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Preface

Here we consider so called ill-posed problems in statistics and
probability theory. Ill-posed problems are usually understood as
certain results where small changes in the assumptions lead to
arbitrary large changes in the conclusions. Such results are not
very useful for practical applications, where the presumptions
usually hold only approximately (and even the slightest departure
from the assumed model may produce an uncontrollable shift in
the outcome). Presumably, the ill-posedness of certain practical
problems is due to the lack of their precise mathematical
formulation. Consequently, we can deal with such problems by
replacing a given ill-posed problem with another, well-posed
problem, which in some sense is “close” to the original one.



Our goal is to show that ill-posed problems are not a curiosity in
the contemporary theory of mathematical statistics and probability.
On the contrary, such problems are quite common, and the
majority of classical results fall into this class. Our objective is to
identify problems of this type, and re-formulate them more
correctly. Thus, we shall propose alternative (more precise in the
above sense) versions of numerous classical theorems in the theory
of probability and mathematical statistics. In addition, we shall
consider some non-standard problems from this point of view. Let
us mention several examples of ill-posed problems.



First of all, the classical Central Limit Theorem, as well as the
corresponding limit theorem for convergence to a stable law, are
both examples of an ill-posed problem. Indeed, an arbitrary small
perturbation (in the uniform metric) of the tail of the distribution
leads to a shift of the domain of attraction: a normal domain of
attraction may convert to a stable one, and vice versa. Corrected
versions of these theorems were proposed independently by Nagaev
and Klebanov. The main idea here is to replace the limiting
distribution with an approximation of the pre-limiting distribution
with a larger (but not too much larger) number of random
variables in the sum.



The second example comes from extreme value theory and
concerns limit theorems for extremal order statistics for i.i.d.
random variables. The setting here is analogous to that for limit
theorems for sums of i.i.d. random variables. More precisely, it is
well-known that the limiting distribution of an appropriately
normalized minimum of non-negative i.i.d. random variables is
Weibull. The parameters of the limiting Weibull distribution
depend on the rate of convergence to zero of the relevant
distribution function. An arbitrary small changes (in the uniform
metric) of the distribution function may affect this rate quite
severely, and thus the problem of finding the exact limiting
distribution appears to be ill-posed.



The third example of an ill-posed problem is the classical problem
of estimating the location parameter of a normal distribution with
known standard deviation. If the distribution of the measurement
error is indeed a Gaussian one, then the optimal equivariant
estimator of the location parameter is provided by the sample
mean. However, if the sample may be contaminated with
observations from a heavy-tail distribution and we are using the
variance of the limiting distribution as the loss function, then the
sample mean becomes unacceptable, as its variance may in general
be infinite. This example has led to the theory of robust
estimation, see, e.g., Huber and Hampel. It is clear that the above
problem is closely connected with the correct formulation of the
problem of finding the limiting distribution for sums of i.i.d.
random variables. Following the recommendations of Klebanov,
Rachev and Szekely, we shall consider approximations of the
pre-limiting distribution. In this case we can not utilize the
variance of the limiting distribution as the loss function. Thus, a
corrected formulation of the problem of estimating the location
parameter is two-folded, involving the pre-limiting approach as well
as the issue of choosing an appropriate loss function.



The forth example is connected with statistical estimation of
parameters when the underlying density has discontinuities
(jumps). The typical characteristics of this example can be
illustrated with the problem of estimating the scale parameter θ of
the uniform distribution on the interval (0, θ). Here, if X1, . . . ,Xn

is a random sample from this distribution, then the maximum,
Xn:n = max(X1, . . . ,Xn), is a consistent estimator for θ. In fact the
normalized sequence n(Xn:n − θ) has a non-singular limiting
distribution as n→∞. However, when we replace the uniform
distribution with another one, which is smooth and arbitrarily close
to it (in the uniform metric on the space of distribution functions),
then Xn:n along with every other estimator will no longer be
consistent. The corresponding rate of convergence will now be not
larger than 1/

√
n, that is, the normalizing constant n needs to be

replaced by
√

n. Thus, we again end up with an ill-posed problem.
Its corrected version is based on the replacement of the limiting
distribution of the normalized sequence by the pre-limiting
distribution.



