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Nonlinear problems in optimization

● Nonlinear problems are solved
as a sequence of its local linear approximations.

● Order of convergence (p, linear, quadratic, ...) is determined as a limit of
a locally evaluated decrease of the error. Convergence is viewed
asymptotically. The approach is relevant for evaluation of approximation
error in practical computations.

● Computational kernels use efficient solvers for linear algebraic systems
A x = b . Sometimes they aim at highly accurate approximate solution
xn , which is very rare in solving linear algebraic systems arising from
discretized integral or differential equations.
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Classical linear iterative solvers

Linear stationary iterative methods (Jacobi, Gauss-Seidel, SOR, SSOR),
semiterative methods (Chebyshev) and also the steepest descent method
for minimizing of quadratic functionals fit within the locally-based
asymptotic description frame.

● Construction of the k-th iteration is based on local information (in the
Chebyshev method on an estimate of the edges of the spectrum).

● Rate of convergence is described via the asymptotic convergence
factors (which means linearization at infinity). The description is
independent of the right hand side and initial approximation.

● Apart from a possible transient phase, their behaviour is
essentially linear. An example - steepest descent:

‖x − xk‖A ≤
(

κ − 1

κ + 1

)k

‖x − x0‖A .
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Krylov subspace methods

Construction of iterations is in Krylov subspace methods based from the
first step on a very complex information about the operator A and its
relationship with the right hand side b and the initial approximation x0 .
The finite termination property i.e. global information is present in
construction of each iteration. As a consequence, no meaningful
asymptotic, no meaningful linearized description can be used
(apart from uninteresting cases).

Identification of the conjugate gradients rate of convergence with the
linear bound of Meinardus (1963)

‖x − xk‖A ≤ 2

(√
κ − 1√
κ + 1

)k

‖x − x0‖A ,

which is still frequent in the literature, illustrates the persisting locally
linearized view which does not consider the fundamental difference
between the Krylov subspace and classical iterative methods.
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Historical remark

1950 - Iterative methods for elliptic PDE
- Ph.D. Thesis by D. Young at Harvard (published in 1954)

1951, 1952 - Lanczos algorithm, conjugate gradient method
by C. Lanczos, M. Hestenes and E. Stiefel

1962 - Book Matrix Iterative Analysis by R. Varga

1971 - Book Iterative methods by D. Young

1971 - Lecture of J. Reid in Dundee (published in 1971)

1971 - Ph.D. Thesis of C.C. Paige at the University of London
(published in 1972, 1976 and 1980)
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Historical remark (cont.)

● Classical iterative methods naturally responded to finite difference
schemes used in discretization of PDE problems which produced
banded matrices with nice structure and, in the SPD case, close to
homogeneous spectra.

● The mathematical beauty and success of the analysis by Young and
Varga may have paradoxically decreased an interest in later
analysis of Krylov subspace methods, which is based on different
principles and techniques. Though the analysis of classical iterative
methods is a part of the common knowledge in computational
mathematics, the modern analysis of Krylov subspace methods
developed in the last decades is much less known (which is true
even within the matrix computation community).
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Projections on Krylov subspaces

A x = b, A ∈ R
N×N , r0 = b − Ax0

An xn = bn

Here xn approximates the solution x using the projection onto low
dimensional subspaces

Kn(A, r0) ≡ span {r0, Ar0, · · · , An−1r0}
.
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Nonlinearity

The projection process using Krylov subspaces is highly nonlinear in A
and r0 .

xn ∈ Kn(A, r0) ≡ span {r0, Ar0, · · · , An−1r0} .

Krylov subspaces accumulate the dominant information of A with respect
to r0 . Unlike in the power method for computing the single dominant
eigenspace, here all the information accumulated along the way is used,
see Parlett (1980), Example 12.1.1.

The idea of projections using Krylov subspaces is in a fundamental way
linked with the problem of moments.

The story goes back to Gauss (1814).
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Outline

1. Krylov subspace methods as the problems of moments

2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. CG in finite precision arithmetic

5. Spectral information and convergence of GMRES

6. MGS GMRES is normwise backward stable
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1. Krylov subspace methods as the problems of moments
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1 : Matching moments

Consider a non-decreasing distribution function ω(λ), λ ≥ 0 with the
moments

ξk =

∫ ∞

0

λk dω(λ) , k = 0, 1, . . . .

