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IntrodutionThe presented work onerns two wide branhes of theoretial investigation of grav-itational waves. Namely, the �rst three hapters onentrate on approximate teh-niques, although, in the seond hapter the relation to exat solutions is mentioned.The �nal part is devoted to asymptoti behaviour in a ertain lass of exat radiativespaetimes.In the �rst hapter the Efroimsky perturbation sheme for onsistent treatmentof gravitational waves and their inuene on the bakground is summarized andompared with lassial Isaason's high-frequeny approah. We demonstrate thatthe Efroimsky method in its present form is not ompatible with the Isaason limitof high-frequeny gravitational waves, and we propose its natural generalization toresolve this drawbak.In the seond hapter a formalism is introdued whih may desribe both stan-dard linearized waves and gravitational waves in Isaason's high-frequeny limit.After emphasizing main di�erenes between the two approximation tehniques wegeneralize the Isaason method to non-vauum spaetimes. Then we present threelarge expliit lasses of solutions for high-frequeny gravitational waves in parti-ular bakgrounds. These involve non-expanding (plane, spherial or hyperbolial),ylindrial, and expanding (spherial) waves propagating in various universes whihmay ontain a osmologial onstant and eletromagneti �eld. Relations of high-frequeny gravitational perturbations of these types to orresponding exat radiativespaetimes are desribed.In the third part we onentrate on solving the wave equation desribing thepropagation of high-frequeny waves whih was derived by Isaason [3℄. Althoughthe omplete Isaason formalism inorporates also the reation of the bakgroundto the wave, we will not onsider this e�et here. Rather, we will expliitly presentspetra of high-frequeny waves whih may propagate in some fundamental osmo-logial models, in partiular the Friedmann{Robertson{Walker spaetimes and inthe anisotropi Kasner universe.The last hapter is devoted to the analysis of a lass of exat type II solutionsof the Robinson{Trautman family whih ontain pure radiation and (possibly) aosmologial onstant. It is shown that these spaetimes exist for any suÆiently s-mooth initial data, and that they approah the spherially symmetri Vaidya{(anti{)de Sitter metri. We also investigate extensions of the metri, and we demonstratethat their order of smoothness is in general only �nite. Some appliations of theresults are outlined.
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Chapter 1The Efroimsky formalism adaptedto high-frequeny perturbationsSome time ago Efroimsky introdued and developed new formalism for a onsistenttreatment of weak gravitational waves [1, 2℄. This interesting mathematial frame-work is remarkable mainly due to the possibility to asribe stress-energy tensor evento low-frequeny gravitational waves inuening the bakground, whih is in ontrastto standard linearization approah where the bakground is kept �xed.On the other hand, in a now lassi paper [3℄ Isaason (inspired by previousworks [4,5℄) presented a perturbation method whih an be used for studies of high-frequeny gravitational waves. Suh waves also inuene the osmologial bak-ground in whih they propagate.In our present work we �rst briey summarize and ompare the two above men-tioned perturbation shemes. In partiular, it is shown that the Efroimsky methodis not onsistent if high-frequeny gravitational waves are onsidered. We propose apossible modi�ation of the Efroimsky formalism whih may resolve this drawbak.1.1 The formalismEfroimsky's approah [1, 2℄ is based on introduing three di�erent smooth, non-degenerate, symmetri metris on a di�erentiable manifold M , namely:1. �� � the \premetri": vauum metri orresponding to initial pure bak-ground without gravitational waves,2. g�� � the \physial metri": full vauum metri whih desribes both thebakground and the waves,3. q�� � the \average metri": non-vauum metri representing the bakgroundplus its perturbations with wavelength greater than L.Next step is to de�ne the Rii and Einstein tensors for an arbitrary metri g asR��(g) � [12g�(g��;� + g��;� � g��;�)℄; � [12g�(g�;� + g��; � g�;�)℄;�+[12gÆ(g�Æ; + g�;Æ � gÆ;�)℄[12gÆ�(g��;� + g��;� � g��;�)℄ (1.1)�[12g�(g�Æ;� + g��;Æ � g�Æ;�)℄[12gÆ�(g�;� + g��; � g�;�)℄ ;G��(g) � R��(g)� 12g��g��R��(g) ;3



4 CHAPTER 1. THE EFROIMSKY FORMALISM ADAPTED TO HF WAVESwhere g�� = (g)�1�� , the same expressions apply to  and q. From the proposals(i)-(iii) it follows that G��() = 0 = G��(g) ; G��(q) 6= 0.Now, the di�erenes between the ovariant omponents of the above metris areintrodued, h�� � g�� � q�� ; (1.2)��� � q�� � �� :It is neessary to speify the semi-Riemann spae: for raising or lowering indies andfor ovariant di�erentiation the averaged non-vauum metri q will be used. Treatingh�� as a perturbation of the metri q�� the Rii tensor (1.1) an be expanded in apowers seriesR��(g) = R(0)�� (q) +R(1)�� (q; h) +R(2)�� (q; h) +R(3)�� (q; h) +O(h4) : (1.3)Analogously,R��() = R(0)�� (q) +R(1)�� (q; (��)) +R(2)�� (q; (��)) +O(�3) : (1.4)It is obvious that R(1)�� (q; (��)) = �R(1)�� (q; �) and R(2)�� (q; (��)) = R(2)�� (q; �). A-ording to assumptions that both g and  are vauum metris the following relationholds 0 = R��(g)�R��()= R(1)�� (q; h) +R(2)�� (q; h) +R(1)�� (q; �) +R(3)�� (q; h) +O(h4) +O(�2) : (1.5)At this point Efroimsky sets three assumptions:Assumption 1. The perturbations h and � are small in the sense that theterms of the orders O(h4) and O(�2) are negligible.Assumption 2. The perturbations � and h2 are of the same order.Assumption 3. The tensor �eld h onsists of modes with short wavelengthswhih do not exeed the given maximal value L.Thus h�� haraterizes measurable gravitational waves whereas ��� is a shift of thebakground geometry from vauum premetri  to nonvauum e�etive average met-ri q due to the presene of gravitational waves. The equation (1.5) is the waveequation for perturbations h on the bakground q =  + �. Using the Brill-Hartleaveraging proedure [5℄ we obtainR(1)�� (q; �) = �hR(2)�� (q; h)i : (1.6)Using (1.4), the e�etive stress-energy tensor of gravitational waves is de�ned asG��(q) = 8�T (gw)�� � R(1)�� (q; �)� 12q��q��R(1)��(q; �) : (1.7)From (1.6) it follows that this tensor fully agrees with that of Isaason [3℄.The main advantage of the above Efroimsky's perturbation method is the pos-sibility to onsistently treat all low-frequeny gravitational waves, and to expliitlyderive e�etive stress-energy tensor (inuening the bakground) in this ase. Itan be extended to non-vauum spaetimes with T�� of ideal uid and/or with apossible osmologial onstant �, see [1, 2℄.



CHAPTER 1. THE EFROIMSKY FORMALISM ADAPTED TO HF WAVES 51.2 Modi�ation to inlude high-frequeny wavesLet us start with observation that it is the nonvauum bakground urved by thepresene of gravitational waves | not the vauum premetri  | whih is the basisof Isaason's non-linear approah [3℄. Therefore, the nonvauum average metriq is onsidered as the bakground on whih high-frequeny gravitational waves hpropagate.We wish to use the Efroimsky formalism in the high-frequeny regime suh thatthe tensor �eld h ontains high-frequeny modes. We assume that they have shortwavelengths �, and a small amplitude h = O("), where " = �=S � 1 is a smallparameter beause � � S, S denoting a typial sale on whih the bakgroundhanges substantially, and f = O("n) if there exists a onstant C > 0 suh thatjf j < C"n as "! 0.Sine we an onsider S = O(1) it follows that O(") = O(�) and �h � h=� =O(1). This results in the orders of magnitude of the terms in the Rii tensorexpansion (1.3) asR(0)�� = O(1); R(1)�� = O("�1); R(2)�� = O(1); R(3)�� = O("): (1.8)To apply the Efroimsky approah in this ase we must onsider the deompositionq = +�, where  is the vauum premetri and � represents (in this ase) substantialshift of the bakground geometry due to the presene of high-frequeny gravitationalwaves h.Of ourse, the geometry shift � does not ontain high-frequeny perturbations.Considering the wave equation (1.5) and using the Brill-Hartle averaging to obtainthe equation (1.6) we get in a onit with the Assumption 1. and Assumption 2.,sine � = O(1). In fat, it disables any onsistent perturbation expansions in thepowers of �.Let us now suggest a modi�ation of the Efroimsky formalism whih will inor-porate also the above ase of a \substantial" hange of the bakground geometry dueto the presene of high-frequeny waves. Instead of the perturbation expansion (1.4)we onsider a formal deomposition of the Rii tensor of the premetri  = q � �,namely 0 = R��() = R��(q) + �R��(q; (��)) ; (1.9)by whih equation the expression �R�� is de�ned. Both terms on the right-handside of (1.9) are of the same order O(1).The question onerning the gauge invariane of �R�� with respet to generalizedgauge transformations has been reently analyzed in detail by Anderson [16℄ inonnetion with possible de�nitions of the wave equation and stress-energy tensorfor gravitational waves. Let us onsider an arbitrary oordinate transformation ofthe type x� = x� + �� ; (1.10)that does not hange the funtional form of the bakground geometry q, i.e.q(x) = q(x) so that (x)! (x) = q(x)� �(x). Performing the above oordinatetransformation (1.10) of the Rii tensor (1.9) we an derive�R��(q(x); (��(x))) = �R��(q(x); (��(x))) : (1.11)



6 CHAPTER 1. THE EFROIMSKY FORMALISM ADAPTED TO HF WAVESA generalized gauge transformation is de�ned in [16℄ as a transformation in whihthe quantity �(x) is substituted for �(x) into the tensor expressions of interest.Obviously, the equation (1.11) expresses a generalized gauge invariane of �R�� .After introduing the above deomposition (1.9) and demonstrating its invarianewe an now present modi�ation and generalization of the Efroimsky formalismexpressed in the following relations,R(1)�� (q; h) +R(2)�� (q; h)��R��(q; (��)) +R(3)�� (q; h) +O(h4) = 0 ; (1.12)�R��(q; (��)) = hR(2)�� (q; h)iL ; (1.13)G��(q) = 8� ~T (gw)�� � ��R��(q; (��)) + 12q��q���R��(q; (��)) : (1.14)In ase when gravitational waves do not have high-frequeny modes it is still possibleto employ the expansion of ��R��(q; (��)) in powers of � and use its dominantterm R(1)�� (q; �) instead. Thus we reover Efroimsky's previous results, f. (1.5),(1.6), (1.7).In general, however, expressing � in terms of h from the equation (1.13) beomesan extremely diÆult task beause it is no longer a linear equation for �. To over-ome this problem we an use the equation (1.13) and substitute for �R�� into theremaining equations (1.12) and (1.14). We obtain the relationsR(1)�� (q; h) +R(2)�� (q; h)� hR(2)�� (q; h)iL +R(3)�� (q; h) +O(h4) = 0 ; (1.15)�G��(q) = hR(2)�� (q; h)iL � 12q��q��hR(2)��(q; h)iL � �8�TBH�� : (1.16)The equation (1.16) is obviously in perfet aordane with the Isaason result [3℄.In the highest order of high-frequeny approximation the equation (1.15) learlyredues to R(1)�� = 0 whih also fully reprodues Isaason's result. Additional termsin (1.15) an be used for study of nonlinear e�ets on the wave propagation.Finally the equations (1.13) and (1.11) guarantee the gauge invariane of thestress-energy tensor TBH�� de�ned in (1.16) (in the highest order). Proof of thisproperty was presented already in the lassi work [3℄, using however muh moreompliated method.



Chapter 2
Some high-frequeny gravitationalwaves related to exat radiativespaetimes
In lassi work [3℄ Isaason presented a perturbation method whih enables one tostudy properties of high-frequeny gravitational waves, together with their inu-ene on the osmologial bakground in whih they propagate. It is this non-linear\bak-reation" e�et on urvature of the bakground spaetime whih distinguishesthe high-frequeny approximation sheme from other perturbation methods suh asthe standard Einstein's linearization of gravitational �eld in at spae [17, 18℄ ormultipole expansions [19℄ that were developed to desribe radiation from realistiastrophysial soures.On the other hand, many exat solutions of Einstein's equations are known whihrepresent gravitational radiation. Among the most important lasses are planarpp -waves [22, 23℄ whih belong to a large family of non-expanding radiative spae-times [24,25℄, ylindrial Einstein-Rosen waves [26℄, expanding \spherial" waves ofthe Robinson-Trautman type [27,28℄, spaetimes with boost-rotation symmetry rep-resenting radiation generated by uniformly aelerated soures [29{31℄, osmologialmodels of the Gowdy type [32℄.However, there are only several works in whih relation between exat grav-itational waves and those obtained by perturbations of non-at bakgrounds hasbeen expliitly investigated and lari�ed, see e.g. [12, 14, 38℄. The purpose of ourontribution is to help to �ll this \gap".We �rst briey summarize and generalize the Isaason approah [3℄ to admitnon-vauum bakgrounds, the osmologial onstant � in partiular. Modi�ation ofIsaason's formalism allows us to inorporate also standard linearized gravitationalwaves into the ommon formalism. 7



8 CHAPTER 2. HF WAVES AND EXACT SPACETIMES2.1 High-frequeny approximation versusstandard linearizationLet us assume a formal deomposition of the vauum spaetime metri g�� into thebakground metri �� and its perturbation h�� ;g�� = �� + "h�� ; (2.1)where, in a suitable oordinate system, �� = O(1) and h�� = O(�). The two dis-tint non-negative dimensionless parameters " and � have the following meaning: "is the usual amplitude parameter of weak gravitational perturbations whereas thefrequeny parameter � denotes the possible high-frequeny harater of radiation de-sribed by h�� . The parameter � = �=L represents the ratio of a typial wavelength� of gravitational waves and the sale L on whih the bakground urvature hangessigni�antly. Sine L an be onsidered to have a �nite value of order unity, we maywrite O(�) = O(�).To derive the dynamial �eld equations we start with the order-of-magnitudeestimates whih indiate how fast the metri omponents vary. Symbolially, thederivatives are of the order � � =L, �h � h=�. Next, we expand the Rii tensorin powers of h, R��(g) = R(0)�� + "R(1)�� + "2R(2)�� + : : : ; (2.2)where R(0)�� () � R��() ;R(1)�� (; h) � 12�� (h��;�� + h��;�� � h�� ;�� � h��;�� ) ; (2.3)R(2)�� (; h) � 12h12h�� ;�h�� ;� + h�� (h��;�� + h��;�� � h��;���h��;��) + h� � ;� (h��;� � h��;� )� �h�� ;� � 12h;�� (h��;� + h��;� � h��;� ) i :The semiolons denote ovariant di�erentiation with respet to the bakground met-ri ��, whih is also used to raise or lower all indies. The orders of the terms (2.3)are R(0)�� = O(1); "R(1)�� = O(��1"); "2R(2)�� = O("2); "3R(3)�� = O(�"3): (2.4)Two limiting ases thus arise naturally. For the standard linearization (" � 1,� = 1) the dominant term ofR��(g) is R(0)�� . Its �rst orretion representing linearized(purely) gravitational waves is governed byR(1)�� (; h) = 0 ; (2.5)whih is a dynamial equation for perturbations h�� on the �xed bakground ��.The next term R(2)�� (; h) an then be used to de�ne energy-momentum tensor ofthese gravitational waves, but the bakground metri is not assumed to be inuenedby it.In the high-frequeny approximation (�� 1, " = 1) the dominant term is R(1)�� =O(��1) whih gives the wave equation (2.5). The two terms of the order O(1),



CHAPTER 2. HF WAVES AND EXACT SPACETIMES 9namely R(0)�� and R(2)�� , are both used to give the Einstein equation for the bakgroundnon-vauum metri, whih represents the essential inuene of the high-frequenygravitational waves on the bakground. Of ourse, to obtain a onsistent solution,one has to use both the wave equation and the Einstein equation for the bakgroundsimultaneously.2.1.1 Linear approximationIn analogy with the well-known theory of massless spin-2 �elds in at spae [19℄ wewish to impose two TT gauge onditions,h�� ;� = 0 ; (2.6)h�� = 0 : (2.7)In this gauge we arrive at the following wave equation}h�� � h�� ;� ;� � 2R(0)���� h�� � R(0)�� h�� � R(0)�� h�� = 0 ; (2.8)where the operator } is the generalization of at-spae d'Alembertian.In ase of standard linearized waves (� = 1) there is an inonsisteny between(2.8) and (2.6), exept for bakgrounds with a ovariantly onstant Rii tensor (e.g.,for the Einstein spaes). On the other hand, in the high-frequeny limit (" = 1),the inonsisteny is negligible. Moreover, for all bakground metris of onstanturvature the equations are fully onsistent.2.1.2 Generalization to non-vauum spaetimesBefore onsidering the seond-order terms we now extend the formalism to be appli-able to a larger lass of spaetimes with (possibly) non-vanishing energy-momentumtensor T�� . Namely, g�� satis�es Einstein's equationsR��(g) = 8� ~T��(g; ') : (2.9)Here ~T�� � T�� � 12g��T ��, suh that T��(g; ') depends on non-gravitational �elds' and on the full metri g�� but it does not ontain the derivatives of g��. Notethat this admits as partiular ases a presene of eletromagneti �eld, and alsoEinstein spaes when ~T�� = 18� �g��. We expand both sides of the equation (2.9)as in (2.2). For ordinary linearization we thus get the equations R(n)�� = 8� ~T (n)�� ineah order n = 0; 1; 2; : : :. For the high-frequeny approximation we obtain, in theleading order, the equation (2.5) whih is idential with the wave equation in thevauum ase. The seond-order ontributions, that are O(1), represent an inueneof the high-frequeny gravitational waves and matter �elds on the bakground, andan be rewritten in the form of Einstein's equation for the bakground asG(0)�� ()� 8� T (0)�� (; ') = �[R(2)�� (; h)� 12��R(2)(; h)℄ � 8� TGW�� : (2.10)This de�nes the e�etive energy-momentum tensor TGW�� of high-frequeny gravita-tional waves.



