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Introdu
tionThe presented work 
on
erns two wide bran
hes of theoreti
al investigation of grav-itational waves. Namely, the �rst three 
hapters 
on
entrate on approximate te
h-niques, although, in the se
ond 
hapter the relation to exa
t solutions is mentioned.The �nal part is devoted to asymptoti
 behaviour in a 
ertain 
lass of exa
t radiativespa
etimes.In the �rst 
hapter the Efroimsky perturbation s
heme for 
onsistent treatmentof gravitational waves and their in
uen
e on the ba
kground is summarized and
ompared with 
lassi
al Isaa
son's high-frequen
y approa
h. We demonstrate thatthe Efroimsky method in its present form is not 
ompatible with the Isaa
son limitof high-frequen
y gravitational waves, and we propose its natural generalization toresolve this drawba
k.In the se
ond 
hapter a formalism is introdu
ed whi
h may des
ribe both stan-dard linearized waves and gravitational waves in Isaa
son's high-frequen
y limit.After emphasizing main di�eren
es between the two approximation te
hniques wegeneralize the Isaa
son method to non-va
uum spa
etimes. Then we present threelarge expli
it 
lasses of solutions for high-frequen
y gravitational waves in parti
-ular ba
kgrounds. These involve non-expanding (plane, spheri
al or hyperboli
al),
ylindri
al, and expanding (spheri
al) waves propagating in various universes whi
hmay 
ontain a 
osmologi
al 
onstant and ele
tromagneti
 �eld. Relations of high-frequen
y gravitational perturbations of these types to 
orresponding exa
t radiativespa
etimes are des
ribed.In the third part we 
on
entrate on solving the wave equation des
ribing thepropagation of high-frequen
y waves whi
h was derived by Isaa
son [3℄. Althoughthe 
omplete Isaa
son formalism in
orporates also the rea
tion of the ba
kgroundto the wave, we will not 
onsider this e�e
t here. Rather, we will expli
itly presentspe
tra of high-frequen
y waves whi
h may propagate in some fundamental 
osmo-logi
al models, in parti
ular the Friedmann{Robertson{Walker spa
etimes and inthe anisotropi
 Kasner universe.The last 
hapter is devoted to the analysis of a 
lass of exa
t type II solutionsof the Robinson{Trautman family whi
h 
ontain pure radiation and (possibly) a
osmologi
al 
onstant. It is shown that these spa
etimes exist for any suÆ
iently s-mooth initial data, and that they approa
h the spheri
ally symmetri
 Vaidya{(anti{)de Sitter metri
. We also investigate extensions of the metri
, and we demonstratethat their order of smoothness is in general only �nite. Some appli
ations of theresults are outlined.
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Chapter 1The Efroimsky formalism adaptedto high-frequen
y perturbationsSome time ago Efroimsky introdu
ed and developed new formalism for a 
onsistenttreatment of weak gravitational waves [1, 2℄. This interesting mathemati
al frame-work is remarkable mainly due to the possibility to as
ribe stress-energy tensor evento low-frequen
y gravitational waves in
uen
ing the ba
kground, whi
h is in 
ontrastto standard linearization approa
h where the ba
kground is kept �xed.On the other hand, in a now 
lassi
 paper [3℄ Isaa
son (inspired by previousworks [4,5℄) presented a perturbation method whi
h 
an be used for studies of high-frequen
y gravitational waves. Su
h waves also in
uen
e the 
osmologi
al ba
k-ground in whi
h they propagate.In our present work we �rst brie
y summarize and 
ompare the two above men-tioned perturbation s
hemes. In parti
ular, it is shown that the Efroimsky methodis not 
onsistent if high-frequen
y gravitational waves are 
onsidered. We propose apossible modi�
ation of the Efroimsky formalism whi
h may resolve this drawba
k.1.1 The formalismEfroimsky's approa
h [1, 2℄ is based on introdu
ing three di�erent smooth, non-degenerate, symmetri
 metri
s on a di�erentiable manifold M , namely:1. 
�� � the \premetri
": va
uum metri
 
orresponding to initial pure ba
k-ground without gravitational waves,2. g�� � the \physi
al metri
": full va
uum metri
 whi
h des
ribes both theba
kground and the waves,3. q�� � the \average metri
": non-va
uum metri
 representing the ba
kgroundplus its perturbations with wavelength greater than L.Next step is to de�ne the Ri

i and Einstein tensors for an arbitrary metri
 g asR��(g) � [12g
�(g��;� + g��;� � g��;�)℄;
 � [12g
�(g�
;� + g��;
 � g�
;�)℄;�+[12g
Æ(g�Æ;
 + g�
;Æ � g
Æ;�)℄[12gÆ�(g��;� + g��;� � g��;�)℄ (1.1)�[12g
�(g�Æ;� + g��;Æ � g�Æ;�)℄[12gÆ�(g�
;� + g��;
 � g�
;�)℄ ;G��(g) � R��(g)� 12g��g��R��(g) ;3



4 CHAPTER 1. THE EFROIMSKY FORMALISM ADAPTED TO HF WAVESwhere g�� = (g)�1�� , the same expressions apply to 
 and q. From the proposals(i)-(iii) it follows that G��(
) = 0 = G��(g) ; G��(q) 6= 0.Now, the di�eren
es between the 
ovariant 
omponents of the above metri
s areintrodu
ed, h�� � g�� � q�� ; (1.2)��� � q�� � 
�� :It is ne
essary to spe
ify the semi-Riemann spa
e: for raising or lowering indi
es andfor 
ovariant di�erentiation the averaged non-va
uum metri
 q will be used. Treatingh�� as a perturbation of the metri
 q�� the Ri

i tensor (1.1) 
an be expanded in apowers seriesR��(g) = R(0)�� (q) +R(1)�� (q; h) +R(2)�� (q; h) +R(3)�� (q; h) +O(h4) : (1.3)Analogously,R��(
) = R(0)�� (q) +R(1)�� (q; (��)) +R(2)�� (q; (��)) +O(�3) : (1.4)It is obvious that R(1)�� (q; (��)) = �R(1)�� (q; �) and R(2)�� (q; (��)) = R(2)�� (q; �). A
-
ording to assumptions that both g and 
 are va
uum metri
s the following relationholds 0 = R��(g)�R��(
)= R(1)�� (q; h) +R(2)�� (q; h) +R(1)�� (q; �) +R(3)�� (q; h) +O(h4) +O(�2) : (1.5)At this point Efroimsky sets three assumptions:Assumption 1. The perturbations h and � are small in the sense that theterms of the orders O(h4) and O(�2) are negligible.Assumption 2. The perturbations � and h2 are of the same order.Assumption 3. The tensor �eld h 
onsists of modes with short wavelengthswhi
h do not ex
eed the given maximal value L.Thus h�� 
hara
terizes measurable gravitational waves whereas ��� is a shift of theba
kground geometry from va
uum premetri
 
 to nonva
uum e�e
tive average met-ri
 q due to the presen
e of gravitational waves. The equation (1.5) is the waveequation for perturbations h on the ba
kground q = 
 + �. Using the Brill-Hartleaveraging pro
edure [5℄ we obtainR(1)�� (q; �) = �hR(2)�� (q; h)i : (1.6)Using (1.4), the e�e
tive stress-energy tensor of gravitational waves is de�ned asG��(q) = 8�T (gw)�� � R(1)�� (q; �)� 12q��q��R(1)��(q; �) : (1.7)From (1.6) it follows that this tensor fully agrees with that of Isaa
son [3℄.The main advantage of the above Efroimsky's perturbation method is the pos-sibility to 
onsistently treat all low-frequen
y gravitational waves, and to expli
itlyderive e�e
tive stress-energy tensor (in
uen
ing the ba
kground) in this 
ase. It
an be extended to non-va
uum spa
etimes with T�� of ideal 
uid and/or with apossible 
osmologi
al 
onstant �, see [1, 2℄.



CHAPTER 1. THE EFROIMSKY FORMALISM ADAPTED TO HF WAVES 51.2 Modi�
ation to in
lude high-frequen
y wavesLet us start with observation that it is the nonva
uum ba
kground 
urved by thepresen
e of gravitational waves | not the va
uum premetri
 
 | whi
h is the basisof Isaa
son's non-linear approa
h [3℄. Therefore, the nonva
uum average metri
q is 
onsidered as the ba
kground on whi
h high-frequen
y gravitational waves hpropagate.We wish to use the Efroimsky formalism in the high-frequen
y regime su
h thatthe tensor �eld h 
ontains high-frequen
y modes. We assume that they have shortwavelengths �, and a small amplitude h = O("), where " = �=S � 1 is a smallparameter be
ause � � S, S denoting a typi
al s
ale on whi
h the ba
kground
hanges substantially, and f = O("n) if there exists a 
onstant C > 0 su
h thatjf j < C"n as "! 0.Sin
e we 
an 
onsider S = O(1) it follows that O(") = O(�) and �h � h=� =O(1). This results in the orders of magnitude of the terms in the Ri

i tensorexpansion (1.3) asR(0)�� = O(1); R(1)�� = O("�1); R(2)�� = O(1); R(3)�� = O("): (1.8)To apply the Efroimsky approa
h in this 
ase we must 
onsider the de
ompositionq = 
+�, where 
 is the va
uum premetri
 and � represents (in this 
ase) substantialshift of the ba
kground geometry due to the presen
e of high-frequen
y gravitationalwaves h.Of 
ourse, the geometry shift � does not 
ontain high-frequen
y perturbations.Considering the wave equation (1.5) and using the Brill-Hartle averaging to obtainthe equation (1.6) we get in a 
on
i
t with the Assumption 1. and Assumption 2.,sin
e � = O(1). In fa
t, it disables any 
onsistent perturbation expansions in thepowers of �.Let us now suggest a modi�
ation of the Efroimsky formalism whi
h will in
or-porate also the above 
ase of a \substantial" 
hange of the ba
kground geometry dueto the presen
e of high-frequen
y waves. Instead of the perturbation expansion (1.4)we 
onsider a formal de
omposition of the Ri

i tensor of the premetri
 
 = q � �,namely 0 = R��(
) = R��(q) + �R��(q; (��)) ; (1.9)by whi
h equation the expression �R�� is de�ned. Both terms on the right-handside of (1.9) are of the same order O(1).The question 
on
erning the gauge invarian
e of �R�� with respe
t to generalizedgauge transformations has been re
ently analyzed in detail by Anderson [16℄ in
onne
tion with possible de�nitions of the wave equation and stress-energy tensorfor gravitational waves. Let us 
onsider an arbitrary 
oordinate transformation ofthe type x� = x� + �� ; (1.10)that does not 
hange the fun
tional form of the ba
kground geometry q, i.e.q(x) = q(x) so that 
(x)! 
(x) = q(x)� �(x). Performing the above 
oordinatetransformation (1.10) of the Ri

i tensor (1.9) we 
an derive�R��(q(x); (��(x))) = �R��(q(x); (��(x))) : (1.11)



6 CHAPTER 1. THE EFROIMSKY FORMALISM ADAPTED TO HF WAVESA generalized gauge transformation is de�ned in [16℄ as a transformation in whi
hthe quantity �(x) is substituted for �(x) into the tensor expressions of interest.Obviously, the equation (1.11) expresses a generalized gauge invarian
e of �R�� .After introdu
ing the above de
omposition (1.9) and demonstrating its invarian
ewe 
an now present modi�
ation and generalization of the Efroimsky formalismexpressed in the following relations,R(1)�� (q; h) +R(2)�� (q; h)��R��(q; (��)) +R(3)�� (q; h) +O(h4) = 0 ; (1.12)�R��(q; (��)) = hR(2)�� (q; h)iL ; (1.13)G��(q) = 8� ~T (gw)�� � ��R��(q; (��)) + 12q��q���R��(q; (��)) : (1.14)In 
ase when gravitational waves do not have high-frequen
y modes it is still possibleto employ the expansion of ��R��(q; (��)) in powers of � and use its dominantterm R(1)�� (q; �) instead. Thus we re
over Efroimsky's previous results, 
f. (1.5),(1.6), (1.7).In general, however, expressing � in terms of h from the equation (1.13) be
omesan extremely diÆ
ult task be
ause it is no longer a linear equation for �. To over-
ome this problem we 
an use the equation (1.13) and substitute for �R�� into theremaining equations (1.12) and (1.14). We obtain the relationsR(1)�� (q; h) +R(2)�� (q; h)� hR(2)�� (q; h)iL +R(3)�� (q; h) +O(h4) = 0 ; (1.15)�G��(q) = hR(2)�� (q; h)iL � 12q��q��hR(2)��(q; h)iL � �8�TBH�� : (1.16)The equation (1.16) is obviously in perfe
t a

ordan
e with the Isaa
son result [3℄.In the highest order of high-frequen
y approximation the equation (1.15) 
learlyredu
es to R(1)�� = 0 whi
h also fully reprodu
es Isaa
son's result. Additional termsin (1.15) 
an be used for study of nonlinear e�e
ts on the wave propagation.Finally the equations (1.13) and (1.11) guarantee the gauge invarian
e of thestress-energy tensor TBH�� de�ned in (1.16) (in the highest order). Proof of thisproperty was presented already in the 
lassi
 work [3℄, using however mu
h more
ompli
ated method.



Chapter 2
Some high-frequen
y gravitationalwaves related to exa
t radiativespa
etimes
In 
lassi
 work [3℄ Isaa
son presented a perturbation method whi
h enables one tostudy properties of high-frequen
y gravitational waves, together with their in
u-en
e on the 
osmologi
al ba
kground in whi
h they propagate. It is this non-linear\ba
k-rea
tion" e�e
t on 
urvature of the ba
kground spa
etime whi
h distinguishesthe high-frequen
y approximation s
heme from other perturbation methods su
h asthe standard Einstein's linearization of gravitational �eld in 
at spa
e [17, 18℄ ormultipole expansions [19℄ that were developed to des
ribe radiation from realisti
astrophysi
al sour
es.On the other hand, many exa
t solutions of Einstein's equations are known whi
hrepresent gravitational radiation. Among the most important 
lasses are planarpp -waves [22, 23℄ whi
h belong to a large family of non-expanding radiative spa
e-times [24,25℄, 
ylindri
al Einstein-Rosen waves [26℄, expanding \spheri
al" waves ofthe Robinson-Trautman type [27,28℄, spa
etimes with boost-rotation symmetry rep-resenting radiation generated by uniformly a

elerated sour
es [29{31℄, 
osmologi
almodels of the Gowdy type [32℄.However, there are only several works in whi
h relation between exa
t grav-itational waves and those obtained by perturbations of non-
at ba
kgrounds hasbeen expli
itly investigated and 
lari�ed, see e.g. [12, 14, 38℄. The purpose of our
ontribution is to help to �ll this \gap".We �rst brie
y summarize and generalize the Isaa
son approa
h [3℄ to admitnon-va
uum ba
kgrounds, the 
osmologi
al 
onstant � in parti
ular. Modi�
ation ofIsaa
son's formalism allows us to in
orporate also standard linearized gravitationalwaves into the 
ommon formalism. 7



8 CHAPTER 2. HF WAVES AND EXACT SPACETIMES2.1 High-frequen
y approximation versusstandard linearizationLet us assume a formal de
omposition of the va
uum spa
etime metri
 g�� into theba
kground metri
 
�� and its perturbation h�� ;g�� = 
�� + "h�� ; (2.1)where, in a suitable 
oordinate system, 
�� = O(1) and h�� = O(�). The two dis-tin
t non-negative dimensionless parameters " and � have the following meaning: "is the usual amplitude parameter of weak gravitational perturbations whereas thefrequen
y parameter � denotes the possible high-frequen
y 
hara
ter of radiation de-s
ribed by h�� . The parameter � = �=L represents the ratio of a typi
al wavelength� of gravitational waves and the s
ale L on whi
h the ba
kground 
urvature 
hangessigni�
antly. Sin
e L 
an be 
onsidered to have a �nite value of order unity, we maywrite O(�) = O(�).To derive the dynami
al �eld equations we start with the order-of-magnitudeestimates whi
h indi
ate how fast the metri
 
omponents vary. Symboli
ally, thederivatives are of the order �
 � 
=L, �h � h=�. Next, we expand the Ri

i tensorin powers of h, R��(g) = R(0)�� + "R(1)�� + "2R(2)�� + : : : ; (2.2)where R(0)�� (
) � R��(
) ;R(1)�� (
; h) � 12
�� (h��;�� + h��;�� � h�� ;�� � h��;�� ) ; (2.3)R(2)�� (
; h) � 12h12h�� ;�h�� ;� + h�� (h��;�� + h��;�� � h��;���h��;��) + h� � ;� (h��;� � h��;� )� �h�� ;� � 12h;�� (h��;� + h��;� � h��;� ) i :The semi
olons denote 
ovariant di�erentiation with respe
t to the ba
kground met-ri
 
��, whi
h is also used to raise or lower all indi
es. The orders of the terms (2.3)are R(0)�� = O(1); "R(1)�� = O(��1"); "2R(2)�� = O("2); "3R(3)�� = O(�"3): (2.4)Two limiting 
ases thus arise naturally. For the standard linearization (" � 1,� = 1) the dominant term ofR��(g) is R(0)�� . Its �rst 
orre
tion representing linearized(purely) gravitational waves is governed byR(1)�� (
; h) = 0 ; (2.5)whi
h is a dynami
al equation for perturbations h�� on the �xed ba
kground 
��.The next term R(2)�� (
; h) 
an then be used to de�ne energy-momentum tensor ofthese gravitational waves, but the ba
kground metri
 is not assumed to be in
uen
edby it.In the high-frequen
y approximation (�� 1, " = 1) the dominant term is R(1)�� =O(��1) whi
h gives the wave equation (2.5). The two terms of the order O(1),



CHAPTER 2. HF WAVES AND EXACT SPACETIMES 9namely R(0)�� and R(2)�� , are both used to give the Einstein equation for the ba
kgroundnon-va
uum metri
, whi
h represents the essential in
uen
e of the high-frequen
ygravitational waves on the ba
kground. Of 
ourse, to obtain a 
onsistent solution,one has to use both the wave equation and the Einstein equation for the ba
kgroundsimultaneously.2.1.1 Linear approximationIn analogy with the well-known theory of massless spin-2 �elds in 
at spa
e [19℄ wewish to impose two TT gauge 
onditions,h�� ;� = 0 ; (2.6)h�� = 0 : (2.7)In this gauge we arrive at the following wave equation}h�� � h�� ;� ;� � 2R(0)���� h�� � R(0)�� h�� � R(0)�� h�� = 0 ; (2.8)where the operator } is the generalization of 
at-spa
e d'Alembertian.In 
ase of standard linearized waves (� = 1) there is an in
onsisten
y between(2.8) and (2.6), ex
ept for ba
kgrounds with a 
ovariantly 
onstant Ri

i tensor (e.g.,for the Einstein spa
es). On the other hand, in the high-frequen
y limit (" = 1),the in
onsisten
y is negligible. Moreover, for all ba
kground metri
s of 
onstant
urvature the equations are fully 
onsistent.2.1.2 Generalization to non-va
uum spa
etimesBefore 
onsidering the se
ond-order terms we now extend the formalism to be appli-
able to a larger 
lass of spa
etimes with (possibly) non-vanishing energy-momentumtensor T�� . Namely, g�� satis�es Einstein's equationsR��(g) = 8� ~T��(g; ') : (2.9)Here ~T�� � T�� � 12g��T ��, su
h that T��(g; ') depends on non-gravitational �elds' and on the full metri
 g�� but it does not 
ontain the derivatives of g��. Notethat this admits as parti
ular 
ases a presen
e of ele
tromagneti
 �eld, and alsoEinstein spa
es when ~T�� = 18� �g��. We expand both sides of the equation (2.9)as in (2.2). For ordinary linearization we thus get the equations R(n)�� = 8� ~T (n)�� inea
h order n = 0; 1; 2; : : :. For the high-frequen
y approximation we obtain, in theleading order, the equation (2.5) whi
h is identi
al with the wave equation in theva
uum 
ase. The se
ond-order 
ontributions, that are O(1), represent an in
uen
eof the high-frequen
y gravitational waves and matter �elds on the ba
kground, and
an be rewritten in the form of Einstein's equation for the ba
kground asG(0)�� (
)� 8� T (0)�� (
; ') = �[R(2)�� (
; h)� 12
��R(2)(
; h)℄ � 8� TGW�� : (2.10)This de�nes the e�e
tive energy-momentum tensor TGW�� of high-frequen
y gravita-tional waves.