Find the distribution function ω(n)(λ) with n points of increase λ
(n)
i

which matches the first 2n moments for the distribution function ω(λ) ,

∫ ∞

0

λk dω(n)(λ) ≡
n

∑

i=1

ω
(n)
i (λ

(n)
i )k = ξk, k = 0, 1, . . . , 2n − 1 .
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1 : Gauss-Christoffel quadrature

Clearly,

∫ ∞

0

λk dω(λ) =

n
∑

i=1

ω
(n)
i (λ

(n)
i )k , k = 0, 1, . . . , 2n − 1

represents the n-point Gauss-Christoffel quadrature, see

C. F. Gauss, Methodus nova integralium valores per approximationem
inveniendi, (1814)

C. G. J. Jacobi, Über Gauss’ neue Methode, die Werthe der Integrale
näherungsweise zu finden, (1826)

With no loss of generality we assume ξ0 = 1 .
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1 : Stieltjes recurrence

Let p1(λ) ≡ 1, p2(λ), . . . , pn+1(λ) be the first n + 1 orthonormal

polynomials corresponding to the distribution function ω(λ) .

Then, writing Pn(λ) = (p1(λ), . . . , pn(λ))T ,

λ Pn(λ) = Tn Pn(λ) + δn+1 pn+1(λ) en

represents the Stieltjes recurrence (1883-4), with the Jacobi matrix

Tn ≡















γ1 δ2

δ2 γ2
. . .

. . .
. . . δn

δn γn















, δl > 0 .
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1 : Matrix computation: Lanczos ≡ Stieltjes

In matrix computations, Tn results from the Lanczos process (1951)
applied to Tn starting with e1 . Therefore p1(λ) ≡ 1, p2(λ), . . . , pn(λ)
are orthonormal with respect to the inner product

(ps, pt) ≡
n

∑

i=1

|(z(n)
i , e1)|2 ps(θ

(n)
i ) pt(θ

(n)
i ) ,

where z
(n)
i is the orthonormal eigenvector of Tn corresponding to the

eigenvalue θ
(n)
i , and pn+1(λ) has the roots θ

(n)
i , i = 1, . . . , n .

Consequently,

ω
(n)
i = |(z(n)

i , e1)|2 , λ
(n)
i = θ

(n)
i ,

Golub and Welsh (1969), . . . . . . . . . , Meurant and S (2006).
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1 : Model reduction via matching moments I

Polynomial formulation:

∫ ∞

0

f(λ) dω(λ) ≈
n

∑

i=1

ω
(n)
i f(λ

(n)
i ) ,

where the reduced model given by the distribution function with n points
of increase ω(n) matches the first 2n moments

∫ ∞

0

λk dω(λ) =
n

∑

i=1

ω
(n)
i (λ

(n)
i )k , k = 0, 1, . . . , 2n − 1 .
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1 : Linear algebraic equation

Given Ax = b with an SPD A ∈ R
N×N , r0 = b − Ax0, w1 = r0/‖r0‖ .

Assume, for simplicity of notation, dim(Kn(A, r0)) = n .

Consider the spectral decomposition

A = S diag(λi) ST ,

where for clarity of exposition we assume that the eigenvalues are distinct,

0 < λ1 < . . . < λN , S = [s1, . . . , sN ] .

A and w1(b, x0) determine the distribution function ω(λ) with
N points of increase λi and weights ωi = |(si, w1)|2 , i = 1, . . . , N .
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1 : Distribution function ω(λ)

...

0

1

ω1

ω2

ω3

ω4

ωN

ζ λ1 λ2 λ3
. . . . . . λN ξ
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1 : Conjugate gradients (CG) for Ax = b

‖x − xn‖A = min
u∈ x0+Kn(A,r0)

‖x − u‖A

with the formulation via the Lanczos process, w1 = r0/‖r0‖ ,

A Wn = Wn Tn + δn+1wn+1e
T
n , Tn = WT

n (A) A Wn(A) ,

and the CG approximation given by

Tn yn = ‖r0‖e1 , xn = x0 + Wn yn .