10 CHAPTER 2. HF WAVES AND EXACT SPACETIMES2.1.3 The WKB approximationIn the following we shall restrit ourselves to the Isaason approximation (" = 1,�� 1), i.e. on study of high-frequeny gravitational waves on urved bakgrounds.Inspired by the plane-wave solution in at spae, the form h�� = A e�� exp(i�) ofthe solution is assumed. The amplitude A = O(�) is a slowly hanging real funtionof position, the phase � is a real funtion with a large �rst derivative but no largerderivatives beyond, and e�� is a normalized polarisation tensor �eld. Substitutingthis into the onditions (2.6), (2.7), and the wave equation (2.8) we obtain, in thetwo highest orders whih are gauge invariant,k�k� = 0 ; k�e�� = 0 ; k�e��;� = 0 ;e��e�� = 1 ; ��e�� = 0 ; �A2k��;� = 0 : (2.11)Moreover, using the WKB approximation of TGW�� and the Brill-Hartle averagingproedure [5℄ (whih guarantees the gauge invariane) Isaason obtained the energy-momentum tensor [3℄ THF�� = 164�A2k�k� : (2.12)The energy-momentum tensor of high-frequeny waves thus has the form of pureradiation.2.2 Examples of high-frequenygravitational wavesNow we present some expliit lasses of high-frequeny gravitational waves. Theseare obtained by the above desribed WKB approximation method onsidering spe-i� families of bakground spaetimes with a privileged geometry.2.2.1 Non-expanding wavesAs the bakground we �rst onsider the Kundt lass [24,33℄ of non-expanding, twist-free spaetimes in the form [40℄ds2 = F du2 � 2 Q2P 2 du dv + 1P 2 (dx2 + dy2) ; (2.13)with P = 1 + �2 (x2 + y2) ;Q = h1 + �2 (x2 + y2)i e+ C1 x + C2 y ; (2.14)F = D Q2P 2 v2 � (Q2);uP 2 v � QP H ;where �, �, and e are onstants (without loss of generality e = 0 or e = 1), C1, C2and D are arbitrary funtions of the retarded time u, and H(x; y; u) is an arbitrary



CHAPTER 2. HF WAVES AND EXACT SPACETIMES 11funtion of the spatial oordinates x, y, and of u. In partiular, these are Petrovtype N when � = �� = 16� and D = �2�e+ C21 + C22 .We onsider the phase of high-frequeny gravitational waves given by � = �(u),and we seek solution in the WKB form, namelyh�� = A e�� exp �i�(u)� ; (2.15)where the amplitude A and polarization tensor e�� are funtions of the oordinatesfu; v; x; yg. Applying now the equations (2.11) we obtainA = A(u; x; y) ; (2.16)The fat that the amplitude A is independent of the oordinate v expresses non-expanding harater of the waves. The polarisation tensor is analogous to thoseused in the standard theory of linearized waves in at spae.Using the Einstein tensor for the metri (2.13) with the osmologial term inequations (2.10) and (2.12), we determine the reation of the bakground on thepresene of the above high-frequeny gravitational perturbations, namelyQP �P 2� �2�x2 + �2�y2�+ 23 ��H(u; x; y) = 14A2(u; x; y) _�2 : (2.17)These approximate solutions an obviously be ompared to spei� exat radiativevauum solutions whih are given by H solving the �eld equation (2.17) with avanishing right-hand side (when A = 0, i.e. high-frequeny perturbation waves areabsent).The above waves are non-expanding with the wave-fronts u = onst: being two-dimensional spaes of onstant urvature given by � = 16� , f. (2.13).Another interesting sublass of the Kundt spaetimes of the form (2.13), (2.14)are expliit Petrov type II (or more speial) metris given by � = �, e = 1, C = 0and D = 2(�� �), namelyds2 = h 2(�� �) v2 �H idu2 � 2 du dv + 1P 2 (dx2 + dy2) : (2.18)For H = 0 these are eletrovauum solutions with the geometry of a diret produtof two 2-spaes of onstant urvature, in partiular the Bertotti-Robinson, (anti-)Nariai or Pleba�nski-Hayan spaes [44{47℄. Considering again (2.15) we obtainthe results (2.16) as in the previous ase. However, the reation of high-frequenywaves on the bakground is now di�erent. It is determined by the equations (2.10)and (2.12) with the energy-momentum tensor onsisting of a osmologial term plusthat of a uniform non-null eletromagneti �eld desribed by the omplex self-dualMaxwell tensor F �� = 4�1(m[� �m�℄�k[�l�℄), where �1 =q�� �2 ei ,  = onst:, andm = P ��� , k = �v, l = 12F �v + �u form the null tetrad. Straightforward alulationgives P 2� �2�x2 + �2�y2� H = 14A2(u; x; y) _�2 : (2.19)Sine the bakground spaetime is not vauum but it ontains eletromagneti�eld, we have to analyze the perturbation of the omplete Einstein-Maxwell system,and its onsisteny.



12 CHAPTER 2. HF WAVES AND EXACT SPACETIMESThe Einstein equations in the two highest orders (2.5) and (2.10) have alreadybeen solved. The Maxwell equations are also satis�ed in the high-frequeny limit,namely F �� j� = O(�), where j denotes the ovariant derivative with respet to thefull metri g�� , beauseF �� j� = F �� ;� � 12h��h��;�F �� +O(�2) ; (2.20)and onsidering that F �� ;� = 0 (an eletrovauum bakground). In addition, the�eld equations are valid also in the next order O(�) for the new eletromagneti �eldF�� = (1 + 14h��h��)F �� ; (2.21)sine using (2.20) we obtain F�� j� = O(�2). Both the Einstein and Maxwell equa-tions are then satis�ed in the two highest perturbative orders. Interestingly, theseresults hold for high-frequeny perturbations of any \seed" eletrovauum bak-ground spaetimes.2.2.2 Cylindrial wavesNext we onsider the lass of ylindrial Einstein-Rosen waves using the followingmetri in double null oordinates,ds2 = e2�2 (�dt2 + d�2) + e2 dz2 + �2e�2 d'2 : (2.22)These are exat radiative spaetimes of the Petrov type I (see, e.g. [26℄, [33℄, orequations (2.24)-(2.26) below).We assume again � = �(u) implying the wave vetor k� = ( _�; 0; 0; 0), i.e. theWKB perturbation of the form (2.15). By applying the onditions (2.11) we obtainA = U(u)pv � u ;e+�� = 1p2 e�2 0BB� 0 0 0 00 0 0 00 0 12(v � u)2 00 0 0 �e4 1CCA ; (2.23)
e��� = 12 (v � u)0BB� 0 0 0 00 0 0 00 0 0 10 0 1 0 1CCA ;notie that v � u = p2 � > 0.The bak-reation on the bakground (ontained in a spei� modi�ation of themetri funtions  and  ) is given by the following equations, f. (2.12),(v � u) 2;u + ;u = � 116(v � u)A2 _�2 ; (2.24)(v � u) 2;v � ;v = 0 ; (2.25) ;uv � 12(v � u)( ;v �  ;u) = 0 : (2.26)



CHAPTER 2. HF WAVES AND EXACT SPACETIMES 13This set of equations is onsistent for the amplitude satisfying (2.23).The above desribed perturbations depend on the null \retarded" oordinate uso that the high-frequeny gravitational waves are outgoing (� is growing with t, ona �xed u). However, sine the bakground metri (2.22) is invariant with respet tointerhanging u with v, it is straightforward to onsider also ingoing perturbationsby assuming the phase to depend on the \advaned oordinate" v. This results inan interesting possibility to introdue ingoing high-frequeny gravitational ylindrialwaves into the bakground of outgoing Einstein-Rosen waves or vie versa.Moreover, all the above results an further be extended to a lass of general-ized Einstein-Rosen (diagonal) metris [34, 49℄ whih desribe G2 inhomogeneousosmologial models,ds2 = e2�2 (�dt2 + d�2) + e2 dz2 + t2e�2 d'2 : (2.27)If the three-dimensional spaelike hypersurfaes are ompat, the orrespondingmodel is the famous Gowdy universe with the topology of three-torus [32, 34℄. Theonly modi�ation of the above results (in the double null oordinates) onsists ofreplaing the fator (v � u) with (v + u), and eah derivative with respet to uhanging sign (e.g. ;u ! �;u or  ;uv ! � ;uv).2.2.3 Expanding wavesFinally, we assume that the bakground is an expanding Robinson-Trautman spae-time. The metri (generally of the Petrov type II ) in the standard oordinates hasthe form, see e.g. [27, 28, 33, 43℄,ds2 = ��K � 2r(lnP);u � 2mr � �3 r2� du2 � 2dudr + r2P2 (d�2 + d�2) ; (2.28)where K = �(lnP), � � P2( �2��2 + �2��2 ), and m(u). When P(u; �; �) satis�es theRobinson-Trautman equation �K + 12m (lnP);u � 4m;u = 0, the metri (2.28) isan exat vauum solution of the Einstein equations.In view of the existene of privileged ongruene of null geodesis generated by�r we introdue the phase � = �(u). Applying the equations (2.11) we obtainA = 1r U(u; �; �) ; (2.29)and the two polarization modes are easily inferred from (2.28).The reation of the waves on bakground is determined by the equations (2.10)and (2.12) with T (0)�� = � 18����. From the only nontrivial omponent we immedi-ately obtain the following equation��m�u + 3m (lnP);u + 14�K = 116U2 _�2 ; (2.30)where m(u), �(u), whereas the remaining funtions depend on oordinates fu; �; �g.Notie that this is independent of the osmologial onstant �.The expressions (2.29),(2.30) agree with results obtained by MaCallum andTaub [7℄ or reently by Hogan and Futamase [14℄ who used Burnett's tehnique [11℄.



14 CHAPTER 2. HF WAVES AND EXACT SPACETIMESOur results, whih were derived by a straightforward approah, are slightly moregeneral beause they are not restrited to a onstant frequeny _� = onst. Partiularsubase of the Vaidya metri has already been studied before by Isaason [3℄ andelsewhere [21℄.2.3 General onsiderationsFor onstrution of high-frequeny gravitational perturbations we have employed thefat that all these spaetimes admit a non-twisting ongruene of null geodesis. Theorresponding tangent vetors k� are hypersurfae orthogonal so that there existsa phase funtion � whih satis�es �;� = k�. The last equation in (2.11) an be putinto the form ddl(lnA) = ��, where l is the aÆne parameter, and � = 12k�;� is theexpansion of the null ongruene. This determines the behaviour of the amplitudeA in the above spaetimes (2.16), (2.23), (2.29). The remaining equations (2.11)enables one to dedue the polarization tensors.It has been also ruial that all the lasses of spaetimes disussed admit exatsolutions with the energy-momentum tensor of pure radiation, i.e., G�� � 8� T�� =18 A2k�k�, where T�� is either onstant (representing the osmologial onstant) orit desribes an eletromagneti �eld. The relation between high-frequeny pertur-bations and exat radiative solutions of Einstein's equations in eah lass is thusnatural. In partiular, it is possible to determine expliitly the reation of the bak-ground on the presene of high-frequeny gravitational waves.



Chapter 3Spetra of high-frequeny wavesIn this part we will onentrate on solving the wave equation desribing the prop-agation of high-frequeny waves whih was derived by Isaason [3℄. Although theomplete Isaason formalism inorporates also the reation of the bakground tothe wave, we will not onsider this e�et here. Rather, we will expliitly presentspetra of high-frequeny waves whih may propagate in some fundamental osmo-logial models, in partiular the Friedmann{Robertson{Walker spaetimes and inthe anisotropi Kasner universe.3.1 The Isaason formalismIsaason's formalism [3℄ is based on the deomposition of the spaetime metri g��into the bakground metri �� and its perturbation h�� ;g�� = �� + h�� ; (3.1)where, in a suitable oordinate system, �� = O(1) and h�� = O(�). By de�nition,f = O(�n) if there exists a onstant C > 0 suh that jf j < C�n as � ! 0. Thequantity f need not neessarily be proportional to �n, it an be even smaller thanC�n for � ! 0. Therefore, the assumption h = O(�) does not automatially implythat h � �. The spetrum of possible high-frequeny waves is thus not a priorirestrited, it is only required that their amplitudes fall to zero at least linearlywith �, i.e. jh(�)j < C�.The non-negative dimensionless parameter � is the ratio of a typial wavelength� of gravitational waves and the sale L on whih the bakground urvature hangessigni�antly. Isaason's high-frequeny approximation thus arises when �� L, i.e.�� 1. Sine L an be onsidered to have a �nite value of order unity, we may writeO(�) = O(�).To derive the dynamial �eld equations we expand the Rii tensor in powersof h, R��(g) = R(0)�� +R(1)�� +R(2)�� + : : : : (3.2)Using the results from setion 2.1 we obtain (in the high-frequeny approximation(�� 1)) that the dominant term is R(1)�� = O(��1) whih gives the wave equationR(1)�� (; h) = 0, i.e. �� (h��;�� + h��;�� � h�� ;�� � h��;�� ) = 0 ; (3.3)15



16 CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVESfor the perturbations h�� on the urved bakground �� (onsidering the ase of avauum full metri g��). The two terms of the order O(1), namely R(0)�� and R(2)�� ,an be used to give the equation for the bakground (non-vauum) metri, whihrepresents the essential inuene of the high-frequeny gravitational waves on thebakground.Of ourse, to obtain a onsistent solution, one has to use both the wave equationand the equation for the bakground simultaneously. We analyzed this problem ex-pliitly in hapter 2 for spaetimes with preferred null diretions, after simpli�ationof the equations by the WKB approximation, see [15℄. However, in this hapter wewish to onentrate on the equation (3.3). Our aim is to obtain spetra of high-frequeny gravitational radiation propagating in an arbitrary diretion in variousosmologial models.Now we impose the gauge onditions (2.6), (2.7). In this gauge the equation(3.3) redues to the following wave equation,}h�� � h�� ;� ;� � 2R(0)���� h�� � R(0)�� h�� � R(0)�� h�� = 0 ; (3.4)where the operator } is the generalization of at-spae d'Alembertian.The gauge onditions (2.6),(2.7) still do not ompletely exhaust the gauge free-dom, and we an thus demand the following additional ondition,h�0 = 0 ; (3.5)to simplify the alulations.3.2 High-frequeny waves in osmologial modelsNow, we will investigate the solutions of the wave equation (3.4), subjet to the gaugeonditions (2.6) and (2.7), in some osmologially relevant models with high degreeof symmetry, namely the Friedmann{Robertson{Walker (FRW), anti{de Sitter, andanisotropi Kasner universes. As we shall see, the full spetrum of gravitationalwaves whih propagate in an arbitrary diretion is obtained expliitly for spaetimeswith isotropi time slies (FRW models with K = 0; 1;�1) or with a spatial metrithat is transformable to isotropi at eah instant of time (Kasner), in ontrast toanti{de Sitter universe whih is globally only onformally isotropi in the metriform used below.3.2.1 FRW models with spatial urvature K = 0First, we will study spatially homogeneous and isotropi FRW spaetimes with avanishing spatial urvature, and with the stress-energy tensor of an ideal uid. Asshown in [15℄, this tensor does not ontain a derivative of the metri tensor, so that itsatis�es the onditions of the Isaason approximation generalized to the non-vauumase, so that equations (2.6), (2.7), (3.4) are still valid.In this speial ase of FRW spaetimes it is possible to write the metri usingonformal time � in the usual form [19℄,ds2 = a2(�) ��d�2 + dx2 + dy2 + dz2� : (3.6)



CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVES 17Next, we insert the ovariant derivatives and the orresponding urvature tensor ofthis metri into the gauge onditions (2.6), (2.7) and in the wave equations (3.4).Using the additional freedom (3.5), the gauge ondition h�� = 0 is simpli�ed to�h � hii = 0 (onsidering latin indies to take the values i; j; k = 1; 2; 3 and usingthe (at-spae) summation onvention over the same indies, but only when one ofthem is an upper and the other is a lower index), while the ondition h�� ;� = 0implies hii = 0 (for � = 0) ;hij;i = 0 (for � = j) : (3.7)The only non-trivial omponents of the wave equation (3.4) an thus be put intothe following form, a2(�hij;00 + hij;kk) + 2a _ahij;0 � 4 _a2hij = 0 ; (3.8)and _a = �a�� . The omponents (0; 0) and (0; i) of the wave equation are ful�lledidentially due to the gauge onditions (3.7). Using (3.7) to also modify the dy-namial equations (3.8), it is possible to transform equations for all the six non-zeroomponents of the perturbation tensor into the ommon form,a2 ���2f��2 + �2f�x2 + �2f�y2 + �2f�z2�+ 2a _a�f�� � 4 _a2f = 0 ; (3.9)where f(�; x; y; z) represents an arbitrary omponent hij. It is interesting to notiethat the �rst gauge ondition (3.7) restrits the number of independent omponentsof the perturbation tensor to �ve whih is in agreement with the number of inde-pendent omponents of a spin-2 �eld. Wave equation (3.9) an further be rewrittenby introduing the ovariant d'Alembertian operator,�f � f ;�;� = a�2���2f��2 + �2f�x2 + �2f�y2 + �2f�z2�� 2a�3 _a�f�� ;into the form �f + 4a2 �fa�� = 0 : (3.10)By applying the Fourier transform in the oordinates ~x = (x; y; z),~f � F [f ℄(�;~k) = Z f(�; ~x) exp (i~k � ~x) d~x ;the equation (3.10) is onverted to the form�� �2��2 + j~kj2�� 2 _aa ��� + 4 _a2a2� ~f = 0 : (3.11)An expliit solution of this seond{order ordinary di�erential equation depends onthe spei� expansion funtion a(�) whih determines the bakground spaetime onwhih the waves propagate. The funtion ~f(�;~k), whih is the solution of (3.11),represents a time dependent spetrum of high-frequeny gravitational perturbations.Next, we will present the expliit solution for the partiular ase of the de Sitterspaetime.