10 CHAPTER 2. HF WAVES AND EXACT SPACETIMES2.1.3 The WKB approximationIn the following we shall restri
t ourselves to the Isaa
son approximation (" = 1,�� 1), i.e. on study of high-frequen
y gravitational waves on 
urved ba
kgrounds.Inspired by the plane-wave solution in 
at spa
e, the form h�� = A e�� exp(i�) ofthe solution is assumed. The amplitude A = O(�) is a slowly 
hanging real fun
tionof position, the phase � is a real fun
tion with a large �rst derivative but no largerderivatives beyond, and e�� is a normalized polarisation tensor �eld. Substitutingthis into the 
onditions (2.6), (2.7), and the wave equation (2.8) we obtain, in thetwo highest orders whi
h are gauge invariant,k�k� = 0 ; k�e�� = 0 ; k�e��;� = 0 ;e��e�� = 1 ; 
��e�� = 0 ; �A2k��;� = 0 : (2.11)Moreover, using the WKB approximation of TGW�� and the Brill-Hartle averagingpro
edure [5℄ (whi
h guarantees the gauge invarian
e) Isaa
son obtained the energy-momentum tensor [3℄ THF�� = 164�A2k�k� : (2.12)The energy-momentum tensor of high-frequen
y waves thus has the form of pureradiation.2.2 Examples of high-frequen
ygravitational wavesNow we present some expli
it 
lasses of high-frequen
y gravitational waves. Theseare obtained by the above des
ribed WKB approximation method 
onsidering spe-
i�
 families of ba
kground spa
etimes with a privileged geometry.2.2.1 Non-expanding wavesAs the ba
kground we �rst 
onsider the Kundt 
lass [24,33℄ of non-expanding, twist-free spa
etimes in the form [40℄ds2 = F du2 � 2 Q2P 2 du dv + 1P 2 (dx2 + dy2) ; (2.13)with P = 1 + �2 (x2 + y2) ;Q = h1 + �2 (x2 + y2)i e+ C1 x + C2 y ; (2.14)F = D Q2P 2 v2 � (Q2);uP 2 v � QP H ;where �, �, and e are 
onstants (without loss of generality e = 0 or e = 1), C1, C2and D are arbitrary fun
tions of the retarded time u, and H(x; y; u) is an arbitrary
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tion of the spatial 
oordinates x, y, and of u. In parti
ular, these are Petrovtype N when � = �� = 16� and D = �2�e+ C21 + C22 .We 
onsider the phase of high-frequen
y gravitational waves given by � = �(u),and we seek solution in the WKB form, namelyh�� = A e�� exp �i�(u)� ; (2.15)where the amplitude A and polarization tensor e�� are fun
tions of the 
oordinatesfu; v; x; yg. Applying now the equations (2.11) we obtainA = A(u; x; y) ; (2.16)The fa
t that the amplitude A is independent of the 
oordinate v expresses non-expanding 
hara
ter of the waves. The polarisation tensor is analogous to thoseused in the standard theory of linearized waves in 
at spa
e.Using the Einstein tensor for the metri
 (2.13) with the 
osmologi
al term inequations (2.10) and (2.12), we determine the rea
tion of the ba
kground on thepresen
e of the above high-frequen
y gravitational perturbations, namelyQP �P 2� �2�x2 + �2�y2�+ 23 ��H(u; x; y) = 14A2(u; x; y) _�2 : (2.17)These approximate solutions 
an obviously be 
ompared to spe
i�
 exa
t radiativeva
uum solutions whi
h are given by H solving the �eld equation (2.17) with avanishing right-hand side (when A = 0, i.e. high-frequen
y perturbation waves areabsent).The above waves are non-expanding with the wave-fronts u = 
onst: being two-dimensional spa
es of 
onstant 
urvature given by � = 16� , 
f. (2.13).Another interesting sub
lass of the Kundt spa
etimes of the form (2.13), (2.14)are expli
it Petrov type II (or more spe
ial) metri
s given by � = �, e = 1, C = 0and D = 2(�� �), namelyds2 = h 2(�� �) v2 �H idu2 � 2 du dv + 1P 2 (dx2 + dy2) : (2.18)For H = 0 these are ele
trova
uum solutions with the geometry of a dire
t produ
tof two 2-spa
es of 
onstant 
urvature, in parti
ular the Bertotti-Robinson, (anti-)Nariai or Pleba�nski-Ha
yan spa
es [44{47℄. Considering again (2.15) we obtainthe results (2.16) as in the previous 
ase. However, the rea
tion of high-frequen
ywaves on the ba
kground is now di�erent. It is determined by the equations (2.10)and (2.12) with the energy-momentum tensor 
onsisting of a 
osmologi
al term plusthat of a uniform non-null ele
tromagneti
 �eld des
ribed by the 
omplex self-dualMaxwell tensor F �� = 4�1(m[� �m�℄�k[�l�℄), where �1 =q�� �2 ei 
, 
 = 
onst:, andm = P ��� , k = �v, l = 12F �v + �u form the null tetrad. Straightforward 
al
ulationgives P 2� �2�x2 + �2�y2� H = 14A2(u; x; y) _�2 : (2.19)Sin
e the ba
kground spa
etime is not va
uum but it 
ontains ele
tromagneti
�eld, we have to analyze the perturbation of the 
omplete Einstein-Maxwell system,and its 
onsisten
y.



12 CHAPTER 2. HF WAVES AND EXACT SPACETIMESThe Einstein equations in the two highest orders (2.5) and (2.10) have alreadybeen solved. The Maxwell equations are also satis�ed in the high-frequen
y limit,namely F �� j� = O(�), where j denotes the 
ovariant derivative with respe
t to thefull metri
 g�� , be
auseF �� j� = F �� ;� � 12h��h��;�F �� +O(�2) ; (2.20)and 
onsidering that F �� ;� = 0 (an ele
trova
uum ba
kground). In addition, the�eld equations are valid also in the next order O(�) for the new ele
tromagneti
 �eldF�� = (1 + 14h��h��)F �� ; (2.21)sin
e using (2.20) we obtain F�� j� = O(�2). Both the Einstein and Maxwell equa-tions are then satis�ed in the two highest perturbative orders. Interestingly, theseresults hold for high-frequen
y perturbations of any \seed" ele
trova
uum ba
k-ground spa
etimes.2.2.2 Cylindri
al wavesNext we 
onsider the 
lass of 
ylindri
al Einstein-Rosen waves using the followingmetri
 in double null 
oordinates,ds2 = e2
�2 (�dt2 + d�2) + e2 dz2 + �2e�2 d'2 : (2.22)These are exa
t radiative spa
etimes of the Petrov type I (see, e.g. [26℄, [33℄, orequations (2.24)-(2.26) below).We assume again � = �(u) implying the wave ve
tor k� = ( _�; 0; 0; 0), i.e. theWKB perturbation of the form (2.15). By applying the 
onditions (2.11) we obtainA = U(u)pv � u ;e+�� = 1p2 e�2 0BB� 0 0 0 00 0 0 00 0 12(v � u)2 00 0 0 �e4 1CCA ; (2.23)
e��� = 12 (v � u)0BB� 0 0 0 00 0 0 00 0 0 10 0 1 0 1CCA ;noti
e that v � u = p2 � > 0.The ba
k-rea
tion on the ba
kground (
ontained in a spe
i�
 modi�
ation of themetri
 fun
tions 
 and  ) is given by the following equations, 
f. (2.12),(v � u) 2;u + 
;u = � 116(v � u)A2 _�2 ; (2.24)(v � u) 2;v � 
;v = 0 ; (2.25) ;uv � 12(v � u)( ;v �  ;u) = 0 : (2.26)



CHAPTER 2. HF WAVES AND EXACT SPACETIMES 13This set of equations is 
onsistent for the amplitude satisfying (2.23).The above des
ribed perturbations depend on the null \retarded" 
oordinate uso that the high-frequen
y gravitational waves are outgoing (� is growing with t, ona �xed u). However, sin
e the ba
kground metri
 (2.22) is invariant with respe
t tointer
hanging u with v, it is straightforward to 
onsider also ingoing perturbationsby assuming the phase to depend on the \advan
ed 
oordinate" v. This results inan interesting possibility to introdu
e ingoing high-frequen
y gravitational 
ylindri
alwaves into the ba
kground of outgoing Einstein-Rosen waves or vi
e versa.Moreover, all the above results 
an further be extended to a 
lass of general-ized Einstein-Rosen (diagonal) metri
s [34, 49℄ whi
h des
ribe G2 inhomogeneous
osmologi
al models,ds2 = e2
�2 (�dt2 + d�2) + e2 dz2 + t2e�2 d'2 : (2.27)If the three-dimensional spa
elike hypersurfa
es are 
ompa
t, the 
orrespondingmodel is the famous Gowdy universe with the topology of three-torus [32, 34℄. Theonly modi�
ation of the above results (in the double null 
oordinates) 
onsists ofrepla
ing the fa
tor (v � u) with (v + u), and ea
h derivative with respe
t to u
hanging sign (e.g. 
;u ! �
;u or  ;uv ! � ;uv).2.2.3 Expanding wavesFinally, we assume that the ba
kground is an expanding Robinson-Trautman spa
e-time. The metri
 (generally of the Petrov type II ) in the standard 
oordinates hasthe form, see e.g. [27, 28, 33, 43℄,ds2 = ��K � 2r(lnP);u � 2mr � �3 r2� du2 � 2dudr + r2P2 (d�2 + d�2) ; (2.28)where K = �(lnP), � � P2( �2��2 + �2��2 ), and m(u). When P(u; �; �) satis�es theRobinson-Trautman equation �K + 12m (lnP);u � 4m;u = 0, the metri
 (2.28) isan exa
t va
uum solution of the Einstein equations.In view of the existen
e of privileged 
ongruen
e of null geodesi
s generated by�r we introdu
e the phase � = �(u). Applying the equations (2.11) we obtainA = 1r U(u; �; �) ; (2.29)and the two polarization modes are easily inferred from (2.28).The rea
tion of the waves on ba
kground is determined by the equations (2.10)and (2.12) with T (0)�� = � 18��
��. From the only nontrivial 
omponent we immedi-ately obtain the following equation��m�u + 3m (lnP);u + 14�K = 116U2 _�2 ; (2.30)where m(u), �(u), whereas the remaining fun
tions depend on 
oordinates fu; �; �g.Noti
e that this is independent of the 
osmologi
al 
onstant �.The expressions (2.29),(2.30) agree with results obtained by Ma
Callum andTaub [7℄ or re
ently by Hogan and Futamase [14℄ who used Burnett's te
hnique [11℄.



14 CHAPTER 2. HF WAVES AND EXACT SPACETIMESOur results, whi
h were derived by a straightforward approa
h, are slightly moregeneral be
ause they are not restri
ted to a 
onstant frequen
y _� = 
onst. Parti
ularsub
ase of the Vaidya metri
 has already been studied before by Isaa
son [3℄ andelsewhere [21℄.2.3 General 
onsiderationsFor 
onstru
tion of high-frequen
y gravitational perturbations we have employed thefa
t that all these spa
etimes admit a non-twisting 
ongruen
e of null geodesi
s. The
orresponding tangent ve
tors k� are hypersurfa
e orthogonal so that there existsa phase fun
tion � whi
h satis�es �;� = k�. The last equation in (2.11) 
an be putinto the form ddl(lnA) = ��, where l is the aÆne parameter, and � = 12k�;� is theexpansion of the null 
ongruen
e. This determines the behaviour of the amplitudeA in the above spa
etimes (2.16), (2.23), (2.29). The remaining equations (2.11)enables one to dedu
e the polarization tensors.It has been also 
ru
ial that all the 
lasses of spa
etimes dis
ussed admit exa
tsolutions with the energy-momentum tensor of pure radiation, i.e., G�� � 8� T�� =18 A2k�k�, where T�� is either 
onstant (representing the 
osmologi
al 
onstant) orit des
ribes an ele
tromagneti
 �eld. The relation between high-frequen
y pertur-bations and exa
t radiative solutions of Einstein's equations in ea
h 
lass is thusnatural. In parti
ular, it is possible to determine expli
itly the rea
tion of the ba
k-ground on the presen
e of high-frequen
y gravitational waves.



Chapter 3Spe
tra of high-frequen
y wavesIn this part we will 
on
entrate on solving the wave equation des
ribing the prop-agation of high-frequen
y waves whi
h was derived by Isaa
son [3℄. Although the
omplete Isaa
son formalism in
orporates also the rea
tion of the ba
kground tothe wave, we will not 
onsider this e�e
t here. Rather, we will expli
itly presentspe
tra of high-frequen
y waves whi
h may propagate in some fundamental 
osmo-logi
al models, in parti
ular the Friedmann{Robertson{Walker spa
etimes and inthe anisotropi
 Kasner universe.3.1 The Isaa
son formalismIsaa
son's formalism [3℄ is based on the de
omposition of the spa
etime metri
 g��into the ba
kground metri
 
�� and its perturbation h�� ;g�� = 
�� + h�� ; (3.1)where, in a suitable 
oordinate system, 
�� = O(1) and h�� = O(�). By de�nition,f = O(�n) if there exists a 
onstant C > 0 su
h that jf j < C�n as � ! 0. Thequantity f need not ne
essarily be proportional to �n, it 
an be even smaller thanC�n for � ! 0. Therefore, the assumption h = O(�) does not automati
ally implythat h � �. The spe
trum of possible high-frequen
y waves is thus not a priorirestri
ted, it is only required that their amplitudes fall to zero at least linearlywith �, i.e. jh(�)j < C�.The non-negative dimensionless parameter � is the ratio of a typi
al wavelength� of gravitational waves and the s
ale L on whi
h the ba
kground 
urvature 
hangessigni�
antly. Isaa
son's high-frequen
y approximation thus arises when �� L, i.e.�� 1. Sin
e L 
an be 
onsidered to have a �nite value of order unity, we may writeO(�) = O(�).To derive the dynami
al �eld equations we expand the Ri

i tensor in powersof h, R��(g) = R(0)�� +R(1)�� +R(2)�� + : : : : (3.2)Using the results from se
tion 2.1 we obtain (in the high-frequen
y approximation(�� 1)) that the dominant term is R(1)�� = O(��1) whi
h gives the wave equationR(1)�� (
; h) = 0, i.e. 
�� (h��;�� + h��;�� � h�� ;�� � h��;�� ) = 0 ; (3.3)15



16 CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVESfor the perturbations h�� on the 
urved ba
kground 
�� (
onsidering the 
ase of ava
uum full metri
 g��). The two terms of the order O(1), namely R(0)�� and R(2)�� ,
an be used to give the equation for the ba
kground (non-va
uum) metri
, whi
hrepresents the essential in
uen
e of the high-frequen
y gravitational waves on theba
kground.Of 
ourse, to obtain a 
onsistent solution, one has to use both the wave equationand the equation for the ba
kground simultaneously. We analyzed this problem ex-pli
itly in 
hapter 2 for spa
etimes with preferred null dire
tions, after simpli�
ationof the equations by the WKB approximation, see [15℄. However, in this 
hapter wewish to 
on
entrate on the equation (3.3). Our aim is to obtain spe
tra of high-frequen
y gravitational radiation propagating in an arbitrary dire
tion in various
osmologi
al models.Now we impose the gauge 
onditions (2.6), (2.7). In this gauge the equation(3.3) redu
es to the following wave equation,}h�� � h�� ;� ;� � 2R(0)���� h�� � R(0)�� h�� � R(0)�� h�� = 0 ; (3.4)where the operator } is the generalization of 
at-spa
e d'Alembertian.The gauge 
onditions (2.6),(2.7) still do not 
ompletely exhaust the gauge free-dom, and we 
an thus demand the following additional 
ondition,h�0 = 0 ; (3.5)to simplify the 
al
ulations.3.2 High-frequen
y waves in 
osmologi
al modelsNow, we will investigate the solutions of the wave equation (3.4), subje
t to the gauge
onditions (2.6) and (2.7), in some 
osmologi
ally relevant models with high degreeof symmetry, namely the Friedmann{Robertson{Walker (FRW), anti{de Sitter, andanisotropi
 Kasner universes. As we shall see, the full spe
trum of gravitationalwaves whi
h propagate in an arbitrary dire
tion is obtained expli
itly for spa
etimeswith isotropi
 time sli
es (FRW models with K = 0; 1;�1) or with a spatial metri
that is transformable to isotropi
 at ea
h instant of time (Kasner), in 
ontrast toanti{de Sitter universe whi
h is globally only 
onformally isotropi
 in the metri
form used below.3.2.1 FRW models with spatial 
urvature K = 0First, we will study spatially homogeneous and isotropi
 FRW spa
etimes with avanishing spatial 
urvature, and with the stress-energy tensor of an ideal 
uid. Asshown in [15℄, this tensor does not 
ontain a derivative of the metri
 tensor, so that itsatis�es the 
onditions of the Isaa
son approximation generalized to the non-va
uum
ase, so that equations (2.6), (2.7), (3.4) are still valid.In this spe
ial 
ase of FRW spa
etimes it is possible to write the metri
 using
onformal time � in the usual form [19℄,ds2 = a2(�) ��d�2 + dx2 + dy2 + dz2� : (3.6)



CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVES 17Next, we insert the 
ovariant derivatives and the 
orresponding 
urvature tensor ofthis metri
 into the gauge 
onditions (2.6), (2.7) and in the wave equations (3.4).Using the additional freedom (3.5), the gauge 
ondition h�� = 0 is simpli�ed to�h � hii = 0 (
onsidering latin indi
es to take the values i; j; k = 1; 2; 3 and usingthe (
at-spa
e) summation 
onvention over the same indi
es, but only when one ofthem is an upper and the other is a lower index), while the 
ondition h�� ;� = 0implies hii = 0 (for � = 0) ;hij;i = 0 (for � = j) : (3.7)The only non-trivial 
omponents of the wave equation (3.4) 
an thus be put intothe following form, a2(�hij;00 + hij;kk) + 2a _ahij;0 � 4 _a2hij = 0 ; (3.8)and _a = �a�� . The 
omponents (0; 0) and (0; i) of the wave equation are ful�lledidenti
ally due to the gauge 
onditions (3.7). Using (3.7) to also modify the dy-nami
al equations (3.8), it is possible to transform equations for all the six non-zero
omponents of the perturbation tensor into the 
ommon form,a2 ���2f��2 + �2f�x2 + �2f�y2 + �2f�z2�+ 2a _a�f�� � 4 _a2f = 0 ; (3.9)where f(�; x; y; z) represents an arbitrary 
omponent hij. It is interesting to noti
ethat the �rst gauge 
ondition (3.7) restri
ts the number of independent 
omponentsof the perturbation tensor to �ve whi
h is in agreement with the number of inde-pendent 
omponents of a spin-2 �eld. Wave equation (3.9) 
an further be rewrittenby introdu
ing the 
ovariant d'Alembertian operator,�f � f ;�;� = a�2���2f��2 + �2f�x2 + �2f�y2 + �2f�z2�� 2a�3 _a�f�� ;into the form �f + 4a2 �fa�� = 0 : (3.10)By applying the Fourier transform in the 
oordinates ~x = (x; y; z),~f � F [f ℄(�;~k) = Z f(�; ~x) exp (i~k � ~x) d~x ;the equation (3.10) is 
onverted to the form�� �2��2 + j~kj2�� 2 _aa ��� + 4 _a2a2� ~f = 0 : (3.11)An expli
it solution of this se
ond{order ordinary di�erential equation depends onthe spe
i�
 expansion fun
tion a(�) whi
h determines the ba
kground spa
etime onwhi
h the waves propagate. The fun
tion ~f(�;~k), whi
h is the solution of (3.11),represents a time dependent spe
trum of high-frequen
y gravitational perturbations.Next, we will present the expli
it solution for the parti
ular 
ase of the de Sitterspa
etime.