In terms of projections

Kn(A, r0) = R(Wn) , rn = (−1)n‖rn‖wn+1 ⊥ R(Wn) .
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1 : Alternative descriptions

● Stay with A, b, r0, w1 and work with the matrix formulation using the
Lanczos process (CG) applied to A with w1 .

● Using the basis of eigenvectors S , the matrix formulation reduces to
the mathematically equivalent polynomial formulation, Lanczos (CG)
reduces to the Stieltjes process applied to the distribution function ω(λ) .

In both descriptions the n-th step gives the Jacobi matrix Tn and the
distribution function ωn(λ) .

The relationship was pointed out by Hesteness and Stiefel (1952), . . .
nice Ph.D. Thesis by Kent (1989, Stanford), book by B. Fischer (1996),
paper by Fischer and Freund (1992).
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1 : CG ≡ matrix formulation of the Gauss Q

Ax = b , x0 −→
∫ ξ

ζ

f(λ) dω(λ)

↑ ↑

Tn yn = ‖r0‖ e1 ←→
n

∑

i=1

ω
(n)
i f

(

θ
(n)
i

)

xn = x0 + Wn yn

ω(n)(λ) −→ ω(λ)
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1 : Model reduction via matching moments II

Matrix formulation:

∫ ∞

0

λk dω(λ) =

n
∑

i=1

ωj (λj)
k = wT

1 Ak w1 ,

n
∑

i=1

ω
(n)
i (λ

(n)
i )k =

n
∑

i=1

ω
(n)
i (θ

(n)
i )k = eT

1 T k
n e1 .

matching the first 2n moments therefore means

wT
1 Ak w1 ≡ eT

1 T k
n e1 , k = 0, 1, . . . , 2n − 1 .
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1 : Equivalent Vector moment problem

Find a linear SPD operator An on Kn(A, r0) such that

An w1 = A w1 ,

An (A w1) ≡ A2
n w1 = A2w1 ,

...

An (An−2w1) ≡ An−1
n w1 = An−1w1 ,

An (An−1w1) ≡ An
n w1 = Qn (Anw1) ,

where Qn projects onto Kn orthogonally to Kn .



Z. Strakoš 24

1 : Literature

Vorobyev (1958 R.), Chapter III, (1965 E.)

with references to Lanczos (1950, 1952), Hestenes and Stiefel (1952),
Ljusternik (1956 R., Solution of problems in linear algebra by the method
of continued fractions). It has been used and popularized by Brezinski
(1997), see also Kent (1989).

Connections to continued fractions and Padé approximation, qd and LR
algoritms were developed by Stiefel (1958), Rutishauser (1954, 1959),
Henrici (1967), Sack and Donovan (1972), . . .

Development towards the applications in dynamical systems and control
(partial realization problem) in Gragg (1972), Grag (1974), Gragg and
Lindquist (1983), Gallivan, Grimme and Van Dooren (1994), Feldman and
Freund (1995), Grimme (1997, Ph.D. Thesis, UIUC), . . .

A nice survey given at the Lanczos Centenary Conference
by M. Gutknecht (1993), published (1994).
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1 : Literature (cont.)

Proofs of results related to moments are in the literature typically based
on factorizations of the matrix of moments, see Golub and Nash (1969),
Dahlquist, Golub and Nash (1978), . . . , Kent(1989), . . . , which is also
true for the recent comprehensive description of matching moment
techniques in dynamical systems and control by Antoulas (2005).

Moment matching techniques has been used (with relationship to
orthogonal polynomials, Pade and continued fractions) for decades in
computational physics and in computational chemistry, for a remarkable
early work see Gordon (1968).

Gauss quadrature interpretation related to the nonsymmetric Lanczos
process and to the Arnoldi process was given by Freund and Hochbruck
(1993), motivated by the very insightful work on the Hermitian Lanczos
process by Fischer and Freund (1992). Interpretation of the nonsymmetric
moment matching as a Gauss quadrature in the complex plane was given
by Saylor and Smolarski (2001), with references to application in inverse
scattering problems in electromagnetics by Warnick (1997), . . .