18 CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVESGravitational waves in the de Sitter spaetimeThe de Sitter metri, whih is the maximally symmetri spaetime with onstantpositive urvature R = 4� when � > 0 is a osmologial onstant, has in standardonformally at oordinates the form (see e.g. [33℄)ds2 = �2�2 (�d�2 + dx2 + dy2 + dz2) ; (3.12)where � = p3=�. Therefore, in this ase the expansion funtion is simply a(�) =�=�.Note, that the de Sitter manifold an be viewed as a four-dimensional hyperboloidembedded into �ve-dimensional at spaetime. Depending on the hoie of a spei�spaelike setion through this hyperboloid, one obtains all ases of FRW modelsof onstant spatial urvature K = 0;+1 or �1, see [37, 50℄. The metri (3.12)orresponds to the ase K = 0.Inserting this speial form of the funtion a(�) into equation (3.11) we obtain�2 ~f��2 + 2� � ~f�� + � 4�2 + j~kj2� ~f = 0 : (3.13)A general solution to this di�erential equation an be expressed using ylindriBessel funtions of the �rst kind J� and seond kind Y�, with an imaginary index,namely ~f = 1p� hA(~k)Jip152 (j~kj�) +B(~k)Yip152 (j~kj�)i ; (3.14)where A;B are arbitrary funtions. This expression is in a omplete agreementwith the result obtained previously using synhronous oordinates for the de Sittermetri [51℄. Note that synhronous oordinates over only half (� > 0) of the deSitter hyperboloid and therefore are not geodetially omplete [50℄. An inverseFourier transform of equation (3.14) in the ase of a monohromati wave, A(~k) =A0Æ(~k � ~k0), B = B0Æ(~k � ~k0) leads to the following resultf = (2�)�3 1p� hA0Jip152 (j~k0j�) +B0Yip152 (j~k0j�)i ei ~k0~x ; (3.15)whih represents a time evolution of the spetrum of high-frequeny gravitationalwaves in the de Sitter \inationary" universe. The typial plot for j~k0j = 1 of thebasi modes is given in �gure 3.1.3.2.2 Gravitational waves in the anti{de Sitter spaetimeAnti-de Sitter spaetime is a maximally symmetri spaetime with a onstant neg-ative urvature R=4�< 0. It may be viewed as a four-dimensional hyperboloidembedded into �ve-dimensional at spaetime with metri signature ({,{,+,+,+),having thus two time axes [52℄. We will use the onformally at form of metrids2 = �2x2 ��d�2 + dx2 + dy2 + dz2� ; (3.16)
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(a) (b)Figure 3.1: The �gure (a) is a plot of the funtion Ren 1p� Jip152 (�)o and the �gure(b) of the funtion Ren 1p� Yip152 (�)o.where � = p�3=�. These oordinates over the whole manifold. It is easilyseen that using the formal transformation x̂ = i�, �̂ = ix, �̂ = i� (i being theimaginary unit), and omitting the hats, we obtain the metri (3.12) of de Sitterspaetime. This o�ers the possibility to adopt the results obtained for the de Sitterspaetime, and to arrive at the spetrum of high-frequeny perturbations for theanti{de Sitter spaetime. Unfortunately this would mean setting the omponentsh1� of perturbation tensor to zero due to gauge ondition h0� = 0 applied in newoordinates. The general form of this ondition is h��v� = 0, where v� is the four{veloity of an observer. Therefore, the ondition h1� = 0 implies that the observermoves faster than the speed of light in the diretion of ��x (in the oordinates ofmetri (3.16)). Moreover, the new oordinate x̂ is purely imaginary and it wouldthus be impossible to use the Fourier transform.Hene we will attempt to solve the problem diretly using the metri (3.16) andassuming h�0 = 0. The gauge ondition h�� = 0 simpli�es to the form (using thesummation onvention introdued in setion 3.2.1)hii = 0 :Non-trivial omponents of the gauge ondition h�� ;� are the followingx hij;i � 2h1j = 0 :Using the gauge onditions to simplify the dynamial equations (3.4) for perturba-tions h�� we obtain the following systemh11 = 0 ; h22 = �h33 ; h21;0 = 0 ; h31;0 = 0 ;h21;2 + h31;3 = 0 ;x2 h21;kk + 4h21 = 0 ;



20 CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVESx2 h31;kk + 4h31 = 0 ; (3.17)x2(�h22;00 + h22;kk) + 2xh22;1 � 4xh21;2 + 4h22 = 0 ;x2(�h23;00 + h23;kk) + 2xh23;1 � 2x(h31;2 + h21;3) + 4h23 = 0 :From equations (3.17) it is obvious that there are only two dynamial degrees offreedom orresponding to h22 = �h33 and h23. The residual non-trivial omponentsh21 and h31 are independent of onformal time and therefore play the role of (sup-plementary) boundary onditions. The most natural hoie is to put h21 = 0 = h31.The solution of the set of equations (3.17) an be interpreted as a wave propagat-ing in the diretion ��x whih is purely transversal and has two polarizations. Inontradistintion to the de Sitter ase, we do not obtain the same results for pertur-bations propagating in a general diretion di�erent from ��x . This is a onsequeneof \anisotropy" of the anti{de Sitter spaetime in these oordinates.Using the above hoie of the boundary onditions we an write the followinguni�ed form of equation for both degrees of freedom h22 = �h33 and h23,��2f��2 + �2f�x2 + �2f�y2 + �2f�z2 + 2x �f�x + 4x2f = 0 ;where f stands for h22 or h23. Performing the following separation of variablesf(�; x; y; z) = g(x) exp i(�k0� + k2y + k3z), we obtain�2g�x2 + 2x �g�x + � 4x2 + k21� g = 0 ; (3.18)where k21 = k20 � k22 � k23. The equation (3.18) is formally equivalent to (3.13) (whenreplaing x with �, and k21 with j~kj2). Therefore, the solution is a monohromatihigh-frequeny gravitational wavef = 1px hAJip152 (k1x) +B Yip152 (k1x)i exp i(�k0� + k2y + k3z) ;whih is analogous to the wave (3.15) in the de Sitter spaetime.Let us �nally mention an interesting onnetion of the above result to exatgravitational waves in the anti{de Sitter spaetime desribed by the Defrise solution[33, 53℄. The metri was investigated in [54℄ using the formds2 = �2(d�2 + sinh2 �d�2) + 8�2(osh � + sinh � os�)2dudv16�2(osh � + sinh � os�)4d(u)du2 ; (3.19)where � 2 [0;1), � 2 [0; 2�), u,v2 (�1;+1). The wavefronts u = onst: aretwo-dimensional hyperboli surfaes with onstant negative urvature �� parame-terized by � and �. The solution (3.19) an be interpreted also in the perturbativesense. The bakground is represented by the metri (3.19) with d(u) = 0, and theomponent uu of the metri proportional to d(u) orresponds to high-frequenyperturbations with small but rapidly varying funtion d(u)=O(�). The gauge on-ditions (2.6),(2.7) are ful�lled identially. The wave equation (3.4) is satis�ed tothe order O(�), sine eah non-trivial omponent has the form d(u)f(�; �). This isa satisfatory result implying that the exat solution (3.19) is onsistent with thehigh-frequeny Isaason approximation.



CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVES 213.2.3 FRW models with spatial urvatures K = �1FRW metris with a positive or negative onstant urvature of spatial setions maybe written in the standard form [55℄ds2 = a2(�)(�d�2 + 3ijdxidxj) ; (3.20)where the tensor 3ij is the metri of homogeneous and isotropi three-spae ofuniform spatial urvature K, and the usual hoie of oordinates leads to3ijdxidxj = d�2 + f 2(�)[d�2 + sin2 � d�2℄ ; (3.21)with f = sin� for K = 1, and f = sinh� for K = �1. Let �� and ; denote theFRW metri and the orresponding ovariant derivative, respetively. The ovariantderivative with respet to 3ij will be denoted by j .To look for the solution of the wave equation (3.4) in the way similar to theat-spae FRW K = 0 models is ompliated. Therefore, we onsider a somewhatsimpli�ed form of the metri perturbations whih is widely used in literature (see,e.g. [56℄). The onformal time and spatial dependene of the perturbations areseparated in the following way h�� = f(�)Q�� ; (3.22)where Q�� satis�es Q�0 = 0, in aordane with the additional gauge (3.5). Thespatial omponents of Qij form a traeless, divergeneless tensor (thus ensuring thath�� satis�es the gauge onditions (2.6),(2.7)) whih is a solution ofQijjljl + k2Qij = 0 : (3.23)Suh Qij are alled a tensor harmonis, and the equation (3.23) is a generalizedHelmholtz equation with k representing the wave number whih sets the sale of theperturbations relative to the bakground oordinates. The expansion of perturba-tions into tensor harmonis was investigated from the mathematial point of viewe.g. in [57℄.To simplify the form of the urvature terms in the wave equation (3.4) one anuse the well-known deomposition of the Riemann tensor [33℄R���� = C���� + �[�R�℄� � �[�R�℄� � 13�[��℄�R ; (3.24)where C���� is the traeless Weyl tensor. Using (3.24) and the fat that the spatialpart Rij of the Rii tensor is a multiple of ij, we derive thatR����h�� = 12 �R�� +R�� � 13R� h�� (3.25)(no summation over �; � here). From the FRW metri (3.20) we obtainRij = a�4(�aa+ _a2 + 2Ka2)ij and R = 6a�3(�a+Ka) ;where R = ��R�� . Using the form (3.22) of the perturbation tensor h�� we derivethe following form of the urvature terms in the wave equation (3.4),2R����h�� +R��h�� +R��h�� = (2a�3�a+ 4a�4 _a2 + 6Ka�2)fQ�� : (3.26)



22 CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVESFor the ovariant d'Alembertian of the perturbation tensor we an writeh�� ;� ;� = f ;�;�Q�� + 2 _fQ��;000 + f(Q��;0000 +Q��;iiii) ; (3.27)where f ;�;� = �a�2 �f � 2 _aa�3 _f ; Q��;0 = �2 _aa�1Q�� ;Q��;00 = (6_a2a�2 � 2�aa�1)Q�� ; Q��;ii = Q��jii + 2_a2a�4iiQ�� :Combining equations (3.26), (3.27) and using the Helmholtz equation (3.23), thewave equation (3.4) is redued to the seond order ordinary di�erential equation forthe amplitude of the perturbations depending on the onformal time,�� �2��2 + k2�� 2 _aa ��� + 4 _a2a2 + 6K� f = 0 : (3.28)Notie that when K = 0, the equation (3.28) exatly redues to (3.11), and weobserve that in this ase the parameter k de�ned in the Helmholtz equation (3.23)to the norm of the wavevetor ~k.Example: waves in the (anti{) de Sitter spaetimeNow we will solve the equation (3.28) expliitly in three speial ases of non-atFRW spaetimes with the osmologial term.We start with the de Sitter spaetime whose metri ould be given in the FRWform with any value of spatial urvature K, see the beginning of setion 3.2.1 and[50℄. The value K = 1 for metri in the form (3.20) orresponds to spatial setionsof the de Sitter hyperboloid being spheres S3. The expansion funtion then takesthe form a(�) = �sin � ; (3.29)and the oordinates (3.21) over the whole hyperboloid. Solution of the equation(3.28) with the expansion funtion (3.29) takes the formf(�) = ei�=4psin � "C1 Pl p3 + k2 � 12 ; ip152 ; os �! (3.30)+C2Ql p3 + k2 � 12 ; ip152 ; os �!# ;where Pl(u; v; z), resp. Ql(u; v; z) are Legendre funtions of the �rst, or of the seondkind, respetively, whih satisfy the di�erential equation(1� z2) y00 � 2z y0 + �v(v + 1)� u21� z2� y = 0 ; (3.31)for y(z). The points z = 1;�1;1 are singularities of this equation (exept in speialases) and ordinary branh points of the Legendre funtions in the omplex domain.When we take the branh uts to be (�1;�1) and (1;1), and if we omposeLegendre funtions with osine funtion, as in (3.30), we obtain standard spherial
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(a) (b)Figure 3.2: The �gure (a) is a plot of the funtionRen 1psin � Pl(p19� 12 ; ip152 ; os �)o, and the �gure (b) of the same expression, onlywith Ql instead of Pl.harmonis. The sample plot of the basi modes of the solution for k = 4 is presentedin �gure 3.2.When K = �1, the spatial setions are hyperboli and the expansion parameteris a(�) = �sinh � : (3.32)These oordinates over only part of the hyperboloid. Solution of the equation (3.28)with the expansion funtion (3.32) is the following,f(�) = 1psinh � "C1 Pl p3� k2 � 12 ; ip152 ; osh �! (3.33)+C2Ql p3� k2 � 12 ; ip152 ; osh �!# :When we take the branh uts to be (�1;�1) and (�1; 1), and ompose Legendrefuntions with hyperboli osine, as in (3.33), we obtain so alled toroidal funtions.The sample plot of the basi modes of the solution for k = 4 is given in �gure 3.3.Finally, we give the solution for the anti{de Sitter spaetime represented by theFRW metri with K = �1 and the following expansion parameter [50℄,a(�) = �osh � : (3.34)The orresponding oordinates over only part of the hyperboloid mentioned in thesetion 3.2.2 . Solution of the equation (3.28) with the expansion funtion (3.34) has
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(a) (b)Figure 3.3: The �gure (a) is a plot of the funtionRen 1psinh � Pl(p�13� 12 ; ip152 ; osh �)o, and the �gure (b) of the same expression,only with Pl replaed by Ql.the form f(�) = 1posh � "C1 Pl p3� k2 � 12 ; ip152 ; i sinh �! (3.35)+C2 Ql p3� k2 � 12 ; ip152 ; i sinh �!# :The sample plot of the basi modes for k = 4 is presented in 3.4.3.2.4 Waves in the anisotropi Kasner universeThe Kasner universe is a speial ase of the Bianhi type I lass of homogeneous butanisotropi spaetimes. Its metri in synhronous oordinates has the form [55℄ds2 = �dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2 ; (3.36)where p1; p2; p3 are onstants. This metri represents a solution of vauum Einstein'sequations if the following relations hold:p1 + p2 + p3 = 1 ; p12 + p22 + p33 = 1 : (3.37)However, in fat we need not assume these relations. We may onsider the matterontent of the universe desribed by the energy-momentum tensor whih does notontain a derivative of the metri. This ful�lls the onditions of a generalizationof the Isaason approximation to non-vauum spaetimes, as desribed in [15℄. Letus however mention that it has reently been shown [58, 59℄ that it is impossible toretain anisotropy when the Kasner universe is �lled with a visous uid, dominantenergy ondition holds, and entropy is nondereasing. However the anisotropy ispermitted when it is �lled with an ideal uid satisfying the Zel'dovi equation ofstate.
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(a) (b)Figure 3.4: The �gure (a) is a plot of the funtionRen 1posh � Pl(p�13� 12 ; ip152 ; i sinh �)o, and the �gure (b) of the same expression,only with Pl replaed by Ql.As in the previous alulations we will use h0� = 0 as an additional ondition.The traeless gauge ondition has the form (using the summation onvention de�nedin setion 3.2.1) t�2pihii = 0 : (3.38)The gauge ondition h�� ;� = 0 results in the equationspi t�2pihii = 0 ; t�2pihij;i = 0 : (3.39)Using these gauge onditions we an simplify the dynamial equations (3.4) to thefollowing form (no summation over i; j in the seond equation)pi t�2pihij;i = 0 ; (3.40)�hij;00 t2 + �Xk pk + 2pi + 2pj! t hij;0 + t(�2pk+2)hij;kk � 4pipj hij = 0 : (3.41)Using the ovariant d'Alembertian, the di�erential equation (3.41) an be rewrittenas � hij + 2(pi + pj)t hij;0 � 4pipjt2 hij = 0 :Let us denote an arbitrary omponent hij of the perturbation tensor simply as f(even though the wave equation (3.41) is di�erent for di�erent indies i; j) and letus de�ne A = 2(pi + pj)�Xk pk ; B = pipj :We will look for the solutions of (3.41) in the following speial form,f(t; x; y; z) = X(t; x) + Y (t; y) + Z(t; z) : (3.42)



26 CHAPTER 3. SPECTRA OF HIGH-FREQUENCY WAVESWhen we insert (3.42) into the wave equation (3.41), its left-hand side splits intothree parts with eah depending only on one spatial oordinate. The simplest pos-sible solution is to equate eah of these parts to zero, satisfying thus the equation.For example, in spatial oordinate x we obtain�2X�t2 � At �X�t � t�2p1 �2X�x2 + 4Bt2 X = 0 : (3.43)Applying now the one-dimensional Fourier transform in the oordinate x on theequation (3.43) we arrive at the ordinary di�erential equationd2 ~Xdt2 � At d ~Xdt + t�2p1k21 ~X + 4Bt2 ~X = 0 ; (3.44)where ~X = F [X℄. Making an ansatz ~X = t 12 (A+1)F (t) and using the oordinatetransformation s = 11�p1k1 t1�p1 we obtain the standard form of the Bessel equations2 �G + s �G+ �16B � (A+ 1)24(1� p1)2 + s2� G = 0 ; (3.45)where G(s) = F (t), and the dot denotes di�erentiation with respet to s. Solving(3.45) and transforming this bak to ~X and t, the solution of equation (3.43) takesthe following form~X = t 12 (A+1)� �C+1 (k1) J �p(A+1)2�16B2(1�p1) ; k1t(1�p1)1� p1 �+ C�1 (k1)Y �p(A+1)2�16B2(1�p1) ; k1t(1�p1)1� p1 �� ;(3.46)where J(�; z), and Y (�; z), is the Bessel funtion of the �rst kind, and of the seondkind, respetively. For the vauum Kasner universe (for whih the relations (3.37)hold) we obtain (A + 1)2 � 16B = 4(pi � pj)2, and thus the index of the Besselfuntions is a real number. Generally, assuming that all pi are positive, it turns outthat forPk pk < 1 the index is always real, but forPk pk > 1 it might be imaginary.Proeeding in the same way for the funtions Y , and Z, the form of the solution(3.46) is reprodued exept for the replaement of k1; p1; C+1 ; C�1 with k2; p2; C+2 ; C�2 ,and k3; p3; C+3 ; C�3 , respetively. The omplete solution may thus be omposed inthe following wayf(t; x; y; z) = F�13 h ~X(t; k1) Æ(k2)Æ(k3) + ~Y (t; k2) Æ(k1)Æ(k3) + ~Z(t; k3) Æ(k1)Æ(k2)i ;(3.47)where F�13 denotes the inverse Fourier transform in three dimensions, and Æ denotesthe Dira delta funtion. The spetrum is then determined by the three funtionsC�j (kj), where j = 1; 2; 3. The monohromati wave with the wavevetor (k01; k02; k03)is obtained by setting C�j (kj) = �j Æ(kj � k0j ) ;and has the formf(t; x1; x2; x3) = t 12 (A+1)� Xj=1;2;3"+j J  p(A+1)2�16B2(1�pj) ; k0j t(1�pj)1� pj !+ �j Y  p(A+1)2�16B2(1�pj) ; k0j t(1�pj)1� pj !# eik0jxj ;where x1 = x; x2 = y; x3 = z.



