y (8, ko) 0(k1)d(ks) + Z(t, k3) 5(k1)5(k2)] ,

(3.47)
where F, ! denotes the inverse Fourier transform in three dimensions, and § denotes
the Dirac delta function. The spectrum is then determined by the three functions
C3 (k;), where j = 1,2,3. The monochromatic wave with the wavevector (9, k9, k3)
is obtained by setting

Cf (k) = c;0(k; — k)
and has the form

f(t .Tl,l‘g,.f?,) = t%(A—i—l)

0
% Z [+J(\/A+12 s kot! pj)—i—c Y(‘//H” wp kot( pJ)] ikfa;

J=1,2,3 L Sl 2w 71—y

where 11 = x, 19 = y, 3 = 2.



Chapter 4

Radiative spacetimes approaching
the Vaidya metric

The classic Vaidya metric [33,60-62] is a spherically symmetric type D solution of the
Einstein equations in the presence of pure radiation matter field which propagates
at the speed of light. In various contexts this “null dust” may be interpreted as
high-frequency electromagnetic or gravitational waves, incoherent superposition of
aligned waves with random phases and polarisations, or as massless scalar particles
or neutrinos. The Vaidya solution depends on an arbitrary “mass function” m(u)
of the retarded time u which characterises the profile of the pure radiation (it is a
“retarded mass” measured at conformal infinity).

In fact, the Vaidya spacetime belongs to a large Robinson-Trautman class of ex-
panding nontwisting solutions [27,28,33]. Various aspects of this family have been
studied in the last two decades. In particular, the existence, asymptotic behaviour
and global structure of vacuum Robinson-Trautman spacetimes of type Il with
spherical topology were investigated, most recently in the works of Chrusciel and
Singleton [85-87]. In these rigorous studies, which were based on the analysis of so-
lutions to the nonlinear Robinson—Trautman equation for generic, arbitrarily strong
smooth initial data, the spacetimes were shown to exist globally for all positive
retarded times, and to converge asymptotically to a corresponding Schwarzschild
metric. Interestingly, extension across the “Schwarzschild-like” event horizon can
only be made with a finite order of smoothness. Subsequently, these results were
generalized in [88,89] to the Robinson—Trautman vacuum spacetimes which admit a
nonvanishing cosmological constant A. It was demonstrated that these cosmological
solutions settle down exponentially fast to a Schwarzschild—(anti-)de Sitter solution
at large times u.

Our aim here is to further extend the Chrusciel-Singleton analysis of the Robin-
son—Trautman vacuum equation by including matter, namely pure radiation. It was
argued already by Bi¢dk and Perjés [90] that with A = 0 such spacetimes should
generically approach the Vaidya metric asymptotically. We will analyze this prob-
lem in more detail, including also the possibility of A # 0.

27
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4.1 The metric and field equations

In standard coordinates the Robinson—Trautman metric has the form [28,33,43]

9 m A, 9 r? -
ds® = — (K —2r(lnP), — 27 - 37 ) du” — 2dudr + ZEdCdC : (4.1)
where K = A(In P) with A = 2P?9:0; being the Gaussian curvature of the 2-sur-
faces 2P~2d¢d{, m(u) is the mass function, and A is the cosmological constant.
When the function P(u,(,() satisfies the fourth-order Robinson-Trautman field
equation

AK +12m (InP), — 4m, = 2kn” (4.2)

the metric describes a spacetime (generally of the Petrov type IT) filled with pure ra-
diation field T}, = n?(u,(, () r~2k,k,, where k = 0, is aligned along the degenerate
principal null direction (we use the convention G, + Agu = £T),). In particular,
vacuum Robinson—Trautman spacetimes are given by n = 0, in which case m can
be set to a constant by a suitable coordinate transformation [33].

Here we will restrict ourselves to nonvacuum cases for which the dependence
of the mass function m(u) on the null coordinate u is only caused by a homoge-
neous pure radiation with the density n?(u)r 2. When the mass function m(u) is
decreasing, the field equation (4.2) can be naturally split into the following pair,

AK +12m(u)(InP), = 0, (4.3)
—2m(u), = wn’(u). (4.4)
In fact, it was demonstrated in [90] that such a separation can always be achieved

using the coordinate freedom. It is then possible to reformulate equation (4.3) using
9ap = f(u, ¢, ) 2g%,, where ¢°,(¢, () is the metric on a 2-dimensional sphere S?, and

P=Fik, P0:1+%C§- (4.5)
Then the equation (4.3) becomes
of 1
- = - AK . 4.
ou 12m(u) f (4.6)

4.2 Linear mass function

Let us first consider the simplest choice of m(u) which, in fact, has been widely used
in literature (see e.g. [65,67,91]): we will assume that the mass function is a linearly
decreasing positive function

m(u) = —pu, p = const >0, (4.7)

on the interval [ug, 0]. The constant value ug < 0 localises an initial null hypersurface
on which an arbitrary sufficiently smooth nitial data given by the function

ol Q) = flu=1u0,(.0) (4.8)

are prescribed, see figure 4.1.
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u <0

Figure 4.1: Schematic conformal diagrams of the Robinson-Trautman exact space-
times which exist for any smooth initial data prescribed on ug. Pure radiation field
is present in the shaded region v < 0. Near u = 0 the solutions approach the Vaidya
metric, and can be extended to flat Minkowski region u > 0. Thick line indicates
the curvature singularity at » = 0 whereas double line represents future conformal
infinity Z* at r = oo (A = 0 is assumed). The global structure depends on the value
of the parameter p of the linear mass function (4.7): left diagram corresponds to
p > 1/16, the right one applies when pu < 1/16.

4.2.1 Existence of the solutions

Now, the idea is to employ the Chrusciel-Singleton results [85-87] concerning the
analysis of the Robinson—Trautman vacuum equation, in particular the existence
and asymptotic behaviour of its solutions. In the vacuum case m in equation (4.3)
is constant, and the solution f(u,(,() of the characteristic initial value problem
(4.8) exists and is unique (in spite of the singularity at » = 0). In the presence of
pure radiation given by (4.7) it is possible to “eliminate” the variable mass func-
tion from the Robinson-Trautman field equation (4.6) mathematically by a simple
reparametrisation

i = —p " In(—u) , (4.9)

cf. [90]. Indeed, equation (4.6) is then converted to
fAK . (4.10)

Notice that the transformation (4.9) moves the hypersurface « = 0, on which the
mass function m(u) reaches zero, to 4 = +oo.

Chrusciel [86] derived the asymptotic expansion (as @ — oo) for the function
f satisfying the evolution equation (4.10) for any smooth initial data fy = f, on

g = —p 'In(—up). In our case of pure radiation field (4.7) we employ the trans-
formation (4.9) on Chrusciel’s original results to obtain the following asymptotic
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expansion of f as u — 0_,

L+ fro (—u)™ + foo ()™ 4 oo frag (—u)®/m

—p " fisa In(—u) (—u)®/m 4 f15,0 (—u)3/m ... (4.11)
o Ni

- fz] 71 ln(_u)]j (_u)%/ﬂ )

=0 j=

f

where f;; are smooth functions on S? such that f;; =0 for 7 >0, i <14. As a
result, for the initial data (4.8) the Robinson—Trautman type II spacetimes which
contain uniform pure radiation field with the linear mass function (4.7) do exist in
the whole region ug < u < 0. It is also obvious that the function f approaches 1 as
u — 0_ (where also m(u) — 0) according to (4.11). In other words, these spacetimes
approach the spherically symmetric Vaidya—(anti-)de Sitter metric near u = 0.

At u =0 all of the mass m(u) is radiated away, and we can attach Minkowski
space (de Sitter space when A > 0, anti-de Sitter when A < 0; the presence of the
cosmological constant would change the character of conformal infinity Z which
would become spacelike or timelike, respectively) in the region u > 0 along the
hypersurface u = 0.

4.2.2 Extension of the metric across u =0

It follows from (4.11) that the smoothness of f on u = 0 is only finite. Depending on
the value of p two different cases have to be discussed separately: 2/u is an integer,
and 2/p is a real non-integer positive number.

When 2/p is an integer then due to the presence of the In(—u) term associated
with f5,1 # 0 the function f is of the class C®%/#®=1. Note, that it is always at least
C'" because p < 2 in this case.

In the generic case when 2/p is not an integer the function f is only of the class
C12/1} | where the symbol {z} denotes the largest integer smaller than z. For p > 2
it is not even C'! but it remains continuous.

To investigate further the smoothness of the metric when approaching the hy-
persurface © = 0_ which is the analogue of the Schmidt-Tod boundary of vacuum
Robinson—Trautman spacetimes [81,86] we should consider the conformal picture us-
ing suitable double-null coordinates. Such Kruskal-type coordinates for the Vaidya
solution with linear mass function (4.7) were introduced by Hiscock [65-67]. Using
his results, we put the Robinson-Trautman metric with linear mass function into
the form

ds? = — (K—l—Q&r> du?
f
2
_ (27“ Fut zuu—> dudw + 2—d<dg , (4.12)
T

where r(u, w).
The general Robinson—Trautman metric (4.12) is evidently one order less smooth
than f due to the presence of the function f,/f. Consequently, for 2/u being
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integer or non-integer number, the metric (4.12) is of the class C®%/#=2 or C{2/#}=1,
respectively.

We would like to obtain analogous results concerning smoothness of the exten-
sion also for a non-zero value of the cosmological constant A. Unfortunately, as far
as we know, there is no explicit transformation of the Vaidya—de Sitter metric to the
Kruskal-type coordinates even for the linear mass function. However, we can use
a general argumentation: the coordinate u is already suitably compactified and we
are only determining the complementary null coordinate w to obtain the Vaidya-de
Sitter metric in the Kruskal-type coordinates (which is smooth on uw = 0). More-
over r(u,w) is finite and smooth when approaching the hypersurface v = 0. The
smoothness is thus not affected by the specific transformation to the Kruskal-type
coordinates and it is the same as for the vanishing cosmological constant. This is
different from vacuum spacetimes with m = const # 0 studied in [88,89] because
in the present case m — 0 near u = 0, and the influence of A on the smoothness
becomes negligible.