Z. Strakoš 26

1 : Proof using Vorobyev moment problem

The elegant formulation of the Vorobyev moment problem gives proofs
without using moment matrices or quadrature formulations. This allows
straightforward generalizations to nonsymmetric cases (presented later).
By construction,

wT
1 Ak w1 = wT

1 Ak
n w1 , k = 1, . . . , n − 1 .

Since Kn(A, w1) = span{w1, . . . , An−1w1} ,

Qn (Ak w1) − Ak
n w1 = Qn (Ak w1 − Ak

n w1) = 0

gives

wT
1 Ak w1 = wT

1 Ak
n w1 , k = 0, 1, . . . , 2n − 1 .
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1 : Proof using Vorobyev m. p. (cont.)

With the restriction onto Kn(A, w1) , An is uniquely determined by its
action on n basis vectors ( Qn leaves the vectors from Kn(A, w1)
unchanged)

An (Aj−1w1) = (Qn A) (Aj−1w1) , j = 1, . . . n .

Consequently, using the ON basis Wn with Qn = WnWT
n ,

An = Qn A = WnWT
n A ,

Ak
n = Wn (WT

n A Wn)k−1 WT
n A = Wn T k−1

n WT
n A

which finally gives

wT
1 Ak w1 = wT

1 Ak
n w1 = eT

1 T k
n e1 , k = 0, 1, . . . , 2n − 1 .
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1 : Nonsymmetric Lanczos

Given a nonsingular A ∈ R
N×N , v ∈ R

N , w ∈ R
N , vT w = 1 .

The nonsymmetric Lanczos algorithm can be written in the form

A Wn = Wn Tn + δn+1 wn+1 eT
n ,

AT Vn = Vn TT
n + βn+1 vn+1 eT

n ,

V T
n Wn = In , Tn = V T

n (A, v1, w1) A Wn(A, v1, w1) .

We assume that the algorithm does not break down
in steps 1 through n .
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1 : Nonsymmetric Lanczos (cont.)

Here

Tn ≡















γ1 β2

δ2 γ2
. . .

. . .
. . . βn

δn γn















, βl > 0, δl 6= 0 ,

The columns of Wn form a basis of Kn(A, w1) , while the columns of
Vn a basis of Kn(AT , v1) . Since V T

n Wn = In the oblique projector
onto Kn(A, w1) orthogonal to Kn(AT , v1) can be written as

Qn = Wn V T
n .
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1 : Matching moments in nonsymmetric L.

We will prove that under the given assumption the nonsymmetric Lanczos
represents the model reduction which matches the first 2n moments

vT
1 Ak w1 ≡ eT

1 T k
n e1 , k = 0, 1, . . . , 2n − 1 .
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1 : Vorobyev moment problem for N. L.

Find a linear operator An on Kn(A, w1) such that

An w1 = A w1 ,

An (A w1) = A2 w1 ,

...

An (An−2 w1) = An−1 w1 ,

An (An−1w1) = (Wn V T
n ) (Anw1) .

Analogously to the symmetric Lanczos

vT
1 Ak w1 ≡ vT

1 Ak
n w1 , k = 0, 1, . . . , 2n − 1 .
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1 : Final step

Since

An = Qn A = WnV T
n A ,

Ak
n = Wn (V T

n A Wn)k−1 V T
n A = Wn T k−1

n V T
n A ,

V T
n Ak

n Wn = T k
n ,

we finally get

vT
1 Ak w1 = vT

1 Ak
n w1 = eT

1 T k
n e1 , k = 0, 1, . . . , 2n − 1 .
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1 : Generalized minimal residuals (GMRES)

‖b − A xn‖ = min
u∈ x0+Kn(A,r0)

‖b − A u‖

with the formulation via the Arnoldi process, w1 = r0/‖r0‖ ,

A Wn = Wn+1 Hn+1,n , Hn+1,n = WT
n+1(A) AWn(A) , WT

n Wn = In ,

and the GMRES approximation given by

yn = arg min
u

‖‖r0‖e1 − Hn+1,n u‖ , xn = x0 + Wn yn .

In terms of projections

Kn(A, r0) = R(Wn) , AKn(A, r0) = R(AWn) , rn ⊥ AKn(A, r0) .
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1 : Arnoldi moment matching

We will not give the Vorobyev moment problem description of GMRES
(which would require a slight generalization), but of the Arnoldi process:

Find a linear operator An on Kn(A, w1) such that

An w1 = A w1 ,

...