18 CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVESGravitational waves in the de Sitter spa
etimeThe de Sitter metri
, whi
h is the maximally symmetri
 spa
etime with 
onstantpositive 
urvature R = 4� when � > 0 is a 
osmologi
al 
onstant, has in standard
onformally 
at 
oordinates the form (see e.g. [33℄)ds2 = �2�2 (�d�2 + dx2 + dy2 + dz2) ; (3.12)where � = p3=�. Therefore, in this 
ase the expansion fun
tion is simply a(�) =�=�.Note, that the de Sitter manifold 
an be viewed as a four-dimensional hyperboloidembedded into �ve-dimensional 
at spa
etime. Depending on the 
hoi
e of a spe
i�
spa
elike se
tion through this hyperboloid, one obtains all 
ases of FRW modelsof 
onstant spatial 
urvature K = 0;+1 or �1, see [37, 50℄. The metri
 (3.12)
orresponds to the 
ase K = 0.Inserting this spe
ial form of the fun
tion a(�) into equation (3.11) we obtain�2 ~f��2 + 2� � ~f�� + � 4�2 + j~kj2� ~f = 0 : (3.13)A general solution to this di�erential equation 
an be expressed using 
ylindri
Bessel fun
tions of the �rst kind J� and se
ond kind Y�, with an imaginary index,namely ~f = 1p� hA(~k)Jip152 (j~kj�) +B(~k)Yip152 (j~kj�)i ; (3.14)where A;B are arbitrary fun
tions. This expression is in a 
omplete agreementwith the result obtained previously using syn
hronous 
oordinates for the de Sittermetri
 [51℄. Note that syn
hronous 
oordinates 
over only half (� > 0) of the deSitter hyperboloid and therefore are not geodeti
ally 
omplete [50℄. An inverseFourier transform of equation (3.14) in the 
ase of a mono
hromati
 wave, A(~k) =A0Æ(~k � ~k0), B = B0Æ(~k � ~k0) leads to the following resultf = (2�)�3 1p� hA0Jip152 (j~k0j�) +B0Yip152 (j~k0j�)i ei ~k0~x ; (3.15)whi
h represents a time evolution of the spe
trum of high-frequen
y gravitationalwaves in the de Sitter \in
ationary" universe. The typi
al plot for j~k0j = 1 of thebasi
 modes is given in �gure 3.1.3.2.2 Gravitational waves in the anti{de Sitter spa
etimeAnti-de Sitter spa
etime is a maximally symmetri
 spa
etime with a 
onstant neg-ative 
urvature R=4�< 0. It may be viewed as a four-dimensional hyperboloidembedded into �ve-dimensional 
at spa
etime with metri
 signature ({,{,+,+,+),having thus two time axes [52℄. We will use the 
onformally 
at form of metri
ds2 = �2x2 ��d�2 + dx2 + dy2 + dz2� ; (3.16)
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(a) (b)Figure 3.1: The �gure (a) is a plot of the fun
tion Ren 1p� Jip152 (�)o and the �gure(b) of the fun
tion Ren 1p� Yip152 (�)o.where � = p�3=�. These 
oordinates 
over the whole manifold. It is easilyseen that using the formal transformation x̂ = i�, �̂ = ix, �̂ = i� (i being theimaginary unit), and omitting the hats, we obtain the metri
 (3.12) of de Sitterspa
etime. This o�ers the possibility to adopt the results obtained for the de Sitterspa
etime, and to arrive at the spe
trum of high-frequen
y perturbations for theanti{de Sitter spa
etime. Unfortunately this would mean setting the 
omponentsh1� of perturbation tensor to zero due to gauge 
ondition h0� = 0 applied in new
oordinates. The general form of this 
ondition is h��v� = 0, where v� is the four{velo
ity of an observer. Therefore, the 
ondition h1� = 0 implies that the observermoves faster than the speed of light in the dire
tion of ��x (in the 
oordinates ofmetri
 (3.16)). Moreover, the new 
oordinate x̂ is purely imaginary and it wouldthus be impossible to use the Fourier transform.Hen
e we will attempt to solve the problem dire
tly using the metri
 (3.16) andassuming h�0 = 0. The gauge 
ondition h�� = 0 simpli�es to the form (using thesummation 
onvention introdu
ed in se
tion 3.2.1)hii = 0 :Non-trivial 
omponents of the gauge 
ondition h�� ;� are the followingx hij;i � 2h1j = 0 :Using the gauge 
onditions to simplify the dynami
al equations (3.4) for perturba-tions h�� we obtain the following systemh11 = 0 ; h22 = �h33 ; h21;0 = 0 ; h31;0 = 0 ;h21;2 + h31;3 = 0 ;x2 h21;kk + 4h21 = 0 ;



20 CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVESx2 h31;kk + 4h31 = 0 ; (3.17)x2(�h22;00 + h22;kk) + 2xh22;1 � 4xh21;2 + 4h22 = 0 ;x2(�h23;00 + h23;kk) + 2xh23;1 � 2x(h31;2 + h21;3) + 4h23 = 0 :From equations (3.17) it is obvious that there are only two dynami
al degrees offreedom 
orresponding to h22 = �h33 and h23. The residual non-trivial 
omponentsh21 and h31 are independent of 
onformal time and therefore play the role of (sup-plementary) boundary 
onditions. The most natural 
hoi
e is to put h21 = 0 = h31.The solution of the set of equations (3.17) 
an be interpreted as a wave propagat-ing in the dire
tion ��x whi
h is purely transversal and has two polarizations. In
ontradistin
tion to the de Sitter 
ase, we do not obtain the same results for pertur-bations propagating in a general dire
tion di�erent from ��x . This is a 
onsequen
eof \anisotropy" of the anti{de Sitter spa
etime in these 
oordinates.Using the above 
hoi
e of the boundary 
onditions we 
an write the followinguni�ed form of equation for both degrees of freedom h22 = �h33 and h23,��2f��2 + �2f�x2 + �2f�y2 + �2f�z2 + 2x �f�x + 4x2f = 0 ;where f stands for h22 or h23. Performing the following separation of variablesf(�; x; y; z) = g(x) exp i(�k0� + k2y + k3z), we obtain�2g�x2 + 2x �g�x + � 4x2 + k21� g = 0 ; (3.18)where k21 = k20 � k22 � k23. The equation (3.18) is formally equivalent to (3.13) (whenrepla
ing x with �, and k21 with j~kj2). Therefore, the solution is a mono
hromati
high-frequen
y gravitational wavef = 1px hAJip152 (k1x) +B Yip152 (k1x)i exp i(�k0� + k2y + k3z) ;whi
h is analogous to the wave (3.15) in the de Sitter spa
etime.Let us �nally mention an interesting 
onne
tion of the above result to exa
tgravitational waves in the anti{de Sitter spa
etime des
ribed by the Defrise solution[33, 53℄. The metri
 was investigated in [54℄ using the formds2 = �2(d�2 + sinh2 �d�2) + 8�2(
osh � + sinh � 
os�)2dudv16�2(
osh � + sinh � 
os�)4d(u)du2 ; (3.19)where � 2 [0;1), � 2 [0; 2�), u,v2 (�1;+1). The wavefronts u = 
onst: aretwo-dimensional hyperboli
 surfa
es with 
onstant negative 
urvature �� parame-terized by � and �. The solution (3.19) 
an be interpreted also in the perturbativesense. The ba
kground is represented by the metri
 (3.19) with d(u) = 0, and the
omponent 
uu of the metri
 proportional to d(u) 
orresponds to high-frequen
yperturbations with small but rapidly varying fun
tion d(u)=O(�). The gauge 
on-ditions (2.6),(2.7) are ful�lled identi
ally. The wave equation (3.4) is satis�ed tothe order O(�), sin
e ea
h non-trivial 
omponent has the form d(u)f(�; �). This isa satisfa
tory result implying that the exa
t solution (3.19) is 
onsistent with thehigh-frequen
y Isaa
son approximation.



CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVES 213.2.3 FRW models with spatial 
urvatures K = �1FRW metri
s with a positive or negative 
onstant 
urvature of spatial se
tions maybe written in the standard form [55℄ds2 = a2(�)(�d�2 + 3
ijdxidxj) ; (3.20)where the tensor 3
ij is the metri
 of homogeneous and isotropi
 three-spa
e ofuniform spatial 
urvature K, and the usual 
hoi
e of 
oordinates leads to3
ijdxidxj = d�2 + f 2(�)[d�2 + sin2 � d�2℄ ; (3.21)with f = sin� for K = 1, and f = sinh� for K = �1. Let 
�� and ; denote theFRW metri
 and the 
orresponding 
ovariant derivative, respe
tively. The 
ovariantderivative with respe
t to 3
ij will be denoted by j .To look for the solution of the wave equation (3.4) in the way similar to the
at-spa
e FRW K = 0 models is 
ompli
ated. Therefore, we 
onsider a somewhatsimpli�ed form of the metri
 perturbations whi
h is widely used in literature (see,e.g. [56℄). The 
onformal time and spatial dependen
e of the perturbations areseparated in the following way h�� = f(�)Q�� ; (3.22)where Q�� satis�es Q�0 = 0, in a

ordan
e with the additional gauge (3.5). Thespatial 
omponents of Qij form a tra
eless, divergen
eless tensor (thus ensuring thath�� satis�es the gauge 
onditions (2.6),(2.7)) whi
h is a solution ofQijjljl + k2Qij = 0 : (3.23)Su
h Qij are 
alled a tensor harmoni
s, and the equation (3.23) is a generalizedHelmholtz equation with k representing the wave number whi
h sets the s
ale of theperturbations relative to the ba
kground 
oordinates. The expansion of perturba-tions into tensor harmoni
s was investigated from the mathemati
al point of viewe.g. in [57℄.To simplify the form of the 
urvature terms in the wave equation (3.4) one 
anuse the well-known de
omposition of the Riemann tensor [33℄R���� = C���� + 
�[�R�℄� � 
�[�R�℄� � 13
�[�
�℄�R ; (3.24)where C���� is the tra
eless Weyl tensor. Using (3.24) and the fa
t that the spatialpart Rij of the Ri

i tensor is a multiple of 
ij, we derive thatR����h�� = 12 �R�� +R�� � 13R� h�� (3.25)(no summation over �; � here). From the FRW metri
 (3.20) we obtainRij = a�4(�aa+ _a2 + 2Ka2)
ij and R = 6a�3(�a+Ka) ;where R = 
��R�� . Using the form (3.22) of the perturbation tensor h�� we derivethe following form of the 
urvature terms in the wave equation (3.4),2R����h�� +R��h�� +R��h�� = (2a�3�a+ 4a�4 _a2 + 6Ka�2)fQ�� : (3.26)



22 CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVESFor the 
ovariant d'Alembertian of the perturbation tensor we 
an writeh�� ;� ;� = f ;�;�Q�� + 2 _fQ��;0
00 + f(Q��;00
00 +Q��;ii
ii) ; (3.27)where f ;�;� = �a�2 �f � 2 _aa�3 _f ; Q��;0 = �2 _aa�1Q�� ;Q��;00 = (6_a2a�2 � 2�aa�1)Q�� ; Q��;ii = Q��jii + 2_a2a�4
iiQ�� :Combining equations (3.26), (3.27) and using the Helmholtz equation (3.23), thewave equation (3.4) is redu
ed to the se
ond order ordinary di�erential equation forthe amplitude of the perturbations depending on the 
onformal time,�� �2��2 + k2�� 2 _aa ��� + 4 _a2a2 + 6K� f = 0 : (3.28)Noti
e that when K = 0, the equation (3.28) exa
tly redu
es to (3.11), and weobserve that in this 
ase the parameter k de�ned in the Helmholtz equation (3.23)to the norm of the waveve
tor ~k.Example: waves in the (anti{) de Sitter spa
etimeNow we will solve the equation (3.28) expli
itly in three spe
ial 
ases of non-
atFRW spa
etimes with the 
osmologi
al term.We start with the de Sitter spa
etime whose metri
 
ould be given in the FRWform with any value of spatial 
urvature K, see the beginning of se
tion 3.2.1 and[50℄. The value K = 1 for metri
 in the form (3.20) 
orresponds to spatial se
tionsof the de Sitter hyperboloid being spheres S3. The expansion fun
tion then takesthe form a(�) = �sin � ; (3.29)and the 
oordinates (3.21) 
over the whole hyperboloid. Solution of the equation(3.28) with the expansion fun
tion (3.29) takes the formf(�) = ei�=4psin � "C1 Pl p3 + k2 � 12 ; ip152 ; 
os �! (3.30)+C2Ql p3 + k2 � 12 ; ip152 ; 
os �!# ;where Pl(u; v; z), resp. Ql(u; v; z) are Legendre fun
tions of the �rst, or of the se
ondkind, respe
tively, whi
h satisfy the di�erential equation(1� z2) y00 � 2z y0 + �v(v + 1)� u21� z2� y = 0 ; (3.31)for y(z). The points z = 1;�1;1 are singularities of this equation (ex
ept in spe
ial
ases) and ordinary bran
h points of the Legendre fun
tions in the 
omplex domain.When we take the bran
h 
uts to be (�1;�1) and (1;1), and if we 
omposeLegendre fun
tions with 
osine fun
tion, as in (3.30), we obtain standard spheri
al
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(a) (b)Figure 3.2: The �gure (a) is a plot of the fun
tionRen 1psin � Pl(p19� 12 ; ip152 ; 
os �)o, and the �gure (b) of the same expression, onlywith Ql instead of Pl.harmoni
s. The sample plot of the basi
 modes of the solution for k = 4 is presentedin �gure 3.2.When K = �1, the spatial se
tions are hyperboli
 and the expansion parameteris a(�) = �sinh � : (3.32)These 
oordinates 
over only part of the hyperboloid. Solution of the equation (3.28)with the expansion fun
tion (3.32) is the following,f(�) = 1psinh � "C1 Pl p3� k2 � 12 ; ip152 ; 
osh �! (3.33)+C2Ql p3� k2 � 12 ; ip152 ; 
osh �!# :When we take the bran
h 
uts to be (�1;�1) and (�1; 1), and 
ompose Legendrefun
tions with hyperboli
 
osine, as in (3.33), we obtain so 
alled toroidal fun
tions.The sample plot of the basi
 modes of the solution for k = 4 is given in �gure 3.3.Finally, we give the solution for the anti{de Sitter spa
etime represented by theFRW metri
 with K = �1 and the following expansion parameter [50℄,a(�) = �
osh � : (3.34)The 
orresponding 
oordinates 
over only part of the hyperboloid mentioned in these
tion 3.2.2 . Solution of the equation (3.28) with the expansion fun
tion (3.34) has
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(a) (b)Figure 3.3: The �gure (a) is a plot of the fun
tionRen 1psinh � Pl(p�13� 12 ; ip152 ; 
osh �)o, and the �gure (b) of the same expression,only with Pl repla
ed by Ql.the form f(�) = 1p
osh � "C1 Pl p3� k2 � 12 ; ip152 ; i sinh �! (3.35)+C2 Ql p3� k2 � 12 ; ip152 ; i sinh �!# :The sample plot of the basi
 modes for k = 4 is presented in 3.4.3.2.4 Waves in the anisotropi
 Kasner universeThe Kasner universe is a spe
ial 
ase of the Bian
hi type I 
lass of homogeneous butanisotropi
 spa
etimes. Its metri
 in syn
hronous 
oordinates has the form [55℄ds2 = �dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2 ; (3.36)where p1; p2; p3 are 
onstants. This metri
 represents a solution of va
uum Einstein'sequations if the following relations hold:p1 + p2 + p3 = 1 ; p12 + p22 + p33 = 1 : (3.37)However, in fa
t we need not assume these relations. We may 
onsider the matter
ontent of the universe des
ribed by the energy-momentum tensor whi
h does not
ontain a derivative of the metri
. This ful�lls the 
onditions of a generalizationof the Isaa
son approximation to non-va
uum spa
etimes, as des
ribed in [15℄. Letus however mention that it has re
ently been shown [58, 59℄ that it is impossible toretain anisotropy when the Kasner universe is �lled with a vis
ous 
uid, dominantenergy 
ondition holds, and entropy is nonde
reasing. However the anisotropy ispermitted when it is �lled with an ideal 
uid satisfying the Zel'dovi
 equation ofstate.
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(a) (b)Figure 3.4: The �gure (a) is a plot of the fun
tionRen 1p
osh � Pl(p�13� 12 ; ip152 ; i sinh �)o, and the �gure (b) of the same expression,only with Pl repla
ed by Ql.As in the previous 
al
ulations we will use h0� = 0 as an additional 
ondition.The tra
eless gauge 
ondition has the form (using the summation 
onvention de�nedin se
tion 3.2.1) t�2pihii = 0 : (3.38)The gauge 
ondition h�� ;� = 0 results in the equationspi t�2pihii = 0 ; t�2pihij;i = 0 : (3.39)Using these gauge 
onditions we 
an simplify the dynami
al equations (3.4) to thefollowing form (no summation over i; j in the se
ond equation)pi t�2pihij;i = 0 ; (3.40)�hij;00 t2 + �Xk pk + 2pi + 2pj! t hij;0 + t(�2pk+2)hij;kk � 4pipj hij = 0 : (3.41)Using the 
ovariant d'Alembertian, the di�erential equation (3.41) 
an be rewrittenas � hij + 2(pi + pj)t hij;0 � 4pipjt2 hij = 0 :Let us denote an arbitrary 
omponent hij of the perturbation tensor simply as f(even though the wave equation (3.41) is di�erent for di�erent indi
es i; j) and letus de�ne A = 2(pi + pj)�Xk pk ; B = pipj :We will look for the solutions of (3.41) in the following spe
ial form,f(t; x; y; z) = X(t; x) + Y (t; y) + Z(t; z) : (3.42)



26 CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVESWhen we insert (3.42) into the wave equation (3.41), its left-hand side splits intothree parts with ea
h depending only on one spatial 
oordinate. The simplest pos-sible solution is to equate ea
h of these parts to zero, satisfying thus the equation.For example, in spatial 
oordinate x we obtain�2X�t2 � At �X�t � t�2p1 �2X�x2 + 4Bt2 X = 0 : (3.43)Applying now the one-dimensional Fourier transform in the 
oordinate x on theequation (3.43) we arrive at the ordinary di�erential equationd2 ~Xdt2 � At d ~Xdt + t�2p1k21 ~X + 4Bt2 ~X = 0 ; (3.44)where ~X = F [X℄. Making an ansatz ~X = t 12 (A+1)F (t) and using the 
oordinatetransformation s = 11�p1k1 t1�p1 we obtain the standard form of the Bessel equations2 �G + s �G+ �16B � (A+ 1)24(1� p1)2 + s2� G = 0 ; (3.45)where G(s) = F (t), and the dot denotes di�erentiation with respe
t to s. Solving(3.45) and transforming this ba
k to ~X and t, the solution of equation (3.43) takesthe following form~X = t 12 (A+1)� �C+1 (k1) J �p(A+1)2�16B2(1�p1) ; k1t(1�p1)1� p1 �+ C�1 (k1)Y �p(A+1)2�16B2(1�p1) ; k1t(1�p1)1� p1 �� ;(3.46)where J(�; z), and Y (�; z), is the Bessel fun
tion of the �rst kind, and of the se
ondkind, respe
tively. For the va
uum Kasner universe (for whi
h the relations (3.37)hold) we obtain (A + 1)2 � 16B = 4(pi � pj)2, and thus the index of the Besselfun
tions is a real number. Generally, assuming that all pi are positive, it turns outthat forPk pk < 1 the index is always real, but forPk pk > 1 it might be imaginary.Pro
eeding in the same way for the fun
tions Y , and Z, the form of the solution(3.46) is reprodu
ed ex
ept for the repla
ement of k1; p1; C+1 ; C�1 with k2; p2; C+2 ; C�2 ,and k3; p3; C+3 ; C�3 , respe
tively. The 
omplete solution may thus be 
omposed inthe following wayf(t; x; y; z) = F�13 h ~X(t; k1) Æ(k2)Æ(k3) + ~Y (t; k2) Æ(k1)Æ(k3) + ~Z(t; k3) Æ(k1)Æ(k2)i ;(3.47)where F�13 denotes the inverse Fourier transform in three dimensions, and Æ denotesthe Dira
 delta fun
tion. The spe
trum is then determined by the three fun
tionsC�j (kj), where j = 1; 2; 3. The mono
hromati
 wave with the waveve
tor (k01; k02; k03)is obtained by setting C�j (kj) = 
�j Æ(kj � k0j ) ;and has the formf(t; x1; x2; x3) = t 12 (A+1)� Xj=1;2;3"
+j J  p(A+1)2�16B2(1�pj) ; k0j t(1�pj)1� pj !+ 
�j Y  p(A+1)2�16B2(1�pj) ; k0j t(1�pj)1� pj !# eik0jxj ;where x1 = x; x2 = y; x3 = z.