4.3 General mass function

The results obtained above can be considerably generalized. Inspired by a similar
idea outlined in [90] we may consider a reparametrisation on the null coordinate u
by

w="(u), (4.13)

where 7 is an arbitrary continuous strictly monotonous function. Now, by applying
the substitution (4.13) in equation (4.10) we obtain

of %
50 = 19/ AK (4.14)

(where the dot denotes a differentiation) which is the evolution equation for the
function f(u,(,{). This is exactly the Robinson-Trautman equation (4.6) for the
mass function

m(u) = — . (4.15)

To obtain a positive mass we assume a growing function y(u). Considering (4.4)
this corresponds to a universe filled with homogeneous pure radiation

5 &
n(u) = = = . (4.16)

k-

For consistency the function ¥ must be convex.
In particular, the linear mass function (4.7) discussed above is a special case of

(4.15) for the transformation (4.13) of the form (4.9). More general explicit solutions
can be obtained, e.g., by considering the power function

y(w) =(-u)?, p>0. (4.17)
The asymptotic behaviour of such solutions is determined by expression (4.5) with

F=143° fi (=) exp [~2i(—u)7] |

i=1 j=0
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u>0 N

u <0

Figure 4.2: Possible extensions of the Robinson-Trautman radiative spacetimes in-
to the region u < ug. Pure radiation is present only in the shaded region, every-
where else it is a vacuum solution. For u € (uy,up) the mass function is constant,
m(ug) = —pug, but the spacetime is not spherically symmetric — it is not the
Schwarzschild solution (x> 1/16 on the left, ;4 < 1/16 on the right).

where f; ; =0 for j > 0 if ¢« < 14. Interestingly, the function f is now smooth on
u = 0 for any power coefficient p.
Another simple explicit choice is

y(u) = =M 'ln [sinh(—u)] , M>0, (4.18)

which implies the following expansion near u = 0_

f=1+ Zi fij (=M~"1n [sinh(—u)])’ sinh®/™ (—u) .

i=1 j=0

If 2/M is an integer then the function f belongs to the class CGYM)=1 otherwise
it is of the class C12/M},

4.4 Possible modifications and applications

The Robinson—Trautman pure radiation solutions in the region ug < u < 0 approach-
ing the Vaidya metric near v = 0, which can be extended (albeit non-smoothly) to
flat Minkowski space in the region v > 0 as in figure 4.1, may be used for construction
of various models of radiative spacetimes. For example, it is natural to further extend
the solution “backwards” into the region u; < u < ug by the Robinson—Trautman
vacuum solution with a constant mass mg = m(ug), such that the function f is
continuous on ug. This is shown in figure 4.2.

In the presence of the cosmological constant A the schematic conformal diagram
on figure 4.2 has to be modified in such a way that for all values of v the conformal
infinity Z* becomes timelike (for A > 0) or spacelike (for A < 0).
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v>0
& —
\ I
Yo

v<0

N

Figure 4.3: Time-reversed version of figure 4.2 represents the “advanced” form of
the Robinson—Trautman spacetimes which describes an ingoing flow of radiation.

Another possible modification is to consider the “advanced” form of the space-
times (which describes an ingoing flow) rather than the “retarded” form (corre-
sponding to outgoing flow) employed above (see, e.g., [71] for more details). This
time-reversed form is obtained formally by a simple substitution # — —wv in the met-
rics and corresponding functions. In this case m(v) is an increasing mass function
in v € [0,v9]. This is joined with flat Minkowskian region v < 0, and extended to
the region v > vy by the corresponding Robinson—Trautman—(anti-)de Sitter black
hole vacuum solution, see figure 4.3. In analogy with (4.11), we obtain

i

oo N,
F=323" fig (mu " ) w2 (4.19)

i=0 j=0

so that the smoothness of the metric on the boundary v = 0 depends on the pa-
rameter p. For v € (vg,v1) the spacetime is vacuum but not spherically symmetric.
The metric diverges as v — oo. Our results can thus be interpreted in such a way
that — at least within the Robinson-Trautman family of solutions — the model [67]
of collapse to a naked shell-focusing singularity which is based on the spherically
symmetric Vaidya metric is not stable against perturbations.



Conclusion

In the first chapter, we have compared the Efroimsky [1,2] and the Isaacson [3] self-
consistent perturbation schemes which describe propagation of weak gravitational
waves on a cosmological background. In both these approaches the background is
influenced by the waves, i.e. the non-linear effects are taken into account. The
classical Isaacson method applies to high-frequency waves. On the other hand, the
Efroimsky formalism is applicable to low-frequency gravitational waves but does not
admit the high-frequency limit. We have suggested a modification of the Efroimsky
formalism by employing the gauge-invariant decomposition (1.9) of the Ricci tensor,
introduced recently by Anderson [16]. The resulting generalized system of equations
(1.12)-(1.14) fully recovers the Efroimsky results in the absence of high-frequency
modes, in the high-frequency limit it reproduces Isaacson’s formulae.

In the second chapter, the Isaacson approach [3] to study high-frequency per-
turbations of Einstein’s equations was briefly reviewed and compared with the
standard weak-field limit. In our contribution we generalized Isaacson’s method
to include non-vacuum spacetimes, in particular an electromagnetic field and/or a
non-vanishing value of the cosmological constant A. Then we explicitly analyzed
possible high-frequency gravitational waves in three large families of background u-
niverses, namely non-expanding spacetimes of the Kundt type, cylindrical Einstein-
Rosen waves and related inhomogeneous cosmological models (such as the Gowdy
universe), and the Robinson-Trautman expanding spacetimes. These backgrounds
are of various Petrov types. For example, high-frequency gravitational waves can
be introduced into electrovacuum conformally flat Bertotti-Robinson space, type D
Nariai and Plebanski-Hacyan spaces, their type N and type II generalizations, or
into algebraically general Einstein-Rosen universes.

In the third chapter we have investigated the spectra of high-frequency waves
propagating on several important cosmological models using the wave equation de-
rived by Isaacson [3]. It was demonstrated that the application of tensor harmonics,
inspired by Bardeen [56], considerably simplifies the solution of the wave equation
for the non—flat FRW models. It turns out that the explicit solutions of the wave
equation are expressed using special (Bessel and Legendre) functions containing
purely imaginary indices.

In the last chapter we have analyzed exact solutions of the Robinson-Trautman
class which contain homogeneous pure radiation and a cosmological constant. We
have demonstrated that these solutions exist for any smooth initial data, and that
they approach the spherically symmetric Vaidya—(anti-)de Sitter metric. It gener-
alizes previous results according to which vacuum Robinson—Trautman spacetimes
approach asymptotically the spherically symmetric Schwarzschild—(anti-)de Sitter
metric. We have investigated extensions of these solutions into Minkowski region,
and we have shown that its order of smoothness is in general only finite. Finally, we
suggested some applications of the results. For example, it follows that the model
of gravitational collapse of a shell of null dust diverges as v — oo which indicates
that investigations of such process based on the spherically symmetric Vaidya met-
ric are, in fact, not stable against “non-linear perturbations”, at least within the
Robinson-Trautman family of exact solutions.
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Abstract

The Efroimsky perturbation scheme for consistent treatment of gravitational
waves and their influence on the background is summarized and compared
with the classical Isaacson high-frequency approach. We demonstrate that the
Efroimsky method in its present form is not compatible with the Isaacson limit
of high-frequency gravitational waves, and we propose its natural generalization
to resolve this drawback.

PACS numbers: 04.30.—w, 04.25.—¢g

1. Introduction

Recently, Efroimsky introduced and developed a new formalism for the consistent treatment
of weak gravitational waves [1, 2]. This interesting mathematical framework is remarkable,
mainly due to the possibility of ascribing the stress—energy tensor even to low-frequency
gravitational waves influencing the background, which is in contrast to the standard
linearization approach where the background is kept fixed. This is achieved by introducing a
natural low-frequency cut-off, employing three different metrics (the premetric, the complete
physical metric and the average metric) and careful analysis of their mutual relations.

On the other hand, in a now classic paper [3] Isaacson (inspired by previous works [4, 5])
presented a perturbation method which can be used for studies of high-frequency gravitational
waves. Such waves also influence the cosmological background in which they propagate.
Isaacson’s work stimulated further contributions in which his method was reformulated using
various formalisms, and explicitly applied to particular spacetimes (see, e.g., [6—15]).

In our present work we first briefly summarize and compare the two above-mentioned
perturbation schemes. In particular, it is shown that the Efroimsky method is not consistent if
high-frequency gravitational waves are considered. Next (in section 3), we propose a possible
modification of the Efroimsky formalism which may resolve this drawback.
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2. The formalism

Efroimsky’s approach [1, 2] is based on introducing three different smooth, non-degenerate,
symmetric metrics on a differentiable manifold M, namely:

(i) yuv—the ‘premetric’, a vacuum metric corresponding to initial pure background without
gravitational waves;

(ii) guy—the ‘physical metric’, a full vacuum metric which describes both the background
and the waves;

(iii) ¢, ,—the ‘average metric’, a nonvacuum metric representing the background plus its
perturbations with wavelength greater than L. In fact, it is the averaged full metric g,
where the cut-off value L depends on the observer’s experimental abilities. Since no
detector can measure gravitational waves of arbitrarily long wavelengths, the existence of
such a low-frequency cut-off is a natural assumption.

One motivation for using these three distinct metrics is to resolve a (slight) discrepancy in the
standard linearization approach which considers only the metrics y,,,, g, and decomposition
&uw = Yuv *+ hyy, where h,, is a small perturbation. The contravariant components obtained
as an inverse of g, are gh¥ = y*" — ht*V + O (h?), but Yuv 18 commonly used for raising and
lowering indices. It is thus not clear which semi-Riemannian manifold this equality relates
to. Such inconsistency can be ignored in the lowest order because it leads to the correct linear
approximation of the wave equation. To extend the weak-field formalism to higher-order
terms, the distinction between the premetric y and the average metric ¢ is necessary as it
exhibits the back-reaction of the waves on the background geometry. (Here and hereafter,
indices of the metric tensors are sometimes suppressed for notational simplicity.)
The next step is to define the Ricci and Einstein tensors for an arbitrary metric g as

_T1 1

R;w(g) = [ng)(gpv,y. + 8pu,v — gﬂV-P)],y - [ng)(gm/,u + 8puy — guy,p)]’v

+ [%gya(gpé,y + 8py.s — gy&,p)][%gsp(gpv,y_ +8puy — g,w,p)] (1)

- [%gyp(gpa,v + 8pv,s — gvé,p)][%gsp(gpy,u + 8pu.y — guy,p)]»
Guv(8) = Ryun(8) = 3808 Rap ().
where g°* = (g);rl; the same expressions apply to y and g. These equations remain a tensor
even if we transfer to another semi-Riemann space (the reason is that covariant tensors are
defined on a metric space rather than on some particular semi-Riemann one). From proposals
(1)—(iii) it follows that G, (y) =0 = G, (g), G (q) # 0.