An (An−2 w1) = An−1 w1 ,

An (An−1w1) = (Wn WT
n ) (Anw1) .

Consider v1 ∈ R
N , ‖v1‖ = 1 .
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1 : Final step

Due to the nonsymmetry of A , the last line of the Vorobyev moment
problem can not be used for extension of the moment matching beyond
n moments:

vT
1 Ak w1 ≡ vT

1 Ak
n w1 , k = 0, 1, . . . , n − 1 .

Since

An = Qn A = WnWT
n A ,

Ak
n = Wn (WT

n A Wn)k−1 WT
n A = Wn T k−1

n WT
n A ,

WT
n Ak

n Wn = T k
n ,

we finally get

wT
1 Ak w1 = wT

1 Ak
n w1 = eT

1 T k
n e1 , k = 0, 1, . . . , n − 1 .
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Outline

1. Krylov subspace methods as the problems of moments

2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. CG in finite precision arithmetic

5. Spectral information and convergence of GMRES

6. MGS GMRES is normwise backward stable
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Exact arithmetic !
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2 : Basic problem

A ∈ R
N×N is diagonal positive definite (SPD),

see S (1991), Greenbaum, S (1992),

λi = λ1 +
i − 1

n − 1
(λn − λ1) γn−i , i = 2, . . . , n − 1,

In the experiment we take λ1 = 0.1 , λn = 100 , n = 24 , γ = 0.55 . Initial
residual (starting vector w1 ∈ R

N ) has been generated randomly.
Lanczos process:

A, w1 −→ Tn −→ TN = WT
N A WN
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2 : A particular larger problem

Â ∈ R
2N×2N diagonal SPD, ŵ1 ∈ R

2N , obtained by replacing each
eigenvalue of A by a pair of very close eigenvalues of Â sharing the
weight of the original eigenvalue. In terms of the distribution functions,
ω̂(λ) has doubled points of increase but it is very close to ω(λ).

Â, ŵ1 −→ T̂n −→ T̂2N = ŴT
2N Â Ŵ2N

T̂2N has all its eigenvalues close to those of A.

However, T̂n can be for n ≤ N very different from Tn.
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2 : Lanczos results for A, w1 and Â, ŵ1 :
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2 : CG results for A, w1 and Â, ŵ1 :
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2 : Observations

● Replacing single eigenvalues by two close ones causes large delays.

● The presence of close eigenvalues causes an irregular staircase-like
behaviour.

● Local decrease of error says nothing about the total error.

● Stopping criteria must be based on global information.
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2 : Ritz values in the presence of close eig-s

In the presence of very close eigenvalues, a Ritz value in the exact
Lanczos or CG method initially converges to the cluster as fast as if the
cluster were replaced by a single eigenvalue with the combined weight.

Within a few further steps it converges very fast to one of the eigenvalues,
with another Ritz value converging simultaneously to approximate the rest
of the cluster. In the presence of more than two eigenvalues in a cluster,
the story repeats until all eigenvalues in a cluster are approximated by
individual Ritz values.

The ’additional’ Ritz values in the clusters are, however missing in the
other part of the spectrum, and the convergence of CG is delayed, in
comparison to the single eigenvalues case, by the number of steps
needed to provide the ’missing’ Ritz values.
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2 : Published explanations

The fact that the presence of close eigenvalues affects the convergence of
Ritz values and therefore the rate of convergence of the conjugate
gradient method is well known; see the beautiful explanation given by

van der Sluis and van der Vorst (1986, 1987).

It is closely related to the convergence of the Rayleigh quotient in the
power method and to the so-called ‘misconvergence phenomenon’ in the
Lanczos method, see

O’Leary, Stewart and Vandergraft (1979),
Parlett, Simon and Stringer (1982).
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2 : Caution

Kratzer, Parter and Steuerwalt, Block splittings for the conjugate gradient
method, Computers and Fluids 11, (1983), pp. 255-279. The statement
on p. 261, second paragraph, in our notation says:

The convergence of CG for A, w1 and Â, ŵ1 ought to be similar;
at least ‖x̂ − x̂N‖Â should be small.