Chapter 4
Radiative spa
etimes approa
hingthe Vaidya metri

The 
lassi
 Vaidya metri
 [33,60{62℄ is a spheri
ally symmetri
 type D solution of theEinstein equations in the presen
e of pure radiation matter �eld whi
h propagatesat the speed of light. In various 
ontexts this \null dust" may be interpreted ashigh-frequen
y ele
tromagneti
 or gravitational waves, in
oherent superposition ofaligned waves with random phases and polarisations, or as massless s
alar parti
lesor neutrinos. The Vaidya solution depends on an arbitrary \mass fun
tion" m(u)of the retarded time u whi
h 
hara
terises the pro�le of the pure radiation (it is a\retarded mass" measured at 
onformal in�nity).In fa
t, the Vaidya spa
etime belongs to a large Robinson{Trautman 
lass of ex-panding nontwisting solutions [27, 28, 33℄. Various aspe
ts of this family have beenstudied in the last two de
ades. In parti
ular, the existen
e, asymptoti
 behaviourand global stru
ture of va
uum Robinson{Trautman spa
etimes of type II withspheri
al topology were investigated, most re
ently in the works of Chru�s
iel andSingleton [85{87℄. In these rigorous studies, whi
h were based on the analysis of so-lutions to the nonlinear Robinson{Trautman equation for generi
, arbitrarily strongsmooth initial data, the spa
etimes were shown to exist globally for all positiveretarded times, and to 
onverge asymptoti
ally to a 
orresponding S
hwarzs
hildmetri
. Interestingly, extension a
ross the \S
hwarzs
hild-like" event horizon 
anonly be made with a �nite order of smoothness. Subsequently, these results weregeneralized in [88,89℄ to the Robinson{Trautman va
uum spa
etimes whi
h admit anonvanishing 
osmologi
al 
onstant �. It was demonstrated that these 
osmologi
alsolutions settle down exponentially fast to a S
hwarzs
hild{(anti-)de Sitter solutionat large times u.Our aim here is to further extend the Chru�s
iel{Singleton analysis of the Robin-son{Trautman va
uum equation by in
luding matter, namely pure radiation. It wasargued already by Bi�
�ak and Perj�es [90℄ that with � = 0 su
h spa
etimes shouldgeneri
ally approa
h the Vaidya metri
 asymptoti
ally. We will analyze this prob-lem in more detail, in
luding also the possibility of � 6= 0.27



28 CHAPTER 4. SPACETIMES APPROACHING THE VAIDYA METRIC4.1 The metri
 and �eld equationsIn standard 
oordinates the Robinson{Trautman metri
 has the form [28, 33, 43℄ds2 = ��K � 2r(lnP );u � 2mr � �3 r2� du2 � 2dudr + 2 r2P 2d�d�� ; (4.1)where K = �(lnP ) with � � 2P 2����� being the Gaussian 
urvature of the 2-sur-fa
es 2P�2d�d��, m(u) is the mass fun
tion, and � is the 
osmologi
al 
onstant.When the fun
tion P (u; �; ��) satis�es the fourth-order Robinson{Trautman �eldequation �K + 12m (lnP );u � 4m;u = 2�n2 ; (4.2)the metri
 des
ribes a spa
etime (generally of the Petrov type II ) �lled with pure ra-diation �eld T�� = n2(u; �; ��) r�2 k�k�, where k = �r is aligned along the degenerateprin
ipal null dire
tion (we use the 
onvention G�� + �g�� = � T��). In parti
ular,va
uum Robinson{Trautman spa
etimes are given by n = 0, in whi
h 
ase m 
anbe set to a 
onstant by a suitable 
oordinate transformation [33℄.Here we will restri
t ourselves to nonva
uum 
ases for whi
h the dependen
eof the mass fun
tion m(u) on the null 
oordinate u is only 
aused by a homoge-neous pure radiation with the density n2(u) r�2. When the mass fun
tion m(u) isde
reasing, the �eld equation (4.2) 
an be naturally split into the following pair,�K + 12m(u) (lnP );u = 0 ; (4.3)�2m(u);u = �n2(u) : (4.4)In fa
t, it was demonstrated in [90℄ that su
h a separation 
an always be a
hievedusing the 
oordinate freedom. It is then possible to reformulate equation (4.3) usinggab = f(u; �; ��)�2g0ab, where g0ab(�; ��) is the metri
 on a 2-dimensional sphere S2, andP = fP0 ; P0 = 1 + 12� �� : (4.5)Then the equation (4.3) be
omes�f�u = � 112m(u) f �K : (4.6)4.2 Linear mass fun
tionLet us �rst 
onsider the simplest 
hoi
e of m(u) whi
h, in fa
t, has been widely usedin literature (see e.g. [65,67,91℄): we will assume that the mass fun
tion is a linearlyde
reasing positive fun
tionm(u) = ��u; � = 
onst > 0 ; (4.7)on the interval [u0; 0℄. The 
onstant value u0 < 0 lo
alises an initial null hypersurfa
eon whi
h an arbitrary suÆ
iently smooth initial data given by the fun
tionf0(�; ��) = f(u = u0; �; ��) ; (4.8)are pres
ribed, see �gure 4.1.
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Figure 4.1: S
hemati
 
onformal diagrams of the Robinson{Trautman exa
t spa
e-times whi
h exist for any smooth initial data pres
ribed on u0. Pure radiation �eldis present in the shaded region u < 0. Near u = 0 the solutions approa
h the Vaidyametri
, and 
an be extended to 
at Minkowski region u > 0. Thi
k line indi
atesthe 
urvature singularity at r = 0 whereas double line represents future 
onformalin�nity I+ at r =1 (� = 0 is assumed). The global stru
ture depends on the valueof the parameter � of the linear mass fun
tion (4.7): left diagram 
orresponds to� > 1=16, the right one applies when � � 1=16.4.2.1 Existen
e of the solutionsNow, the idea is to employ the Chru�s
iel{Singleton results [85{87℄ 
on
erning theanalysis of the Robinson{Trautman va
uum equation, in parti
ular the existen
eand asymptoti
 behaviour of its solutions. In the va
uum 
ase m in equation (4.3)is 
onstant, and the solution f(u; �; ��) of the 
hara
teristi
 initial value problem(4.8) exists and is unique (in spite of the singularity at r = 0). In the presen
e ofpure radiation given by (4.7) it is possible to \eliminate" the variable mass fun
-tion from the Robinson{Trautman �eld equation (4.6) mathemati
ally by a simplereparametrisation ~u = ���1 ln(�u) ; (4.9)
f. [90℄. Indeed, equation (4.6) is then 
onverted to� ~f�~u = � 112 ~f ~� ~K : (4.10)Noti
e that the transformation (4.9) moves the hypersurfa
e u = 0, on whi
h themass fun
tion m(u) rea
hes zero, to ~u = +1.Chru�s
iel [86℄ derived the asymptoti
 expansion (as ~u!1) for the fun
tion~f satisfying the evolution equation (4.10) for any smooth initial data ~f0 = f0 on~u0 = ���1 ln(�u0). In our 
ase of pure radiation �eld (4.7) we employ the trans-formation (4.9) on Chru�s
iel's original results to obtain the following asymptoti




30 CHAPTER 4. SPACETIMES APPROACHING THE VAIDYA METRICexpansion of f as u! 0�,f = 1 + f1;0 (�u)2=� + f2;0 (�u)4=� + � � �+ f14;0 (�u)28=����1f15;1 ln(�u) (�u)30=� + f15;0 (�u)30=� + � � � (4.11)= 1Xi=0 NiXj=0 fi;j [���1 ln(�u)℄j (�u)2i=� ;where fi;j are smooth fun
tions on S2 su
h that fi;j = 0 for j > 0, i � 14. As aresult, for the initial data (4.8) the Robinson{Trautman type II spa
etimes whi
h
ontain uniform pure radiation �eld with the linear mass fun
tion (4.7) do exist inthe whole region u0 � u < 0. It is also obvious that the fun
tion f approa
hes 1 asu! 0� (where alsom(u)! 0) a

ording to (4.11). In other words, these spa
etimesapproa
h the spheri
ally symmetri
 Vaidya{(anti-)de Sitter metri
 near u = 0.At u = 0 all of the mass m(u) is radiated away, and we 
an atta
h Minkowskispa
e (de Sitter spa
e when � > 0, anti-de Sitter when � < 0; the presen
e of the
osmologi
al 
onstant would 
hange the 
hara
ter of 
onformal in�nity I whi
hwould be
ome spa
elike or timelike, respe
tively) in the region u > 0 along thehypersurfa
e u = 0.4.2.2 Extension of the metri
 a
ross u = 0It follows from (4.11) that the smoothness of f on u = 0 is only �nite. Depending onthe value of � two di�erent 
ases have to be dis
ussed separately: 2=� is an integer,and 2=� is a real non-integer positive number.When 2=� is an integer then due to the presen
e of the ln(�u) term asso
iatedwith f15;1 6= 0 the fun
tion f is of the 
lass C(30=�)�1. Note, that it is always at leastC14 be
ause � � 2 in this 
ase.In the generi
 
ase when 2=� is not an integer the fun
tion f is only of the 
lassCf2=�g, where the symbol fxg denotes the largest integer smaller than x. For � > 2it is not even C1 but it remains 
ontinuous.To investigate further the smoothness of the metri
 when approa
hing the hy-persurfa
e u = 0� whi
h is the analogue of the S
hmidt{Tod boundary of va
uumRobinson{Trautman spa
etimes [81,86℄ we should 
onsider the 
onformal pi
ture us-ing suitable double-null 
oordinates. Su
h Kruskal-type 
oordinates for the Vaidyasolution with linear mass fun
tion (4.7) were introdu
ed by His
o
k [65{67℄. Usinghis results, we put the Robinson{Trautman metri
 with linear mass fun
tion intothe form ds2 = ��K � 1� 2f;uf r�du2��2r + u+ 2�u2r � dudw + 2 r2P 2d�d�� ; (4.12)where r(u; w).The general Robinson{Trautman metri
 (4.12) is evidently one order less smooththan f due to the presen
e of the fun
tion f;u=f . Consequently, for 2=� being
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 (4.12) is of the 
lass C(30=�)�2 or Cf2=�g�1,respe
tively.We would like to obtain analogous results 
on
erning smoothness of the exten-sion also for a non-zero value of the 
osmologi
al 
onstant �. Unfortunately, as faras we know, there is no expli
it transformation of the Vaidya{de Sitter metri
 to theKruskal-type 
oordinates even for the linear mass fun
tion. However, we 
an usea general argumentation: the 
oordinate u is already suitably 
ompa
ti�ed and weare only determining the 
omplementary null 
oordinate w to obtain the Vaidya{deSitter metri
 in the Kruskal-type 
oordinates (whi
h is smooth on u = 0). More-over r(u; w) is �nite and smooth when approa
hing the hypersurfa
e u = 0. Thesmoothness is thus not a�e
ted by the spe
i�
 transformation to the Kruskal-type
oordinates and it is the same as for the vanishing 
osmologi
al 
onstant. This isdi�erent from va
uum spa
etimes with m = 
onst 6= 0 studied in [88, 89℄ be
ausein the present 
ase m! 0 near u = 0, and the in
uen
e of � on the smoothnessbe
omes negligible.4.3 General mass fun
tionThe results obtained above 
an be 
onsiderably generalized. Inspired by a similaridea outlined in [90℄ we may 
onsider a reparametrisation on the null 
oordinate uby ~u = 
(u) ; (4.13)where 
 is an arbitrary 
ontinuous stri
tly monotonous fun
tion. Now, by applyingthe substitution (4.13) in equation (4.10) we obtain�f�u = � _
12 f �K ; (4.14)(where the dot denotes a di�erentiation) whi
h is the evolution equation for thefun
tion f(u; �; ��). This is exa
tly the Robinson{Trautman equation (4.6) for themass fun
tion m(u) = 1_
(u) : (4.15)To obtain a positive mass we assume a growing fun
tion 
(u). Considering (4.4)this 
orresponds to a universe �lled with homogeneous pure radiationn2(u) = 2� �
_
2 : (4.16)For 
onsisten
y the fun
tion 
 must be 
onvex.In parti
ular, the linear mass fun
tion (4.7) dis
ussed above is a spe
ial 
ase of(4.15) for the transformation (4.13) of the form (4.9). More general expli
it solutions
an be obtained, e.g., by 
onsidering the power fun
tion
(u) = (�u)�p ; p > 0 : (4.17)The asymptoti
 behaviour of su
h solutions is determined by expression (4.5) withf = 1 + 1Xi=1 NiXj=0 fi;j (�u)�jp exp ��2i(�u)�p� ;
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u < 0u = 0 u I+u > 0 r =1

r = 0 u = u 0 u = u 1
u = 0u < 0 u = u 0

u I+u > 0 r =1

r = 0 u = u 1
Figure 4.2: Possible extensions of the Robinson{Trautman radiative spa
etimes in-to the region u < u0. Pure radiation is present only in the shaded region, every-where else it is a va
uum solution. For u 2 (u1; u0) the mass fun
tion is 
onstant,m(u0) = ��u0, but the spa
etime is not spheri
ally symmetri
 | it is not theS
hwarzs
hild solution (� > 1=16 on the left, � � 1=16 on the right).where fi;j = 0 for j > 0 if i � 14. Interestingly, the fun
tion f is now smooth onu = 0 for any power 
oeÆ
ient p.Another simple expli
it 
hoi
e is
(u) = �M�1 ln [sinh(�u)℄ ; M > 0 ; (4.18)whi
h implies the following expansion near u = 0�f = 1 + 1Xi=1 NiXj=0 fi;j (�M�1 ln [sinh(�u)℄)j sinh2i=M (�u) :If 2=M is an integer then the fun
tion f belongs to the 
lass C(30=M)�1, otherwiseit is of the 
lass Cf2=Mg.4.4 Possible modi�
ations and appli
ationsThe Robinson{Trautman pure radiation solutions in the region u0 � u � 0 approa
h-ing the Vaidya metri
 near u = 0, whi
h 
an be extended (albeit non-smoothly) to
at Minkowski spa
e in the region u � 0 as in �gure 4.1, may be used for 
onstru
tionof various models of radiative spa
etimes. For example, it is natural to further extendthe solution \ba
kwards" into the region u1 < u � u0 by the Robinson{Trautmanva
uum solution with a 
onstant mass m0 = m(u0), su
h that the fun
tion f is
ontinuous on u0. This is shown in �gure 4.2.In the presen
e of the 
osmologi
al 
onstant � the s
hemati
 
onformal diagramon �gure 4.2 has to be modi�ed in su
h a way that for all values of u the 
onformalin�nity I+ be
omes timelike (for � > 0) or spa
elike (for � < 0).
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v > 0v = 0 vv < 0 r =1

r = 0 v = v0I�
v = v1

v = 0 v > 0 v = v0
vv < 0 r =1

r = 0
I�
v = v1

Figure 4.3: Time-reversed version of �gure 4.2 represents the \advan
ed" form ofthe Robinson{Trautman spa
etimes whi
h des
ribes an ingoing 
ow of radiation.Another possible modi�
ation is to 
onsider the \advan
ed" form of the spa
e-times (whi
h des
ribes an ingoing 
ow) rather than the \retarded" form (
orre-sponding to outgoing 
ow) employed above (see, e.g., [71℄ for more details). Thistime-reversed form is obtained formally by a simple substitution u! �v in the met-ri
s and 
orresponding fun
tions. In this 
ase m(v) is an in
reasing mass fun
tionin v 2 [0; v0℄. This is joined with 
at Minkowskian region v < 0, and extended tothe region v � v0 by the 
orresponding Robinson{Trautman{(anti-)de Sitter bla
khole va
uum solution, see �gure 4.3. In analogy with (4.11), we obtainf = 1Xi=0 NiXj=0 fi;j ����1 ln v �j v2i=� ; (4.19)so that the smoothness of the metri
 on the boundary v = 0 depends on the pa-rameter �. For v 2 (v0; v1) the spa
etime is va
uum but not spheri
ally symmetri
.The metri
 diverges as v !1. Our results 
an thus be interpreted in su
h a waythat | at least within the Robinson{Trautman family of solutions | the model [67℄of 
ollapse to a naked shell-fo
using singularity whi
h is based on the spheri
allysymmetri
 Vaidya metri
 is not stable against perturbations.



Con
lusionIn the �rst 
hapter, we have 
ompared the Efroimsky [1,2℄ and the Isaa
son [3℄ self-
onsistent perturbation s
hemes whi
h des
ribe propagation of weak gravitationalwaves on a 
osmologi
al ba
kground. In both these approa
hes the ba
kground isin
uen
ed by the waves, i.e. the non-linear e�e
ts are taken into a

ount. The
lassi
al Isaa
son method applies to high-frequen
y waves. On the other hand, theEfroimsky formalism is appli
able to low-frequen
y gravitational waves but does notadmit the high-frequen
y limit. We have suggested a modi�
ation of the Efroimskyformalism by employing the gauge-invariant de
omposition (1.9) of the Ri

i tensor,introdu
ed re
ently by Anderson [16℄. The resulting generalized system of equations(1.12)-(1.14) fully re
overs the Efroimsky results in the absen
e of high-frequen
ymodes, in the high-frequen
y limit it reprodu
es Isaa
son's formulae.In the se
ond 
hapter, the Isaa
son approa
h [3℄ to study high-frequen
y per-turbations of Einstein's equations was brie
y reviewed and 
ompared with thestandard weak-�eld limit. In our 
ontribution we generalized Isaa
son's methodto in
lude non-va
uum spa
etimes, in parti
ular an ele
tromagneti
 �eld and/or anon-vanishing value of the 
osmologi
al 
onstant �. Then we expli
itly analyzedpossible high-frequen
y gravitational waves in three large families of ba
kground u-niverses, namely non-expanding spa
etimes of the Kundt type, 
ylindri
al Einstein-Rosen waves and related inhomogeneous 
osmologi
al models (su
h as the Gowdyuniverse), and the Robinson-Trautman expanding spa
etimes. These ba
kgroundsare of various Petrov types. For example, high-frequen
y gravitational waves 
anbe introdu
ed into ele
trova
uum 
onformally 
at Bertotti-Robinson spa
e, type DNariai and Pleba�nski-Ha
yan spa
es, their type N and type II generalizations, orinto algebrai
ally general Einstein-Rosen universes.In the third 
hapter we have investigated the spe
tra of high-frequen
y wavespropagating on several important 
osmologi
al models using the wave equation de-rived by Isaa
son [3℄. It was demonstrated that the appli
ation of tensor harmoni
s,inspired by Bardeen [56℄, 
onsiderably simpli�es the solution of the wave equationfor the non{
at FRW models. It turns out that the expli
it solutions of the waveequation are expressed using spe
ial (Bessel and Legendre) fun
tions 
ontainingpurely imaginary indi
es.In the last 
hapter we have analyzed exa
t solutions of the Robinson{Trautman
lass whi
h 
ontain homogeneous pure radiation and a 
osmologi
al 
onstant. Wehave demonstrated that these solutions exist for any smooth initial data, and thatthey approa
h the spheri
ally symmetri
 Vaidya{(anti-)de Sitter metri
. It gener-alizes previous results a

ording to whi
h va
uum Robinson{Trautman spa
etimesapproa
h asymptoti
ally the spheri
ally symmetri
 S
hwarzs
hild{(anti-)de Sittermetri
. We have investigated extensions of these solutions into Minkowski region,and we have shown that its order of smoothness is in general only �nite. Finally, wesuggested some appli
ations of the results. For example, it follows that the modelof gravitational 
ollapse of a shell of null dust diverges as v !1 whi
h indi
atesthat investigations of su
h pro
ess based on the spheri
ally symmetri
 Vaidya met-ri
 are, in fa
t, not stable against \non-linear perturbations", at least within theRobinson{Trautman family of exa
t solutions.34
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i. Rep. Tôhoku Univ. 35 62[45℄ Bertotti B 1959 Uniform ele
tromagneti
 �eld in the theory of general relativityPhys. Rev. 116 1331[46℄ Robinson I 1959 A Solution of Maxwell-Einstein Equations Bull. A
ad. Polon.7 351[47℄ Pleba�nski J F and Ha
yan S 1979 Some ex
eptional ele
trova
 type D matri
swith 
osmologi
al 
onstant J. Math. Phys. 20 100437