Now, the differences between the covariant components of the above metrics are

introduced,

h/w = 8guv — 9uvs N = Guv — V- 2

It is necessary to specify the semi-Riemann space: for raising or lowering indices and for
covariant differentiation, the averaged nonvacuum metric ¢ will be used. Consequently, /# and
n are tensor fields on the semi-Riemann manifold (M, ¢), i.e.

WY =" g hag, " =" g 0. 3)

Treating h,, as a perturbation of the metric g, the Ricci tensor (1) can be expanded in a
power series

Ruv(8) = RY)(q) + R\)(g. h) + R()(q. h) + R) (g, h) + O (h"), (4)

L
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where
RO)(q) = Ry (q),
R/(llu)(q’ h) = %qm(hw;vp +hevup = Npripn — Rpvipe)s &)

R;(l,2v)(q7 h) = % [%hpr;uhpf;v + hpt(hpr;uv + h;w;pr - hm;vp - hrvmp)

+ hrv;p(htu;p - hpu;r) - (hpr;p - %hz;t)(hru;v +hrv;u - h;w;t)] .

Analogously,
Ru() = RO(@) + R (q, (=) + RC)(q, (=) + O(p® 6)
v (V) w (@) + R (g, (=m) + R (g, (=n) + O(). (
It is obvious that R()) (¢, (—1)) = —R{)(g. n) and RP)(q. (—n)) = R)(q. n). According to

assumptions that both g and y are vacuum metrics the following relation holds:

0= R;w(g) - R;w(y)
=R\ (q. h)+ R (q. ) + R (g, m) + RO (g, by + O + O().  (7)

ny v

At this point Efroimsky sets three assumptions:

Assumption 1. The perturbations / and 7 are small in the sense that the terms of the orders
O(h*) and O (n?) are negligible.

Assumption 2. The perturbations 1 and 4 are of the same order.

Assumption 3. The tensor field % consists of modes with short wavelengths which do not
exceed the given maximal value L.

A physical interpretation of the perturbations given by (2) is thus the following: £,
characterizes measurable gravitational waves whereas 7n,, is a shift of the background
geometry from vacuum premetric y to nonvacuum effective average metric ¢ due to the
presence of gravitational waves. This enables us to interpret equation (7) as the wave equation
for perturbations % on the background ¢ = y + 1. To make this wave equation applicable,
one has to express 7 in terms of 4. Using the Brill-Hartle averaging procedure [5] over a
spacetime volume of size L for (7) (Efroimsky considers only space averaging but when the
measurement lasts much longer than the period of waves one can employ a spacetime average)
we obtain

R\ (g, m = —{R%(g, M), . ®

The averaging brackets on the left-hand side are omitted because the term contains only the
modes with wavelength greater than L. It is thus clear from (8) and (5) that assumption 2 is
natural since the left-hand side is linear in n whereas the right-hand side is quadratic in 4.

Let us finally recall the derivation of the stress—energy tensor of gravitational waves. By
analogy with the Ricci tensor expansion (4) the Einstein tensor of the vacuum premetric y is
represented as a series

0=Gu(¥) = Gu(@) +G(g. (=m) + 0GP, )
and the effective stress—energy tensor of gravitational waves is defined as
Guv(q) =8xTE™ = R (q. n) — 3q,uq* RY) (q. m). (10)

From (8) it follows (considering the Brill-Hartle averaging) that this tensor fully agrees with
that of Isaacson [3].

The main advantage of Efroimsky’s perturbation method above is the possibility of
consistently treating all low-frequency gravitational waves, and of explicitly deriving an
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effective stress—energy tensor (influencing the background) in this case. It can be extended to
nonvacuum spacetimes with 7),,, of ideal fluid and/or with a possible cosmological constant
A, see [1, 2]. However, there are some problems concerning high-frequency gravitational
waves which will now be discussed.

3. Modification to include high-frequency waves

In this section we first explicitly demonstrate that one cannot consistently apply Efroimsky’s
treatment on Isaacson’s high-frequency waves [3] because assumption 2 is not fulfilled in such
a case. Then we will present a possible solution to this problem.

Let us start with the observation that it is the nonvacuum background curved by
the presence of gravitational waves—not the vacuum premetric y—which is the basis of
Isaacson’s nonlinear approach. Therefore, the nonvacuum average metric ¢ is considered as
the background on which high-frequency gravitational waves / propagate.

We wish to use the Efroimsky formalism in the high-frequency regime such that the tensor
field & contains high-frequency modes. We assume that they have short wavelengths A, and
a small amplitude 4 = O(e), where ¢ = 1/S < 1 is a small parameter because A < S, S
denoting a typical scale on which the background changes substantially.

Let us emphasize that we follow here the same definition of the symbol O (¢") as in [3],
namely f = O(¢g") if there exists a constant C > 0 such that |f| < Ce" as ¢ — 0. The
quantity f need not necessarily be proportional to €”, it can be even smaller than Ce" for
& — 0. Therefore, the assumption & = O(¢e) does not automatically imply that 4 ~ ¢. The
spectrum of possible high-frequency waves is thus not a priori restricted, it is only required
that their amplitudes fall to zero at least linearly with ¢, i.e. [h(e)| < Ce.

Since we can consider S = O(1) it follows that O(¢) = O(A) and oh ~ h/A = O(1).
In accordance with Isaacson’s approach (note that the decomposition now reads ¢ = g + h,
instead of the notation g = y + h used in [3]) we obtain the following orders of magnitude for
the derivatives of the background ¢ and the perturbation /:

quv = o(l), h;w = 0O(e),
quv.a = 0(1)’ h;w,a = 0(1)’ (11)
quv,ap = 0(1)7 huv,aﬂ = 0(8_1)-
This results in the orders of magnitude of the terms in the Ricci tensor expansion (4), (5) as
RO = 0(D), R(}) =0, RY = 0(1), RO = 0(e). (12)

To apply the Efroimsky approach in this case we must consider the decomposition g = y + 1,
where y is the vacuum premetric and n represents (in this case) a substantial shift of the
background geometry due to the presence of high-frequency gravitational waves h. We also
introduce the scale L, such that A < L « §. This enables us simultaneously to consider
an averaging procedure in accordance with the Isaacson approach, and also to introduce a
meaningful cut-off scale L even if the wavelengths of high-frequency waves are not assumed
to reach this value.

Of course, the geometry shift 1 does not contain high-frequency perturbations.
Considering the wave equation (7) and using the Brill-Hartle averaging over a spacetime
volume L to obtain equation (8) we get into a conflict with assumption 2 which prescribes
O(n) = O(h?). Indeed, if h = O(e) there should be 7 = O(g?). But the right-hand side
of (8) is now of the order of O(1), see (12), and the same magnitude should also have the
left-hand side. Since n does not contain high-frequency waves, it is essential that n = O(1).
This is obviously in contradiction with both assumptions 1 and 2. In fact, it disables any
consistent perturbation expansions in the powers of 7.
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Let us now suggest a modification of the Efroimsky formalism which will incorporate
also the above case of a ‘substantial’ change of the background geometry due to the presence
of high-frequency waves. Instead of the perturbation expansion (6) we consider a formal
decomposition of the Ricci tensor of the premetric y = g — n, namely

0= Ru(y) = Ru(q) + ARy (q. (—=n)), 13)

by which the expression AR, is defined. Both terms on the right-hand side of (13) are of the
same order O(1). Moreover, the quantity AR,,, is conserved with respect to the background
geometry ¢ which is easily seen from equation (13) and the relation (R,,(g))"" = O (the
differentiation relates to the background metric g).

The question concerning the gauge invariance of AR,,, with respect to generalized gauge
transformations has recently been analysed in detail by Anderson [16] in connection with
possible definitions of the wave equation and stress—energy tensor for gravitational waves. Let
us consider an arbitrary coordinate transformation of the type

XH = x4 £ (14)

which does not change the functional form of the background geometry ¢, i.e. ¢(X) = g(x) so
that y (x) — Y (x) = q(X) — n(x). Now, to prove the invariance of AR, we adopt (slightly
modified) Anderson’s argumentation. Performing the above coordinate transformation (14)
of the Ricci tensor decomposition (13) we obtain

R, (g(@) + AR, (g(X), (—7(X))) = R, (7 (X)) = 0. (15)

Here R, and AR, are the same as R,, and AR,,,, respectively, because definition (1) is
maintained in any coordinate. Evaluating relation (15) at X = x we thus get R,,,(q(x)) =
—AR,,(q(x), (—=7(x))), and using (13) we obtain

AR, (g(x), (=n(x))) = AR, (g (x), (=7(x))). (16)

A generalized gauge transformation is defined in [16] as a transformation in which the quantity
7(x) is substituted for n(x) into the tensor expressions of interest. This incorporates, as a
particular case, the well-known infinitesimal gauge transformation

ﬁ,w(x) :nuv(x)"'éu;v"'sv;uv (17)
where 1, £ and their derivatives are small. Obviously, equation (16) expresses a generalized
gauge invariance of AR,,.

After introducing the above decomposition (13) and demonstrating its invariance we can
now present modification and generalization of the Efroimsky formalism. Replacing the term
R;(le) (q.m) by —AR,,(q, (—n)) in equations (7), (8), (10), and omitting the terms 0(n?) we
obtain relations

R)(g,h) + RJ)(q. h) — AR, (q, (—m) + RO (g, h) + O(h*) =0, (18)

v iy

AR (q, (=) = (RQ(q. b)), . (19)

Guv(q) =8nT 8" = —ARu(q. (=) + 34,09 ARus(q. (—1)).  (20)

In the case where the gravitational waves do not have high-frequency modes it is still possible to
employ the expansion of —AR,,, (g, (—n)) in powers of 1 and use its dominant term Rl(}l} (g,n)
instead. Thus we recover Efroimsky’s previous results (cf (7), (8), (10)).

In general, however, expressing 7 in terms of / from equation (19) becomes an extremely
difficult task because it is no longer a linear equation for . To overcome this problem we
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can use equation (19) and substitute for AR, into the remaining equations (18) and (20). We
obtain the relations

R (g, h)+ R(C)(g, h) — (RD) (g, b)), + R() (g, h) + O(h*) =0, 1)
~Gw(q) = (R (q. 1)), — $4,0q** (R (q. b)), = —8nTEM. (22)

Equation (22) is obviously in perfect agreement with the Isaacson result [3] which represents
the background response to the presence of high-frequency gravitational waves, using the
Brill-Hartle averaging to introduce the effective stress—energy tensor T/ﬁH for high-frequency
gravitational waves. Equation (21) is the wave equation for perturbations % on the average
metric g. In the highest order of high-frequency approximation this clearly reduces to R{) = 0
which also fully reproduces Isaacson’s result. Additional terms in (21) can be used for study
of nonlinear effects on the wave propagation.