Chapter 4
Radiative spaetimes approahingthe Vaidya metri
The lassi Vaidya metri [33,60{62℄ is a spherially symmetri type D solution of theEinstein equations in the presene of pure radiation matter �eld whih propagatesat the speed of light. In various ontexts this \null dust" may be interpreted ashigh-frequeny eletromagneti or gravitational waves, inoherent superposition ofaligned waves with random phases and polarisations, or as massless salar partilesor neutrinos. The Vaidya solution depends on an arbitrary \mass funtion" m(u)of the retarded time u whih haraterises the pro�le of the pure radiation (it is a\retarded mass" measured at onformal in�nity).In fat, the Vaidya spaetime belongs to a large Robinson{Trautman lass of ex-panding nontwisting solutions [27, 28, 33℄. Various aspets of this family have beenstudied in the last two deades. In partiular, the existene, asymptoti behaviourand global struture of vauum Robinson{Trautman spaetimes of type II withspherial topology were investigated, most reently in the works of Chru�siel andSingleton [85{87℄. In these rigorous studies, whih were based on the analysis of so-lutions to the nonlinear Robinson{Trautman equation for generi, arbitrarily strongsmooth initial data, the spaetimes were shown to exist globally for all positiveretarded times, and to onverge asymptotially to a orresponding Shwarzshildmetri. Interestingly, extension aross the \Shwarzshild-like" event horizon anonly be made with a �nite order of smoothness. Subsequently, these results weregeneralized in [88,89℄ to the Robinson{Trautman vauum spaetimes whih admit anonvanishing osmologial onstant �. It was demonstrated that these osmologialsolutions settle down exponentially fast to a Shwarzshild{(anti-)de Sitter solutionat large times u.Our aim here is to further extend the Chru�siel{Singleton analysis of the Robin-son{Trautman vauum equation by inluding matter, namely pure radiation. It wasargued already by Bi��ak and Perj�es [90℄ that with � = 0 suh spaetimes shouldgenerially approah the Vaidya metri asymptotially. We will analyze this prob-lem in more detail, inluding also the possibility of � 6= 0.27



28 CHAPTER 4. SPACETIMES APPROACHING THE VAIDYA METRIC4.1 The metri and �eld equationsIn standard oordinates the Robinson{Trautman metri has the form [28, 33, 43℄ds2 = ��K � 2r(lnP );u � 2mr � �3 r2� du2 � 2dudr + 2 r2P 2d�d�� ; (4.1)where K = �(lnP ) with � � 2P 2����� being the Gaussian urvature of the 2-sur-faes 2P�2d�d��, m(u) is the mass funtion, and � is the osmologial onstant.When the funtion P (u; �; ��) satis�es the fourth-order Robinson{Trautman �eldequation �K + 12m (lnP );u � 4m;u = 2�n2 ; (4.2)the metri desribes a spaetime (generally of the Petrov type II ) �lled with pure ra-diation �eld T�� = n2(u; �; ��) r�2 k�k�, where k = �r is aligned along the degenerateprinipal null diretion (we use the onvention G�� + �g�� = � T��). In partiular,vauum Robinson{Trautman spaetimes are given by n = 0, in whih ase m anbe set to a onstant by a suitable oordinate transformation [33℄.Here we will restrit ourselves to nonvauum ases for whih the dependeneof the mass funtion m(u) on the null oordinate u is only aused by a homoge-neous pure radiation with the density n2(u) r�2. When the mass funtion m(u) isdereasing, the �eld equation (4.2) an be naturally split into the following pair,�K + 12m(u) (lnP );u = 0 ; (4.3)�2m(u);u = �n2(u) : (4.4)In fat, it was demonstrated in [90℄ that suh a separation an always be ahievedusing the oordinate freedom. It is then possible to reformulate equation (4.3) usinggab = f(u; �; ��)�2g0ab, where g0ab(�; ��) is the metri on a 2-dimensional sphere S2, andP = fP0 ; P0 = 1 + 12� �� : (4.5)Then the equation (4.3) beomes�f�u = � 112m(u) f �K : (4.6)4.2 Linear mass funtionLet us �rst onsider the simplest hoie of m(u) whih, in fat, has been widely usedin literature (see e.g. [65,67,91℄): we will assume that the mass funtion is a linearlydereasing positive funtionm(u) = ��u; � = onst > 0 ; (4.7)on the interval [u0; 0℄. The onstant value u0 < 0 loalises an initial null hypersurfaeon whih an arbitrary suÆiently smooth initial data given by the funtionf0(�; ��) = f(u = u0; �; ��) ; (4.8)are presribed, see �gure 4.1.
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Figure 4.1: Shemati onformal diagrams of the Robinson{Trautman exat spae-times whih exist for any smooth initial data presribed on u0. Pure radiation �eldis present in the shaded region u < 0. Near u = 0 the solutions approah the Vaidyametri, and an be extended to at Minkowski region u > 0. Thik line indiatesthe urvature singularity at r = 0 whereas double line represents future onformalin�nity I+ at r =1 (� = 0 is assumed). The global struture depends on the valueof the parameter � of the linear mass funtion (4.7): left diagram orresponds to� > 1=16, the right one applies when � � 1=16.4.2.1 Existene of the solutionsNow, the idea is to employ the Chru�siel{Singleton results [85{87℄ onerning theanalysis of the Robinson{Trautman vauum equation, in partiular the existeneand asymptoti behaviour of its solutions. In the vauum ase m in equation (4.3)is onstant, and the solution f(u; �; ��) of the harateristi initial value problem(4.8) exists and is unique (in spite of the singularity at r = 0). In the presene ofpure radiation given by (4.7) it is possible to \eliminate" the variable mass fun-tion from the Robinson{Trautman �eld equation (4.6) mathematially by a simplereparametrisation ~u = ���1 ln(�u) ; (4.9)f. [90℄. Indeed, equation (4.6) is then onverted to� ~f�~u = � 112 ~f ~� ~K : (4.10)Notie that the transformation (4.9) moves the hypersurfae u = 0, on whih themass funtion m(u) reahes zero, to ~u = +1.Chru�siel [86℄ derived the asymptoti expansion (as ~u!1) for the funtion~f satisfying the evolution equation (4.10) for any smooth initial data ~f0 = f0 on~u0 = ���1 ln(�u0). In our ase of pure radiation �eld (4.7) we employ the trans-formation (4.9) on Chru�siel's original results to obtain the following asymptoti



30 CHAPTER 4. SPACETIMES APPROACHING THE VAIDYA METRICexpansion of f as u! 0�,f = 1 + f1;0 (�u)2=� + f2;0 (�u)4=� + � � �+ f14;0 (�u)28=����1f15;1 ln(�u) (�u)30=� + f15;0 (�u)30=� + � � � (4.11)= 1Xi=0 NiXj=0 fi;j [���1 ln(�u)℄j (�u)2i=� ;where fi;j are smooth funtions on S2 suh that fi;j = 0 for j > 0, i � 14. As aresult, for the initial data (4.8) the Robinson{Trautman type II spaetimes whihontain uniform pure radiation �eld with the linear mass funtion (4.7) do exist inthe whole region u0 � u < 0. It is also obvious that the funtion f approahes 1 asu! 0� (where alsom(u)! 0) aording to (4.11). In other words, these spaetimesapproah the spherially symmetri Vaidya{(anti-)de Sitter metri near u = 0.At u = 0 all of the mass m(u) is radiated away, and we an attah Minkowskispae (de Sitter spae when � > 0, anti-de Sitter when � < 0; the presene of theosmologial onstant would hange the harater of onformal in�nity I whihwould beome spaelike or timelike, respetively) in the region u > 0 along thehypersurfae u = 0.4.2.2 Extension of the metri aross u = 0It follows from (4.11) that the smoothness of f on u = 0 is only �nite. Depending onthe value of � two di�erent ases have to be disussed separately: 2=� is an integer,and 2=� is a real non-integer positive number.When 2=� is an integer then due to the presene of the ln(�u) term assoiatedwith f15;1 6= 0 the funtion f is of the lass C(30=�)�1. Note, that it is always at leastC14 beause � � 2 in this ase.In the generi ase when 2=� is not an integer the funtion f is only of the lassCf2=�g, where the symbol fxg denotes the largest integer smaller than x. For � > 2it is not even C1 but it remains ontinuous.To investigate further the smoothness of the metri when approahing the hy-persurfae u = 0� whih is the analogue of the Shmidt{Tod boundary of vauumRobinson{Trautman spaetimes [81,86℄ we should onsider the onformal piture us-ing suitable double-null oordinates. Suh Kruskal-type oordinates for the Vaidyasolution with linear mass funtion (4.7) were introdued by Hisok [65{67℄. Usinghis results, we put the Robinson{Trautman metri with linear mass funtion intothe form ds2 = ��K � 1� 2f;uf r�du2��2r + u+ 2�u2r � dudw + 2 r2P 2d�d�� ; (4.12)where r(u; w).The general Robinson{Trautman metri (4.12) is evidently one order less smooththan f due to the presene of the funtion f;u=f . Consequently, for 2=� being



CHAPTER 4. SPACETIMES APPROACHING THE VAIDYA METRIC 31integer or non-integer number, the metri (4.12) is of the lass C(30=�)�2 or Cf2=�g�1,respetively.We would like to obtain analogous results onerning smoothness of the exten-sion also for a non-zero value of the osmologial onstant �. Unfortunately, as faras we know, there is no expliit transformation of the Vaidya{de Sitter metri to theKruskal-type oordinates even for the linear mass funtion. However, we an usea general argumentation: the oordinate u is already suitably ompati�ed and weare only determining the omplementary null oordinate w to obtain the Vaidya{deSitter metri in the Kruskal-type oordinates (whih is smooth on u = 0). More-over r(u; w) is �nite and smooth when approahing the hypersurfae u = 0. Thesmoothness is thus not a�eted by the spei� transformation to the Kruskal-typeoordinates and it is the same as for the vanishing osmologial onstant. This isdi�erent from vauum spaetimes with m = onst 6= 0 studied in [88, 89℄ beausein the present ase m! 0 near u = 0, and the inuene of � on the smoothnessbeomes negligible.4.3 General mass funtionThe results obtained above an be onsiderably generalized. Inspired by a similaridea outlined in [90℄ we may onsider a reparametrisation on the null oordinate uby ~u = (u) ; (4.13)where  is an arbitrary ontinuous stritly monotonous funtion. Now, by applyingthe substitution (4.13) in equation (4.10) we obtain�f�u = � _12 f �K ; (4.14)(where the dot denotes a di�erentiation) whih is the evolution equation for thefuntion f(u; �; ��). This is exatly the Robinson{Trautman equation (4.6) for themass funtion m(u) = 1_(u) : (4.15)To obtain a positive mass we assume a growing funtion (u). Considering (4.4)this orresponds to a universe �lled with homogeneous pure radiationn2(u) = 2� �_2 : (4.16)For onsisteny the funtion  must be onvex.In partiular, the linear mass funtion (4.7) disussed above is a speial ase of(4.15) for the transformation (4.13) of the form (4.9). More general expliit solutionsan be obtained, e.g., by onsidering the power funtion(u) = (�u)�p ; p > 0 : (4.17)The asymptoti behaviour of suh solutions is determined by expression (4.5) withf = 1 + 1Xi=1 NiXj=0 fi;j (�u)�jp exp ��2i(�u)�p� ;
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u < 0u = 0 u I+u > 0 r =1

r = 0 u = u 0 u = u 1
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Figure 4.2: Possible extensions of the Robinson{Trautman radiative spaetimes in-to the region u < u0. Pure radiation is present only in the shaded region, every-where else it is a vauum solution. For u 2 (u1; u0) the mass funtion is onstant,m(u0) = ��u0, but the spaetime is not spherially symmetri | it is not theShwarzshild solution (� > 1=16 on the left, � � 1=16 on the right).where fi;j = 0 for j > 0 if i � 14. Interestingly, the funtion f is now smooth onu = 0 for any power oeÆient p.Another simple expliit hoie is(u) = �M�1 ln [sinh(�u)℄ ; M > 0 ; (4.18)whih implies the following expansion near u = 0�f = 1 + 1Xi=1 NiXj=0 fi;j (�M�1 ln [sinh(�u)℄)j sinh2i=M (�u) :If 2=M is an integer then the funtion f belongs to the lass C(30=M)�1, otherwiseit is of the lass Cf2=Mg.4.4 Possible modi�ations and appliationsThe Robinson{Trautman pure radiation solutions in the region u0 � u � 0 approah-ing the Vaidya metri near u = 0, whih an be extended (albeit non-smoothly) toat Minkowski spae in the region u � 0 as in �gure 4.1, may be used for onstrutionof various models of radiative spaetimes. For example, it is natural to further extendthe solution \bakwards" into the region u1 < u � u0 by the Robinson{Trautmanvauum solution with a onstant mass m0 = m(u0), suh that the funtion f isontinuous on u0. This is shown in �gure 4.2.In the presene of the osmologial onstant � the shemati onformal diagramon �gure 4.2 has to be modi�ed in suh a way that for all values of u the onformalin�nity I+ beomes timelike (for � > 0) or spaelike (for � < 0).
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Figure 4.3: Time-reversed version of �gure 4.2 represents the \advaned" form ofthe Robinson{Trautman spaetimes whih desribes an ingoing ow of radiation.Another possible modi�ation is to onsider the \advaned" form of the spae-times (whih desribes an ingoing ow) rather than the \retarded" form (orre-sponding to outgoing ow) employed above (see, e.g., [71℄ for more details). Thistime-reversed form is obtained formally by a simple substitution u! �v in the met-ris and orresponding funtions. In this ase m(v) is an inreasing mass funtionin v 2 [0; v0℄. This is joined with at Minkowskian region v < 0, and extended tothe region v � v0 by the orresponding Robinson{Trautman{(anti-)de Sitter blakhole vauum solution, see �gure 4.3. In analogy with (4.11), we obtainf = 1Xi=0 NiXj=0 fi;j ����1 ln v �j v2i=� ; (4.19)so that the smoothness of the metri on the boundary v = 0 depends on the pa-rameter �. For v 2 (v0; v1) the spaetime is vauum but not spherially symmetri.The metri diverges as v !1. Our results an thus be interpreted in suh a waythat | at least within the Robinson{Trautman family of solutions | the model [67℄of ollapse to a naked shell-fousing singularity whih is based on the spheriallysymmetri Vaidya metri is not stable against perturbations.



ConlusionIn the �rst hapter, we have ompared the Efroimsky [1,2℄ and the Isaason [3℄ self-onsistent perturbation shemes whih desribe propagation of weak gravitationalwaves on a osmologial bakground. In both these approahes the bakground isinuened by the waves, i.e. the non-linear e�ets are taken into aount. Thelassial Isaason method applies to high-frequeny waves. On the other hand, theEfroimsky formalism is appliable to low-frequeny gravitational waves but does notadmit the high-frequeny limit. We have suggested a modi�ation of the Efroimskyformalism by employing the gauge-invariant deomposition (1.9) of the Rii tensor,introdued reently by Anderson [16℄. The resulting generalized system of equations(1.12)-(1.14) fully reovers the Efroimsky results in the absene of high-frequenymodes, in the high-frequeny limit it reprodues Isaason's formulae.In the seond hapter, the Isaason approah [3℄ to study high-frequeny per-turbations of Einstein's equations was briey reviewed and ompared with thestandard weak-�eld limit. In our ontribution we generalized Isaason's methodto inlude non-vauum spaetimes, in partiular an eletromagneti �eld and/or anon-vanishing value of the osmologial onstant �. Then we expliitly analyzedpossible high-frequeny gravitational waves in three large families of bakground u-niverses, namely non-expanding spaetimes of the Kundt type, ylindrial Einstein-Rosen waves and related inhomogeneous osmologial models (suh as the Gowdyuniverse), and the Robinson-Trautman expanding spaetimes. These bakgroundsare of various Petrov types. For example, high-frequeny gravitational waves anbe introdued into eletrovauum onformally at Bertotti-Robinson spae, type DNariai and Pleba�nski-Hayan spaes, their type N and type II generalizations, orinto algebraially general Einstein-Rosen universes.In the third hapter we have investigated the spetra of high-frequeny wavespropagating on several important osmologial models using the wave equation de-rived by Isaason [3℄. It was demonstrated that the appliation of tensor harmonis,inspired by Bardeen [56℄, onsiderably simpli�es the solution of the wave equationfor the non{at FRW models. It turns out that the expliit solutions of the waveequation are expressed using speial (Bessel and Legendre) funtions ontainingpurely imaginary indies.In the last hapter we have analyzed exat solutions of the Robinson{Trautmanlass whih ontain homogeneous pure radiation and a osmologial onstant. Wehave demonstrated that these solutions exist for any smooth initial data, and thatthey approah the spherially symmetri Vaidya{(anti-)de Sitter metri. It gener-alizes previous results aording to whih vauum Robinson{Trautman spaetimesapproah asymptotially the spherially symmetri Shwarzshild{(anti-)de Sittermetri. We have investigated extensions of these solutions into Minkowski region,and we have shown that its order of smoothness is in general only �nite. Finally, wesuggested some appliations of the results. For example, it follows that the modelof gravitational ollapse of a shell of null dust diverges as v !1 whih indiatesthat investigations of suh proess based on the spherially symmetri Vaidya met-ri are, in fat, not stable against \non-linear perturbations", at least within theRobinson{Trautman family of exat solutions.34
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Abstract

The Efroimsky perturbation scheme for consistent treatment of gravitational

waves and their influence on the background is summarized and compared

with the classical Isaacson high-frequency approach. We demonstrate that the

Efroimsky method in its present form is not compatible with the Isaacson limit

of high-frequency gravitational waves, and we propose its natural generalization

to resolve this drawback.