[48℄ Ortaggio M and Podolsk�y J 2002 Impulsive waves in ele
trova
 dire
t produ
tspa
etimes with � Class. Quantum Grav. 19 5221[49℄ Carmeli M and Chara
h Ch 1984 The Einstein-Rosen gravitational waves and
osmology Found. Phys. 14 963[50℄ Podolsk�y J 1993 On exa
t radiative spa
e-times with 
osmologi
al 
onstant dis-ertation thesis (UTF MFF UK Prague)[51℄ Podolsk�y J 1987 Gravita�
n�� z�a�ren�� v kosmologii diploma thesis (UTF MFF UKPrague)[52℄ Hawking S W and Ellis G F R 1973 The large s
ale stru
ture of spa
e-time(Cambridge University Press: Cambridge)[53℄ Defrise L 1969 Groupes d'isotropie et groupes de stabilit�e 
onforme dans leses
apes lorentziens Th�ese Universit�e Libre de Bruxelles[54℄ Podolsk�y J 2001 Exa
t non-singular waves in the anti{de Sitter universe Gen.Rel. Grav. 33 1093[55℄ Wald R M 1984 General Relativity (University of Chi
ago Press: Chi
ago)[56℄ Bardeen J M 1980 Gauge-invariant 
osmologi
al perturbations Phys. Rev. D 221882[57℄ d'Eath P D 1976 Ann. Phys. 98 237[58℄ Brevik I and Pettersen S V 2000 Can a Kasner universe with a vis
ous 
uid beanisotropi
 Phys. Rev. D 61 127305[59℄ Cataldo M and del Campo S 2000 Comment on "Vis
ous 
osmology in theKasner metri
" Phys. Rev. D 61 128301[60℄ Vaidya P C 1943 The external �eld of a radiating star in general relativityCurrent S
ien
e 12 183[61℄ Vaidya P C 1951 The gravitational �eld of a radiating star Pro
. Indian A
ad.S
i. A 33 264[62℄ Vaidya P C 1953 `Newtonian' time in general relativity Nature 171 260[63℄ Wang A and Wu Y 1999 Generalized Vaidya solutions Gen. Rel. Grav. 31 107[64℄ Krasi�nski A 1999 Editor's note Gen. Rel. Grav. 31 115[65℄ His
o
k W A 1981 Models of evaporating bla
k holes. I Phys. Rev. D 23 2813[66℄ His
o
k W A 1981 Models of evaporating bla
k holes. II. E�e
ts of the outgoing
reated radiation Phys. Rev. D 23 2823[67℄ His
o
k W A, Williams L G and Eardley D M 1982 Creation of parti
les byshell-fo
using singularities Phys. Rev. D 26 75138



[68℄ Kuroda Y 1984 A model for evaporating bla
k holes Prog. Theor. Phys. 71 100[69℄ Kuroda Y 1984 Vaidya spa
etime as an evaporating bla
k hole Prog. Theor.Phys. 71 1422[70℄ Bi�
�ak J and Ku
ha�r K V 1997 Null dust in 
anoni
al gravity Phys. Rev. D 564878[71℄ Bi�
�ak J and H�aj���
ek P 2003 Canoni
al theory of spheri
ally symmetri
 spa
e-times with 
ross-streaming null dust Phys. Rev. D 68 104016[72℄ Ghosh S G and Dadhi
h N 2001 Naked singularities in higher dimensionalVaidya spa
e-times Phys. Rev. D 64 047501[73℄ Harko T 2003 Gravitational 
ollapse of a Hagedorn 
uid in Vaidya geometryPhys. Rev. D 68 064005[74℄ Girotto F and Saa A 2004 Semianalyti
al approa
h for the Vaidya metri
 indouble-null 
oordinates Phys. Rev. D 70 084014[75℄ Foster J and Newman E T 1967 Note on the Robinson{Trautman solutions J.Math. Phys. 8 189[76℄ Luk�a
s B, Perj�es Z, Porter J and Sebesty�en �A 1984 Lyapunov fun
tional ap-proa
h to radiative metri
s Gen. Rel. Grav. 16 691[77℄ Vandy
k M A J 1985On the time-evolution of the Robinson{Trautman solutionsClass. Quantum Grav. 2 77[78℄ Vandy
k M A J 1987 On the time-evolution of the Robinson{Trautman solu-tions: II Class. Quantum Grav. 4 759[79℄ S
hmidt B G 1988 Existen
e of solutions of the Robinson{Trautman equationand spatial in�nity Gen. Rel. Grav. 20 65[80℄ Rendall A D 1988 Existen
e and asymptoti
 properties of global solutions of theRobinson{Trautman equations Class. Quantum Grav. 5 1339[81℄ Tod K P 1989 Analogues of the past horizon in the Robinson{Trautman metri
sClass. Quantum Grav. 6 1159[82℄ Chow E W M and Lun A W C 1999 Apparent horizons in va
uum Robinson{Trautman spa
etimes J. Austr. Math. So
. B 41 217[83℄ Singleton D B 1990 On global existen
e and 
onvergen
e of va
uum Robinson{Trautman solutions Class. Quantum Grav. 7 1333[84℄ Frittelli S and Mores
hi O M 1992 Study of the Robinson{Trautman metri
s inthe asymptoti
 future Gen. Rel. Grav. 24 575[85℄ Chru�s
iel P T 1991 Semi-global existen
e and 
onvergen
e of solutions of theRobinson{Trautman (2-dimensional Calabi) equation Commun. Math. Phys.137 289 39



[86℄ Chru�s
iel P T 1992 On the global stru
ture of Robinson{Trautman spa
e-timesPro
. Roy. So
. Lond. A436 299[87℄ Chru�s
iel P T and Singleton D B 1992 Non-smoothness of event horizons ofRobinson{Trautman bla
k holes Commun. Math. Phys. 147 137[88℄ Bi�
�ak J and Podolsk�y J 1995 Cosmi
 no-hair 
onje
ture and bla
k-hole forma-tion: an exa
t model with gravitational radiation Phys. Rev. D 52 887[89℄ Bi�
�ak J and Podolsk�y J 1997 Global stru
ture of Robinson{Trautman radiativespa
e-times with 
osmologi
al 
onstant Phys. Rev. D 55 1985[90℄ Bi�
�ak J and Perj�es Z 1987 Asymptoti
 behaviour of Robinson{Trautman pureradiation solutions Class. Quantum Grav. 4 595[91℄ Waugh B and Lake K 1986 Double-null 
oordinats for the Vaidya metri
 Phys.Rev. D 34 2978[92℄ Dwivedi I H and Joshi P S 1989 On the nature of naked singularities in Vaidyaspa
etimes Class. Quantum Grav. 6 1599[93℄ Dwivedi I H and Joshi P S 1991 On the nature of naked singularities in Vaidyaspa
etimes: II Class. Quantum Grav. 8 1339

40



Appendi
esSv��tek O and Podolsk�y J 2004 The Efroimsky formalism for weak gravitational wavesadapted to high-frequen
y perturbations Class. Quantum Grav. 21 3579-3585Podolsk�y J and Sv��tek O 2004 Some high-frequen
y gravitational waves related toexa
t radiative spa
etimes Gen. Rel. Grav. 36 387-401Podolsk�y J and Sv��tek O 2005 Radiative spa
etimes approa
hing the Vaidya metri
submitted to Phys. Rev. D

41



INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 21 (2004) 3579–3585 PII: S0264-9381(04)71734-7

The Efroimsky formalism for weak gravitational
waves adapted to high-frequency perturbations

O Svı́tek and J Podolský
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Abstract

The Efroimsky perturbation scheme for consistent treatment of gravitational

waves and their influence on the background is summarized and compared

with the classical Isaacson high-frequency approach. We demonstrate that the

Efroimsky method in its present form is not compatible with the Isaacson limit

of high-frequency gravitational waves, and we propose its natural generalization

to resolve this drawback.

PACS numbers: 04.30.−w, 04.25.−g

1. Introduction

Recently, Efroimsky introduced and developed a new formalism for the consistent treatment

of weak gravitational waves [1, 2]. This interesting mathematical framework is remarkable,

mainly due to the possibility of ascribing the stress–energy tensor even to low-frequency

gravitational waves influencing the background, which is in contrast to the standard

linearization approach where the background is kept fixed. This is achieved by introducing a

natural low-frequency cut-off, employing three different metrics (the premetric, the complete

physical metric and the average metric) and careful analysis of their mutual relations.

On the other hand, in a now classic paper [3] Isaacson (inspired by previous works [4, 5])

presented a perturbation method which can be used for studies of high-frequency gravitational

waves. Such waves also influence the cosmological background in which they propagate.

Isaacson’s work stimulated further contributions in which his method was reformulated using

various formalisms, and explicitly applied to particular spacetimes (see, e.g., [6–15]).

In our present work we first briefly summarize and compare the two above-mentioned

perturbation schemes. In particular, it is shown that the Efroimsky method is not consistent if

high-frequency gravitational waves are considered. Next (in section 3), we propose a possible

modification of the Efroimsky formalism which may resolve this drawback.
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2. The formalism

Efroimsky’s approach [1, 2] is based on introducing three different smooth, non-degenerate,

symmetric metrics on a differentiable manifold M, namely:

(i) γµν—the ‘premetric’, a vacuum metric corresponding to initial pure background without

gravitational waves;

(ii) gµν—the ‘physical metric’, a full vacuum metric which describes both the background

and the waves;

(iii) qµν—the ‘average metric’, a nonvacuum metric representing the background plus its

perturbations with wavelength greater than L. In fact, it is the averaged full metric gµν ,

where the cut-off value L depends on the observer’s experimental abilities. Since no

detector can measure gravitational waves of arbitrarily long wavelengths, the existence of

such a low-frequency cut-off is a natural assumption.

One motivation for using these three distinct metrics is to resolve a (slight) discrepancy in the

standard linearization approach which considers only the metrics γµν, gµν, and decomposition

gµν = γµν + hµν, where hµν is a small perturbation. The contravariant components obtained

as an inverse of gµν are gµν = γ µν − hµν + O(h2), but γµν is commonly used for raising and

lowering indices. It is thus not clear which semi-Riemannian manifold this equality relates

to. Such inconsistency can be ignored in the lowest order because it leads to the correct linear

approximation of the wave equation. To extend the weak-field formalism to higher-order

terms, the distinction between the premetric γ and the average metric q is necessary as it

exhibits the back-reaction of the waves on the background geometry. (Here and hereafter,

indices of the metric tensors are sometimes suppressed for notational simplicity.)

The next step is to define the Ricci and Einstein tensors for an arbitrary metric g as

Rµν(g) ≡
[

1
2
gγρ(gρν,µ + gρµ,ν − gµν,ρ)

]

,γ
−

[

1
2
gγρ(gργ,µ + gρµ,γ − gµγ,ρ)

]

,ν

+
[

1
2
gγ δ(gρδ,γ + gργ,δ − gγ δ,ρ)

][

1
2
gδρ(gρν,µ + gρµ,ν − gµν,ρ)

]

(1)

−
[

1
2
gγρ(gρδ,ν + gρν,δ − gνδ,ρ)

][

1
2
gδρ(gργ,µ + gρµ,γ − gµγ,ρ)

]

,

Gµν(g) ≡ Rµν(g) − 1
2
gµνg

αβRαβ(g),

where gρτ = (g)−1
ρτ ; the same expressions apply to γ and q. These equations remain a tensor

even if we transfer to another semi-Riemann space (the reason is that covariant tensors are

defined on a metric space rather than on some particular semi-Riemann one). From proposals

(i)–(iii) it follows that Gµν(γ ) = 0 = Gµν(g),Gµν(q) �= 0.

Now, the differences between the covariant components of the above metrics are

introduced,

hµν ≡ gµν − qµν, ηµν ≡ qµν − γµν . (2)

It is necessary to specify the semi-Riemann space: for raising or lowering indices and for

covariant differentiation, the averaged nonvacuum metric q will be used. Consequently, h and

η are tensor fields on the semi-Riemann manifold (M, q), i.e.

hµν ≡ qµαqνβhαβ, ηµν ≡ qµαqνβηαβ . (3)

Treating hµν as a perturbation of the metric qµν the Ricci tensor (1) can be expanded in a

power series

Rµν(g) = R(0)
µν (q) + R(1)

µν (q, h) + R(2)
µν (q, h) + R(3)

µν (q, h) + O(h4), (4)
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where

R(0)
µν (q) ≡ Rµν(q),

R(1)
µν (q, h) ≡ 1

2
qρτ (hτµ;νρ + hτν;µρ − hρτ ;µν − hµν;ρτ ), (5)

R(2)
µν (q, h) ≡ 1

2

[

1
2
hρτ

;µhρτ ;ν + hρτ (hρτ ;µν + hµν;ρτ − hτµ;νρ − hτν;µρ)

+ hτ
ν
;ρ(hτµ;ρ − hρµ;τ ) −

(

hρτ
;ρ − 1

2
hρ

ρ
;τ

)

(hτµ;ν + hτν;µ − hµν;τ )
]

.

Analogously,

Rµν(γ ) = R(0)
µν (q) + R(1)

µν (q, (−η)) + R(2)
µν (q, (−η)) + O(η3). (6)

It is obvious that R(1)
µν (q, (−η)) = −R(1)

µν (q, η) and R(2)
µν (q, (−η)) = R(2)

µν (q, η). According to

assumptions that both g and γ are vacuum metrics the following relation holds:

0 = Rµν(g) − Rµν(γ )

= R(1)
µν (q, h) + R(2)

µν (q, h) + R(1)
µν (q, η) + R(3)

µν (q, h) + O(h4) + O(η2). (7)

At this point Efroimsky sets three assumptions:

Assumption 1. The perturbations h and η are small in the sense that the terms of the orders

O(h4) and O(η2) are negligible.

Assumption 2. The perturbations η and h2 are of the same order.

Assumption 3. The tensor field h consists of modes with short wavelengths which do not

exceed the given maximal value L.

A physical interpretation of the perturbations given by (2) is thus the following: hµν

characterizes measurable gravitational waves whereas ηµν is a shift of the background

geometry from vacuum premetric γ to nonvacuum effective average metric q due to the

presence of gravitational waves. This enables us to interpret equation (7) as the wave equation

for perturbations h on the background q = γ + η. To make this wave equation applicable,

one has to express η in terms of h. Using the Brill–Hartle averaging procedure [5] over a

spacetime volume of size L for (7) (Efroimsky considers only space averaging but when the

measurement lasts much longer than the period of waves one can employ a spacetime average)

we obtain

R(1)
µν (q, η) = −

〈

R(2)
µν (q, h)

〉

L
. (8)

The averaging brackets on the left-hand side are omitted because the term contains only the

modes with wavelength greater than L. It is thus clear from (8) and (5) that assumption 2 is

natural since the left-hand side is linear in η whereas the right-hand side is quadratic in h.

Let us finally recall the derivation of the stress–energy tensor of gravitational waves. By

analogy with the Ricci tensor expansion (4) the Einstein tensor of the vacuum premetric γ is

represented as a series

0 = Gµν(γ ) = Gµν(q) + G(1)
µν(q, (−η)) + O(η2), (9)

and the effective stress–energy tensor of gravitational waves is defined as

Gµν(q) = 8πT (gw)
µν ≡ R(1)

µν (q, η) − 1
2
qµνq

αβR
(1)
αβ (q, η). (10)

From (8) it follows (considering the Brill–Hartle averaging) that this tensor fully agrees with

that of Isaacson [3].

The main advantage of Efroimsky’s perturbation method above is the possibility of

consistently treating all low-frequency gravitational waves, and of explicitly deriving an
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effective stress–energy tensor (influencing the background) in this case. It can be extended to

nonvacuum spacetimes with Tµν of ideal fluid and/or with a possible cosmological constant


, see [1, 2]. However, there are some problems concerning high-frequency gravitational

waves which will now be discussed.

3. Modification to include high-frequency waves

In this section we first explicitly demonstrate that one cannot consistently apply Efroimsky’s

treatment on Isaacson’s high-frequency waves [3] because assumption 2 is not fulfilled in such

a case. Then we will present a possible solution to this problem.

Let us start with the observation that it is the nonvacuum background curved by

the presence of gravitational waves—not the vacuum premetric γ —which is the basis of

Isaacson’s nonlinear approach. Therefore, the nonvacuum average metric q is considered as

the background on which high-frequency gravitational waves h propagate.

We wish to use the Efroimsky formalism in the high-frequency regime such that the tensor

field h contains high-frequency modes. We assume that they have short wavelengths λ, and

a small amplitude h = O(ε), where ε = λ/S ≪ 1 is a small parameter because λ ≪ S, S

denoting a typical scale on which the background changes substantially.

Let us emphasize that we follow here the same definition of the symbol O(εn) as in [3],

namely f = O(εn) if there exists a constant C > 0 such that |f | < Cεn as ε → 0. The

quantity f need not necessarily be proportional to εn, it can be even smaller than Cεn for

ε → 0. Therefore, the assumption h = O(ε) does not automatically imply that h ∼ ε. The

spectrum of possible high-frequency waves is thus not a priori restricted, it is only required

that their amplitudes fall to zero at least linearly with ε, i.e. |h(ε)| < Cε.

Since we can consider S = O(1) it follows that O(ε) = O(λ) and ∂h ∼ h/λ = O(1).

In accordance with Isaacson’s approach (note that the decomposition now reads g = q + h,

instead of the notation g = γ + h used in [3]) we obtain the following orders of magnitude for

the derivatives of the background q and the perturbation h:

qµν = O(1), hµν = O(ε),

qµν,α = O(1), hµν,α = O(1),

qµν,αβ = O(1), hµν,αβ = O(ε−1).

(11)

This results in the orders of magnitude of the terms in the Ricci tensor expansion (4), (5) as

R(0)
µν = O(1), R(1)

µν = O(ε−1), R(2)
µν = O(1), R(3)

µν = O(ε). (12)

To apply the Efroimsky approach in this case we must consider the decomposition q = γ + η,

where γ is the vacuum premetric and η represents (in this case) a substantial shift of the

background geometry due to the presence of high-frequency gravitational waves h. We also

introduce the scale L, such that λ ≪ L ≪ S. This enables us simultaneously to consider

an averaging procedure in accordance with the Isaacson approach, and also to introduce a

meaningful cut-off scale L even if the wavelengths of high-frequency waves are not assumed

to reach this value.

Of course, the geometry shift η does not contain high-frequency perturbations.

Considering the wave equation (7) and using the Brill–Hartle averaging over a spacetime

volume L to obtain equation (8) we get into a conflict with assumption 2 which prescribes

O(η) = O(h2). Indeed, if h = O(ε) there should be η = O(ε2). But the right-hand side

of (8) is now of the order of O(1), see (12), and the same magnitude should also have the

left-hand side. Since η does not contain high-frequency waves, it is essential that η = O(1).

This is obviously in contradiction with both assumptions 1 and 2. In fact, it disables any

consistent perturbation expansions in the powers of η.
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Let us now suggest a modification of the Efroimsky formalism which will incorporate

also the above case of a ‘substantial’ change of the background geometry due to the presence

of high-frequency waves. Instead of the perturbation expansion (6) we consider a formal

decomposition of the Ricci tensor of the premetric γ = q − η, namely

0 = Rµν(γ ) = Rµν(q) + �Rµν(q, (−η)), (13)

by which the expression �Rµν is defined. Both terms on the right-hand side of (13) are of the

same order O(1). Moreover, the quantity �Rµν is conserved with respect to the background

geometry q which is easily seen from equation (13) and the relation (Rµν(q));ν = 0 (the

differentiation relates to the background metric q).