Note finally another interesting consequence of equation (19) and the gauge invariance
(16) of AR,,. This directly guarantees gauge invariance of the stress—energy tensor Tlff)H
defined in (22) (in the highest order). Proof of this property was presented already in the
classic work [3], using, however, a much more complicated method.

4. Concluding remarks

In our contribution we have compared the Efroimsky [1, 2] and the Isaacson [3] self-
consistent perturbation schemes which describe propagation of weak gravitational waves
on a cosmological background. In both these approaches the background is influenced by the
waves, i.e. the nonlinear effects are taken into account. The classical Isaacson method applies
to high-frequency waves. On the other hand, the Efroimsky formalism is applicable to low-
frequency gravitational waves but does not admit the high-frequency limit. We have suggested
a modification of the Efroimsky formalism by employing the gauge-invariant decomposition
(13) of the Ricci tensor, introduced recently by Anderson [16]. The resulting generalized
system of equations (18)—(20) fully recovers the Efroimsky results in the absence of high-
frequency modes, in the high-frequency limit it reproduces Isaacson’s formulae.

Although we have considered here for simplicity only vacuum metrics y,, and g,.,
possible generalization to nonvacuum spacetimes is straightforward. In fact, Efroimsky has
already generalized his formalism to spacetimes with ideal-fluid-like matter and a cosmological
term [1, 2]; in the case of the Isaacson high-frequency approach, this was done recently
in [15].
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to Exact Radiative Spacetimes
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A formalism is introduced which may describe both standard linearized waves and
gravitational waves in Isaacson’s high-frequency limit. After emphasizing main differ-
ences between the two approximation techniques we generalize the Isaacson method
to non-vacuum spacetimes. Then we present three large explicit classes of solutions
for high-frequency gravitational waves in particular backgrounds. These involve non-
expanding (plane, spherical or hyperbolical), cylindrical, and expanding (spherical)
waves propagating in various universes which may contain a cosmological constant and
electromagnetic field. Relations of high-frequency gravitational perturbations of these
types to corresponding exact radiative spacetimes are described.

KEY WORDS: gravitational waves; high-frequency limit; exact solutions.

1. INTRODUCTION

In classic work [1] Isaacson presented a perturbation method which enables one to
study properties of high-frequency gravitational waves, together with their influ-
ence on the cosmological background in which they propagate. Itis this non-linear
“back-reaction” effect on curvature of the background spacetime which distin-
guishes the high-frequency approximation scheme from other perturbation meth-
ods such as the standard Einstein’s linearization of gravitational field in flat space
[2, 3] or multipole expansions [4] that were developed to describe radiation from
realistic astrophysical sources.

The high-frequency perturbations were originally considered by Wheeler [5]
and then applied to investigation of gravitational geons by Brill and Hartle [6].
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Isaacson’s systematic study [1] stimulated further works in which his treatment
was developed and also re-formulated in various formalisms. Choquet-Bruhat[7, 8]
analyzed high-frequency gravitational radiation using a generalized WKB “two-
timing” method. Averaged Lagrangian technique which leads to Isaacson’s results
with less calculation was introduced by MacCallum and Taub [9, 10]. Compari-
son of these approaches, and clarification of assumptions that have to be made in
order to provide a consistent high-frequency approximation limit was also given
by Araujo [11, 12]. Elster [13] proposed an alternative method that is based on
expanding null-tetrad components of the Weyl tensor. Recently, Burnett developed
a weak limit approach [14] in which the high-frequency limit can be introduced
and studied in a mathematically rigorous way. These general methods have been,
of course, applied to study explicit particular examples of high-frequency gravita-
tional waves, see e.g. [1, 8, 9, 15, 16].

On the other hand, mamxactsolutions of Einstein’s equations are known
which represent gravitational radiation. Among the most important classes are
planampp-waves [17, 18] which belongto a large family of non-expanding radiative
spacetimes [19, 20], cylindrical Einstein-Rosen waves [21], expanding “spherical”
waves of the Robinson-Trautman type [22, 23], spacetimes with boost-rotation
symmetry representing radiation generated by uniformly accelerated sources [24—
26], cosmological models of the Gowdy type [27], and others —for comprehensive
reviews containing also a number of references see, e.g., [28-32].

However, there are only several works in whrelation between exact grav-
itational waves and those obtained by perturbations of non-flat backgrounds has
been explicitly investigated and clarified, see e.qg. [10, 33, 16]. The purpose of our
contribution is to help to fill this “gap”.

We first briefly summarize and generalize the Isaacson approach [1] to admit
non-vacuum backgrounds, the cosmological congtdntparticular. Modification
of Isaacson’s formalism allows us to incorporate also standard linearized gravita-
tional waves into the common formalism. Then, in section 3 we study properties of
high-frequency gravitational waves in specific classes of spacetimes with special
algebraic or geometric structure. In particular, we focus on waves which propa-
gate in backgrounds with # 0. This is motivated not only theoretically but also
by recent observations [34] which seem to indicate that (effective) positive cos-
mological constant played a fundamental role in the early universe, but it is also
important for its present and future dynamics.

2. HIGH-FREQUENCY APPROXIMATION VERSUS STANDARD
LINEARIZATION

Let us assume a formal decomposition of the spacetime ngirinto the
background metrig,, and its perturbatioh,,,
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O =V + Eh/un (1)

where, in a suitable coordinate system, = O(1) andh,, = O(¢) [by definition,
f = O(e") ifthere exists a constaft > Osuchthatf| < Ce"ase — 0]. Thetwo
distinct non-negative dimensionless parameteasde have the following mean-
ing: ¢ is the usual amplitude parameter of weak gravitational perturbations whereas
the frequency parameterdenotes the possible high-frequency character of radi-
ation described by,,. To be more specific, the paramete 1 characterizes
(for ¢ = 1) the amplitude of linearized gravitational waves in the ordinary weak
field limit of Einstein’s equations. The second independent parametek /L
represents, on the other hand, the ratio of a typical wavelengftgravitational
waves and the scale on which the background curvature changes significantly.
Isaacson’s high-frequency approximation [1] arises wheq L, i.e.e < 1 (and
¢ = 1). SinceL can be considered to have a finite value of order unity, we may
write O(e) = O(A).

To derive the dynamical field equations we start with the order-of-magnitude
estimates which indicate how fast the metric components vary. Symbolically, the
derivatives are of the ord@y ~ y /L, dh ~ h/x, so that the following formulas

Y = O0(1),  hyy = O(e),
Yiwa = O(1),  hupo = 0O(1),
Vuvap = O(L),  Duvap = O™, )
are valid. Next, we expand the Ricci tensor in powerh,of
Ruw(@) = RO+ eRM + 2R + 3RG) + (3)
where
ROG) = Ru(»).
RO(y. h) =

2 —

%Vpr(hw;vr] + Nevip = Npeyw — Npwipe)
33077 hoe + 0 (hepn 4+ Ny — Mo
= Neviup) + 0P (e psp — Nppie)
— (W5 = 307) (Mo + Neve — o) |-
RO h) = 307 hopuh? e + .. @

The semicolons denote covariant differentiation with respect td#okground
metricy,,,, which is also used to raise or lower all indices. Considering relations
(2), the orders of the terms (4) are

0 1 -1 2p(2 2 3p(3 3
RO =0(1), eRY = O(c %), e?RE) = 0(?), e*RY = O(e?). (5)
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Two limiting cases thus arise naturally. For tstandard linearization
(e € 1, € = 1) the dominant term oR,, (g) is R® = O(1) which corresponds
to the background,, [to find, e.g., a vacuum spacetime metgg, we solve
,(PV)(V) 0]. Its first correction representing linearized (purely) gravitational
waves is governed by

RO(y, h) =0, (6)

which is a dynamical equation for perturbatidns on the fixed backgroung,, .

The next termR,(fv)(y, h) can then be used to define energy-momentum tensor
of these gravitational waves, but the background metrinasassumed to be
influenced by it. Improvements to this inconsistency can be obtained by iteration
procedure. More rigorous but somewhat complicated solution to this problem was
recently proposed by Efroimsky [35].

In the high-frequency approximatioe « 1, ¢ = 1) the dominant term is
R(l) = O(e~1) which gives the wave equation (6) for the perturbatibpson the
curved backgroungt,, (considering a vacuum full metrig,,, ). The two terms of
the orderO(1), namelyR(?) and R, arebothused to give the Einstein equation
for the backgroundhon-vacuummetric, which represents the essential influence
of the high-frequency gravitational waves on the background. Of course, to obtain
a consistent solution, one has to use both the wave equatidithe Einstein
equation for the background simultaneously.

2.1. Linear Approximation

Interestingly, it follows that the wave equation for,, which arises from the
linear perturbation of the Ricci tensor in vacuum iaththe above limiting cases
ekl e=1,ande « 1,¢ =1, is thesameequation (6). In analogy with the
well-known theory of massless spin-2 fields in flat space [4] we wish to impose
two TT gauge conditions,

h.’ =0, @)
h*, = 0. (8)

In this gauge we arrive at the following wave equation
Ohyy = hyy — 2R 0P — RO h, — ROh, =0, (9)

where the operatap is the generallzatlon of flat-space d’Alembertian. Contracting
(9) we obtain () )'S = 0, so that the condition (8) is always consistent with (9).
However, if we dlfferentlat@hlw and use equations (7), (2), we find that

(<>h//.u)"} = (Rl()(;)@),u, — ZRLOB,ﬁ)hUﬁ, where (10)
©hw)' =03, (RY, - 2R )h” = Oe). (11)
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Thus, in case of standard linearized wawes=(1) there is an obvious inconsis-
tency, except for backgrounds with a covariantly constant Ricci tensor (e.g., for
the Einstein spaces). On the other hand, in the high-frequency kmitX), the
inconsistency between (9) and (7) is extremely small (the left and the right sides of
(10) differ bye® wheree « 1). Moreover, for all background metrics ebnstant
curvaturethe equations aréully consistent This is an important advantage of
the equation (9) containing also terms of non-dominant order (namely those pro-
portional to the Riemann or Ricci tensors), if compared to other “simpler” wave
equations (e.gh,.".s = 0) for which the left and right sides of (10) generally
differ by only two orders of magnitude.