PACS numbers: 04.30.−w, 04.25.−g

1. Introduction

Recently, Efroimsky introduced and developed a new formalism for the consistent treatment

of weak gravitational waves [1, 2]. This interesting mathematical framework is remarkable,

mainly due to the possibility of ascribing the stress–energy tensor even to low-frequency

gravitational waves influencing the background, which is in contrast to the standard

linearization approach where the background is kept fixed. This is achieved by introducing a

natural low-frequency cut-off, employing three different metrics (the premetric, the complete

physical metric and the average metric) and careful analysis of their mutual relations.

On the other hand, in a now classic paper [3] Isaacson (inspired by previous works [4, 5])

presented a perturbation method which can be used for studies of high-frequency gravitational

waves. Such waves also influence the cosmological background in which they propagate.

Isaacson’s work stimulated further contributions in which his method was reformulated using

various formalisms, and explicitly applied to particular spacetimes (see, e.g., [6–15]).

In our present work we first briefly summarize and compare the two above-mentioned

perturbation schemes. In particular, it is shown that the Efroimsky method is not consistent if

high-frequency gravitational waves are considered. Next (in section 3), we propose a possible

modification of the Efroimsky formalism which may resolve this drawback.

0264-9381/04/143579+07$30.00 © 2004 IOP Publishing Ltd Printed in the UK 3579
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2. The formalism

Efroimsky’s approach [1, 2] is based on introducing three different smooth, non-degenerate,

symmetric metrics on a differentiable manifold M, namely:

(i) γµν—the ‘premetric’, a vacuum metric corresponding to initial pure background without

gravitational waves;

(ii) gµν—the ‘physical metric’, a full vacuum metric which describes both the background

and the waves;

(iii) qµν—the ‘average metric’, a nonvacuum metric representing the background plus its

perturbations with wavelength greater than L. In fact, it is the averaged full metric gµν ,

where the cut-off value L depends on the observer’s experimental abilities. Since no

detector can measure gravitational waves of arbitrarily long wavelengths, the existence of

such a low-frequency cut-off is a natural assumption.

One motivation for using these three distinct metrics is to resolve a (slight) discrepancy in the

standard linearization approach which considers only the metrics γµν, gµν, and decomposition

gµν = γµν + hµν, where hµν is a small perturbation. The contravariant components obtained

as an inverse of gµν are gµν = γ µν − hµν + O(h2), but γµν is commonly used for raising and

lowering indices. It is thus not clear which semi-Riemannian manifold this equality relates

to. Such inconsistency can be ignored in the lowest order because it leads to the correct linear

approximation of the wave equation. To extend the weak-field formalism to higher-order

terms, the distinction between the premetric γ and the average metric q is necessary as it

exhibits the back-reaction of the waves on the background geometry. (Here and hereafter,

indices of the metric tensors are sometimes suppressed for notational simplicity.)

The next step is to define the Ricci and Einstein tensors for an arbitrary metric g as

Rµν(g) ≡
[

1
2
gγρ(gρν,µ + gρµ,ν − gµν,ρ)

]

,γ
−

[

1
2
gγρ(gργ,µ + gρµ,γ − gµγ,ρ)

]

,ν

+
[

1
2
gγ δ(gρδ,γ + gργ,δ − gγ δ,ρ)

][

1
2
gδρ(gρν,µ + gρµ,ν − gµν,ρ)

]

(1)

−
[

1
2
gγρ(gρδ,ν + gρν,δ − gνδ,ρ)

][

1
2
gδρ(gργ,µ + gρµ,γ − gµγ,ρ)

]

,

Gµν(g) ≡ Rµν(g) − 1
2
gµνg

αβRαβ(g),

where gρτ = (g)−1
ρτ ; the same expressions apply to γ and q. These equations remain a tensor

even if we transfer to another semi-Riemann space (the reason is that covariant tensors are

defined on a metric space rather than on some particular semi-Riemann one). From proposals

(i)–(iii) it follows that Gµν(γ ) = 0 = Gµν(g),Gµν(q) �= 0.

Now, the differences between the covariant components of the above metrics are

introduced,

hµν ≡ gµν − qµν, ηµν ≡ qµν − γµν . (2)

It is necessary to specify the semi-Riemann space: for raising or lowering indices and for

covariant differentiation, the averaged nonvacuum metric q will be used. Consequently, h and

η are tensor fields on the semi-Riemann manifold (M, q), i.e.

hµν ≡ qµαqνβhαβ, ηµν ≡ qµαqνβηαβ . (3)

Treating hµν as a perturbation of the metric qµν the Ricci tensor (1) can be expanded in a

power series

Rµν(g) = R(0)
µν (q) + R(1)

µν (q, h) + R(2)
µν (q, h) + R(3)

µν (q, h) + O(h4), (4)
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where

R(0)
µν (q) ≡ Rµν(q),

R(1)
µν (q, h) ≡ 1

2
qρτ (hτµ;νρ + hτν;µρ − hρτ ;µν − hµν;ρτ ), (5)

R(2)
µν (q, h) ≡ 1

2

[

1
2
hρτ

;µhρτ ;ν + hρτ (hρτ ;µν + hµν;ρτ − hτµ;νρ − hτν;µρ)

+ hτ
ν
;ρ(hτµ;ρ − hρµ;τ ) −

(

hρτ
;ρ − 1

2
hρ

ρ
;τ

)

(hτµ;ν + hτν;µ − hµν;τ )
]

.

Analogously,

Rµν(γ ) = R(0)
µν (q) + R(1)

µν (q, (−η)) + R(2)
µν (q, (−η)) + O(η3). (6)

It is obvious that R(1)
µν (q, (−η)) = −R(1)

µν (q, η) and R(2)
µν (q, (−η)) = R(2)

µν (q, η). According to

assumptions that both g and γ are vacuum metrics the following relation holds:

0 = Rµν(g) − Rµν(γ )

= R(1)
µν (q, h) + R(2)

µν (q, h) + R(1)
µν (q, η) + R(3)

µν (q, h) + O(h4) + O(η2). (7)

At this point Efroimsky sets three assumptions:

Assumption 1. The perturbations h and η are small in the sense that the terms of the orders

O(h4) and O(η2) are negligible.

Assumption 2. The perturbations η and h2 are of the same order.

Assumption 3. The tensor field h consists of modes with short wavelengths which do not

exceed the given maximal value L.

A physical interpretation of the perturbations given by (2) is thus the following: hµν

characterizes measurable gravitational waves whereas ηµν is a shift of the background

geometry from vacuum premetric γ to nonvacuum effective average metric q due to the

presence of gravitational waves. This enables us to interpret equation (7) as the wave equation

for perturbations h on the background q = γ + η. To make this wave equation applicable,

one has to express η in terms of h. Using the Brill–Hartle averaging procedure [5] over a

spacetime volume of size L for (7) (Efroimsky considers only space averaging but when the

measurement lasts much longer than the period of waves one can employ a spacetime average)

we obtain

R(1)
µν (q, η) = −

〈

R(2)
µν (q, h)

〉

L
. (8)

The averaging brackets on the left-hand side are omitted because the term contains only the

modes with wavelength greater than L. It is thus clear from (8) and (5) that assumption 2 is

natural since the left-hand side is linear in η whereas the right-hand side is quadratic in h.

Let us finally recall the derivation of the stress–energy tensor of gravitational waves. By

analogy with the Ricci tensor expansion (4) the Einstein tensor of the vacuum premetric γ is

represented as a series

0 = Gµν(γ ) = Gµν(q) + G(1)
µν(q, (−η)) + O(η2), (9)

and the effective stress–energy tensor of gravitational waves is defined as

Gµν(q) = 8πT (gw)
µν ≡ R(1)

µν (q, η) − 1
2
qµνq

αβR
(1)
αβ (q, η). (10)

From (8) it follows (considering the Brill–Hartle averaging) that this tensor fully agrees with

that of Isaacson [3].

The main advantage of Efroimsky’s perturbation method above is the possibility of

consistently treating all low-frequency gravitational waves, and of explicitly deriving an
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effective stress–energy tensor (influencing the background) in this case. It can be extended to

nonvacuum spacetimes with Tµν of ideal fluid and/or with a possible cosmological constant


, see [1, 2]. However, there are some problems concerning high-frequency gravitational

waves which will now be discussed.

3. Modification to include high-frequency waves

In this section we first explicitly demonstrate that one cannot consistently apply Efroimsky’s

treatment on Isaacson’s high-frequency waves [3] because assumption 2 is not fulfilled in such

a case. Then we will present a possible solution to this problem.

Let us start with the observation that it is the nonvacuum background curved by

the presence of gravitational waves—not the vacuum premetric γ —which is the basis of

Isaacson’s nonlinear approach. Therefore, the nonvacuum average metric q is considered as

the background on which high-frequency gravitational waves h propagate.

We wish to use the Efroimsky formalism in the high-frequency regime such that the tensor

field h contains high-frequency modes. We assume that they have short wavelengths λ, and

a small amplitude h = O(ε), where ε = λ/S ≪ 1 is a small parameter because λ ≪ S, S

denoting a typical scale on which the background changes substantially.

Let us emphasize that we follow here the same definition of the symbol O(εn) as in [3],

namely f = O(εn) if there exists a constant C > 0 such that |f | < Cεn as ε → 0. The

quantity f need not necessarily be proportional to εn, it can be even smaller than Cεn for

ε → 0. Therefore, the assumption h = O(ε) does not automatically imply that h ∼ ε. The

spectrum of possible high-frequency waves is thus not a priori restricted, it is only required

that their amplitudes fall to zero at least linearly with ε, i.e. |h(ε)| < Cε.

Since we can consider S = O(1) it follows that O(ε) = O(λ) and ∂h ∼ h/λ = O(1).

In accordance with Isaacson’s approach (note that the decomposition now reads g = q + h,

instead of the notation g = γ + h used in [3]) we obtain the following orders of magnitude for

the derivatives of the background q and the perturbation h:

qµν = O(1), hµν = O(ε),

qµν,α = O(1), hµν,α = O(1),

qµν,αβ = O(1), hµν,αβ = O(ε−1).

(11)

This results in the orders of magnitude of the terms in the Ricci tensor expansion (4), (5) as

R(0)
µν = O(1), R(1)

µν = O(ε−1), R(2)
µν = O(1), R(3)

µν = O(ε). (12)

To apply the Efroimsky approach in this case we must consider the decomposition q = γ + η,

where γ is the vacuum premetric and η represents (in this case) a substantial shift of the

background geometry due to the presence of high-frequency gravitational waves h. We also

introduce the scale L, such that λ ≪ L ≪ S. This enables us simultaneously to consider

an averaging procedure in accordance with the Isaacson approach, and also to introduce a

meaningful cut-off scale L even if the wavelengths of high-frequency waves are not assumed

to reach this value.

Of course, the geometry shift η does not contain high-frequency perturbations.

Considering the wave equation (7) and using the Brill–Hartle averaging over a spacetime

volume L to obtain equation (8) we get into a conflict with assumption 2 which prescribes

O(η) = O(h2). Indeed, if h = O(ε) there should be η = O(ε2). But the right-hand side

of (8) is now of the order of O(1), see (12), and the same magnitude should also have the

left-hand side. Since η does not contain high-frequency waves, it is essential that η = O(1).

This is obviously in contradiction with both assumptions 1 and 2. In fact, it disables any

consistent perturbation expansions in the powers of η.
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Let us now suggest a modification of the Efroimsky formalism which will incorporate

also the above case of a ‘substantial’ change of the background geometry due to the presence

of high-frequency waves. Instead of the perturbation expansion (6) we consider a formal

decomposition of the Ricci tensor of the premetric γ = q − η, namely

0 = Rµν(γ ) = Rµν(q) + �Rµν(q, (−η)), (13)

by which the expression �Rµν is defined. Both terms on the right-hand side of (13) are of the

same order O(1). Moreover, the quantity �Rµν is conserved with respect to the background

geometry q which is easily seen from equation (13) and the relation (Rµν(q));ν = 0 (the

differentiation relates to the background metric q).

The question concerning the gauge invariance of �Rµν with respect to generalized gauge

transformations has recently been analysed in detail by Anderson [16] in connection with

possible definitions of the wave equation and stress–energy tensor for gravitational waves. Let

us consider an arbitrary coordinate transformation of the type

xµ = xµ + ξµ, (14)

which does not change the functional form of the background geometry q, i.e. q(x) = q(x) so

that γ (x) → γ (x) = q(x) − η(x). Now, to prove the invariance of �Rµν we adopt (slightly

modified) Anderson’s argumentation. Performing the above coordinate transformation (14)

of the Ricci tensor decomposition (13) we obtain

Rµν(q(x)) + �Rµν(q(x), (−η(x))) = Rµν(γ (x)) = 0. (15)

Here Rµν and �Rµν are the same as Rµν and �Rµν , respectively, because definition (1) is

maintained in any coordinate. Evaluating relation (15) at x = x we thus get Rµν(q(x)) =

−�Rµν(q(x), (−η(x))), and using (13) we obtain

�Rµν(q(x), (−η(x))) = �Rµν(q(x), (−η(x))). (16)

A generalized gauge transformation is defined in [16] as a transformation in which the quantity

η(x) is substituted for η(x) into the tensor expressions of interest. This incorporates, as a

particular case, the well-known infinitesimal gauge transformation

ηµν(x) = ηµν(x) + ξµ;ν + ξν;µ, (17)

where η, ξ and their derivatives are small. Obviously, equation (16) expresses a generalized

gauge invariance of �Rµν .

After introducing the above decomposition (13) and demonstrating its invariance we can

now present modification and generalization of the Efroimsky formalism. Replacing the term

R(1)
µν (q, η) by −�Rµν(q, (−η)) in equations (7), (8), (10), and omitting the terms O(η2) we

obtain relations

R(1)
µν (q, h) + R(2)

µν (q, h) − �Rµν(q, (−η)) + R(3)
µν (q, h) + O(h4) = 0, (18)

�Rµν(q, (−η)) =
〈

R(2)
µν (q, h)

〉

L
, (19)

Gµν(q) = 8πT̃ (gw)
µν ≡ −�Rµν(q, (−η)) + 1

2
qµνq

αβ�Rαβ(q, (−η)). (20)

In the case where the gravitational waves do not have high-frequency modes it is still possible to

employ the expansion of −�Rµν(q, (−η)) in powers of η and use its dominant term R(1)
µν (q, η)

instead. Thus we recover Efroimsky’s previous results (cf (7), (8), (10)).

In general, however, expressing η in terms of h from equation (19) becomes an extremely

difficult task because it is no longer a linear equation for η. To overcome this problem we
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can use equation (19) and substitute for �Rµν into the remaining equations (18) and (20). We

obtain the relations

R(1)
µν (q, h) + R(2)

µν (q, h) −
〈

R(2)
µν (q, h)

〉

L
+ R(3)

µν (q, h) + O(h4) = 0, (21)

−Gµν(q) =
〈

R(2)
µν (q, h)

〉

L
− 1

2
qµνq

αβ
〈

R
(2)
αβ (q, h)

〉

L
≡ −8πT BH

µν . (22)

Equation (22) is obviously in perfect agreement with the Isaacson result [3] which represents

the background response to the presence of high-frequency gravitational waves, using the

Brill–Hartle averaging to introduce the effective stress–energy tensor T BH
µν for high-frequency

gravitational waves. Equation (21) is the wave equation for perturbations h on the average

metric q. In the highest order of high-frequency approximation this clearly reduces to R(1)
µν = 0

which also fully reproduces Isaacson’s result. Additional terms in (21) can be used for study

of nonlinear effects on the wave propagation.

Note finally another interesting consequence of equation (19) and the gauge invariance

(16) of �Rµν . This directly guarantees gauge invariance of the stress–energy tensor T BH
µν

defined in (22) (in the highest order). Proof of this property was presented already in the

classic work [3], using, however, a much more complicated method.

4. Concluding remarks

In our contribution we have compared the Efroimsky [1, 2] and the Isaacson [3] self-

consistent perturbation schemes which describe propagation of weak gravitational waves

on a cosmological background. In both these approaches the background is influenced by the

waves, i.e. the nonlinear effects are taken into account. The classical Isaacson method applies

to high-frequency waves. On the other hand, the Efroimsky formalism is applicable to low-

frequency gravitational waves but does not admit the high-frequency limit. We have suggested

a modification of the Efroimsky formalism by employing the gauge-invariant decomposition

(13) of the Ricci tensor, introduced recently by Anderson [16]. The resulting generalized

system of equations (18)–(20) fully recovers the Efroimsky results in the absence of high-

frequency modes, in the high-frequency limit it reproduces Isaacson’s formulae.

Although we have considered here for simplicity only vacuum metrics γµν and gµν ,

possible generalization to nonvacuum spacetimes is straightforward. In fact, Efroimsky has

already generalized his formalism to spacetimes with ideal-fluid-like matter and a cosmological

term [1, 2]; in the case of the Isaacson high-frequency approach, this was done recently

in [15].
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Some High-Frequency Gravitational Waves Related
to Exact Radiative Spacetimes
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A formalism is introduced which may describe both standard linearized waves and
gravitational waves in Isaacson’s high-frequency limit. After emphasizing main differ-
ences between the two approximation techniques we generalize the Isaacson method
to non-vacuum spacetimes. Then we present three large explicit classes of solutions
for high-frequency gravitational waves in particular backgrounds. These involve non-
expanding (plane, spherical or hyperbolical), cylindrical, and expanding (spherical)
waves propagating in various universes which may contain a cosmological constant and
electromagnetic field. Relations of high-frequency gravitational perturbations of these
types to corresponding exact radiative spacetimes are described.

KEY WORDS: gravitational waves; high-frequency limit; exact solutions.

1. INTRODUCTION

In classic work [1] Isaacson presented a perturbation method which enables one to
study properties of high-frequency gravitational waves, together with their influ-
ence on the cosmological background in which they propagate. It is this non-linear
“back-reaction” effect on curvature of the background spacetime which distin-
guishes the high-frequency approximation scheme from other perturbation meth-
ods such as the standard Einstein’s linearization of gravitational field in flat space
[2, 3] or multipole expansions [4] that were developed to describe radiation from
realistic astrophysical sources.