Similar statements can be found in several later papers and some books.
The arguments are based on relating the CG minimizing polynomial to the
minimal polynomial of A. For some distribution of eigenvalues of A ,
however, its minimal polynomial (normalized to one at zero) can have
extremely large gradients and therefore it can be very large at points even
very close to its roots (here at the eigenvalues of Â ) .



Z. Strakoš 46

2 : CG results for A, w1 and Â, ŵ1 , γ = 0.8 :
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Outline

1. Krylov subspace methods as the problems of moments

2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. CG in finite precision arithmetic

5. Spectral information and convergence of GMRES

6. MGS GMRES is normwise backward stable



Z. Strakoš 48

3 : CG and Gauss-Ch. quadrature errors

At any iteration step n , CG represents the matrix formulation of the
n-point Gauss quadrature of the R-S integral determined by A and r0 ,

∫ ξ

ζ

f(λ) dω(λ) =

n
∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

For f(λ) ≡ λ−1 the formula takes the form

‖x − x0‖2
A

‖r0‖2
= n-th Gauss quadrature +

‖x − xn‖2
A

‖r0‖2
.

This was a base for the CG error estimation in
[DaGoNa-78, GoFi-93, GoMe-94, GoSt-94, GoMe-97, . . . ]
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3 : Sensitivity of the Gauss-Ch. Quadrature

0 5 10 15 20
10

−10

10
−5

10
0

iteration n

 

 

|| x − x
n
 ||

A
2 − perturbed problem 

|| x − x
n
 ||

A
2 − original problem

0 5 10 15 20
10

−10

10
−5

10
0

iteration n

 

 
difference − || nth error ||

A
2

difference − || initial error ||
A
2



Z. Strakoš 50

3 : Simplified problem
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3 : Theorem - O’Leary, S, Tichý (2007)

Consider distribution functions ω(x) and ω̃(x) on [a, b] . Let
pn(x) = (x − x1) . . . (x − xn) and p̃n(x) = (x − x̃1) . . . (x − x̃n) be the
nth orthogonal polynomials corresponding to ω and ω̃ respectively,
with p̂s(x) = (x − ξ1) . . . (x − ξs) their least common multiple.

If f ′′ is continuous on [a, b] , then the difference ∆n
ω,ω̃ between the

approximation In
ω to Iω and the approximation In

ω̃ to Iω̃ , obtained
from the k-point Gauss-Christoffel quadrature, is bounded as

|∆n
ω,ω̃| ≤

∣

∣

∣

∣

∣

∫ b

a

p̂s(x)f [ξ1, . . . , ξs, x] dω(x) −
∫ b

a

p̂s(x)f [ξ1, . . . , ξs, x] dω̃(x)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

a

f(x) dω(x) −
∫ b

a

f(x) dω̃(x)
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∣

∣

∣

∣

.
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3 : Modified moments do not help
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3 : Summary

1. Gauss-Christoffel quadrature for a small number of quadrature nodes
can be highly sensitive to small changes in the distribution function.
In particular, the difference between the corresponding quadrature
approximations (using the same number of quadrature nodes) can be
many orders of magnitude larger than the difference between the
integrals being approximated.

2. This sensitivity in Gauss-Christoffel quadrature can be observed
for discontinuous, continuous, and even analytic distribution functions,
and for analytic integrands uncorrelated with changes in the
distribution functions and with no singularity close to the interval of
integration.
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Outline

1. Krylov subspace methods as the problems of moments

2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. CG in finite precision arithmetic

5. Spectral information and convergence of GMRES

6. MGS GMRES is normwise backward stable
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4 : CG applied to the basic problem
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4 : Observations - FP CG

● Rounding errors can cause large delays.

● They may cause an irregular staircase-like behaviour.

● Local decrease of error says nothing about the total error.

● Stopping criteria must be based on global information.

● It must be justified by rigorous rounding error analysis.

Golub and S (1994),
S and Tichý (2002, 2005),

Comput. Methods Appl. Mech. Engrg. (2003).
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4 : Close to the exact CG for Â x̂ = b̂ ???

Mathematical model of finite precision Lanczos and CG computations,
see

Paige (1971–80), Greenbaum (1989),
S (1991), Greenbaum and S (1992),
(also Parlett (1990)),

Recent review and update in Meurant and S (2006).
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Outline

1. Krylov subspace methods as the problems of moments

2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. CG in finite precision arithmetic

5. Spectral information and convergence of GMRES

6. MGS GMRES is normwise backward stable
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5 : Eigenvalues and convergence of GMRES ?