2.2. Nonlinear Terms and the Effective Energy-Momentum Tensor

Before considering the second-order terms we now extend the formalism
to be applicable to a larger class of spacetimes with (possibly) non-vanishing
energy-momentum tensay,,. Namely,g,,, need not be a vacuum metric (as only
considered in [1]) but it satisfies Einstein’s equations

R.(9) = 87 T,(9, ¢)- 12)

Here 'Nr/“, =T, — %g,wa‘ﬁ, such thatT,, (g, ¢) depends on non-gravitational
fields¢ and on the full metrig,, but it does nottontain thederivativesof g,,,.

Note that this admits as particular cases a presence of electromagnetic field, and
also Einstein spaces whéﬁgv = % Ag,,. Under the assumptions (2) valid for

the decomposition (1) we expand the equation (12) as

RO(y) +eRU(y. h) + e2R@(y, h) + ... =
87 [TOWw. 0) +e TP, 0 0) + 2T, hg) +... ], (13)

Whereflﬁ‘j)(y, @) = 'IN',”(y, ¢), and the remaining terms on the right-hand side
are linear and quadratic im respectively. The orders of magnitude of the terms

in the expansion of the Ricci tensor have been described above, cf. (5). For the
energy-momentum tensor one obtains

TO=0@1). TH=0() T?=0(?. (14)

For ordinary linearization we thus get the equati®{3 = 8z T in each order
n=0,1,2,.... For the high-frequency approximation we obtain from (13) in
the leading orde©(e 1) the equation (6) which is identical with the wave equa-
tion in the vacuum case. The second-order contributions, tha g represent

an influence of the high-frequency gravitational waves and matter fields on the
background,

0 = (O 2
ROG) - 8770y, ¢) = —R(y. h). (15)
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This equation (which in case of a vacuum spacetime reduces to the Isaacson result)
can be rewritten in the form of Einstein’s equation for the background as
GO — 8t TO(r. ¢) = = [RO(. h) = 37RO )] =8z TEY.  (16)

v nv /3% 7Y

This defines the effective energy-momentum tefig¥ of high-frequency grav-
itational waves.

2.3. Gravitational Waves in the WKB Approximation

In the following we shall restrict ourselves to the Isaacson approxima-
tion (¢ =1, € « 1), i.e. on study of high-frequency gravitational waves on
curved backgrounds. Inspired by the plane-wave solution in flat space, the form
h. = Ae,, expl¢) of the solution is assumed. The amplitude= O(e) is a
slowly changing real function of position, the phagés a real function with a
large first derivative but no larger derivatives beyond, apdis a normalized
polarisation tensor field. The above assumption, introduced in [1], is called the
WKB approximation, or the geometric optics limit [4]. The wave vector normal to

surfaces of constant phasjs= ¢ , and the orders of various relevant quantities
areRY ; = 0(1), A, = O(e), k, = O(¢™Y), andk,;, = O(e~?). Substituting
this into the conditions (7), (8), and the wave equation (9) we obtain, in the two

highest orders which are gauge invariant,
k'k, =0, kte,, =0, k¥, =0,
eve, =1 y"e,, =0, (4A%kP)y=0. 17

These express that a beam of high-frequency gravitational waves propagate along
rays which are null geodesics with tangé&fit with parallelly transported polar-
ization orthogonal to the rays. Moreover, using the WKB approximatioﬁfﬁ?

and the Brill-Hartle averaging procedure [6] (which guarantees the gauge invari-
ance) Isaacson obtained for gravitational waves in the geometric optics limit the
energy-momentum tensor [1]

THE = - A%KK,. (18)

The energy-momentum tensor of high-frequency waves thus has the form of pure
radiation. This fully agrees with results obtained by alternative techniques[8, 9, 14].

3. EXAMPLES OF HIGH-FREQUENCY GRAVITATIONAL WAVES

Now we present some explicit classes of high-frequency gravitational waves.
These are obtained by the above described WKB approximation method consid-
ering specific families of background spacetimes with a privileged geometry.
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3.1. Non-Expanding Waves

As the background we first consider the Kundt class [19, 28] of non-
expanding, twist-free spacetimes in the form [36]

2
ds? = F du? —ngudv+—(dx + dy?), (19)
with

P=1+— (x +Y9),

Q= [1+§(x2+y2)]e+clx+czy,

v— < H, (20)

whereqa, 8, ande are constants (without loss of generabity- 0 ore = 1), Cy, Co
andD are arbitrary functions of the retarded timeandH (x, y, u) is an arbitrary
function of the spatial coordinates y, and of u.

In particular, these are Petrov typé (or conformally flat) solutions of
Einstein’s equations with cosmological constantwhena = — = %A and
D = —2Be+ C2 + C3, see e.g. [36—-39]. Such metrics represent exact pure grav-
itational waves propagating along principal null directi@nif H satisfies the
equationP2(H xx + H.yy) + %A H = 0. However, in our treatment here the func-
tion H doesnat describe exact gravitational waves but rather it characterizes the
influenceof high-frequency perturbations on the background metric, which is as-
sumed to be initially given by (19), (20) witH = 0.

We consider the phase of high-frequency gravitational waves givenby
¢(u), and we seek solution in the WKB form, namely

h.w = Ae. expiao(u)), (21)

where the amplitudel and polarization tense@,, are functions of the coordinates
{u, v, X, y}. The corresponding wave vector kg = (¢, 0,0,0), where the dot
denotes differentiation with respectuoApplying now all the equations (17) we
obtain

A= A(u, x, ),
0 00 O
N 1 (oo o0 o
e =
w = p2l0 0 1 0
0 0 0 -1
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0000

., 1 loooo

%= /5p2|0 0 0 1 (22)
0010

The fact that the amplitudel is independent of the coordinate expresses
non-expanding character of the waves. The special polarisation tensors, denoted
as+ and x, are analogous to those used in the standard theory of linearized
waves in flat space. A general polarisation is easily obtained by considering
e, = aef, +be;,, wherea?(u, x, y) + b?(u, x, y) = 1.

Using the Einstein tensor for the metric (19) with the cosmological term
in equations (16) and (18), we determine the reaction of the background on the

presence of the above high-frequency gravitational perturbations, namely

Qp2 a—2+8—2 +2a H(u, X, y) = A4%(u, X, y)$? (23)
P ax2 = 9y2) 3 XY= AN X )P
Notice thatd = O(e) andgp = O(e~1). Therefore, the influence of high-frequency
gravitational waves on the background, represented by the funkitjas of the
order O(1). Theseapproximatesolutions can obviously be compared to specific
exactradiative vacuum solutions which are given Hysolving the field equation
(23) with a vanishing right-hand side (wheh= 0, i.e. high-frequency perturba-
tion waves are absent).

The above waves are non-expanding with the wave-frertsconst being
two-dimensional spaces of constant curvature giverx by %A, cf. (19). For
A = 0 these are plane-fronted waves, for> 0 they are spheres, and far< 0
hyperbolical surfaces.

Another interesting subclass of the Kundt spacetimes of the form (19), (20)
are explicit Petrov typél (or more special) metricsgivenlfy=«o,e=1,C =0
andD = 2(A — «), namely

1
d32=[2(A—a)v2—H]du2—2dudv+ﬁ(dx2~|—dy2). (24)

For H = 0 these are electrovacuum solutions with the geometry of a direct prod-
uct of two 2-spaces of constant curvature, in particular the Bertotti-Robinson,
(anti-)Nariai or Plebahski-Hacyan spaces [40-43], see e.g. [44, 36]. Considering
again (21) we obtain the results (22) as in the previous case. However, the reac-
tion of high-frequency waves on the background is now different. It is determined
by the equations (16) and (18) with the energy-momentum tensor consisting of a
cosmological term plus that of a uniform non-null electromagnetic field described
by the complex self-dual Maxwell tens@*’ = 4d(ml+m"l — kl#[*1), where

®; = ,/a — 5 €° c=const,andm = P d;, k = 9,, | = 1F 3, + 9, form the
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null tetrad. Straightforward calculation gives

p2 > L H =142 b2 25
(5 + a5 ) 1 = 1420 x 9 (25)

This result is analogous to the equation (23), but the present situation is now
more complicated since the background spacetinmois/acuuntbut it contains
electromagnetic field. (In fact, the term with the cosmological constaint(23)
has been entirely compensated by this.) Therefore, we have to analyze the pertur-
bation of thecompleteEinstein-Maxwell system, and its consistency.

The Einstein equations in the two highest orders (6) and (16) have already
been solved. We will now demonstrate that the Maxwell equations are also sat-
isfied in the high-frequency limit, namell*",, = O(¢), where| denotes the
covariant derivative with respect to the full metgg,. Indeed, using antisymme-
try of F* we can writeF*"|, = F*¥ , + %g“ﬂ O«,» F*”. Considering (2) and the
gauge condition (8) we obtaigf’gus , = ¥ yup. — h*hys, + O(e?) because
YPhas, — hByys, = (hﬂﬁ);v — 2h*Fy,s., = 0, so that

Fro, = Fi, — 1hh,, JF* 4+ O(d). (26)

Consequently, if the original background represents an electrovacuum spacetime,
F#’., = 0, the Maxwell equation*", = O(e) for the full metric are satisfied in
the dominant orde®©(1) in the high-frequency limi¢ « 1. In addition, the field
equations are valid also in the next ord2fe) for the new electromagnetic field

F = (14 3h*hyg) F™, @27)

since using (26) we obtaii*"|, = O(e?). Starting from an electromagnetic field
F#v satisfyingF*"., = 0 with respect to the background metyig,, we can thus
construct the electromagnetic fiel#*” which satisfies the Maxwell equations
FH,, = O(e?) with respect to the full metrig,,,, in the presence of high-frequency
gravitational waves. Both the Einstein and Maxwell equations are then satisfied
in the two highest perturbative orders. Interestingly, these results hold for high-
frequency perturbations ainy“seed” electrovacuum background spacetimes.