Finally, our last example is provided by the problem of specifying
the distribution using a finite number of values of certain
functionals. The examples of such functionals include the
moments, or the Radon transformation of the original distribution.
The latter is particularly common in the area of computer
tomography. The proof of the ill-posedness here follows from an
interesting example, discussed in Lagarrias, Kempermann, Shepp
and Reeds. The corrected versions appeared in Khalfin and
Klebanov. Some applications to quantum mechanics are discussed
in Khalfin and Klebanov, Klebanov and Rachev.



Thus, we see the ill-posed problems appear quite frequently in
statistics and probability theory.
The layout of the talk would correspond to the above examples in
probability theory (not in Statistics).



Limit Theorems and Ill-posed Problems
Introduction and Motivating Examples
There exists a considerable debate about the applicability of limit
theorems in probability theory because in practice one deals only
with finite samples. In the real-world, because one never deals with
infinite samples, one can never know whether the underlying
distribution is heavy tailed, or just has a long but truncated tail.
Limit theorems are not robust with respect to truncation of the tail
or with respect to any change from “light” to “heavy” tail, or vice
versa. An approach to classical limit theorems that overcomes this
problem is the “pre-limiting” approach. The advantage of this
approach is that it does not rely on the tails of the distribution,
but instead on the “central section” (or “body”) of a distribution.
Instead of a limiting behavior when the number n of identical and
independently distributed (i.i.d.) observations tends to infinity, a
pre-limit theorem provides an approximation for distribution
functions when n is “large” but not too “large.” The pre-limiting
approach that we discuss in this chapter is more realistic for
practical applications than classical central limit theorems.



Two Motivating examples

To motivate the use of the pre-limiting approach, we provide two
examples.
Example 1: Pareto-Stable Laws More than 100 years ago Vilfredo
Pareto observed that the number of people in the population whose
income exceeds a given level x can be satisfactorily approximated
by Cx−α for some C > 0 and α > 0. About 60 years later, Benoit
Mandelbrot (1959, 1960) argued that stable laws should provide a
more appropriate model for income distributions. After examining
some income data, Mandelbrot made the following two claims:



1. The distribution of the size of income for different (but
sufficiently long) time periods must be of the same type. In
other words, the distribution of income follows a stable law
(Lévy’s stable law).

2. The tails of the Gaussian law are too thin to describe the
distribution of income in typical situations.



It is known that the variance of any non-Gaussian stable law is
infinite, thus an essential condition for a non-Gaussian stable limit
distribution for sums of random incomes is that the summands
have “heavy” tails in the sense that the variance of the summands
must be infinite. On the other hand, it is obvious that incomes are
always bounded random variables (in view of the finiteness of all
available money in the world, and the existence of a smallest
monetary unit). Even if we assume that the support of the income
distribution is infinite, there exists a considerable amount of
empirical evidence that shows that income distributions have
Pareto tails with index α between 3 and 4, so the variance is finite.
Thus, in practice the underlying distribution cannot be heavy
tailed. Does this mean that we have to reject the Pareto-stable
model?



Example 2. Exponential decay.

One of the most popular examples of exponential distributions is
the random time for radioactive decay. The exponential distribution
is in the domain of attraction of the Gaussian law. It has been
shown in quantum physics that the radioactive decay may not be
exactly exponentially distributed.1 Recently, new experimental
evidence supported that conclusion (see Wilkinson et al., (1997)).

1See Khalfin (1958), Wintner (1961), and Petrovsky and Prigogine (1997).