The question concerning the gauge invariance of �Rµν with respect to generalized gauge

transformations has recently been analysed in detail by Anderson [16] in connection with

possible definitions of the wave equation and stress–energy tensor for gravitational waves. Let

us consider an arbitrary coordinate transformation of the type

xµ = xµ + ξµ, (14)

which does not change the functional form of the background geometry q, i.e. q(x) = q(x) so

that γ (x) → γ (x) = q(x) − η(x). Now, to prove the invariance of �Rµν we adopt (slightly

modified) Anderson’s argumentation. Performing the above coordinate transformation (14)

of the Ricci tensor decomposition (13) we obtain

Rµν(q(x)) + �Rµν(q(x), (−η(x))) = Rµν(γ (x)) = 0. (15)

Here Rµν and �Rµν are the same as Rµν and �Rµν , respectively, because definition (1) is

maintained in any coordinate. Evaluating relation (15) at x = x we thus get Rµν(q(x)) =

−�Rµν(q(x), (−η(x))), and using (13) we obtain

�Rµν(q(x), (−η(x))) = �Rµν(q(x), (−η(x))). (16)

A generalized gauge transformation is defined in [16] as a transformation in which the quantity

η(x) is substituted for η(x) into the tensor expressions of interest. This incorporates, as a

particular case, the well-known infinitesimal gauge transformation

ηµν(x) = ηµν(x) + ξµ;ν + ξν;µ, (17)

where η, ξ and their derivatives are small. Obviously, equation (16) expresses a generalized

gauge invariance of �Rµν .

After introducing the above decomposition (13) and demonstrating its invariance we can

now present modification and generalization of the Efroimsky formalism. Replacing the term

R(1)
µν (q, η) by −�Rµν(q, (−η)) in equations (7), (8), (10), and omitting the terms O(η2) we

obtain relations

R(1)
µν (q, h) + R(2)

µν (q, h) − �Rµν(q, (−η)) + R(3)
µν (q, h) + O(h4) = 0, (18)

�Rµν(q, (−η)) =
〈

R(2)
µν (q, h)

〉

L
, (19)

Gµν(q) = 8πT̃ (gw)
µν ≡ −�Rµν(q, (−η)) + 1

2
qµνq

αβ�Rαβ(q, (−η)). (20)

In the case where the gravitational waves do not have high-frequency modes it is still possible to

employ the expansion of −�Rµν(q, (−η)) in powers of η and use its dominant term R(1)
µν (q, η)

instead. Thus we recover Efroimsky’s previous results (cf (7), (8), (10)).

In general, however, expressing η in terms of h from equation (19) becomes an extremely

difficult task because it is no longer a linear equation for η. To overcome this problem we
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can use equation (19) and substitute for �Rµν into the remaining equations (18) and (20). We

obtain the relations

R(1)
µν (q, h) + R(2)

µν (q, h) −
〈

R(2)
µν (q, h)

〉

L
+ R(3)

µν (q, h) + O(h4) = 0, (21)

−Gµν(q) =
〈

R(2)
µν (q, h)

〉

L
− 1

2
qµνq

αβ
〈

R
(2)
αβ (q, h)

〉

L
≡ −8πT BH

µν . (22)

Equation (22) is obviously in perfect agreement with the Isaacson result [3] which represents

the background response to the presence of high-frequency gravitational waves, using the

Brill–Hartle averaging to introduce the effective stress–energy tensor T BH
µν for high-frequency

gravitational waves. Equation (21) is the wave equation for perturbations h on the average

metric q. In the highest order of high-frequency approximation this clearly reduces to R(1)
µν = 0

which also fully reproduces Isaacson’s result. Additional terms in (21) can be used for study

of nonlinear effects on the wave propagation.

Note finally another interesting consequence of equation (19) and the gauge invariance

(16) of �Rµν . This directly guarantees gauge invariance of the stress–energy tensor T BH
µν

defined in (22) (in the highest order). Proof of this property was presented already in the

classic work [3], using, however, a much more complicated method.

4. Concluding remarks

In our contribution we have compared the Efroimsky [1, 2] and the Isaacson [3] self-

consistent perturbation schemes which describe propagation of weak gravitational waves

on a cosmological background. In both these approaches the background is influenced by the

waves, i.e. the nonlinear effects are taken into account. The classical Isaacson method applies

to high-frequency waves. On the other hand, the Efroimsky formalism is applicable to low-

frequency gravitational waves but does not admit the high-frequency limit. We have suggested

a modification of the Efroimsky formalism by employing the gauge-invariant decomposition

(13) of the Ricci tensor, introduced recently by Anderson [16]. The resulting generalized

system of equations (18)–(20) fully recovers the Efroimsky results in the absence of high-

frequency modes, in the high-frequency limit it reproduces Isaacson’s formulae.

Although we have considered here for simplicity only vacuum metrics γµν and gµν ,

possible generalization to nonvacuum spacetimes is straightforward. In fact, Efroimsky has

already generalized his formalism to spacetimes with ideal-fluid-like matter and a cosmological

term [1, 2]; in the case of the Isaacson high-frequency approach, this was done recently

in [15].
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A formalism is introduced which may describe both standard linearized waves and
gravitational waves in Isaacson’s high-frequency limit. After emphasizing main differ-
ences between the two approximation techniques we generalize the Isaacson method
to non-vacuum spacetimes. Then we present three large explicit classes of solutions
for high-frequency gravitational waves in particular backgrounds. These involve non-
expanding (plane, spherical or hyperbolical), cylindrical, and expanding (spherical)
waves propagating in various universes which may contain a cosmological constant and
electromagnetic field. Relations of high-frequency gravitational perturbations of these
types to corresponding exact radiative spacetimes are described.

KEY WORDS: gravitational waves; high-frequency limit; exact solutions.

1. INTRODUCTION

In classic work [1] Isaacson presented a perturbation method which enables one to
study properties of high-frequency gravitational waves, together with their influ-
ence on the cosmological background in which they propagate. It is this non-linear
“back-reaction” effect on curvature of the background spacetime which distin-
guishes the high-frequency approximation scheme from other perturbation meth-
ods such as the standard Einstein’s linearization of gravitational field in flat space
[2, 3] or multipole expansions [4] that were developed to describe radiation from
realistic astrophysical sources.

The high-frequency perturbations were originally considered by Wheeler [5]
and then applied to investigation of gravitational geons by Brill and Hartle [6].
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Isaacson’s systematic study [1] stimulated further works in which his treatment
was developed and also re-formulated in various formalisms. Choquet-Bruhat [7, 8]
analyzed high-frequency gravitational radiation using a generalized WKB “two-
timing” method. Averaged Lagrangian technique which leads to Isaacson’s results
with less calculation was introduced by MacCallum and Taub [9, 10]. Compari-
son of these approaches, and clarification of assumptions that have to be made in
order to provide a consistent high-frequency approximation limit was also given
by Araujo [11, 12]. Elster [13] proposed an alternative method that is based on
expanding null-tetrad components of the Weyl tensor. Recently, Burnett developed
a weak limit approach [14] in which the high-frequency limit can be introduced
and studied in a mathematically rigorous way. These general methods have been,
of course, applied to study explicit particular examples of high-frequency gravita-
tional waves, see e.g. [1, 8, 9, 15, 16].

On the other hand, manyexactsolutions of Einstein’s equations are known
which represent gravitational radiation. Among the most important classes are
planarpp-waves [17, 18] which belong to a large family of non-expanding radiative
spacetimes [19, 20], cylindrical Einstein-Rosen waves [21], expanding “spherical”
waves of the Robinson-Trautman type [22, 23], spacetimes with boost-rotation
symmetry representing radiation generated by uniformly accelerated sources [24–
26], cosmological models of the Gowdy type [27], and others — for comprehensive
reviews containing also a number of references see, e.g., [28–32].

However, there are only several works in whichrelationbetween exact grav-
itational waves and those obtained by perturbations of non-flat backgrounds has
been explicitly investigated and clarified, see e.g. [10, 33, 16]. The purpose of our
contribution is to help to fill this “gap”.

We first briefly summarize and generalize the Isaacson approach [1] to admit
non-vacuum backgrounds, the cosmological constant3 in particular. Modification
of Isaacson’s formalism allows us to incorporate also standard linearized gravita-
tional waves into the common formalism. Then, in section 3 we study properties of
high-frequency gravitational waves in specific classes of spacetimes with special
algebraic or geometric structure. In particular, we focus on waves which propa-
gate in backgrounds with3 6= 0. This is motivated not only theoretically but also
by recent observations [34] which seem to indicate that (effective) positive cos-
mological constant played a fundamental role in the early universe, but it is also
important for its present and future dynamics.

2. HIGH-FREQUENCY APPROXIMATION VERSUS STANDARD
LINEARIZATION

Let us assume a formal decomposition of the spacetime metricgµν into the
background metricγµν and its perturbationhµν,
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gµν = γµν + εhµν, (1)

where, in a suitable coordinate system,γµν = O(1) andhµν = O(ǫ) [by definition,
f = O(ǫn) if there exists a constantC > 0 such that| f | < Cǫn asǫ → 0]. The two
distinct non-negative dimensionless parametersε andǫ have the following mean-
ing:ε is the usual amplitude parameter of weak gravitational perturbations whereas
the frequency parameterǫ denotes the possible high-frequency character of radi-
ation described byhµν . To be more specific, the parameterε ≪ 1 characterizes
(for ǫ = 1) the amplitude of linearized gravitational waves in the ordinary weak
field limit of Einstein’s equations. The second independent parameterǫ = λ/L
represents, on the other hand, the ratio of a typical wavelengthλ of gravitational
waves and the scaleL on which the background curvature changes significantly.
Isaacson’s high-frequency approximation [1] arises whenλ ≪ L, i.e.ǫ ≪ 1 (and
ε = 1). SinceL can be considered to have a finite value of order unity, we may
write O(ǫ) = O(λ).

To derive the dynamical field equations we start with the order-of-magnitude
estimates which indicate how fast the metric components vary. Symbolically, the
derivatives are of the order∂γ ∼ γ /L, ∂h ∼ h/λ, so that the following formulas

γµν = O(1), hµν = O(ǫ),

γµν,α = O(1), hµν,α = O(1),

γµν,αβ = O(1), hµν,αβ = O(ǫ−1), (2)

are valid. Next, we expand the Ricci tensor in powers ofh,

Rµν(g) = R(0)
µν + εR(1)

µν + ε2R(2)
µν + ε3R(3)

µν + . . . , (3)

where

R(0)
µν(γ ) ≡ Rµν(γ ),

R(1)
µν(γ, h) ≡ 1

2γ ρτ (hτµ;νρ + hτν;µρ − hρτ ;µν − hµν;ρτ ) ,

R(2)
µν(γ, h) ≡ 1

2

[

1
2hρτ

;νhρτ ;µ + hρτ (hτρ;µν + hµν;τρ − hτµ;νρ

− hτν;µρ) + hτ
ν

;ρ(hτµ;ρ − hρµ;τ )

−
(

hρτ
;ρ − 1

2h;τ
)

(hτµ;ν + hτν;µ − hµν;τ )
]

.

R(3)
µν(γ, h) ≡ 1

4hστ hσρ;µhρ
τ ;ν + . . . . (4)

The semicolons denote covariant differentiation with respect to thebackground
metricγµν , which is also used to raise or lower all indices. Considering relations
(2), the orders of the terms (4) are

R(0)
µν = O(1), εR(1)

µν = O(ǫ−1ε), ε2R(2)
µν = O(ε2), ε3R(3)

µν = O(ǫε3). (5)
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Two limiting cases thus arise naturally. For thestandard linearization
(ε ≪ 1, ǫ = 1) the dominant term ofRµν(g) is R(0)

µν = O(1) which corresponds
to the backgroundγµν [to find, e.g., a vacuum spacetime metricgµν we solve
R(0)

µν(γ ) = 0]. Its first correction representing linearized (purely) gravitational
waves is governed by

R(1)
µν(γ, h) = 0, (6)

which is a dynamical equation for perturbationshµν on the fixed backgroundγµν .
The next termR(2)

µν(γ, h) can then be used to define energy-momentum tensor
of these gravitational waves, but the background metric isnot assumed to be
influenced by it. Improvements to this inconsistency can be obtained by iteration
procedure. More rigorous but somewhat complicated solution to this problem was
recently proposed by Efroimsky [35].

In the high-frequency approximation(ǫ ≪ 1, ε = 1) the dominant term is
R(1)

µν = O(ǫ−1) which gives the wave equation (6) for the perturbationshµν on the
curved backgroundγµν (considering a vacuum full metricgµν). The two terms of
the orderO(1), namelyR(0)

µν andR(2)
µν , arebothused to give the Einstein equation

for the backgroundnon-vacuummetric, which represents the essential influence
of the high-frequency gravitational waves on the background. Of course, to obtain
a consistent solution, one has to use both the wave equationand the Einstein
equation for the background simultaneously.

2.1. Linear Approximation

Interestingly, it follows that the wave equation forhµν , which arises from the
linear perturbation of the Ricci tensor in vacuum forboththe above limiting cases
ε ≪ 1, ǫ = 1, andǫ ≪ 1, ε = 1, is thesameequation (6). In analogy with the
well-known theory of massless spin-2 fields in flat space [4] we wish to impose
two TT gauge conditions,

hµν
;ν = 0, (7)

hµ
µ = 0. (8)

In this gauge we arrive at the following wave equation

♦hµν ≡ hµν
;β

;β − 2R(0)
σνµβ hβσ − R(0)

µσ hσ
ν − R(0)

νσ hσ
µ = 0, (9)

where the operator♦ is the generalization of flat-space d’Alembertian. Contracting
(9) we obtain (hµ

µ);β
;β

= 0, so that the condition (8) is always consistent with (9).
However, if we differentiate♦hµν and use equations (7), (2), we find that

(♦hµν);ν =
(

R(0)
νβ;µ − 2R(0)

µν;β

)

hνβ, where (10)

(♦hµν);ν = O(ǫ−2) ,
(

R(0)
νβ;µ − 2R(0)

µν;β

)

hνβ = O(ǫ). (11)
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Thus, in case of standard linearized waves (ǫ = 1) there is an obvious inconsis-
tency, except for backgrounds with a covariantly constant Ricci tensor (e.g., for
the Einstein spaces). On the other hand, in the high-frequency limit (ε = 1), the
inconsistency between (9) and (7) is extremely small (the left and the right sides of
(10) differ byǫ3 whereǫ ≪ 1). Moreover, for all background metrics ofconstant
curvature the equations arefully consistent. This is an important advantage of
the equation (9) containing also terms of non-dominant order (namely those pro-
portional to the Riemann or Ricci tensors), if compared to other “simpler” wave
equations (e.g.,hµν

;β
;β = 0) for which the left and right sides of (10) generally

differ by only two orders of magnitude.

2.2. Nonlinear Terms and the Effective Energy-Momentum Tensor

Before considering the second-order terms we now extend the formalism
to be applicable to a larger class of spacetimes with (possibly) non-vanishing
energy-momentum tensorTµν . Namely,gµν need not be a vacuum metric (as only
considered in [1]) but it satisfies Einstein’s equations

Rµν(g) = 8π T̃µν(g, ϕ). (12)

Here T̃µν ≡ Tµν − 1
2gµνTβ

β , such thatTµν(g, ϕ) depends on non-gravitational
fieldsϕ and on the full metricgµν but it does notcontain thederivativesof gµν .
Note that this admits as particular cases a presence of electromagnetic field, and
also Einstein spaces wheñTµν = 1

8π
3gµν . Under the assumptions (2) valid for

the decomposition (1) we expand the equation (12) as

R(0)
µν(γ ) + εR(1)

µν(γ, h) + ε2R(2)
µν(γ, h) + . . . =

8π
[

T̃ (0)
µν (γ, ϕ) + ε T̃ (1)

µν (γ, h, ϕ) + ε2 T̃ (2)
µν (γ, h, ϕ) + . . .

]

, (13)

where T̃ (0)
µν (γ, ϕ) ≡ T̃µν(γ, ϕ), and the remaining terms on the right-hand side

are linear and quadratic inh, respectively. The orders of magnitude of the terms
in the expansion of the Ricci tensor have been described above, cf. (5). For the
energy-momentum tensor one obtains

T̃ (0)
µν = O(1), T̃ (1)

µν = O(ǫ), T̃ (2)
µν = O(ǫ2). (14)

For ordinary linearization we thus get the equationsR(n)
µν = 8π T̃ (n)

µν in each order
n = 0, 1, 2, . . . . For the high-frequency approximation we obtain from (13) in
the leading orderO(ǫ−1) the equation (6) which is identical with the wave equa-
tion in the vacuum case. The second-order contributions, that areO(1), represent
an influence of the high-frequency gravitational waves and matter fields on the
background,

R(0)
µν(γ ) − 8π T̃ (0)

µν (γ, ϕ) = −R(2)
µν(γ, h). (15)
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This equation (which in case of a vacuum spacetime reduces to the Isaacson result)
can be rewritten in the form of Einstein’s equation for the background as

G(0)
µν(γ ) − 8π T (0)

µν (γ, ϕ) = −
[

R(2)
µν(γ, h) − 1

2γµν R(2)(γ, h)
]

≡ 8π TGW
µν . (16)

This defines the effective energy-momentum tensorTGW
µν of high-frequency grav-

itational waves.

2.3. Gravitational Waves in the WKB Approximation

In the following we shall restrict ourselves to the Isaacson approxima-
tion (ε = 1, ǫ ≪ 1), i.e. on study of high-frequency gravitational waves on
curved backgrounds. Inspired by the plane-wave solution in flat space, the form
hµν = A eµν exp(i φ) of the solution is assumed. The amplitudeA = O(ǫ) is a
slowly changing real function of position, the phaseφ is a real function with a
large first derivative but no larger derivatives beyond, andeµν is a normalized
polarisation tensor field. The above assumption, introduced in [1], is called the
WKB approximation, or the geometric optics limit [4]. The wave vector normal to
surfaces of constant phase iskµ ≡ φ,µ and the orders of various relevant quantities
are R(0)

µνγ δ = O(1), A,µ = O(ǫ), kµ = O(ǫ−1), andkµ;ν = O(ǫ−1). Substituting
this into the conditions (7), (8), and the wave equation (9) we obtain, in the two
highest orders which are gauge invariant,

kµkµ = 0, kµeµν = 0, kαeµν;α = 0,

eµνeµν = 1, γ µνeµν = 0, (A2kβ);β = 0. (17)

These express that a beam of high-frequency gravitational waves propagate along
rays which are null geodesics with tangentkµ, with parallelly transported polar-
ization orthogonal to the rays. Moreover, using the WKB approximation ofTGW

µν

and the Brill-Hartle averaging procedure [6] (which guarantees the gauge invari-
ance) Isaacson obtained for gravitational waves in the geometric optics limit the
energy-momentum tensor [1]

T H F
µν = 1

64π A
2kµkν . (18)

The energy-momentum tensor of high-frequency waves thus has the form of pure
radiation. This fully agrees with results obtained by alternative techniques [8, 9, 14].

3. EXAMPLES OF HIGH-FREQUENCY GRAVITATIONAL WAVES

Now we present some explicit classes of high-frequency gravitational waves.
These are obtained by the above described WKB approximation method consid-
ering specific families of background spacetimes with a privileged geometry.
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3.1. Non-Expanding Waves

As the background we first consider the Kundt class [19, 28] of non-
expanding, twist-free spacetimes in the form [36]

ds2 = F du2 − 2
Q2

P2
du dv +

1

P2
(dx2 + dy2), (19)

with

P = 1 +
α

2
(x2 + y2),

Q =
[

1 +
β

2
(x2 + y2)

]

e+ C1 x + C2 y,

F = D
Q2

P2
v2 −

(Q2),u
P2

v −
Q

P
H, (20)

whereα, β, andeare constants (without loss of generalitye = 0 ore = 1),C1, C2

andD are arbitrary functions of the retarded timeu, andH (x, y, u) is an arbitrary
function of the spatial coordinatesx, y, and of u.

In particular, these are Petrov typeN (or conformally flat) solutions of
Einstein’s equations with cosmological constant3 when α = −β = 1

63 and
D = −2βe+ C2

1 + C2
2, see e.g. [36–39]. Such metrics represent exact pure grav-

itational waves propagating along principal null direction∂v if H satisfies the
equationP2(H,xx + H,yy) + 2

33 H = 0. However, in our treatment here the func-
tion H doesnot describe exact gravitational waves but rather it characterizes the
influenceof high-frequency perturbations on the background metric, which is as-
sumed to be initially given by (19), (20) withH = 0.