The high-frequency perturbations were originally considered by Wheeler [5]
and then applied to investigation of gravitational geons by Brill and Hartle [6].
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Isaacson’s systematic study [1] stimulated further works in which his treatment
was developed and also re-formulated in various formalisms. Choquet-Bruhat [7, 8]
analyzed high-frequency gravitational radiation using a generalized WKB “two-
timing” method. Averaged Lagrangian technique which leads to Isaacson’s results
with less calculation was introduced by MacCallum and Taub [9, 10]. Compari-
son of these approaches, and clarification of assumptions that have to be made in
order to provide a consistent high-frequency approximation limit was also given
by Araujo [11, 12]. Elster [13] proposed an alternative method that is based on
expanding null-tetrad components of the Weyl tensor. Recently, Burnett developed
a weak limit approach [14] in which the high-frequency limit can be introduced
and studied in a mathematically rigorous way. These general methods have been,
of course, applied to study explicit particular examples of high-frequency gravita-
tional waves, see e.g. [1, 8, 9, 15, 16].

On the other hand, manyexactsolutions of Einstein’s equations are known
which represent gravitational radiation. Among the most important classes are
planarpp-waves [17, 18] which belong to a large family of non-expanding radiative
spacetimes [19, 20], cylindrical Einstein-Rosen waves [21], expanding “spherical”
waves of the Robinson-Trautman type [22, 23], spacetimes with boost-rotation
symmetry representing radiation generated by uniformly accelerated sources [24–
26], cosmological models of the Gowdy type [27], and others — for comprehensive
reviews containing also a number of references see, e.g., [28–32].

However, there are only several works in whichrelationbetween exact grav-
itational waves and those obtained by perturbations of non-flat backgrounds has
been explicitly investigated and clarified, see e.g. [10, 33, 16]. The purpose of our
contribution is to help to fill this “gap”.

We first briefly summarize and generalize the Isaacson approach [1] to admit
non-vacuum backgrounds, the cosmological constant3 in particular. Modification
of Isaacson’s formalism allows us to incorporate also standard linearized gravita-
tional waves into the common formalism. Then, in section 3 we study properties of
high-frequency gravitational waves in specific classes of spacetimes with special
algebraic or geometric structure. In particular, we focus on waves which propa-
gate in backgrounds with3 6= 0. This is motivated not only theoretically but also
by recent observations [34] which seem to indicate that (effective) positive cos-
mological constant played a fundamental role in the early universe, but it is also
important for its present and future dynamics.

2. HIGH-FREQUENCY APPROXIMATION VERSUS STANDARD
LINEARIZATION

Let us assume a formal decomposition of the spacetime metricgµν into the
background metricγµν and its perturbationhµν,
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gµν = γµν + εhµν, (1)

where, in a suitable coordinate system,γµν = O(1) andhµν = O(ǫ) [by definition,
f = O(ǫn) if there exists a constantC > 0 such that| f | < Cǫn asǫ → 0]. The two
distinct non-negative dimensionless parametersε andǫ have the following mean-
ing:ε is the usual amplitude parameter of weak gravitational perturbations whereas
the frequency parameterǫ denotes the possible high-frequency character of radi-
ation described byhµν . To be more specific, the parameterε ≪ 1 characterizes
(for ǫ = 1) the amplitude of linearized gravitational waves in the ordinary weak
field limit of Einstein’s equations. The second independent parameterǫ = λ/L
represents, on the other hand, the ratio of a typical wavelengthλ of gravitational
waves and the scaleL on which the background curvature changes significantly.
Isaacson’s high-frequency approximation [1] arises whenλ ≪ L, i.e.ǫ ≪ 1 (and
ε = 1). SinceL can be considered to have a finite value of order unity, we may
write O(ǫ) = O(λ).

To derive the dynamical field equations we start with the order-of-magnitude
estimates which indicate how fast the metric components vary. Symbolically, the
derivatives are of the order∂γ ∼ γ /L, ∂h ∼ h/λ, so that the following formulas

γµν = O(1), hµν = O(ǫ),

γµν,α = O(1), hµν,α = O(1),

γµν,αβ = O(1), hµν,αβ = O(ǫ−1), (2)

are valid. Next, we expand the Ricci tensor in powers ofh,

Rµν(g) = R(0)
µν + εR(1)

µν + ε2R(2)
µν + ε3R(3)

µν + . . . , (3)

where

R(0)
µν(γ ) ≡ Rµν(γ ),

R(1)
µν(γ, h) ≡ 1

2γ ρτ (hτµ;νρ + hτν;µρ − hρτ ;µν − hµν;ρτ ) ,

R(2)
µν(γ, h) ≡ 1

2

[

1
2hρτ

;νhρτ ;µ + hρτ (hτρ;µν + hµν;τρ − hτµ;νρ

− hτν;µρ) + hτ
ν

;ρ(hτµ;ρ − hρµ;τ )

−
(

hρτ
;ρ − 1

2h;τ
)

(hτµ;ν + hτν;µ − hµν;τ )
]

.

R(3)
µν(γ, h) ≡ 1

4hστ hσρ;µhρ
τ ;ν + . . . . (4)

The semicolons denote covariant differentiation with respect to thebackground
metricγµν , which is also used to raise or lower all indices. Considering relations
(2), the orders of the terms (4) are

R(0)
µν = O(1), εR(1)

µν = O(ǫ−1ε), ε2R(2)
µν = O(ε2), ε3R(3)

µν = O(ǫε3). (5)
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Two limiting cases thus arise naturally. For thestandard linearization
(ε ≪ 1, ǫ = 1) the dominant term ofRµν(g) is R(0)

µν = O(1) which corresponds
to the backgroundγµν [to find, e.g., a vacuum spacetime metricgµν we solve
R(0)

µν(γ ) = 0]. Its first correction representing linearized (purely) gravitational
waves is governed by

R(1)
µν(γ, h) = 0, (6)

which is a dynamical equation for perturbationshµν on the fixed backgroundγµν .
The next termR(2)

µν(γ, h) can then be used to define energy-momentum tensor
of these gravitational waves, but the background metric isnot assumed to be
influenced by it. Improvements to this inconsistency can be obtained by iteration
procedure. More rigorous but somewhat complicated solution to this problem was
recently proposed by Efroimsky [35].

In the high-frequency approximation(ǫ ≪ 1, ε = 1) the dominant term is
R(1)

µν = O(ǫ−1) which gives the wave equation (6) for the perturbationshµν on the
curved backgroundγµν (considering a vacuum full metricgµν). The two terms of
the orderO(1), namelyR(0)

µν andR(2)
µν , arebothused to give the Einstein equation

for the backgroundnon-vacuummetric, which represents the essential influence
of the high-frequency gravitational waves on the background. Of course, to obtain
a consistent solution, one has to use both the wave equationand the Einstein
equation for the background simultaneously.

2.1. Linear Approximation

Interestingly, it follows that the wave equation forhµν , which arises from the
linear perturbation of the Ricci tensor in vacuum forboththe above limiting cases
ε ≪ 1, ǫ = 1, andǫ ≪ 1, ε = 1, is thesameequation (6). In analogy with the
well-known theory of massless spin-2 fields in flat space [4] we wish to impose
two TT gauge conditions,

hµν
;ν = 0, (7)

hµ
µ = 0. (8)

In this gauge we arrive at the following wave equation

♦hµν ≡ hµν
;β

;β − 2R(0)
σνµβ hβσ − R(0)

µσ hσ
ν − R(0)

νσ hσ
µ = 0, (9)

where the operator♦ is the generalization of flat-space d’Alembertian. Contracting
(9) we obtain (hµ

µ);β
;β

= 0, so that the condition (8) is always consistent with (9).
However, if we differentiate♦hµν and use equations (7), (2), we find that

(♦hµν);ν =
(

R(0)
νβ;µ − 2R(0)

µν;β

)

hνβ, where (10)

(♦hµν);ν = O(ǫ−2) ,
(

R(0)
νβ;µ − 2R(0)

µν;β

)

hνβ = O(ǫ). (11)
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Thus, in case of standard linearized waves (ǫ = 1) there is an obvious inconsis-
tency, except for backgrounds with a covariantly constant Ricci tensor (e.g., for
the Einstein spaces). On the other hand, in the high-frequency limit (ε = 1), the
inconsistency between (9) and (7) is extremely small (the left and the right sides of
(10) differ byǫ3 whereǫ ≪ 1). Moreover, for all background metrics ofconstant
curvature the equations arefully consistent. This is an important advantage of
the equation (9) containing also terms of non-dominant order (namely those pro-
portional to the Riemann or Ricci tensors), if compared to other “simpler” wave
equations (e.g.,hµν

;β
;β = 0) for which the left and right sides of (10) generally

differ by only two orders of magnitude.

2.2. Nonlinear Terms and the Effective Energy-Momentum Tensor

Before considering the second-order terms we now extend the formalism
to be applicable to a larger class of spacetimes with (possibly) non-vanishing
energy-momentum tensorTµν . Namely,gµν need not be a vacuum metric (as only
considered in [1]) but it satisfies Einstein’s equations

Rµν(g) = 8π T̃µν(g, ϕ). (12)

Here T̃µν ≡ Tµν − 1
2gµνTβ

β , such thatTµν(g, ϕ) depends on non-gravitational
fieldsϕ and on the full metricgµν but it does notcontain thederivativesof gµν .
Note that this admits as particular cases a presence of electromagnetic field, and
also Einstein spaces wheñTµν = 1

8π
3gµν . Under the assumptions (2) valid for

the decomposition (1) we expand the equation (12) as

R(0)
µν(γ ) + εR(1)

µν(γ, h) + ε2R(2)
µν(γ, h) + . . . =

8π
[

T̃ (0)
µν (γ, ϕ) + ε T̃ (1)

µν (γ, h, ϕ) + ε2 T̃ (2)
µν (γ, h, ϕ) + . . .

]

, (13)

where T̃ (0)
µν (γ, ϕ) ≡ T̃µν(γ, ϕ), and the remaining terms on the right-hand side

are linear and quadratic inh, respectively. The orders of magnitude of the terms
in the expansion of the Ricci tensor have been described above, cf. (5). For the
energy-momentum tensor one obtains

T̃ (0)
µν = O(1), T̃ (1)

µν = O(ǫ), T̃ (2)
µν = O(ǫ2). (14)

For ordinary linearization we thus get the equationsR(n)
µν = 8π T̃ (n)

µν in each order
n = 0, 1, 2, . . . . For the high-frequency approximation we obtain from (13) in
the leading orderO(ǫ−1) the equation (6) which is identical with the wave equa-
tion in the vacuum case. The second-order contributions, that areO(1), represent
an influence of the high-frequency gravitational waves and matter fields on the
background,

R(0)
µν(γ ) − 8π T̃ (0)

µν (γ, ϕ) = −R(2)
µν(γ, h). (15)
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This equation (which in case of a vacuum spacetime reduces to the Isaacson result)
can be rewritten in the form of Einstein’s equation for the background as

G(0)
µν(γ ) − 8π T (0)

µν (γ, ϕ) = −
[

R(2)
µν(γ, h) − 1

2γµν R(2)(γ, h)
]

≡ 8π TGW
µν . (16)

This defines the effective energy-momentum tensorTGW
µν of high-frequency grav-

itational waves.

2.3. Gravitational Waves in the WKB Approximation

In the following we shall restrict ourselves to the Isaacson approxima-
tion (ε = 1, ǫ ≪ 1), i.e. on study of high-frequency gravitational waves on
curved backgrounds. Inspired by the plane-wave solution in flat space, the form
hµν = A eµν exp(i φ) of the solution is assumed. The amplitudeA = O(ǫ) is a
slowly changing real function of position, the phaseφ is a real function with a
large first derivative but no larger derivatives beyond, andeµν is a normalized
polarisation tensor field. The above assumption, introduced in [1], is called the
WKB approximation, or the geometric optics limit [4]. The wave vector normal to
surfaces of constant phase iskµ ≡ φ,µ and the orders of various relevant quantities
are R(0)

µνγ δ = O(1), A,µ = O(ǫ), kµ = O(ǫ−1), andkµ;ν = O(ǫ−1). Substituting
this into the conditions (7), (8), and the wave equation (9) we obtain, in the two
highest orders which are gauge invariant,

kµkµ = 0, kµeµν = 0, kαeµν;α = 0,

eµνeµν = 1, γ µνeµν = 0, (A2kβ);β = 0. (17)

These express that a beam of high-frequency gravitational waves propagate along
rays which are null geodesics with tangentkµ, with parallelly transported polar-
ization orthogonal to the rays. Moreover, using the WKB approximation ofTGW

µν

and the Brill-Hartle averaging procedure [6] (which guarantees the gauge invari-
ance) Isaacson obtained for gravitational waves in the geometric optics limit the
energy-momentum tensor [1]

T H F
µν = 1

64π A
2kµkν . (18)

The energy-momentum tensor of high-frequency waves thus has the form of pure
radiation. This fully agrees with results obtained by alternative techniques [8, 9, 14].

3. EXAMPLES OF HIGH-FREQUENCY GRAVITATIONAL WAVES

Now we present some explicit classes of high-frequency gravitational waves.
These are obtained by the above described WKB approximation method consid-
ering specific families of background spacetimes with a privileged geometry.
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3.1. Non-Expanding Waves

As the background we first consider the Kundt class [19, 28] of non-
expanding, twist-free spacetimes in the form [36]

ds2 = F du2 − 2
Q2

P2
du dv +

1

P2
(dx2 + dy2), (19)

with

P = 1 +
α

2
(x2 + y2),

Q =
[

1 +
β

2
(x2 + y2)

]

e+ C1 x + C2 y,

F = D
Q2

P2
v2 −

(Q2),u
P2

v −
Q

P
H, (20)

whereα, β, andeare constants (without loss of generalitye = 0 ore = 1),C1, C2

andD are arbitrary functions of the retarded timeu, andH (x, y, u) is an arbitrary
function of the spatial coordinatesx, y, and of u.

In particular, these are Petrov typeN (or conformally flat) solutions of
Einstein’s equations with cosmological constant3 when α = −β = 1

63 and
D = −2βe+ C2

1 + C2
2, see e.g. [36–39]. Such metrics represent exact pure grav-

itational waves propagating along principal null direction∂v if H satisfies the
equationP2(H,xx + H,yy) + 2

33 H = 0. However, in our treatment here the func-
tion H doesnot describe exact gravitational waves but rather it characterizes the
influenceof high-frequency perturbations on the background metric, which is as-
sumed to be initially given by (19), (20) withH = 0.

We consider the phase of high-frequency gravitational waves given byφ =
φ(u), and we seek solution in the WKB form, namely

hµν = A eµν exp(i φ(u)), (21)

where the amplitudeA and polarization tensoreµν are functions of the coordinates
{u, v, x, y}. The corresponding wave vector iskµ = (φ̇, 0, 0, 0), where the dot
denotes differentiation with respect tou. Applying now all the equations (17) we
obtain

A = A(u, x, y),

e+
µν =

1
√

2 P2









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1









,
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e×
µν =

1
√

2 P2









0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0









. (22)

The fact that the amplitudeA is independent of the coordinatev expresses
non-expanding character of the waves. The special polarisation tensors, denoted
as + and ×, are analogous to those used in the standard theory of linearized
waves in flat space. A general polarisation is easily obtained by considering
eµν = a e+

µν + b e×
µν , wherea2(u, x, y) + b2(u, x, y) = 1.

Using the Einstein tensor for the metric (19) with the cosmological term
in equations (16) and (18), we determine the reaction of the background on the
presence of the above high-frequency gravitational perturbations, namely

Q

P

[

P2

(

∂2

∂x2
+

∂2

∂y2

)

+
2

3
3

]

H (u, x, y) = 1
4A

2(u, x, y)φ̇2. (23)

Notice thatA = O(ǫ) andφ̇ = O(ǫ−1). Therefore, the influence of high-frequency
gravitational waves on the background, represented by the functionH , is of the
orderO(1). Theseapproximatesolutions can obviously be compared to specific
exactradiative vacuum solutions which are given byH solving the field equation
(23) with a vanishing right-hand side (whenA = 0, i.e. high-frequency perturba-
tion waves are absent).

The above waves are non-expanding with the wave-frontsu = const. being
two-dimensional spaces of constant curvature given byα = 1

63 , cf. (19). For
3 = 0 these are plane-fronted waves, for3 > 0 they are spheres, and for3 < 0
hyperbolical surfaces.

Another interesting subclass of the Kundt spacetimes of the form (19), (20)
are explicit Petrov typeI I (or more special) metrics given byβ = α, e = 1,C = 0
andD = 2(3 − α), namely

ds2 = [ 2(3 − α) v2 − H ] du2 − 2 du dv +
1

P2
(dx2 + dy2). (24)

For H = 0 these are electrovacuum solutions with the geometry of a direct prod-
uct of two 2-spaces of constant curvature, in particular the Bertotti-Robinson,
(anti-)Nariai or Plebański-Hacyan spaces [40–43], see e.g. [44, 36]. Considering
again (21) we obtain the results (22) as in the previous case. However, the reac-
tion of high-frequency waves on the background is now different. It is determined
by the equations (16) and (18) with the energy-momentum tensor consisting of a
cosmological term plus that of a uniform non-null electromagnetic field described
by the complex self-dual Maxwell tensorFµν = 481(m[µm̄ν] − k[µl ν]), where

81 =
√

α − 3
2 ei c, c = const., andm = P ∂ζ̄ , k = ∂v, l = 1

2 F ∂v + ∂u form the
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null tetrad. Straightforward calculation gives

P2

(

∂2

∂x2
+

∂2

∂y2

)

H = 1
4A

2(u, x, y)φ̇2. (25)

This result is analogous to the equation (23), but the present situation is now
more complicated since the background spacetime isnot vacuumbut it contains
electromagnetic field. (In fact, the term with the cosmological constant3 in (23)
has been entirely compensated by this.) Therefore, we have to analyze the pertur-
bation of thecompleteEinstein-Maxwell system, and its consistency.