In particular, if the backgrounds are direct product spacetimes (24) ferO
with uniform non-null electromagnetic field; = const then high-frequency
gravitational waves (21), (22) introdud¢¢ which is given by equation (25). Ac-
cording to (27), the electromagnetic field is perturbed by the term proportional to
h*fh,s = A2€#¢ = O(€?), see (17), namely

@) = @ [1+ 2A4%(u, x, y)e??W]. (28)

This remains non-null but itis no longer uniform. The full spacetime thus describes
non-uniform, non-null electromagnetic field plus the null field of high-frequency
gravitational waves.
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3.2. Cylindrical Waves

Next we consider the class of cylindrical Einstein-Rosen waves,
ds® = ¥~ (—dt? + dp?) + €V dZ? + p2e 2 dy?. (29)

If the functionsy (t, p) andy (t, p) satisfy the corresponding field equations (see,
e.g. [21],[28], or equations (33)-(35) below) these are exact radiative spacetimes of
the Petrov type I. We conveniently define double null coordinates%i(t —p)

andv = %(t + p); in these coordinatel, v, ¢, z} the metric takes the form
ds? = -2 #dudv + € dz? + (v — u)?e ' dy?. (30)

We assume this to be the class of background universes into which we wish to in-
troduce high-frequency gravitational waves. We assume ggairg(u) implying
the wave vectok, = (¢, 0, 0, 0), i.e. the WKB perturbation of the form (21). By
applying all the conditions (17) we obtain

L U
C Jv—u’
00 0 0
1 00 0 0
T a2
=75 "lo o0 tw-uz o |
00 0 —e¥
0 00O
. 1 0 00 0],
e;w - E (U - U) 00 o0 1| (31)
0 010
notice thatv — u = +/2 p. Thus the perturbative solution is given by
U(u)
h,, = €., ex u)). 32

The back-reaction on the background (contained in a specific modification of
the metric functiong andv/) is given by the following equations, cf. (18),

(W—U P2 +yu = — (v — u) A%2, (33)
(v—uy3 -y, =0, (34)

1
A u(w,u —Yu) =0 (35)

Interestingly, this set of equationsésnsistentby differentiating equation (33)
with respect ta, equation (34) with respect tg and combining them, one obtains
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(35) provided the amplitudd(u, v) satisfies the equation
(v—u)A?),=0. (36)

However, this is automatically satisfied for the amplitude (31). Itis thus quite simple
to introduce gravitational waves in the WKB approximation into the cylindrical
spacetimes (30). If the functiopsandy representing the background are solutions
of the vacuum equations [i.e. (33)-(35) with a vanishing right-hand side of (33)]
then for introducing high-frequency gravitational waves it is sufficjesitto alter

the functiony as

y(U,v) = y(u,v) + 7(u), (37)
where
a’gﬁ”) = — Ly, (38)

In particular, when = 0 = y the background (29) is a flat Minkowski space. By
assuming non-triviajy ‘we obtain Petrov typ& spacetime with high-frequency
gravitational waves which have cylindrical wave-fronts. In a general case this per-
turbation is propagating in the background which is the Einstein-Rosen cylindrical
wave of Petrov type |. The effect on background is given by the relation (38) where
U(u) = O(e) is an arbitrary amplitude function.

The above described perturbations depend on the null “retarded” coordinate
u so that the high-frequency gravitational wavesargoing(p is growing witht,
on afixedu). However, since the background metric (30) is invariant with respect to
interchangings with v, it is straightforward to consider al§ngoingperturbations
by assuming the phase to depend on the “advanced coordinatatnely

v
M = o eX0((), (39)

Then the term proportional td2¢2 will appear on the right-hand side of equation
(34) instead of (33). This results in an interesting possibilitytmduce ingoing
high-frequency gravitational cylindrical waves into the background of outgoing
Einstein-Rosen wavgsst by assuming (v) in (37) such that

3y (v)
Jdv

=+ V292, (40)

or vice versa.

Moreover, allthe above results can further be extended to a class of generalized
Einstein-Rosen (diagonal) metrics [29, 45] which desc@einhomogeneous
cosmological models

ds? = e~ (—dt? 4 dp?) + €7V dz% + t2e ¥ dyp>. (41)
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If the three-dimensional spacelike hypersurfaces are compact, the corresponding
model is the famous Gowdy universe with the topology of three-torus [27, 29].
In the double null coordinates just one component of the metric is now different
from (30), namelyg,, = %(v + u)?e~2/ (), The only modification of the above
results (in the double null coordinates) consists of replacing the facteru)

with (v + u), and each derivative with respect tochanging sign (e.gyy, —

—y.u Or ¥y — —¥.4,). High-frequency gravitational waves in inhomogeneous
cosmologies of the form (41) can thus easily be constructed.

3.3. Expanding Waves

Finally, we assume that the background is an expanding Robinson-Trautman
spacetime. The metric (generally of the Petrov typgin the standard coordinates
has the form, see e.g. [22, 23, 28, 39],

A 2
ds = —<K —2r(InP), — 2? - §r2) du? — 2dudr + %(dn2 + dg?),

(42)
whereK = A(InP), A = PH(L; + 1), andm(u). WhenP(u, 1, £) satisfies the
Robinson-Trautman equatiaxK + 12m(InP) , — 4m, = 0, the metric (42) is
an exact vacuum solution of the Einstein equations.

In view of the existence of privileged congruence of null geodesics generated
by o; we introduce the phasg = ¢(u) and the wave vectdr, = (¢, 0,0,0) of
high-frequency gravitational waves. We again assume the WKB form (21) of the
solution. Applying the equations (17) we obtain

1
A == r_U(us '795)’
000 O
. 1r2loo0oo0 O
e = ——
w= P20 0 1 0
000 -1
0 00O
y 1r2l0 00 O
G ="/P2|0 0 0 1 43)
0010

A general solution has the fornh,, =r~U(u, n, &) e,, expi¢(u)), where
U(u,n, &) and ¢(u) are arbitrary functions, ana,, =ae/‘fv+be;U with
a2(u, n, &) + b?(u, n, £) = 1. Introducing the amplituded * =aU, U =bU
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for both polarizations, we can write the solution as

huw = r} [UTe;, + U e, ] explo(u)). (44)

If the wave-surfaces = const, u = const with the metricdl? = P~?(dn? +
d&2) are homeomorfic t&?, the waves can be interpreted as “spherical”. In the
asymptotic regiom — oo such solutions locally approach plane waves [16].

The reaction of the waves on background is determined by the equations
(16) and (18) withT(9 = —z- Ay,,,. From the only nontrivial component we
immediately obtain the following equation

—88—:' +3m(InP)y + 1AK = L[(UT)? + (U)F¢2, (45)

where m(u), ¢(u), whereas the remaining functions depend on coordinates
{u, n, £}. Notice that this isSndependentf the cosmological constant.

The expressions (44),(45) agree with results obtained by MacCallum and
Taub [9] or recently by Hogan and Futamase [16] who used Burnett’s technique
[14]. Our results, which were derived by a straightforward approach, are slightly
more general because they are not restricted to a constant freqtiencpnst
Particular subcase of the Vaidya metric has already been studied before by Isaacson
[1] and elsewhere [8].

4. CONCLUSIONS

The Isaacson approach to study high-frequency perturbations of Einstein’s
equations was briefly reviewed and compared with the standard weak-field limit. In
our contribution we generalized Isaacson’s method to include non-vacuum space-
times, in particular an electromagnetic field and/or a non-vanishing value of the
cosmological constamt. Then we explicitly analyzed possible high-frequency
gravitational waves in three large families of background universes, namely non-
expanding spacetimes of the Kundt type, cylindrical Einstein-Rosen waves and
related inhomogeneous cosmological models (such as the Gowdy universe), and
the Robinson-Trautman expanding spacetimes. These backgrounds are of various
Petrov types. For example, high-frequency gravitational waves can be introduced
into electrovacuum conformally flat Bertotti-Robinson space, tpMariai and
Plebanski-Hacyan spaces, their tyideand typel | generalizations, or into alge-
braically general Einstein-Rosen universes.

For construction of high-frequency gravitational perturbations we have em-
ployed the fact that all these spacetimes admit a non-twisting congruence of null
geodesics. The corresponding tangent vediérare hypersurface orthogonal so
that there exists a phase functigrwhich satisfiesp , = k,. The last equation
in (17) can be put into the forrﬁl(ln A) = —0, wherel is the affine parameter,
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and® = 1k“ is the expansion of the null congruence. This determines the be-
hawourofthe amplitudel in the above spacetimes (22), (31), (43). The remaining
equations (17) enables one to deduce the polarization tensors.

It has been also crucial that all the classes of spacetimes discussed ad-
mit exact solutions with the energy-momentum tensor of pure radiation, i.e.,
G —8rTy, = %Azkﬂku, whereT,, is either constant (representing the cos-
mological constant) or it describes an electromagnetic field. The relation between
high-frequency perturbations and exact radiative solutions of Einstein’s equations
in each class is thus natural. In particular, it is possible to determine explicitly the
reaction of the background on the presence of high-frequency gravitational waves.
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Abstract

We analyze a class of exact type II solutions of the Robinson—Trautman family
which contain pure radiation and (possibly) a cosmological constant. It is shown
that these spacetimes exist for any sufficiently smooth initial data, and that they
approach the spherically symmetric Vaidya—(anti-)de Sitter metric. We also inves-
tigate extensions of the metric, and we demonstrate that their order of smoothness
is in general only finite. Some applications of the results are outlined.

PACS: 04.30.-w, 04.20.Jb, 04.20.Ex

1 Introduction

The classic Vaidya metric [1-4] (see also [5,6] followed by reprints of the original Vaidya
papers) is a spherically symmetric type D solution of the Einstein equations in the presence
of pure radiation matter field which propagates at the speed of light. In various contexts
this “null dust” may be interpreted as high-frequency electromagnetic or gravitational
waves, incoherent superposition of aligned waves with random phases and polarisations,
or as massless scalar particles or neutrinos. The Vaidya solution depends on an arbitrary
“mass function” m(u) of the retarded time u which characterises the profile of the pure
radiation (it is a “retarded mass” measured at conformal infinity). Various sandwiches and
shells of null matter can thus be constructed that are bounded either by flat (m = 0) or
Schwarzschild-like (m = const # 0) vacuum regions. Due to this property such solutions
have been extensively used as models of spherically symmetric gravitational collapse of a
star, as an exterior solution describing objects consisting of heat-conducting matter, as
an interesting toy model for investigation of singularities and their possible removal by
quantum effects, for studies of various formulations of the cosmic censorship conjecture
on both classical and quantum level, process of black-hole evaporation, and for other
purposes (see, e.g., [7-16] for more details and related references).