We consider the phase of high-frequency gravitational waves given byφ =
φ(u), and we seek solution in the WKB form, namely

hµν = A eµν exp(i φ(u)), (21)

where the amplitudeA and polarization tensoreµν are functions of the coordinates
{u, v, x, y}. The corresponding wave vector iskµ = (φ̇, 0, 0, 0), where the dot
denotes differentiation with respect tou. Applying now all the equations (17) we
obtain

A = A(u, x, y),

e+
µν =

1
√

2 P2









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1









,
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e×
µν =

1
√

2 P2









0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0









. (22)

The fact that the amplitudeA is independent of the coordinatev expresses
non-expanding character of the waves. The special polarisation tensors, denoted
as + and ×, are analogous to those used in the standard theory of linearized
waves in flat space. A general polarisation is easily obtained by considering
eµν = a e+

µν + b e×
µν , wherea2(u, x, y) + b2(u, x, y) = 1.

Using the Einstein tensor for the metric (19) with the cosmological term
in equations (16) and (18), we determine the reaction of the background on the
presence of the above high-frequency gravitational perturbations, namely

Q

P

[

P2

(

∂2

∂x2
+

∂2

∂y2

)

+
2

3
3

]

H (u, x, y) = 1
4A

2(u, x, y)φ̇2. (23)

Notice thatA = O(ǫ) andφ̇ = O(ǫ−1). Therefore, the influence of high-frequency
gravitational waves on the background, represented by the functionH , is of the
orderO(1). Theseapproximatesolutions can obviously be compared to specific
exactradiative vacuum solutions which are given byH solving the field equation
(23) with a vanishing right-hand side (whenA = 0, i.e. high-frequency perturba-
tion waves are absent).

The above waves are non-expanding with the wave-frontsu = const. being
two-dimensional spaces of constant curvature given byα = 1

63 , cf. (19). For
3 = 0 these are plane-fronted waves, for3 > 0 they are spheres, and for3 < 0
hyperbolical surfaces.

Another interesting subclass of the Kundt spacetimes of the form (19), (20)
are explicit Petrov typeI I (or more special) metrics given byβ = α, e = 1,C = 0
andD = 2(3 − α), namely

ds2 = [ 2(3 − α) v2 − H ] du2 − 2 du dv +
1

P2
(dx2 + dy2). (24)

For H = 0 these are electrovacuum solutions with the geometry of a direct prod-
uct of two 2-spaces of constant curvature, in particular the Bertotti-Robinson,
(anti-)Nariai or Plebański-Hacyan spaces [40–43], see e.g. [44, 36]. Considering
again (21) we obtain the results (22) as in the previous case. However, the reac-
tion of high-frequency waves on the background is now different. It is determined
by the equations (16) and (18) with the energy-momentum tensor consisting of a
cosmological term plus that of a uniform non-null electromagnetic field described
by the complex self-dual Maxwell tensorFµν = 481(m[µm̄ν] − k[µl ν]), where

81 =
√

α − 3
2 ei c, c = const., andm = P ∂ζ̄ , k = ∂v, l = 1

2 F ∂v + ∂u form the
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null tetrad. Straightforward calculation gives

P2

(

∂2

∂x2
+

∂2

∂y2

)

H = 1
4A

2(u, x, y)φ̇2. (25)

This result is analogous to the equation (23), but the present situation is now
more complicated since the background spacetime isnot vacuumbut it contains
electromagnetic field. (In fact, the term with the cosmological constant3 in (23)
has been entirely compensated by this.) Therefore, we have to analyze the pertur-
bation of thecompleteEinstein-Maxwell system, and its consistency.

The Einstein equations in the two highest orders (6) and (16) have already
been solved. We will now demonstrate that the Maxwell equations are also sat-
isfied in the high-frequency limit, namelyFµν

|ν = O(ǫ), where | denotes the
covariant derivative with respect to the full metricgµν . Indeed, using antisymme-
try of Fµν we can writeFµν

|ν = Fµν
, ν + 1

2gαβgαβ,ν Fµν . Considering (2) and the
gauge condition (8) we obtaingαβgαβ,ν = γ αβγαβ,ν − hαβhαβ,ν + O(ǫ2) because
γ αβhαβ,ν − hαβγαβ,ν = (hβ

β)
;ν

− 2hαβγαβ;ν = 0 , so that

Fµν
|ν = Fµν

;ν − 1
2hαβhαβ,ν Fµν + O(ǫ2). (26)

Consequently, if the original background represents an electrovacuum spacetime,
Fµν

;ν = 0, the Maxwell equationsFµν
|ν = O(ǫ) for the full metric are satisfied in

the dominant orderO(1) in the high-frequency limitǫ ≪ 1. In addition, the field
equations are valid also in the next orderO(ǫ) for the new electromagnetic field

F
µν =

(

1 + 1
4hαβhαβ

)

Fµν, (27)

since using (26) we obtainFµν
|ν = O(ǫ2). Starting from an electromagnetic field

Fµν satisfyingFµν
;ν = 0 with respect to the background metricγµν , we can thus

construct the electromagnetic fieldFµν which satisfies the Maxwell equations
Fµν

|ν = O(ǫ2) with respect to the full metricgµν in the presence of high-frequency
gravitational waves. Both the Einstein and Maxwell equations are then satisfied
in the two highest perturbative orders. Interestingly, these results hold for high-
frequency perturbations ofany“seed” electrovacuum background spacetimes.

In particular, if the backgrounds are direct product spacetimes (24) forH = 0
with uniform non-null electromagnetic field81 = const. then high-frequency
gravitational waves (21), (22) introduceH which is given by equation (25). Ac-
cording to (27), the electromagnetic field is perturbed by the term proportional to
hαβhαβ = A2e2i φ = O(ǫ2), see (17), namely

8
g
1 = 81

[

1 + 1
2A

2(u, x, y) e2i φ(u)
]

. (28)

This remains non-null but it is no longer uniform. The full spacetime thus describes
non-uniform, non-null electromagnetic field plus the null field of high-frequency
gravitational waves.
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3.2. Cylindrical Waves

Next we consider the class of cylindrical Einstein-Rosen waves,

ds2 = e2γ−2ψ (−dt2 + dρ2) + e2ψdz2 + ρ2e−2ψdϕ2. (29)

If the functionsψ(t, ρ) andγ (t, ρ) satisfy the corresponding field equations (see,
e.g. [21],[28], or equations (33)-(35) below) these are exact radiative spacetimes of
the Petrov type I. We conveniently define double null coordinatesu = 1√

2
(t − ρ)

andv = 1√
2
(t + ρ); in these coordinates{u, v, ϕ, z} the metric takes the form

ds2 = −2e2γ−2ψdu dv + e2ψdz2 + 1
2(v − u)2e−2ψdϕ2. (30)

We assume this to be the class of background universes into which we wish to in-
troduce high-frequency gravitational waves. We assume againφ = φ(u) implying
the wave vectorkµ = (φ̇, 0, 0, 0), i.e. the WKB perturbation of the form (21). By
applying all the conditions (17) we obtain

A =
U(u)

√
v − u

,

e+
µν =

1
√

2
e−2ψ









0 0 0 0
0 0 0 0
0 0 1

2(v − u)2 0
0 0 0 −e4ψ









,

e×
µν =

1

2
(v − u)









0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0









; (31)

notice thatv − u =
√

2ρ. Thus the perturbative solution is given by

hµν =
U(u)

√
v − u

eµν exp(i φ(u)) . (32)

The back-reaction on the background (contained in a specific modification of
the metric functionsγ andψ) is given by the following equations, cf. (18),

(v − u) ψ2
,u + γ,u = − 1

16(v − u)A2φ̇2, (33)

(v − u) ψ2
,v − γ,v = 0, (34)

ψ,uv −
1

2v − u
(ψ,v − ψ,u) = 0. (35)

Interestingly, this set of equations isconsistent: by differentiating equation (33)
with respect tov, equation (34) with respect tou, and combining them, one obtains
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(35) provided the amplitudeA(u, v) satisfies the equation

((v − u)A2),v = 0. (36)

However, this is automatically satisfied for the amplitude (31). It is thus quite simple
to introduce gravitational waves in the WKB approximation into the cylindrical
spacetimes (30). If the functionsγ andψ representing the background are solutions
of the vacuum equations [i.e. (33)-(35) with a vanishing right-hand side of (33)]
then for introducing high-frequency gravitational waves it is sufficientjust to alter
the functionγ as

γ (u, v) → γ (u, v) + γ̃ (u), (37)

where

∂γ̃ (u)

∂u
= − 1

16 U
2φ̇2. (38)

In particular, whenψ = 0 = γ the background (29) is a flat Minkowski space. By
assuming non-trivial ˜γ we obtain Petrov typeN spacetime with high-frequency
gravitational waves which have cylindrical wave-fronts. In a general case this per-
turbation is propagating in the background which is the Einstein-Rosen cylindrical
wave of Petrov type I. The effect on background is given by the relation (38) where
U(u) = O(ǫ) is an arbitrary amplitude function.

The above described perturbations depend on the null “retarded” coordinate
u so that the high-frequency gravitational waves areoutgoing(ρ is growing witht ,
on a fixedu). However, since the background metric (30) is invariant with respect to
interchangingu with v, it is straightforward to consider alsoingoingperturbations
by assuming the phase to depend on the “advanced coordinate”v, namely

hµν =
V(v)

√
u − v

eµν exp(i φ(v)). (39)

Then the term proportional toA2φ̇2 will appear on the right-hand side of equation
(34) instead of (33). This results in an interesting possibility tointroduce ingoing
high-frequency gravitational cylindrical waves into the background of outgoing
Einstein-Rosen wavesjust by assuming ˜γ (v) in (37) such that

∂γ̃ (v)

∂v
= + 1

16 V
2φ̇2, (40)

or vice versa.
Moreover, all the above results can further be extended to a class of generalized

Einstein-Rosen (diagonal) metrics [29, 45] which describeG2 inhomogeneous
cosmological models,

ds2 = e2γ−2ψ (−dt2 + dρ2) + e2ψdz2 + t2e−2ψdϕ2. (41)
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If the three-dimensional spacelike hypersurfaces are compact, the corresponding
model is the famous Gowdy universe with the topology of three-torus [27, 29].
In the double null coordinates just one component of the metric is now different
from (30), namelygϕϕ = 1

2(v + u)2e−2ψ(u,v). The only modification of the above
results (in the double null coordinates) consists of replacing the factor (v − u)
with (v + u), and each derivative with respect tou changing sign (e.g.γ,u →
−γ,u or ψ,uv → −ψ,uv). High-frequency gravitational waves in inhomogeneous
cosmologies of the form (41) can thus easily be constructed.

3.3. Expanding Waves

Finally, we assume that the background is an expanding Robinson-Trautman
spacetime. The metric (generally of the Petrov typeI I ) in the standard coordinates
has the form, see e.g. [22, 23, 28, 39],

ds2 = −
(

K − 2r (lnP),u − 2
m

r
−

3

3
r 2

)

du2 − 2dudr +
r 2

P2
(dη2 + dξ2),

(42)
whereK = 1(lnP), 1 ≡ P2( ∂2

∂η2 + ∂2

∂ξ2 ), andm(u). WhenP(u, η, ξ ) satisfies the
Robinson-Trautman equation1K + 12m (lnP),u − 4m,u = 0, the metric (42) is
an exact vacuum solution of the Einstein equations.

In view of the existence of privileged congruence of null geodesics generated
by ∂r we introduce the phaseφ = φ(u) and the wave vectorkµ = (φ̇, 0, 0, 0) of
high-frequency gravitational waves. We again assume the WKB form (21) of the
solution. Applying the equations (17) we obtain

A =
1

r
U (u, η, ξ ),

e+
µν =

1
√

2

r 2

P2









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1









,

e×
µν =

1
√

2

r 2

P2









0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0









. (43)

A general solution has the formhµν = r −1U (u, η, ξ ) eµν exp(i φ(u)), where
U (u, η, ξ ) and φ(u) are arbitrary functions, andeµν = a e+

µν + b e×
µν with

a2(u, η, ξ ) + b2(u, η, ξ ) = 1. Introducing the amplitudesU+ = a U, U× = b U
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for both polarizations, we can write the solution as

hµν =
1

r

[

U+e+
µν + U×e×

µν

]

exp(i φ(u)). (44)

If the wave-surfacesr = const., u = const. with the metricdl2 = P−2(dη2 +
dξ2) are homeomorfic toS2, the waves can be interpreted as “spherical”. In the
asymptotic regionr → ∞ such solutions locally approach plane waves [16].

The reaction of the waves on background is determined by the equations
(16) and (18) withT (0)

µν = − 1
8π

3γµν . From the only nontrivial component we
immediately obtain the following equation

−
∂m

∂u
+ 3m (lnP),u + 1

41K = 1
16[(U+)2 + (U×)2]φ̇2, (45)

where m(u), φ(u), whereas the remaining functions depend on coordinates
{u, η, ξ}. Notice that this isindependentof the cosmological constant3.

The expressions (44),(45) agree with results obtained by MacCallum and
Taub [9] or recently by Hogan and Futamase [16] who used Burnett’s technique
[14]. Our results, which were derived by a straightforward approach, are slightly
more general because they are not restricted to a constant frequencyφ̇ = const.
Particular subcase of the Vaidya metric has already been studied before by Isaacson
[1] and elsewhere [8].

4. CONCLUSIONS

The Isaacson approach to study high-frequency perturbations of Einstein’s
equations was briefly reviewed and compared with the standard weak-field limit. In
our contribution we generalized Isaacson’s method to include non-vacuum space-
times, in particular an electromagnetic field and/or a non-vanishing value of the
cosmological constant3. Then we explicitly analyzed possible high-frequency
gravitational waves in three large families of background universes, namely non-
expanding spacetimes of the Kundt type, cylindrical Einstein-Rosen waves and
related inhomogeneous cosmological models (such as the Gowdy universe), and
the Robinson-Trautman expanding spacetimes. These backgrounds are of various
Petrov types. For example, high-frequency gravitational waves can be introduced
into electrovacuum conformally flat Bertotti-Robinson space, typeD Nariai and
Plebański-Hacyan spaces, their typeN and typeI I generalizations, or into alge-
braically general Einstein-Rosen universes.

For construction of high-frequency gravitational perturbations we have em-
ployed the fact that all these spacetimes admit a non-twisting congruence of null
geodesics. The corresponding tangent vectorskµ are hypersurface orthogonal so
that there exists a phase functionφ which satisfiesφ,µ = kµ. The last equation
in (17) can be put into the formd

dl (lnA) = −2, wherel is the affine parameter,
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and2 = 1
2kµ

;µ is the expansion of the null congruence. This determines the be-
haviour of the amplitudeA in the above spacetimes (22), (31), (43). The remaining
equations (17) enables one to deduce the polarization tensors.

It has been also crucial that all the classes of spacetimes discussed ad-
mit exact solutions with the energy-momentum tensor of pure radiation, i.e.,
Gµν − 8π Tµν = 1

8 A
2kµkν , whereTµν is either constant (representing the cos-

mological constant) or it describes an electromagnetic field. The relation between
high-frequency perturbations and exact radiative solutions of Einstein’s equations
in each class is thus natural. In particular, it is possible to determine explicitly the
reaction of the background on the presence of high-frequency gravitational waves.
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Abstract

We analyze a class of exact type II solutions of the Robinson–Trautman family
which contain pure radiation and (possibly) a cosmological constant. It is shown
that these spacetimes exist for any sufficiently smooth initial data, and that they
approach the spherically symmetric Vaidya–(anti-)de Sitter metric. We also inves-
tigate extensions of the metric, and we demonstrate that their order of smoothness
is in general only finite. Some applications of the results are outlined.

PACS: 04.30.-w, 04.20.Jb, 04.20.Ex

1 Introduction

The classic Vaidya metric [1–4] (see also [5, 6] followed by reprints of the original Vaidya
papers) is a spherically symmetric type D solution of the Einstein equations in the presence
of pure radiation matter field which propagates at the speed of light. In various contexts
this “null dust” may be interpreted as high-frequency electromagnetic or gravitational
waves, incoherent superposition of aligned waves with random phases and polarisations,
or as massless scalar particles or neutrinos. The Vaidya solution depends on an arbitrary
“mass function” m(u) of the retarded time u which characterises the profile of the pure
radiation (it is a “retarded mass” measured at conformal infinity). Various sandwiches and
shells of null matter can thus be constructed that are bounded either by flat (m = 0) or
Schwarzschild-like (m = const 6= 0) vacuum regions. Due to this property such solutions
have been extensively used as models of spherically symmetric gravitational collapse of a
star, as an exterior solution describing objects consisting of heat-conducting matter, as
an interesting toy model for investigation of singularities and their possible removal by
quantum effects, for studies of various formulations of the cosmic censorship conjecture
on both classical and quantum level, process of black-hole evaporation, and for other
purposes (see, e.g., [7–16] for more details and related references).
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In fact, the Vaidya spacetime belongs to a large Robinson–Trautman class of expand-
ing nontwisting solutions [4,17,18]. Various aspects of this family have been studied in the
last two decades. In particular, the existence, asymptotic behaviour and global structure
of vacuum Robinson–Trautman spacetimes of type II with spherical topology were inves-
tigated [19–28], most recently in the works of Chruściel and Singleton [29–31]. In these
rigorous studies, which were based on the analysis of solutions to the nonlinear Robinson–
Trautman equation for generic, arbitrarily strong smooth initial data, the spacetimes were
shown to exist globally for all positive retarded times, and to converge asymptotically to
a corresponding Schwarzschild metric. Interestingly, extension across the “Schwarzschild-
like” event horizon can only be made with a finite order of smoothness. Subsequently,
these results were generalized in [32, 33] to the Robinson–Trautman vacuum spacetimes
which admit a nonvanishing cosmological constant Λ. It was demonstrated that these
cosmological solutions settle down exponentially fast to a Schwarzschild–(anti-)de Sitter
solution at large times u. In certain cases the interior of a Schwarzschild–de Sitter black
hole can be joined to an “external” cosmological Robinson–Trautman region across the
horizon with a higher order of smoothness than in the corresponding case with Λ = 0. For
the extreme value 9Λm2 = 1, the extension is smooth but not analytic (and not unique).
The models with Λ > 0 also exhibit explicitly the cosmic no-hair conjecture under the
presence of gravitational waves. On the other hand, when Λ < 0 the smoothness of such
an extension is lower.

Our aim here is to further extend the Chruściel–Singleton analysis of the Robinson-
Trautman vacuum equation by including matter, namely pure radiation. It was argued
already by Bičák and Perjés [34] that with Λ = 0 such spacetimes should generically
approach the Vaidya metric asymptotically. We will analyze this problem in more detail,
including also the possibility of Λ 6= 0 in which case the Robinson–Trautman spacetimes
containing pure radiation can be shown to approach the radiating Vaidya–(anti-)de Sitter
metric.

2 The metric and field equations

In standard coordinates the Robinson–Trautman metric has the form [4,18,35]

ds2 = −
(

K − 2r(ln P ),u − 2
m

r
− Λ

3
r2

)

du2 − 2dudr + 2
r2

P 2
dζdζ̄ , (1)

where K = ∆(ln P ) with ∆ ≡ 2P 2∂ζ∂ζ̄ being the Gaussian curvature of the 2-surfaces
2P−2dζdζ̄, m(u) is the mass function, and Λ is the cosmological constant. When the
function P (u, ζ, ζ̄) satisfies the fourth-order Robinson–Trautman field equation

∆K + 12m (ln P ),u − 4m,u = 2κ n2 , (2)

the metric describes a spacetime (generally of the Petrov type II) filled with pure radiation
field Tµν = n2(u, ζ, ζ̄) r−2 kµkν , where k = ∂r is aligned along the degenerate principal null
direction (we use the convention Gµν + Λgµν = κ Tµν). In particular, vacuum Robinson–
Trautman spacetimes are given by n = 0, in which case m can be set to a constant by a
suitable coordinate transformation [4]. Vacuum spacetimes (1) — possibly with a nonvan-
ishing Λ — thus satisfy the equation 12m (ln P ),u = −∆K. These include the spherically
symmetric Schwarzschild–(anti-)de Sitter solution which corresponds to P0 = 1 + 1

2
ζζ̄.