The Einstein equations in the two highest orders (6) and (16) have already
been solved. We will now demonstrate that the Maxwell equations are also sat-
isfied in the high-frequency limit, namelyFµν

|ν = O(ǫ), where | denotes the
covariant derivative with respect to the full metricgµν . Indeed, using antisymme-
try of Fµν we can writeFµν

|ν = Fµν
, ν + 1

2gαβgαβ,ν Fµν . Considering (2) and the
gauge condition (8) we obtaingαβgαβ,ν = γ αβγαβ,ν − hαβhαβ,ν + O(ǫ2) because
γ αβhαβ,ν − hαβγαβ,ν = (hβ

β)
;ν

− 2hαβγαβ;ν = 0 , so that

Fµν
|ν = Fµν

;ν − 1
2hαβhαβ,ν Fµν + O(ǫ2). (26)

Consequently, if the original background represents an electrovacuum spacetime,
Fµν

;ν = 0, the Maxwell equationsFµν
|ν = O(ǫ) for the full metric are satisfied in

the dominant orderO(1) in the high-frequency limitǫ ≪ 1. In addition, the field
equations are valid also in the next orderO(ǫ) for the new electromagnetic field

F
µν =

(

1 + 1
4hαβhαβ

)

Fµν, (27)

since using (26) we obtainFµν
|ν = O(ǫ2). Starting from an electromagnetic field

Fµν satisfyingFµν
;ν = 0 with respect to the background metricγµν , we can thus

construct the electromagnetic fieldFµν which satisfies the Maxwell equations
Fµν

|ν = O(ǫ2) with respect to the full metricgµν in the presence of high-frequency
gravitational waves. Both the Einstein and Maxwell equations are then satisfied
in the two highest perturbative orders. Interestingly, these results hold for high-
frequency perturbations ofany“seed” electrovacuum background spacetimes.

In particular, if the backgrounds are direct product spacetimes (24) forH = 0
with uniform non-null electromagnetic field81 = const. then high-frequency
gravitational waves (21), (22) introduceH which is given by equation (25). Ac-
cording to (27), the electromagnetic field is perturbed by the term proportional to
hαβhαβ = A2e2i φ = O(ǫ2), see (17), namely

8
g
1 = 81

[

1 + 1
2A

2(u, x, y) e2i φ(u)
]

. (28)

This remains non-null but it is no longer uniform. The full spacetime thus describes
non-uniform, non-null electromagnetic field plus the null field of high-frequency
gravitational waves.
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3.2. Cylindrical Waves

Next we consider the class of cylindrical Einstein-Rosen waves,

ds2 = e2γ−2ψ (−dt2 + dρ2) + e2ψdz2 + ρ2e−2ψdϕ2. (29)

If the functionsψ(t, ρ) andγ (t, ρ) satisfy the corresponding field equations (see,
e.g. [21],[28], or equations (33)-(35) below) these are exact radiative spacetimes of
the Petrov type I. We conveniently define double null coordinatesu = 1√

2
(t − ρ)

andv = 1√
2
(t + ρ); in these coordinates{u, v, ϕ, z} the metric takes the form

ds2 = −2e2γ−2ψdu dv + e2ψdz2 + 1
2(v − u)2e−2ψdϕ2. (30)

We assume this to be the class of background universes into which we wish to in-
troduce high-frequency gravitational waves. We assume againφ = φ(u) implying
the wave vectorkµ = (φ̇, 0, 0, 0), i.e. the WKB perturbation of the form (21). By
applying all the conditions (17) we obtain

A =
U(u)

√
v − u

,

e+
µν =

1
√

2
e−2ψ









0 0 0 0
0 0 0 0
0 0 1

2(v − u)2 0
0 0 0 −e4ψ









,

e×
µν =

1

2
(v − u)









0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0









; (31)

notice thatv − u =
√

2ρ. Thus the perturbative solution is given by

hµν =
U(u)

√
v − u

eµν exp(i φ(u)) . (32)

The back-reaction on the background (contained in a specific modification of
the metric functionsγ andψ) is given by the following equations, cf. (18),

(v − u) ψ2
,u + γ,u = − 1

16(v − u)A2φ̇2, (33)

(v − u) ψ2
,v − γ,v = 0, (34)

ψ,uv −
1

2v − u
(ψ,v − ψ,u) = 0. (35)

Interestingly, this set of equations isconsistent: by differentiating equation (33)
with respect tov, equation (34) with respect tou, and combining them, one obtains



Some High-Frequency Gravitational Waves Related to Exact Radiative Spacetimes 397

(35) provided the amplitudeA(u, v) satisfies the equation

((v − u)A2),v = 0. (36)

However, this is automatically satisfied for the amplitude (31). It is thus quite simple
to introduce gravitational waves in the WKB approximation into the cylindrical
spacetimes (30). If the functionsγ andψ representing the background are solutions
of the vacuum equations [i.e. (33)-(35) with a vanishing right-hand side of (33)]
then for introducing high-frequency gravitational waves it is sufficientjust to alter
the functionγ as

γ (u, v) → γ (u, v) + γ̃ (u), (37)

where

∂γ̃ (u)

∂u
= − 1

16 U
2φ̇2. (38)

In particular, whenψ = 0 = γ the background (29) is a flat Minkowski space. By
assuming non-trivial ˜γ we obtain Petrov typeN spacetime with high-frequency
gravitational waves which have cylindrical wave-fronts. In a general case this per-
turbation is propagating in the background which is the Einstein-Rosen cylindrical
wave of Petrov type I. The effect on background is given by the relation (38) where
U(u) = O(ǫ) is an arbitrary amplitude function.

The above described perturbations depend on the null “retarded” coordinate
u so that the high-frequency gravitational waves areoutgoing(ρ is growing witht ,
on a fixedu). However, since the background metric (30) is invariant with respect to
interchangingu with v, it is straightforward to consider alsoingoingperturbations
by assuming the phase to depend on the “advanced coordinate”v, namely

hµν =
V(v)

√
u − v

eµν exp(i φ(v)). (39)

Then the term proportional toA2φ̇2 will appear on the right-hand side of equation
(34) instead of (33). This results in an interesting possibility tointroduce ingoing
high-frequency gravitational cylindrical waves into the background of outgoing
Einstein-Rosen wavesjust by assuming ˜γ (v) in (37) such that

∂γ̃ (v)

∂v
= + 1

16 V
2φ̇2, (40)

or vice versa.
Moreover, all the above results can further be extended to a class of generalized

Einstein-Rosen (diagonal) metrics [29, 45] which describeG2 inhomogeneous
cosmological models,

ds2 = e2γ−2ψ (−dt2 + dρ2) + e2ψdz2 + t2e−2ψdϕ2. (41)
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If the three-dimensional spacelike hypersurfaces are compact, the corresponding
model is the famous Gowdy universe with the topology of three-torus [27, 29].
In the double null coordinates just one component of the metric is now different
from (30), namelygϕϕ = 1

2(v + u)2e−2ψ(u,v). The only modification of the above
results (in the double null coordinates) consists of replacing the factor (v − u)
with (v + u), and each derivative with respect tou changing sign (e.g.γ,u →
−γ,u or ψ,uv → −ψ,uv). High-frequency gravitational waves in inhomogeneous
cosmologies of the form (41) can thus easily be constructed.

3.3. Expanding Waves

Finally, we assume that the background is an expanding Robinson-Trautman
spacetime. The metric (generally of the Petrov typeI I ) in the standard coordinates
has the form, see e.g. [22, 23, 28, 39],

ds2 = −
(

K − 2r (lnP),u − 2
m

r
−

3

3
r 2

)

du2 − 2dudr +
r 2

P2
(dη2 + dξ2),

(42)
whereK = 1(lnP), 1 ≡ P2( ∂2

∂η2 + ∂2

∂ξ2 ), andm(u). WhenP(u, η, ξ ) satisfies the
Robinson-Trautman equation1K + 12m (lnP),u − 4m,u = 0, the metric (42) is
an exact vacuum solution of the Einstein equations.

In view of the existence of privileged congruence of null geodesics generated
by ∂r we introduce the phaseφ = φ(u) and the wave vectorkµ = (φ̇, 0, 0, 0) of
high-frequency gravitational waves. We again assume the WKB form (21) of the
solution. Applying the equations (17) we obtain

A =
1

r
U (u, η, ξ ),

e+
µν =

1
√

2

r 2

P2









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1









,

e×
µν =

1
√

2

r 2

P2









0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0









. (43)

A general solution has the formhµν = r −1U (u, η, ξ ) eµν exp(i φ(u)), where
U (u, η, ξ ) and φ(u) are arbitrary functions, andeµν = a e+

µν + b e×
µν with

a2(u, η, ξ ) + b2(u, η, ξ ) = 1. Introducing the amplitudesU+ = a U, U× = b U
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for both polarizations, we can write the solution as

hµν =
1

r

[

U+e+
µν + U×e×

µν

]

exp(i φ(u)). (44)

If the wave-surfacesr = const., u = const. with the metricdl2 = P−2(dη2 +
dξ2) are homeomorfic toS2, the waves can be interpreted as “spherical”. In the
asymptotic regionr → ∞ such solutions locally approach plane waves [16].

The reaction of the waves on background is determined by the equations
(16) and (18) withT (0)

µν = − 1
8π

3γµν . From the only nontrivial component we
immediately obtain the following equation

−
∂m

∂u
+ 3m (lnP),u + 1

41K = 1
16[(U+)2 + (U×)2]φ̇2, (45)

where m(u), φ(u), whereas the remaining functions depend on coordinates
{u, η, ξ}. Notice that this isindependentof the cosmological constant3.

The expressions (44),(45) agree with results obtained by MacCallum and
Taub [9] or recently by Hogan and Futamase [16] who used Burnett’s technique
[14]. Our results, which were derived by a straightforward approach, are slightly
more general because they are not restricted to a constant frequencyφ̇ = const.
Particular subcase of the Vaidya metric has already been studied before by Isaacson
[1] and elsewhere [8].

4. CONCLUSIONS

The Isaacson approach to study high-frequency perturbations of Einstein’s
equations was briefly reviewed and compared with the standard weak-field limit. In
our contribution we generalized Isaacson’s method to include non-vacuum space-
times, in particular an electromagnetic field and/or a non-vanishing value of the
cosmological constant3. Then we explicitly analyzed possible high-frequency
gravitational waves in three large families of background universes, namely non-
expanding spacetimes of the Kundt type, cylindrical Einstein-Rosen waves and
related inhomogeneous cosmological models (such as the Gowdy universe), and
the Robinson-Trautman expanding spacetimes. These backgrounds are of various
Petrov types. For example, high-frequency gravitational waves can be introduced
into electrovacuum conformally flat Bertotti-Robinson space, typeD Nariai and
Plebański-Hacyan spaces, their typeN and typeI I generalizations, or into alge-
braically general Einstein-Rosen universes.

For construction of high-frequency gravitational perturbations we have em-
ployed the fact that all these spacetimes admit a non-twisting congruence of null
geodesics. The corresponding tangent vectorskµ are hypersurface orthogonal so
that there exists a phase functionφ which satisfiesφ,µ = kµ. The last equation
in (17) can be put into the formd

dl (lnA) = −2, wherel is the affine parameter,
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and2 = 1
2kµ

;µ is the expansion of the null congruence. This determines the be-
haviour of the amplitudeA in the above spacetimes (22), (31), (43). The remaining
equations (17) enables one to deduce the polarization tensors.

It has been also crucial that all the classes of spacetimes discussed ad-
mit exact solutions with the energy-momentum tensor of pure radiation, i.e.,
Gµν − 8π Tµν = 1

8 A
2kµkν , whereTµν is either constant (representing the cos-

mological constant) or it describes an electromagnetic field. The relation between
high-frequency perturbations and exact radiative solutions of Einstein’s equations
in each class is thus natural. In particular, it is possible to determine explicitly the
reaction of the background on the presence of high-frequency gravitational waves.
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Abstract

We analyze a class of exact type II solutions of the Robinson–Trautman family
which contain pure radiation and (possibly) a cosmological constant. It is shown
that these spacetimes exist for any sufficiently smooth initial data, and that they
approach the spherically symmetric Vaidya–(anti-)de Sitter metric. We also inves-
tigate extensions of the metric, and we demonstrate that their order of smoothness
is in general only finite. Some applications of the results are outlined.

PACS: 04.30.-w, 04.20.Jb, 04.20.Ex

1 Introduction

The classic Vaidya metric [1–4] (see also [5, 6] followed by reprints of the original Vaidya
papers) is a spherically symmetric type D solution of the Einstein equations in the presence
of pure radiation matter field which propagates at the speed of light. In various contexts
this “null dust” may be interpreted as high-frequency electromagnetic or gravitational
waves, incoherent superposition of aligned waves with random phases and polarisations,
or as massless scalar particles or neutrinos. The Vaidya solution depends on an arbitrary
“mass function” m(u) of the retarded time u which characterises the profile of the pure
radiation (it is a “retarded mass” measured at conformal infinity). Various sandwiches and
shells of null matter can thus be constructed that are bounded either by flat (m = 0) or
Schwarzschild-like (m = const 6= 0) vacuum regions. Due to this property such solutions
have been extensively used as models of spherically symmetric gravitational collapse of a
star, as an exterior solution describing objects consisting of heat-conducting matter, as
an interesting toy model for investigation of singularities and their possible removal by
quantum effects, for studies of various formulations of the cosmic censorship conjecture
on both classical and quantum level, process of black-hole evaporation, and for other
purposes (see, e.g., [7–16] for more details and related references).
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In fact, the Vaidya spacetime belongs to a large Robinson–Trautman class of expand-
ing nontwisting solutions [4,17,18]. Various aspects of this family have been studied in the
last two decades. In particular, the existence, asymptotic behaviour and global structure
of vacuum Robinson–Trautman spacetimes of type II with spherical topology were inves-
tigated [19–28], most recently in the works of Chruściel and Singleton [29–31]. In these
rigorous studies, which were based on the analysis of solutions to the nonlinear Robinson–
Trautman equation for generic, arbitrarily strong smooth initial data, the spacetimes were
shown to exist globally for all positive retarded times, and to converge asymptotically to
a corresponding Schwarzschild metric. Interestingly, extension across the “Schwarzschild-
like” event horizon can only be made with a finite order of smoothness. Subsequently,
these results were generalized in [32, 33] to the Robinson–Trautman vacuum spacetimes
which admit a nonvanishing cosmological constant Λ. It was demonstrated that these
cosmological solutions settle down exponentially fast to a Schwarzschild–(anti-)de Sitter
solution at large times u. In certain cases the interior of a Schwarzschild–de Sitter black
hole can be joined to an “external” cosmological Robinson–Trautman region across the
horizon with a higher order of smoothness than in the corresponding case with Λ = 0. For
the extreme value 9Λm2 = 1, the extension is smooth but not analytic (and not unique).
The models with Λ > 0 also exhibit explicitly the cosmic no-hair conjecture under the
presence of gravitational waves. On the other hand, when Λ < 0 the smoothness of such
an extension is lower.

Our aim here is to further extend the Chruściel–Singleton analysis of the Robinson-
Trautman vacuum equation by including matter, namely pure radiation. It was argued
already by Bičák and Perjés [34] that with Λ = 0 such spacetimes should generically
approach the Vaidya metric asymptotically. We will analyze this problem in more detail,
including also the possibility of Λ 6= 0 in which case the Robinson–Trautman spacetimes
containing pure radiation can be shown to approach the radiating Vaidya–(anti-)de Sitter
metric.

2 The metric and field equations

In standard coordinates the Robinson–Trautman metric has the form [4,18,35]

ds2 = −
(

K − 2r(ln P ),u − 2
m

r
− Λ

3
r2

)

du2 − 2dudr + 2
r2

P 2
dζdζ̄ , (1)

where K = ∆(ln P ) with ∆ ≡ 2P 2∂ζ∂ζ̄ being the Gaussian curvature of the 2-surfaces
2P−2dζdζ̄, m(u) is the mass function, and Λ is the cosmological constant. When the
function P (u, ζ, ζ̄) satisfies the fourth-order Robinson–Trautman field equation

∆K + 12m (ln P ),u − 4m,u = 2κ n2 , (2)

the metric describes a spacetime (generally of the Petrov type II) filled with pure radiation
field Tµν = n2(u, ζ, ζ̄) r−2 kµkν , where k = ∂r is aligned along the degenerate principal null
direction (we use the convention Gµν + Λgµν = κ Tµν). In particular, vacuum Robinson–
Trautman spacetimes are given by n = 0, in which case m can be set to a constant by a
suitable coordinate transformation [4]. Vacuum spacetimes (1) — possibly with a nonvan-
ishing Λ — thus satisfy the equation 12m (ln P ),u = −∆K. These include the spherically
symmetric Schwarzschild–(anti-)de Sitter solution which corresponds to P0 = 1 + 1

2
ζζ̄.

Indeed, replacing the complex stereographic coordinate ζ with angular coordinates by
ζ =

√
2 eiφ tan(θ/2), we obtain 2P−2

0 dζdζ̄ = dθ2 + sin2 θ dφ2, and K0 = ∆0 ln(P0) = 1.
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u < 0u = 0 u I+
u = u 0

r =1
r = 0
u > 0 u < 0

u I+u > 0 r =1

r = 0
u = u 0

u = 0

Figure 1: Schematic conformal diagrams of the Robinson–Trautman exact spacetimes
which exist for any smooth initial data prescribed on u0. Pure radiation field is present in
the shaded region u < 0. Near u = 0 the solutions approach the Vaidya metric, and can
be extended to flat Minkowski region u > 0. Thick line indicates the curvature singularity
at r = 0 whereas double line represents future conformal infinity I+ at r = ∞ (Λ = 0 is
assumed). The global structure depends on the value of the parameter µ of the linear mass
function (8): left diagram corresponds to µ > 1/16, the right one applies when µ ≤ 1/16.

Here we will restrict ourselves to nonvacuum cases for which the dependence of the
mass function m(u) on the null coordinate u is only caused by a homogeneous pure
radiation with the density n2(u) r−2. When the mass function m(u) is decreasing, the
field equation (2) can be naturally split into the following pair,

∆K + 12m(u) (ln P ),u = 0 , (3)

−2 m(u),u = κ n2(u) . (4)

In fact, it was demonstrated in [34] that such a separation can always be achieved using
the coordinate freedom. It is then possible to reformulate equation (3) by introducing
a u-dependent family of smooth 2-metrics gab on the submanifold r = const, u = const,
such that gab = f(u, ζ, ζ̄)−2g0

ab, where g0
ab(ζ, ζ̄) is the metric on a 2-dimensional sphere S2.