In fact, the Vaidya spacetime belongs to a large Robinson—Trautman class of expand-
ing nontwisting solutions [4,17,18]. Various aspects of this family have been studied in the
last two decades. In particular, the existence, asymptotic behaviour and global structure
of vacuum Robinson—Trautman spacetimes of type II with spherical topology were inves-
tigated [19-28], most recently in the works of Chrusciel and Singleton [29-31]. In these
rigorous studies, which were based on the analysis of solutions to the nonlinear Robinson—
Trautman equation for generic, arbitrarily strong smooth initial data, the spacetimes were
shown to exist globally for all positive retarded times, and to converge asymptotically to
a corresponding Schwarzschild metric. Interestingly, extension across the “Schwarzschild-
like” event horizon can only be made with a finite order of smoothness. Subsequently,
these results were generalized in [32,33] to the Robinson-Trautman vacuum spacetimes
which admit a nonvanishing cosmological constant A. It was demonstrated that these
cosmological solutions settle down exponentially fast to a Schwarzschild—(anti-)de Sitter
solution at large times u. In certain cases the interior of a Schwarzschild-de Sitter black
hole can be joined to an “external” cosmological Robinson-Trautman region across the
horizon with a higher order of smoothness than in the corresponding case with A = 0. For
the extreme value 9Am? = 1, the extension is smooth but not analytic (and not unique).
The models with A > 0 also exhibit explicitly the cosmic no-hair conjecture under the
presence of gravitational waves. On the other hand, when A < 0 the smoothness of such
an extension is lower.

Our aim here is to further extend the Chrusciel-Singleton analysis of the Robinson-
Trautman vacuum equation by including matter, namely pure radiation. It was argued
already by Bicdk and Perjés [34] that with A =0 such spacetimes should generically
approach the Vaidya metric asymptotically. We will analyze this problem in more detail,
including also the possibility of A # 0 in which case the Robinson—Trautman spacetimes
containing pure radiation can be shown to approach the radiating Vaidya—(anti-)de Sitter
metric.

2 The metric and field equations

In standard coordinates the Robinson—Trautman metric has the form [4, 18, 35]

9 m A, 2 r’ -
ds? — — (K —2r(nP)u 22 - S ) du? — 2dudr +2-5dCdC | (1)

where K = A(In P) with A = 2P?0.0; being the Gaussian curvature of the 2-surfaces
2P~2d¢dC, m(u) is the mass function, and A is the cosmological constant. When the
function P(u,(, () satisfies the fourth-order Robinson-Trautman field equation

AK +12m(InP), —4m, = 2kn” (2)

the metric describes a spacetime (generally of the Petrov type II) filled with pure radiation
field T, = n*(u, ¢, () r2 k,k,, where k = 0, is aligned along the degenerate principal null
direction (we use the convention G, + Ag,, = ~kT,,). In particular, vacuum Robinson—
Trautman spacetimes are given by n = 0, in which case m can be set to a constant by a
suitable coordinate transformation [4]. Vacuum spacetimes (1) — possibly with a nonvan-
ishing A — thus satisfy the equation 12m (In P) , = —AK. These include the spherically
symmetric Schwarzschild—(anti-)de Sitter solution which corresponds to Py =1+ %Cf )
Indeed, replacing the complex stereographic coordinate ( with angular coordinates by

¢ =+/2e?tan(0/2), we obtain 2P, 2d¢d¢ = df? + sin® § d¢?, and Ky = AgIn(Py) = 1.
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Figure 1: Schematic conformal diagrams of the Robinson-Trautman exact spacetimes
which exist for any smooth initial data prescribed on ug. Pure radiation field is present in
the shaded region u < 0. Near u = 0 the solutions approach the Vaidya metric, and can
be extended to flat Minkowski region v > 0. Thick line indicates the curvature singularity
at 7 = 0 whereas double line represents future conformal infinity Z* at r = co (A =0 is
assumed). The global structure depends on the value of the parameter p of the linear mass
function (8): left diagram corresponds to > 1/16, the right one applies when p < 1/16.

Here we will restrict ourselves to nonvacuum cases for which the dependence of the
mass function m(u) on the null coordinate u is only caused by a homogeneous pure
radiation with the density n?(u)r~2. When the mass function m(u) is decreasing, the
field equation (2) can be naturally split into the following pair,

AK +12m(u)(InP), = 0, (3)
—2m(u), = kn*(u). (4)

In fact, it was demonstrated in [34] that such a separation can always be achieved using
the coordinate freedom. It is then possible to reformulate equation (3) by introducing
a u-dependent family of smooth 2-metrics g,, on the submanifold » = const, u = const,
such that g, = f(u, ¢, )2¢%, where g% (¢, () is the metric on a 2-dimensional sphere S2.
Since ggp is of the form 2P~2d¢d( in our case, we can write

P=fFR, P0:1+%C§7 (5)
and equation (3) becomes
of 1
—=—-————fAK
ou 12m(u) / ’ (6)

where A is the Laplace operator associated with the metric g,. Denoting Ay and Ky = 1
as the corresponding quantities related to g2, , we obtain

A= 2Ny, K= f2(1+A¢(Inf)) . (7)



3 Linear mass function

Let us first consider the simplest choice of m(u) which, in fact, has been widely used in
literature (see e.g. [7,9,36]): we will assume that the mass function is a linearly decreasing
positive function

m(u) = —pu, p = const >0, (8)

on the interval [ug, 0]. Notice that for (8) the pure radiation field is uniform because equa-
tion (4) implies n = 4/2u/k = const, independent of the retarded time u. The constant
value up < 0 localises an initial null hypersurface (that extends between the curvature
singularity at » = 0 and the conformal infinity » = co) on which an arbitrary sufficiently
smooth initial data given by the function

fO(Ca é) = f(u = uOvCa&) ) (9)

are prescribed, see Fig. 1.

3.1 Existence of the solutions

Now, the idea is to employ the Chrusciel-Singleton results [29-31] concerning the analysis
of the Robinson—Trautman vacuum equation, in particular the existence and asymptotic
behaviour of its solutions. In the vacuum case m in equation (3) is constant, and the
solution f(u,(,¢) of the characteristic initial value problem (9) exists and is unique (in
spite of the singularity at » = 0). In the presence of pure radiation given by (8) it is
possible to “eliminate” the variable mass function from the Robinson—Trautman field
equation (6) mathematically by a simple reparametrisation

o= —p 'n(—u) , (10)

cf. [34]. Indeed, equation (6) is then converted to

where f(@,¢,¢) = f(u(a),(,C), K = f2(14 Aoln(f)), and A = f2A,. Notice that the
transformation (10) moves the hypersurface u =0, on which the mass function m(u)
reaches zero, to @ = +00.

Chrusciel [30] derived the following asymptotic expansion (as @ — oo) for the func-
tion f satisfying the evolution equation (11) for any smooth initial data fo = fo on

g = —p~ ' In(—wug), namely

f = 14 fige ™+ f2.0 e 4t fia0 e 280
b fisa e fsoe 0 gL (12)

SIS

i=0 j=0

where f; ; are smooth functions on S? such that f;; = 0 for j > 0, ¢ < 14. The function f
thus exists and converges exponentially fast to 1, which means physically that the radia-
tive Robinson—Trautman vacuum spacetimes approach asymptotically the Schwarzschild—
(anti-)de Sitter solution as @ — oo, see relation (5). In our case of pure radiation field (8)



we employ the transformation (10) on expression (12) to obtain the following asymptotic
expansion of f asu — 0_,

f = 1+ fio (_u)Q/u + fa0 (—u)4/“ + -+ fiap (_u)28/u
— " fisg In(—w) (—u)** 4 fiso (—u)* 4 - (13)

= 2 furln ()l (e

i=0 j=0

As a result, for the initial data (9) the Robinson-Trautman type II spacetimes which
contain uniform pure radiation field with the linear mass function (8) do exist in the
whole region vy < u < 0. It is also obvious that the function f approaches 1 as u — 0_
(where also m(u) — 0) according to (13). In other words, these spacetimes approach the
spherically symmetric Vaidya—(anti-)de Sitter metric near u = 0.

The global structure of such spacetimes is schematically indicated on Fig. 1. In fact,
there are two possibly different conformal diagrams depending on the value of u: for
g > 1/16 there is a white hole singularity at r» =0, for u < 1/16 there is also a naked
singularity, see e.g. [9,13,16,36] for more details. At u = 0 all of the mass m(u) is radiated
away, and we can attach Minkowski space (de Sitter space when A > 0, anti-de Sitter when
A < 0; the presence of the cosmological constant would change the character of conformal
infinity Z which would become spacelike or timelike, respectively) in the region u > 0 along
the hypersurface u = 0. We will now investigate the smoothness of such an extension.

3.2 Extension of the metric across v =0

It follows from (13) that the smoothness of f on u = 0 is only finite. Depending on the
value of i two different cases have to be discussed separately: 2/u is an integer, and 2/
is a real non-integer positive number.

When 2/p is an integer then due to the presence of the In(—u) term associated with
fis1 # 0 the function f is of the class CGY#~1 For i very small, the integer number
(30/p) — 1 is large so that f becomes smoothly extendable to 1 across u =0 as u — 0.
This represents a naked-singularity Robinson-Trautman spacetime (see the right part of
Fig. 1) unless pn = 0 which gives flat space everywhere. In the limiting case p = 1/16 the
function f is of the class C*™. For the (white hole) Robinson—Trautman spacetimes given
by p > 1/16 the smoothness is lower. However, it is always at least C* because p < 2 in
this case.

In the generic case when 2/ is not an integer the function f is only of the class C12/#}
where the symbol {x} denotes the largest integer smaller than z. Again, with y — 0 the
function f becomes smoothly extendable. For p < 1/16 the function f is at least of the
class C32, for u > 2 it is not even C! but it remains continuous.

To investigate further the smoothness of the metric when approaching the hypersur-
face u = 0_ which is the analogue of the Schmidt—Tod boundary of vacuum Robinson—
Trautman spacetimes [25, 30] we should consider the conformal picture using suitable
double-null coordinates. Such Kruskal-type coordinates for the Vaidya solution with lin-
ear mass function (8) were introduced by Hiscock [7-9], see also [16,36], and we will use
this transformation only to replace the coordinate r since the null coordinate u is already
appropriate. Introducing a new coordinate w by

d du 2dz
w=——
u  2(2uz2—2z+2)

where 2= —— : (14)
r



we put the Robinson—Trautman metric with linear mass function into the form

ds® = — (K—1—2f’ur> du?
S
U2 2 ~
— (27" +u+ 2”7“) dudw + 2ﬁdCdC : (15)
where r(u,w). For the pure Vaidya metric characterized by f =1 and Ky =1 the first
term vanishes identically so that the coordinates of (15) are indeed the Kruskal-type
coordinates for the Vaidya spacetime with a linear mass function.