Consider any nonzero eigenvalues and a nonincreasing sequence
(desired convergence curve sampled at the steps 0 to N )

f(0) ≥ f(1) ≥ . . . ≥ f(N − 1) > f(N) = 0 .

Then the size of the component of the initial residual eliminated in the jth
GMRES step is φj = (f(j − 1)2 − f(j)2)

1

2 . Let RN−1 be a nonsingular
upper triangular matrix, h = (φ1, . . . , φN )T , be the first column of
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5 : Theorem

The following two assertions are equivalent:

1◦ The spectrum of A is {λ1, . . . , λN} and GMRES applied to A with
r0 yields residuals such that ‖rk‖ = f(k) , k = 0, 1, . . . , N .

2◦ A = U ( Φ C Φ−1) U∗ and r0 = U h ,
where C is the companion matrix corresponding to the spectrum of A
and U is unitary.

Theorem gives a complete parametrization of the set of all pairs {A, r0}
for which GMRES gives the prescribed convergence curve while the
matrix A has the prescribed eigenvalues.

Greenbaum and S (1994), Greenbaum, Pták and S (1996),
Arioli, Pták and S (1998).
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5 : Spectrum not sufficient. Spectral bounds?

Interpretation of the term C(A, r0) in the bounds of the type

‖rn‖ ≤ C(A, r0) F (sp(A), N)

needs a proper care. Since, by Theorem, the spectrum is in general not
sufficient for description of convergence, the dependence of C(A, r0)
on the data can not be ignored. A bound

‖rn‖ ≤ const F (sp(A), N)

is either not valid for all data A , r0 , or it is completely irrelevant.
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5 : Pathological initial residuals?

Our conclusion seems to be in conflict with common practice.

Convergence is often related to eigenvalue distributions without any
assumption on the existence or conditioning of the eigenvector basis
and/or restriction on applicability of the bounds. Then, however, the
derived conclusions lack a proper justification.

In many cases there are indeed good reasons for linking convergence to
eigenvalues. The point is that the reasons should be given and examined
(contrary to common practice).

The cases in which poor convergence can be observed with nice spectra
and vice versa do exist in practice. Convection dominated diffusion
problems can lead to such linear algebraic systems, as described by
Reddy and Trefethen (1994), Trefethen (1997), see also Ernst (2000),
Liesen and S (2005).
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Outline

1. Krylov subspace methods as the problems of moments

2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. CG in finite precision arithmetic

5. Spectral information and convergence of GMRES

6. MGS GMRES is normwise backward stable
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6 : MGS GMRES in finite precision
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Sherman2 from Matrix market, problem rhs.
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6 : Observations - MGS GMRES

● Despite the loss of orthogonality, the modified Gram-Schmidt
implementation is as accurate as the Householder reflections-based
implementation.

● There is no delay due to rounding errors.

● Loss of orthogonality seems inversely proportional to the normwise
backward error.

● Full loss of orthogonality means that the normwise backward error is
proportional to machine precision.
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6 : Numerical stability of GMRES

Björck (1967), Karlson (1991), Björck and Paige (1992),

Drkošová, Greenbaum, Rozložník and S (1995), Arioli and Fassino
(1996), Rozložník (1997), Greenbaum, Rozložník and S (1997),

Paige and S (2002, NM I + II, SISC), Core problem theory in
Errors-in-Variables Modelling, (2002, NM I, 2006, SIMAX)

Giraud and Langou (2002), Langou (2003), Giraud, Graton and Langou
(2007),

Paige, Rozložník, and S (2006):

MGS GMRES is normwise backward stable
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Conclusions

● It is good to look for interdisciplinary links and for different lines of
thought. Such as linking the Krylov subspace methods with model
reduction and matching moments.

● Rounding error analysis of Krylov subspace methods has had
unexpected side effects such as understanding of general mathematical
phenomena in matrix theory, quadrature approximations and Errors-in
Variables Modeling, which are independent of any numerical stability
issues.

● Analysis of Krylov subspace methods for solving linear problems
has to deal with highly nonlinear finite dimensional phenomena.
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Thank you!
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