Since gab is of the form 2P−2dζdζ̄ in our case, we can write

P = fP0 , P0 = 1 + 1
2
ζζ̄ , (5)

and equation (3) becomes
∂f

∂u
= − 1

12m(u)
f ∆K , (6)

where ∆ is the Laplace operator associated with the metric gab. Denoting ∆0 and K0 = 1
as the corresponding quantities related to g0

ab , we obtain

∆ = f 2∆0 , K = f 2(1 + ∆0(ln f)) . (7)
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3 Linear mass function

Let us first consider the simplest choice of m(u) which, in fact, has been widely used in
literature (see e.g. [7,9,36]): we will assume that the mass function is a linearly decreasing
positive function

m(u) = −µu, µ = const > 0 , (8)

on the interval [u0, 0]. Notice that for (8) the pure radiation field is uniform because equa-

tion (4) implies n =
√

2µ/κ = const, independent of the retarded time u. The constant

value u0 < 0 localises an initial null hypersurface (that extends between the curvature
singularity at r = 0 and the conformal infinity r = ∞) on which an arbitrary sufficiently
smooth initial data given by the function

f0(ζ, ζ̄) = f(u = u0, ζ, ζ̄) , (9)

are prescribed, see Fig. 1.

3.1 Existence of the solutions

Now, the idea is to employ the Chruściel–Singleton results [29–31] concerning the analysis
of the Robinson–Trautman vacuum equation, in particular the existence and asymptotic
behaviour of its solutions. In the vacuum case m in equation (3) is constant, and the
solution f(u, ζ, ζ̄) of the characteristic initial value problem (9) exists and is unique (in
spite of the singularity at r = 0). In the presence of pure radiation given by (8) it is
possible to “eliminate” the variable mass function from the Robinson–Trautman field
equation (6) mathematically by a simple reparametrisation

ũ = −µ−1 ln(−u) , (10)

cf. [34]. Indeed, equation (6) is then converted to

∂f̃

∂ũ
= − 1

12
f̃ ∆̃K̃ , (11)

where f̃(ũ, ζ, ζ̄) = f(u(ũ), ζ, ζ̄), K̃ = f̃ 2(1 + ∆0 ln(f̃)), and ∆̃ = f̃ 2∆0. Notice that the
transformation (10) moves the hypersurface u = 0, on which the mass function m(u)
reaches zero, to ũ = +∞.

Chruściel [30] derived the following asymptotic expansion (as ũ → ∞) for the func-
tion f̃ satisfying the evolution equation (11) for any smooth initial data f̃0 = f0 on
ũ0 = −µ−1 ln(−u0), namely

f̃ = 1 + f1,0 e−2ũ + f2,0 e−4ũ + · · · + f14,0 e−28ũ

+f15,1 ũ e−30ũ + f15,0 e−30ũ + · · · (12)

=
∞
∑

i=0

Ni
∑

j=0

fi,j ũj e−2iũ ,

where fi,j are smooth functions on S2 such that fi,j = 0 for j > 0, i ≤ 14. The function f̃
thus exists and converges exponentially fast to 1, which means physically that the radia-
tive Robinson–Trautman vacuum spacetimes approach asymptotically the Schwarzschild–
(anti-)de Sitter solution as ũ → ∞, see relation (5). In our case of pure radiation field (8)

4



we employ the transformation (10) on expression (12) to obtain the following asymptotic
expansion of f as u → 0−,

f = 1 + f1,0 (−u)2/µ + f2,0 (−u)4/µ + · · · + f14,0 (−u)28/µ

−µ−1f15,1 ln(−u) (−u)30/µ + f15,0 (−u)30/µ + · · · (13)

=
∞
∑

i=0

Ni
∑

j=0

fi,j [−µ−1 ln(−u)]j (−u)2i/µ .

As a result, for the initial data (9) the Robinson–Trautman type II spacetimes which
contain uniform pure radiation field with the linear mass function (8) do exist in the
whole region u0 ≤ u < 0. It is also obvious that the function f approaches 1 as u → 0−
(where also m(u) → 0) according to (13). In other words, these spacetimes approach the
spherically symmetric Vaidya–(anti-)de Sitter metric near u = 0.

The global structure of such spacetimes is schematically indicated on Fig. 1. In fact,
there are two possibly different conformal diagrams depending on the value of µ: for
µ > 1/16 there is a white hole singularity at r = 0, for µ ≤ 1/16 there is also a naked
singularity, see e.g. [9,13,16,36] for more details. At u = 0 all of the mass m(u) is radiated
away, and we can attach Minkowski space (de Sitter space when Λ > 0, anti-de Sitter when
Λ < 0; the presence of the cosmological constant would change the character of conformal
infinity I which would become spacelike or timelike, respectively) in the region u > 0 along
the hypersurface u = 0. We will now investigate the smoothness of such an extension.

3.2 Extension of the metric across u = 0

It follows from (13) that the smoothness of f on u = 0 is only finite. Depending on the
value of µ two different cases have to be discussed separately: 2/µ is an integer, and 2/µ
is a real non-integer positive number.

When 2/µ is an integer then due to the presence of the ln(−u) term associated with
f15,1 6= 0 the function f is of the class C(30/µ)−1. For µ very small, the integer number
(30/µ) − 1 is large so that f becomes smoothly extendable to 1 across u = 0 as µ → 0.
This represents a naked-singularity Robinson–Trautman spacetime (see the right part of
Fig. 1) unless µ = 0 which gives flat space everywhere. In the limiting case µ = 1/16 the
function f is of the class C479. For the (white hole) Robinson–Trautman spacetimes given
by µ > 1/16 the smoothness is lower. However, it is always at least C14 because µ ≤ 2 in
this case.

In the generic case when 2/µ is not an integer the function f is only of the class C{2/µ},
where the symbol {x} denotes the largest integer smaller than x. Again, with µ → 0 the
function f becomes smoothly extendable. For µ < 1/16 the function f is at least of the
class C32, for µ > 2 it is not even C1 but it remains continuous.

To investigate further the smoothness of the metric when approaching the hypersur-
face u = 0− which is the analogue of the Schmidt–Tod boundary of vacuum Robinson–
Trautman spacetimes [25, 30] we should consider the conformal picture using suitable
double-null coordinates. Such Kruskal-type coordinates for the Vaidya solution with lin-
ear mass function (8) were introduced by Hiscock [7–9], see also [16, 36], and we will use
this transformation only to replace the coordinate r since the null coordinate u is already
appropriate. Introducing a new coordinate w by

dw =
du

u
− 2dz

z(2µ z2 − z + 2)
, where z = −u

r
, (14)
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we put the Robinson–Trautman metric with linear mass function into the form

ds2 = −
(

K − 1 − 2
f,u

f
r

)

du2

−
(

2r + u + 2µ
u2

r

)

dudw + 2
r2

P 2
dζdζ̄ , (15)

where r(u,w). For the pure Vaidya metric characterized by f = 1 and K0 = 1 the first
term vanishes identically so that the coordinates of (15) are indeed the Kruskal-type
coordinates for the Vaidya spacetime with a linear mass function.

The smoothness of a general Robinson–Trautman metric (15) depends only on the
smoothness of the metric coefficients guu and gζζ̄ (containing the function f) since the
coefficient guw tends to −r as u → 0. The smoothness of gζζ̄ (for any finite r) and of K is
the same as of f , see (7). The function f,u/f is evidently one order less smooth than f .
Consequently, for 2/µ being integer or non-integer number, the metric (15) is of the class
C(30/µ)−2 or C{2/µ}−1, respectively. We again observe that the spacetimes approaching
the linear Vaidya metric with naked singularity (i.e., for small values of the parameter µ)
possess higher order of smoothness at u = 0.

One might be worried about the invariance of our results, namely with respect to a
rescaling of the null coordinate u(û) leading to a different smoothness of the function f
and of the metric. In order to change the smoothness on the hypersurface u = 0 such
rescaling must have a singular character there. But this would lead to a degeneracy of the
metric coefficient gûw of the Vaidya metric, which is forbidden. Consequently, the above
results are in this sense unique.

We would like to obtain analogous results concerning smoothness of the extension also
for a non-zero value of the cosmological constant Λ. Unfortunately, as far as we know,
there is no explicit transformation of the Vaidya–de Sitter metric to the Kruskal-type
coordinates even for the linear mass function (contrary to the Schwarzschild–de Sitter
case [33]). However, it is possible to start with the Vaidya–de Sitter metric

ds2 = −h(u, r) du2 − 2dudr + r2dΩ2 , (16)

where h(u, r) = 1 + 2µu r−1 − Λ
3
r2, and perform a coordinate transformation

dw = g du + 2
g

h
dr , (17)

where g(u, r) is some function. We arrive at the double-null form for the metric

ds2 = −h

g
dudw + r2(u,w) dΩ2 . (18)

Of course, we have to ensure that dw in (17) is a differential of the coordinate w. The
integrability condition (d2w = 0) gives the following quasilinear PDE,

h2∂g

∂r
− 2h

∂g

∂u
+ 4

µ

r
g = 0 , (19)

for the undetermined function g, which is difficult to solve analytically. The method of
characteristic curves leads to the first-order ODE of the Abel type which has not yet
been solved, but the existence of its solution is guaranteed. [It is possible to apply the
perturbative approach starting from the solvable case of the de Sitter metric (µ = 0) and
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then linearise the PDE in the parameter µ. The result, however, can not be presented
in a useful closed form.] For our purposes it suffices to use a general argumentation:
the coordinate u is already suitably compactified and we are only determining the com-
plementary null coordinate w to obtain the Vaidya–de Sitter metric in the Kruskal-type
coordinates (which is smooth on u = 0). The corresponding Robinson–Trautman metric
in these coordinates differs only by the term guu(u, r, ζ, ζ̄) du2 (which is absent in the
Vaidya–de Sitter case in the double null coordinates), and by a different metric coefficient
gζζ̄ = r2f−2P−2

0 , where r(u,w) is finite and smooth when approaching the hypersurface
u = 0. The smoothness is thus not affected by the specific transformation (17) and it
is the same as for the vanishing cosmological constant. This is different from vacuum
spacetimes with m = const 6= 0 studied in [32,33] because in the present case m → 0 near
u = 0, and the influence of Λ on the smoothness becomes negligible.

4 General mass function

The results obtained above can be considerably generalized. Inspired by a similar idea
outlined in [34] we may consider a reparametrisation on the null coordinate u by

ũ = γ(u) , (20)

where γ is an arbitrary continuous strictly monotonous function. We start with the
evolution equation (11) for which the existence and uniqueness of solutions has been
proven, and their general asymptotic behaviour (12) has been demonstrated. Now, by
applying the substitution (20) in equation (11) we obtain

∂f

∂u
= − γ̇

12
f ∆K , (21)

(where the dot denotes a differentiation) which is the evolution equation for the function
f(u, ζ, ζ̄). This is exactly the Robinson–Trautman equation (6) for the mass function

m(u) =
1

γ̇(u)
. (22)

For a given smooth initial data on u0 there thus exists the Robinson–Trautman spacetime
(1), including the cosmological constant Λ, with the mass function (22). To obtain a
positive mass we consider a growing function γ(u). Considering (4) this corresponds to a
universe filled with homogeneous pure radiation

n2(u) =
2

κ

γ̈

γ̇2
. (23)

For consistency the function γ must be convex. An asymptotic behaviour of the function
f as γ(u) → ∞ is easily obtained from the expansion (12) by substituting relation (20).

In particular, the linear mass function (8) discussed above is a special case of (22) for
the transformation (20) of the form (10). More general explicit solutions can be obtained,
e.g., by considering the power function

γ(u) = (−u)−p , p > 0 , (24)

which gives

m(u) =
1

p
(−u)1+p , n2(u) =

2(p + 1)

κp
(−u)p . (25)
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Both functions m and n approach zero as u → 0. Due to the theorems mentioned above,
there exist Robinson–Trautman type II spacetimes in the region u < 0 which approach
the spherically symmetric Vaidya–(anti-)de Sitter metric as u → 0− with the mass func-
tion and pure radiation given by (25). The asymptotic behaviour of such solutions is
determined by expression (5) with

f = 1 +
∞
∑

i=1

Ni
∑

j=0

fi,j (−u)−jp exp
[

−2i(−u)−p
]

, (26)

where fi,j = 0 for j > 0 if i ≤ 14. Interestingly, the function f is now smooth on u = 0
for any power coefficient p, but this still does not guarantee that the extension into flat
region u > 0 is analytic (see [33] for a similar situation).

Another simple explicit choice is

γ(u) = −M−1 ln [sinh(−u)] , M > 0 , (27)

which implies (see also [16])

m(u) = M tanh(−u) , n2(u) =
2M

κ cosh2 u
. (28)

In the region u < 0 the mass function monotonically decreases from M to zero, while the
pure radiation field grows from zero to the value 2M/κ as u → 0. Let us note that in this
case the integrated radiation density is finite on the interval (−∞, 0),

∫ 0
−∞ n2(u) = 2M/κ.

The expansion near u = 0− is

f = 1 +
∞
∑

i=1

Ni
∑

j=0

fi,j (−M−1 ln [sinh(−u)])j sinh2i/M(−u) . (29)

If 2/M is an integer then the function f belongs to the class C(30/M)−1, otherwise it is of
the class C{2/M}.

5 Possible modifications and applications

The Robinson–Trautman pure radiation solutions in the region u0 ≤ u ≤ 0 approach-
ing the Vaidya metric near u = 0, which can be extended (albeit non-smoothly) to flat
Minkowski space in the region u ≥ 0 as in Fig. 1, may be used for construction of various
models of radiative spacetimes. For example, it is natural to further extend the solution
“backwards” into the region u1 < u ≤ u0 by the Robinson–Trautman vacuum solution
with a constant mass m0 = m(u0), such that the function f is continuous on u0. This is
shown in Fig. 2. In such a case the spacetime may describe the process of “evaporation”
of a white hole (with a different character of the singularity at r = 0 when µ ≤ 1/16) with
its mass decreasing from the value m0 to zero. Let us emphasize that the region u < u0

does not represent the Schwarzschild solution because the spacetime is not spherically
symmetric there (f 6= 1). In fact, this is the region where the original Chruściel theorems
on the behaviour of the Robinson–Trautman vacuum spacetimes with constant mass ap-
ply (cf. (11), (12)). However, the spacetime in this region can not be extended up to the
past conformal infinity I− because the metric function f diverges as u → −∞.

In the presence of the cosmological constant Λ one obtains a family of exact spacetimes
that describe evaporation of a white hole in the (anti-)de Sitter universe. In this case the
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u < 0u = 0 u I+u > 0 r =1
r = 0 u = u 0 u = u 1

u = 0u < 0 u = u 0
u I+u > 0 r =1

r = 0 u = u 1
Figure 2: Possible extensions of the Robinson–Trautman radiative spacetimes into the
region u < u0. Pure radiation is present only in the shaded region, everywhere else it is a
vacuum solution. For u ∈ (u1, u0) the mass function is constant, m(u0) = −µu0, but the
spacetime is not spherically symmetric — it is not the Schwarzschild solution (µ > 1/16
on the left, µ ≤ 1/16 on the right).

schematic conformal diagram on Fig. 2 has to be modified in such a way that for all values
of u the conformal infinity I+ becomes timelike (for Λ > 0) or spacelike (for Λ < 0).

Another possible modification is to consider the “advanced” form of the spacetimes
(which describes an ingoing flow) rather than the “retarded” form (corresponding to
outgoing flow) employed above (see, e.g., [13] for more details). This time-reversed form
is obtained formally by a simple substitution u → −v in the metrics and corresponding
functions. The Robinson–Trautman metric thus reads

ds2 = −
(

K + 2r(ln P ),v − 2
m

r
− Λ

3
r2

)

dv2 + 2dvdr + 2
r2

P 2
dζdζ̄ , (30)

where m(v) is an increasing mass function in v ∈ [0, v0]. This is joined with flat Minkowskian
region v < 0, and extended to the region v ≥ v0 by the corresponding Robinson–Trautman–
(anti-)de Sitter black hole vacuum solution, see Fig. 3. It is a non-spherical generalization
of the gravitational collapse of a shell of null dust forming a naked singularity [9,37,38] —
in these works the mass function was taken to be m(v) = µ v (with m(v) = 0 for v ≤ 0,
and m(v) = M = µ v0 for v ≥ v0). The metric function P is now given by P = fP0 where
f is analogous to (13),

f =
∞
∑

i=0

Ni
∑

j=0

fi,j

(

−µ−1 ln v
)j

v2i/µ , (31)

so that the smoothness of the metric on the boundary v = 0 depends on the parameter µ.
For v ∈ (v0, v1) the spacetime is vacuum but not spherically symmetric. The metric
diverges as v → ∞. Our results can thus be interpreted in such a way that — at least
within the Robinson–Trautman family of solutions — the model [9] of collapse to a naked
shell-focusing singularity which is based on the spherically symmetric Vaidya metric is
not stable against perturbations.
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v > 0v = 0 vv < 0 r =1
r = 0 v = v0I�

v = v1
v = 0 v > 0 v = v0

vv < 0 r =1

r = 0
I�
v = v1

Figure 3: Time-reversed version of Fig. 2 represents the “advanced” form of the Robinson–
Trautman spacetimes (30) which describes an ingoing flow of radiation.

6 Concluding remarks

In our contribution we have analyzed exact solutions of the Robinson–Trautman class
which contain homogeneous pure radiation and a cosmological constant. This is a natural
extension of previous works [19–34] on properties of vacuum spacetimes of this family.
We have demonstrated that these solutions exist for any smooth initial data, and that
they approach the spherically symmetric Vaidya–(anti-)de Sitter metric. It generalizes
previous results according to which vacuum Robinson–Trautman spacetimes approach
asymptotically the spherically symmetric Schwarzschild–(anti-)de Sitter metric. We have
investigated extensions of these solutions into Minkowski region, and we have shown that
its order of smoothness is in general only finite. Finally, we suggested some applications
of the results. For example, it follows that the model of gravitational collapse of a shell
of null dust diverges as v → ∞ which indicates that investigations of such process based
on the spherically symmetric Vaidya metric are, in fact, not stable against “non-linear
perturbations”, at least within the Robinson–Trautman family of exact solutions.
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[32] J. Bičák and J. Podolský, Phys. Rev. D 52, 887 (1995).
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