The smoothness of a general Robinson-Trautman metric (15) depends only on the
smoothness of the metric coefficients gy, and g. (containing the function f) since the
coefficient gy, tends to —r as u — 0. The smoothness of g (for any finite ) and of K is
the same as of f, see (7). The function f,/f is evidently one order less smooth than f.
Consequently, for 2/u being integer or non-integer number, the metric (15) is of the class
CB0/m=2 o C2/1=1 respectively. We again observe that the spacetimes approaching
the linear Vaidya metric with naked singularity (i.e., for small values of the parameter p)
possess higher order of smoothness at u = 0.

One might be worried about the invariance of our results, namely with respect to a
rescaling of the null coordinate u(u) leading to a different smoothness of the function f
and of the metric. In order to change the smoothness on the hypersurface © = 0 such
rescaling must have a singular character there. But this would lead to a degeneracy of the
metric coefficient gy, of the Vaidya metric, which is forbidden. Consequently, the above
results are in this sense unique.

We would like to obtain analogous results concerning smoothness of the extension also
for a non-zero value of the cosmological constant A. Unfortunately, as far as we know,
there is no explicit transformation of the Vaidya—de Sitter metric to the Kruskal-type
coordinates even for the linear mass function (contrary to the Schwarzschild—de Sitter
case [33]). However, it is possible to start with the Vaidya—de Sitter metric

ds* = —h(u,r) du® — 2dudr + r*dQ? | (16)
where h(u,7) =1+ 2pur~t — %7"2, and perform a coordinate transformation
dw:gdu—i—Z%dr , (17)

where g(u, ) is some function. We arrive at the double-null form for the metric

h
ds* = —— dudw + r*(u, w) dQ* . (18)
g
Of course, we have to ensure that dw in (17) is a differential of the coordinate w. The
integrability condition (d*>w = 0) gives the following quasilinear PDE,
g
h*—~ —2h
ar Ju
for the undetermined function g, which is difficult to solve analytically. The method of
characteristic curves leads to the first-order ODE of the Abel type which has not yet
been solved, but the existence of its solution is guaranteed. [It is possible to apply the
perturbative approach starting from the solvable case of the de Sitter metric (u = 0) and
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then linearise the PDE in the parameter . The result, however, can not be presented
in a useful closed form.] For our purposes it suffices to use a general argumentation:
the coordinate u is already suitably compactified and we are only determining the com-
plementary null coordinate w to obtain the Vaidya-de Sitter metric in the Kruskal-type
coordinates (which is smooth on u = 0). The corresponding Robinson-Trautman metric
in these coordinates differs only by the term gy, (u,7,(, () du® (which is absent in the
Vaidya—de Sitter case in the double null coordinates), and by a different metric coefficient
gt = r2f~2Py %, where r(u,w) is finite and smooth when approaching the hypersurface
u = 0. The smoothness is thus not affected by the specific transformation (17) and it
is the same as for the vanishing cosmological constant. This is different from vacuum
spacetimes with m = const # 0 studied in [32,33] because in the present case m — 0 near
u = 0, and the influence of A on the smoothness becomes negligible.

4 General mass function

The results obtained above can be considerably generalized. Inspired by a similar idea
outlined in [34] we may consider a reparametrisation on the null coordinate u by

u=r(u), (20)

where v is an arbitrary continuous strictly monotonous function. We start with the
evolution equation (11) for which the existence and uniqueness of solutions has been
proven, and their general asymptotic behaviour (12) has been demonstrated. Now, by
applying the substitution (20) in equation (11) we obtain

af gl

- _ L fAK 21
(where the dot denotes a differentiation) which is the evolution equation for the function
f(u,¢,¢). This is exactly the Robinson—Trautman equation (6) for the mass function

m(u) = — . (22)

For a given smooth initial data on ug there thus exists the Robinson—-Trautman spacetime
(1), including the cosmological constant A, with the mass function (22). To obtain a
positive mass we consider a growing function v(u). Considering (4) this corresponds to a
universe filled with homogeneous pure radiation

2 2y
n”(u) = R (23)
For consistency the function v must be convex. An asymptotic behaviour of the function
f as y(u) — oo is easily obtained from the expansion (12) by substituting relation (20).
In particular, the linear mass function (8) discussed above is a special case of (22) for
the transformation (20) of the form (10). More general explicit solutions can be obtained,
e.g., by considering the power function

Yw) = (=)™, p>0, (24)
which gives : )
L W2 — 2P
miu) = (07 i) = L (25)



Both functions m and n approach zero as u — 0. Due to the theorems mentioned above,
there exist Robinson—Trautman type II spacetimes in the region v < 0 which approach
the spherically symmetric Vaidya—(anti-)de Sitter metric as « — 0_ with the mass func-
tion and pure radiation given by (25). The asymptotic behaviour of such solutions is
determined by expression (5) with

F=1+ i Z fig (—w) 7P exp [~ 2i(—u) 7] | (26)

i=1j=0

where f;; =0 for 7 > 0 if 4 < 14. Interestingly, the function f is now smooth on u = 0
for any power coefficient p, but this still does not guarantee that the extension into flat
region u > 0 is analytic (see [33] for a similar situation).

Another simple explicit choice is

Y(u) = =M ' In [sinh(—u)] , M>0, (27)
which implies (see also [16])
2M

m(u) = M tanh(—u) , n*(u) = ———5— .
K cosh”u

(28)
In the region u < 0 the mass function monotonically decreases from M to zero, while the
pure radiation field grows from zero to the value 2M/k as u — 0. Let us note that in this
case the integrated radiation density is finite on the interval (—o0,0), [ n?(u) = 2M/k.
The expansion near u = 0_ is

f=1+ ii fi; (=M~ 1n [sinh(—u)])’ sinh*/™ (—u) . (29)

i=1 j=0

If 2/M is an integer then the function f belongs to the class C3%/M)=1 otherwise it is of
the class C{2/M}

5 Possible modifications and applications

The Robinson-Trautman pure radiation solutions in the region uy < u < 0 approach-
ing the Vaidya metric near u = 0, which can be extended (albeit non-smoothly) to flat
Minkowski space in the region u > 0 as in Fig. 1, may be used for construction of various
models of radiative spacetimes. For example, it is natural to further extend the solution
“backwards” into the region u; < u < ug by the Robinson—Trautman vacuum solution
with a constant mass mgy = m(uo), such that the function f is continuous on ug. This is
shown in Fig. 2. In such a case the spacetime may describe the process of “evaporation”
of a white hole (with a different character of the singularity at » = 0 when p < 1/16) with
its mass decreasing from the value my to zero. Let us emphasize that the region u < uy
does not represent the Schwarzschild solution because the spacetime is not spherically
symmetric there (f # 1). In fact, this is the region where the original Chrusciel theorems
on the behaviour of the Robinson—Trautman vacuum spacetimes with constant mass ap-
ply (cf. (11), (12)). However, the spacetime in this region can not be extended up to the
past conformal infinity Z— because the metric function f diverges as u — —oc.

In the presence of the cosmological constant A one obtains a family of exact spacetimes
that describe evaporation of a white hole in the (anti-)de Sitter universe. In this case the
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u>0 N\

\

»

u <0

Figure 2: Possible extensions of the Robinson-Trautman radiative spacetimes into the
region u < ug. Pure radiation is present only in the shaded region, everywhere else it is a
vacuum solution. For u € (uy,up) the mass function is constant, m(ug) = —pug, but the
spacetime is not spherically symmetric — it is not the Schwarzschild solution (u > 1/16
on the left, © < 1/16 on the right).

schematic conformal diagram on Fig. 2 has to be modified in such a way that for all values
of u the conformal infinity Z+ becomes timelike (for A > 0) or spacelike (for A < 0).

Another possible modification is to consider the “advanced” form of the spacetimes
(which describes an ingoing flow) rather than the “retarded” form (corresponding to
outgoing flow) employed above (see, e.g., [13] for more details). This time-reversed form
is obtained formally by a simple substitution © — —v in the metrics and corresponding
functions. The Robinson—Trautman metric thus reads

2
ds? = — (K +2r(n P), — 2% _ gﬁ) dv? + 2dudr +27d¢dC (30)
where m(v) is an increasing mass function in v € [0, vp]. This is joined with flat Minkowskian
region v < 0, and extended to the region v > vy by the corresponding Robinson—Trautman—
(anti-)de Sitter black hole vacuum solution, see Fig. 3. It is a non-spherical generalization
of the gravitational collapse of a shell of null dust forming a naked singularity [9,37,38] —
in these works the mass function was taken to be m(v) = pv (with m(v) =0 for v <0,
and m(v) = M = pwg for v > vg). The metric function P is now given by P = f P, where
f is analogous to (13),

© Ni ‘
F=>Y>" fii (—/fl lnv)j v¥/m (31)

i=0 j=0

so that the smoothness of the metric on the boundary v = 0 depends on the parameter .
For v € (vg,v1) the spacetime is vacuum but not spherically symmetric. The metric
diverges as v — oo. Our results can thus be interpreted in such a way that — at least
within the Robinson-Trautman family of solutions — the model [9] of collapse to a naked
shell-focusing singularity which is based on the spherically symmetric Vaidya metric is
not stable against perturbations.



v>0

v<0 v

Figure 3: Time-reversed version of Fig. 2 represents the “advanced” form of the Robinson—
Trautman spacetimes (30) which describes an ingoing flow of radiation.

6 Concluding remarks

In our contribution we have analyzed exact solutions of the Robinson-Trautman class
which contain homogeneous pure radiation and a cosmological constant. This is a natural
extension of previous works [19-34] on properties of vacuum spacetimes of this family.
We have demonstrated that these solutions exist for any smooth initial data, and that
they approach the spherically symmetric Vaidya—(anti-)de Sitter metric. It generalizes
previous results according to which vacuum Robinson—Trautman spacetimes approach
asymptotically the spherically symmetric Schwarzschild—(anti-)de Sitter metric. We have
investigated extensions of these solutions into Minkowski region, and we have shown that
its order of smoothness is in general only finite. Finally, we suggested some applications
of the results. For example, it follows that the model of gravitational collapse of a shell
of null dust diverges as v — oo which indicates that investigations of such process based
on the spherically symmetric Vaidya metric are, in fact, not stable against “non-linear
perturbations”, at least within the Robinson—Trautman family of exact solutions.
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