Indeed, replacing the complex stereographic coordinate ζ with angular coordinates by
ζ =

√
2 eiφ tan(θ/2), we obtain 2P−2

0 dζdζ̄ = dθ2 + sin2 θ dφ2, and K0 = ∆0 ln(P0) = 1.
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u < 0u = 0 u I+
u = u 0

r =1
r = 0
u > 0 u < 0

u I+u > 0 r =1

r = 0
u = u 0

u = 0

Figure 1: Schematic conformal diagrams of the Robinson–Trautman exact spacetimes
which exist for any smooth initial data prescribed on u0. Pure radiation field is present in
the shaded region u < 0. Near u = 0 the solutions approach the Vaidya metric, and can
be extended to flat Minkowski region u > 0. Thick line indicates the curvature singularity
at r = 0 whereas double line represents future conformal infinity I+ at r = ∞ (Λ = 0 is
assumed). The global structure depends on the value of the parameter µ of the linear mass
function (8): left diagram corresponds to µ > 1/16, the right one applies when µ ≤ 1/16.

Here we will restrict ourselves to nonvacuum cases for which the dependence of the
mass function m(u) on the null coordinate u is only caused by a homogeneous pure
radiation with the density n2(u) r−2. When the mass function m(u) is decreasing, the
field equation (2) can be naturally split into the following pair,

∆K + 12m(u) (ln P ),u = 0 , (3)

−2 m(u),u = κ n2(u) . (4)

In fact, it was demonstrated in [34] that such a separation can always be achieved using
the coordinate freedom. It is then possible to reformulate equation (3) by introducing
a u-dependent family of smooth 2-metrics gab on the submanifold r = const, u = const,
such that gab = f(u, ζ, ζ̄)−2g0

ab, where g0
ab(ζ, ζ̄) is the metric on a 2-dimensional sphere S2.

Since gab is of the form 2P−2dζdζ̄ in our case, we can write

P = fP0 , P0 = 1 + 1
2
ζζ̄ , (5)

and equation (3) becomes
∂f

∂u
= − 1

12m(u)
f ∆K , (6)

where ∆ is the Laplace operator associated with the metric gab. Denoting ∆0 and K0 = 1
as the corresponding quantities related to g0

ab , we obtain

∆ = f 2∆0 , K = f 2(1 + ∆0(ln f)) . (7)
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3 Linear mass function

Let us first consider the simplest choice of m(u) which, in fact, has been widely used in
literature (see e.g. [7,9,36]): we will assume that the mass function is a linearly decreasing
positive function

m(u) = −µu, µ = const > 0 , (8)

on the interval [u0, 0]. Notice that for (8) the pure radiation field is uniform because equa-

tion (4) implies n =
√

2µ/κ = const, independent of the retarded time u. The constant

value u0 < 0 localises an initial null hypersurface (that extends between the curvature
singularity at r = 0 and the conformal infinity r = ∞) on which an arbitrary sufficiently
smooth initial data given by the function

f0(ζ, ζ̄) = f(u = u0, ζ, ζ̄) , (9)

are prescribed, see Fig. 1.

3.1 Existence of the solutions

Now, the idea is to employ the Chruściel–Singleton results [29–31] concerning the analysis
of the Robinson–Trautman vacuum equation, in particular the existence and asymptotic
behaviour of its solutions. In the vacuum case m in equation (3) is constant, and the
solution f(u, ζ, ζ̄) of the characteristic initial value problem (9) exists and is unique (in
spite of the singularity at r = 0). In the presence of pure radiation given by (8) it is
possible to “eliminate” the variable mass function from the Robinson–Trautman field
equation (6) mathematically by a simple reparametrisation

ũ = −µ−1 ln(−u) , (10)

cf. [34]. Indeed, equation (6) is then converted to

∂f̃

∂ũ
= − 1

12
f̃ ∆̃K̃ , (11)

where f̃(ũ, ζ, ζ̄) = f(u(ũ), ζ, ζ̄), K̃ = f̃ 2(1 + ∆0 ln(f̃)), and ∆̃ = f̃ 2∆0. Notice that the
transformation (10) moves the hypersurface u = 0, on which the mass function m(u)
reaches zero, to ũ = +∞.

Chruściel [30] derived the following asymptotic expansion (as ũ → ∞) for the func-
tion f̃ satisfying the evolution equation (11) for any smooth initial data f̃0 = f0 on
ũ0 = −µ−1 ln(−u0), namely

f̃ = 1 + f1,0 e−2ũ + f2,0 e−4ũ + · · · + f14,0 e−28ũ

+f15,1 ũ e−30ũ + f15,0 e−30ũ + · · · (12)

=
∞
∑

i=0

Ni
∑

j=0

fi,j ũj e−2iũ ,

where fi,j are smooth functions on S2 such that fi,j = 0 for j > 0, i ≤ 14. The function f̃
thus exists and converges exponentially fast to 1, which means physically that the radia-
tive Robinson–Trautman vacuum spacetimes approach asymptotically the Schwarzschild–
(anti-)de Sitter solution as ũ → ∞, see relation (5). In our case of pure radiation field (8)
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we employ the transformation (10) on expression (12) to obtain the following asymptotic
expansion of f as u → 0−,

f = 1 + f1,0 (−u)2/µ + f2,0 (−u)4/µ + · · · + f14,0 (−u)28/µ

−µ−1f15,1 ln(−u) (−u)30/µ + f15,0 (−u)30/µ + · · · (13)

=
∞
∑

i=0

Ni
∑

j=0

fi,j [−µ−1 ln(−u)]j (−u)2i/µ .

As a result, for the initial data (9) the Robinson–Trautman type II spacetimes which
contain uniform pure radiation field with the linear mass function (8) do exist in the
whole region u0 ≤ u < 0. It is also obvious that the function f approaches 1 as u → 0−
(where also m(u) → 0) according to (13). In other words, these spacetimes approach the
spherically symmetric Vaidya–(anti-)de Sitter metric near u = 0.

The global structure of such spacetimes is schematically indicated on Fig. 1. In fact,
there are two possibly different conformal diagrams depending on the value of µ: for
µ > 1/16 there is a white hole singularity at r = 0, for µ ≤ 1/16 there is also a naked
singularity, see e.g. [9,13,16,36] for more details. At u = 0 all of the mass m(u) is radiated
away, and we can attach Minkowski space (de Sitter space when Λ > 0, anti-de Sitter when
Λ < 0; the presence of the cosmological constant would change the character of conformal
infinity I which would become spacelike or timelike, respectively) in the region u > 0 along
the hypersurface u = 0. We will now investigate the smoothness of such an extension.

3.2 Extension of the metric across u = 0

It follows from (13) that the smoothness of f on u = 0 is only finite. Depending on the
value of µ two different cases have to be discussed separately: 2/µ is an integer, and 2/µ
is a real non-integer positive number.

When 2/µ is an integer then due to the presence of the ln(−u) term associated with
f15,1 6= 0 the function f is of the class C(30/µ)−1. For µ very small, the integer number
(30/µ) − 1 is large so that f becomes smoothly extendable to 1 across u = 0 as µ → 0.
This represents a naked-singularity Robinson–Trautman spacetime (see the right part of
Fig. 1) unless µ = 0 which gives flat space everywhere. In the limiting case µ = 1/16 the
function f is of the class C479. For the (white hole) Robinson–Trautman spacetimes given
by µ > 1/16 the smoothness is lower. However, it is always at least C14 because µ ≤ 2 in
this case.

In the generic case when 2/µ is not an integer the function f is only of the class C{2/µ},
where the symbol {x} denotes the largest integer smaller than x. Again, with µ → 0 the
function f becomes smoothly extendable. For µ < 1/16 the function f is at least of the
class C32, for µ > 2 it is not even C1 but it remains continuous.

To investigate further the smoothness of the metric when approaching the hypersur-
face u = 0− which is the analogue of the Schmidt–Tod boundary of vacuum Robinson–
Trautman spacetimes [25, 30] we should consider the conformal picture using suitable
double-null coordinates. Such Kruskal-type coordinates for the Vaidya solution with lin-
ear mass function (8) were introduced by Hiscock [7–9], see also [16, 36], and we will use
this transformation only to replace the coordinate r since the null coordinate u is already
appropriate. Introducing a new coordinate w by

dw =
du

u
− 2dz

z(2µ z2 − z + 2)
, where z = −u

r
, (14)
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we put the Robinson–Trautman metric with linear mass function into the form

ds2 = −
(

K − 1 − 2
f,u

f
r

)

du2

−
(

2r + u + 2µ
u2

r

)

dudw + 2
r2

P 2
dζdζ̄ , (15)

where r(u,w). For the pure Vaidya metric characterized by f = 1 and K0 = 1 the first
term vanishes identically so that the coordinates of (15) are indeed the Kruskal-type
coordinates for the Vaidya spacetime with a linear mass function.

The smoothness of a general Robinson–Trautman metric (15) depends only on the
smoothness of the metric coefficients guu and gζζ̄ (containing the function f) since the
coefficient guw tends to −r as u → 0. The smoothness of gζζ̄ (for any finite r) and of K is
the same as of f , see (7). The function f,u/f is evidently one order less smooth than f .
Consequently, for 2/µ being integer or non-integer number, the metric (15) is of the class
C(30/µ)−2 or C{2/µ}−1, respectively. We again observe that the spacetimes approaching
the linear Vaidya metric with naked singularity (i.e., for small values of the parameter µ)
possess higher order of smoothness at u = 0.

One might be worried about the invariance of our results, namely with respect to a
rescaling of the null coordinate u(û) leading to a different smoothness of the function f
and of the metric. In order to change the smoothness on the hypersurface u = 0 such
rescaling must have a singular character there. But this would lead to a degeneracy of the
metric coefficient gûw of the Vaidya metric, which is forbidden. Consequently, the above
results are in this sense unique.

We would like to obtain analogous results concerning smoothness of the extension also
for a non-zero value of the cosmological constant Λ. Unfortunately, as far as we know,
there is no explicit transformation of the Vaidya–de Sitter metric to the Kruskal-type
coordinates even for the linear mass function (contrary to the Schwarzschild–de Sitter
case [33]). However, it is possible to start with the Vaidya–de Sitter metric

ds2 = −h(u, r) du2 − 2dudr + r2dΩ2 , (16)

where h(u, r) = 1 + 2µu r−1 − Λ
3
r2, and perform a coordinate transformation

dw = g du + 2
g

h
dr , (17)

where g(u, r) is some function. We arrive at the double-null form for the metric

ds2 = −h

g
dudw + r2(u,w) dΩ2 . (18)

Of course, we have to ensure that dw in (17) is a differential of the coordinate w. The
integrability condition (d2w = 0) gives the following quasilinear PDE,

h2∂g

∂r
− 2h

∂g

∂u
+ 4

µ

r
g = 0 , (19)

for the undetermined function g, which is difficult to solve analytically. The method of
characteristic curves leads to the first-order ODE of the Abel type which has not yet
been solved, but the existence of its solution is guaranteed. [It is possible to apply the
perturbative approach starting from the solvable case of the de Sitter metric (µ = 0) and
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then linearise the PDE in the parameter µ. The result, however, can not be presented
in a useful closed form.] For our purposes it suffices to use a general argumentation:
the coordinate u is already suitably compactified and we are only determining the com-
plementary null coordinate w to obtain the Vaidya–de Sitter metric in the Kruskal-type
coordinates (which is smooth on u = 0). The corresponding Robinson–Trautman metric
in these coordinates differs only by the term guu(u, r, ζ, ζ̄) du2 (which is absent in the
Vaidya–de Sitter case in the double null coordinates), and by a different metric coefficient
gζζ̄ = r2f−2P−2

0 , where r(u,w) is finite and smooth when approaching the hypersurface
u = 0. The smoothness is thus not affected by the specific transformation (17) and it
is the same as for the vanishing cosmological constant. This is different from vacuum
spacetimes with m = const 6= 0 studied in [32,33] because in the present case m → 0 near
u = 0, and the influence of Λ on the smoothness becomes negligible.

4 General mass function

The results obtained above can be considerably generalized. Inspired by a similar idea
outlined in [34] we may consider a reparametrisation on the null coordinate u by

ũ = γ(u) , (20)

where γ is an arbitrary continuous strictly monotonous function. We start with the
evolution equation (11) for which the existence and uniqueness of solutions has been
proven, and their general asymptotic behaviour (12) has been demonstrated. Now, by
applying the substitution (20) in equation (11) we obtain

∂f

∂u
= − γ̇

12
f ∆K , (21)

(where the dot denotes a differentiation) which is the evolution equation for the function
f(u, ζ, ζ̄). This is exactly the Robinson–Trautman equation (6) for the mass function

m(u) =
1

γ̇(u)
. (22)

For a given smooth initial data on u0 there thus exists the Robinson–Trautman spacetime
(1), including the cosmological constant Λ, with the mass function (22). To obtain a
positive mass we consider a growing function γ(u). Considering (4) this corresponds to a
universe filled with homogeneous pure radiation

n2(u) =
2

κ

γ̈

γ̇2
. (23)

For consistency the function γ must be convex. An asymptotic behaviour of the function
f as γ(u) → ∞ is easily obtained from the expansion (12) by substituting relation (20).

In particular, the linear mass function (8) discussed above is a special case of (22) for
the transformation (20) of the form (10). More general explicit solutions can be obtained,
e.g., by considering the power function

γ(u) = (−u)−p , p > 0 , (24)

which gives

m(u) =
1

p
(−u)1+p , n2(u) =

2(p + 1)

κp
(−u)p . (25)
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Both functions m and n approach zero as u → 0. Due to the theorems mentioned above,
there exist Robinson–Trautman type II spacetimes in the region u < 0 which approach
the spherically symmetric Vaidya–(anti-)de Sitter metric as u → 0− with the mass func-
tion and pure radiation given by (25). The asymptotic behaviour of such solutions is
determined by expression (5) with

f = 1 +
∞
∑

i=1

Ni
∑

j=0

fi,j (−u)−jp exp
[

−2i(−u)−p
]

, (26)

where fi,j = 0 for j > 0 if i ≤ 14. Interestingly, the function f is now smooth on u = 0
for any power coefficient p, but this still does not guarantee that the extension into flat
region u > 0 is analytic (see [33] for a similar situation).

Another simple explicit choice is

γ(u) = −M−1 ln [sinh(−u)] , M > 0 , (27)

which implies (see also [16])

m(u) = M tanh(−u) , n2(u) =
2M

κ cosh2 u
. (28)

In the region u < 0 the mass function monotonically decreases from M to zero, while the
pure radiation field grows from zero to the value 2M/κ as u → 0. Let us note that in this
case the integrated radiation density is finite on the interval (−∞, 0),

∫ 0
−∞ n2(u) = 2M/κ.

The expansion near u = 0− is

f = 1 +
∞
∑

i=1

Ni
∑

j=0

fi,j (−M−1 ln [sinh(−u)])j sinh2i/M(−u) . (29)

If 2/M is an integer then the function f belongs to the class C(30/M)−1, otherwise it is of
the class C{2/M}.

5 Possible modifications and applications

The Robinson–Trautman pure radiation solutions in the region u0 ≤ u ≤ 0 approach-
ing the Vaidya metric near u = 0, which can be extended (albeit non-smoothly) to flat
Minkowski space in the region u ≥ 0 as in Fig. 1, may be used for construction of various
models of radiative spacetimes. For example, it is natural to further extend the solution
“backwards” into the region u1 < u ≤ u0 by the Robinson–Trautman vacuum solution
with a constant mass m0 = m(u0), such that the function f is continuous on u0. This is
shown in Fig. 2. In such a case the spacetime may describe the process of “evaporation”
of a white hole (with a different character of the singularity at r = 0 when µ ≤ 1/16) with
its mass decreasing from the value m0 to zero. Let us emphasize that the region u < u0

does not represent the Schwarzschild solution because the spacetime is not spherically
symmetric there (f 6= 1). In fact, this is the region where the original Chruściel theorems
on the behaviour of the Robinson–Trautman vacuum spacetimes with constant mass ap-
ply (cf. (11), (12)). However, the spacetime in this region can not be extended up to the
past conformal infinity I− because the metric function f diverges as u → −∞.

In the presence of the cosmological constant Λ one obtains a family of exact spacetimes
that describe evaporation of a white hole in the (anti-)de Sitter universe. In this case the
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u < 0u = 0 u I+u > 0 r =1
r = 0 u = u 0 u = u 1

u = 0u < 0 u = u 0
u I+u > 0 r =1

r = 0 u = u 1
Figure 2: Possible extensions of the Robinson–Trautman radiative spacetimes into the
region u < u0. Pure radiation is present only in the shaded region, everywhere else it is a
vacuum solution. For u ∈ (u1, u0) the mass function is constant, m(u0) = −µu0, but the
spacetime is not spherically symmetric — it is not the Schwarzschild solution (µ > 1/16
on the left, µ ≤ 1/16 on the right).

schematic conformal diagram on Fig. 2 has to be modified in such a way that for all values
of u the conformal infinity I+ becomes timelike (for Λ > 0) or spacelike (for Λ < 0).

Another possible modification is to consider the “advanced” form of the spacetimes
(which describes an ingoing flow) rather than the “retarded” form (corresponding to
outgoing flow) employed above (see, e.g., [13] for more details). This time-reversed form
is obtained formally by a simple substitution u → −v in the metrics and corresponding
functions. The Robinson–Trautman metric thus reads

ds2 = −
(

K + 2r(ln P ),v − 2
m

r
− Λ

3
r2

)

dv2 + 2dvdr + 2
r2

P 2
dζdζ̄ , (30)

where m(v) is an increasing mass function in v ∈ [0, v0]. This is joined with flat Minkowskian
region v < 0, and extended to the region v ≥ v0 by the corresponding Robinson–Trautman–
(anti-)de Sitter black hole vacuum solution, see Fig. 3. It is a non-spherical generalization
of the gravitational collapse of a shell of null dust forming a naked singularity [9,37,38] —
in these works the mass function was taken to be m(v) = µ v (with m(v) = 0 for v ≤ 0,
and m(v) = M = µ v0 for v ≥ v0). The metric function P is now given by P = fP0 where
f is analogous to (13),

f =
∞
∑

i=0

Ni
∑

j=0

fi,j

(

−µ−1 ln v
)j

v2i/µ , (31)

so that the smoothness of the metric on the boundary v = 0 depends on the parameter µ.
For v ∈ (v0, v1) the spacetime is vacuum but not spherically symmetric. The metric
diverges as v → ∞. Our results can thus be interpreted in such a way that — at least
within the Robinson–Trautman family of solutions — the model [9] of collapse to a naked
shell-focusing singularity which is based on the spherically symmetric Vaidya metric is
not stable against perturbations.
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v > 0v = 0 vv < 0 r =1
r = 0 v = v0I�

v = v1
v = 0 v > 0 v = v0

vv < 0 r =1

r = 0
I�
v = v1

Figure 3: Time-reversed version of Fig. 2 represents the “advanced” form of the Robinson–
Trautman spacetimes (30) which describes an ingoing flow of radiation.

6 Concluding remarks

In our contribution we have analyzed exact solutions of the Robinson–Trautman class
which contain homogeneous pure radiation and a cosmological constant. This is a natural
extension of previous works [19–34] on properties of vacuum spacetimes of this family.
We have demonstrated that these solutions exist for any smooth initial data, and that
they approach the spherically symmetric Vaidya–(anti-)de Sitter metric. It generalizes
previous results according to which vacuum Robinson–Trautman spacetimes approach
asymptotically the spherically symmetric Schwarzschild–(anti-)de Sitter metric. We have
investigated extensions of these solutions into Minkowski region, and we have shown that
its order of smoothness is in general only finite. Finally, we suggested some applications
of the results. For example, it follows that the model of gravitational collapse of a shell
of null dust diverges as v → ∞ which indicates that investigations of such process based
on the spherically symmetric Vaidya metric are, in fact, not stable against “non-linear
perturbations”, at least within the Robinson–Trautman family of exact solutions.
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[32] J. Bičák and J. Podolský, Phys. Rev. D 52, 887 (1995).
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