But then one faces the following paradox. Let p(t) be the
probability density that a physical system is in the initial state at
moment t ≥ 0. It is known2 that p(t) = |f (t)|2, where

f (t) =

∫ ∞
0

ω(E ) exp(iEt)dE ,

and ω(E ) ≥ 0 is the density of the energy of the disintegrating
physical system. For a broad class of physical systems, we have

ω(E ) =
A

(E − Eo)2 + Γ2
, E ≥ 0,

(see Zolotarev (1983a) and the references therein), where A is a
normalizing constant, and Eo and Γ are the mode and the measure
of dissipation of the system energy (with respect to Eo). For
typical nonstable physical systems, the ratio Γ/Eo is very small (of
order 10−15 or smaller).

2See, for example, Zolotarev (1983a, p. 42).



Therefore, the quantity

f (t) = e iEot A

Γ

∫ ∞
− Eo

Γ

e iΓty

y 2 + 1
dy

differs from

f1(t) = e iEot A

Γ

∫ ∞
−∞

e iΓty

y 2 + 1
dy = πe iEot A

Γ
e−tΓ, t > 0,

by a very small value (of magnitude 10−15). That is, p(t) = |f (t)|2

is approximately equal to
(
πA
Γ

)2
e−2tΓ, which gives approximately

the classical exponential distribution as a model for decay.



On the other hand, it is equally easy to find the asymptotic
representation of f (t) as t →∞. Namely,∫ ∞

− Eo
Γ

e iΓty

y 2 + 1
dy =

∫ π
2

− arctan( Eo
Γ

)
e iΓt tan zdz

∼ −
cos2(arctan(Eo

Γ )

itΓ
e−itEo .



Therefore,

f (t) ∼ i
A

E 2
o + Γ2

1

t
, as t →∞,

where

A =
1∫∞

0
dE

(E−Eo)2+Γ2

,

so that

p(t) ∼ A2

(E 2
o + Γ2)2

1

t2
, as t →∞.



Therefore, p(t) belongs to the domain of attraction of a stable law
with index α = 1. Thus, if Tj , j ≥ 1 are i.i.d. random variables
describing the times of decay of a physical system, then the sum

1√
n

∑n
j=1(Tj − c)) does not tend to a Gaussian distribution for any

centering constant c (as we would expect under exponential
decay), but diverges to infinity. Does this mean that the
exponential approximation cannot be used anymore? The two
examples illustrate that the model based on the limiting
distribution leads to an “ill-posed” problem in the sense that a
small perturbation of the tail of the underlying distribution changes
significantly the limit behavior of the normalized sum of random
variables.



We can see the same problem in a more general situation. Given
i.i.d. random variables Xj , j ≥ 1, the limiting behavior of the
normalized partial sums Sn = n−1/α(X1 + . . .+ Xn) depends on the
tail behavior of X . Both, the proper normalization n−1/α and the
corresponding limiting law are extremely sensitive to a tail
truncation. In this sense, the problem of limiting distributions for
sums of i.i.d. random variables is ill-posed. In the next section, we
propose a “well-posed” version of this problem and provide a
solution in the form of a pre-limit theorem.



Principle idea

Here is the main idea. Suppose for simplicity that X1,X2, . . . ,Xn

are i.i.d. symmetric random variables whose distribution tail is
heavy, but the “main body” looks to be similar to that of the
Gaussian distribution. It seems natural to suppose that the
behavior of the normalized sum

Sn =
1√
n

n∑
j=1

Xj

will be as following. For small values of n, it will be more or less
arbitrary, and for growing values of n up to some number N, it
becomes closer and closer to the Gaussian distribution (the tail
does not play too essential a role). After the moment N, the
distribution of Sn deviates from the Gaussian (the role of the tail is
now essential).



Let us illustrate this graphically. Suppose that X1,X2, . . . ,Xn are
i.i.d. random variables with density function

p(x) = (1− ε)q(x
√

2) + εs(x).

Here q(x) = exp(−|x |)/2 and s(x) = 1/(π(1 + x2)) are the
Laplacian and the Cauchy densities, respectively. Choose ε = 0.01.
In panels a through e of Figure 1.1 we show the plot of the density
of the sum

Sn =
1√
n

n∑
j=1

Xj

(the solid line) versus one of the density of the standard Gaussian
distribution (the dashed line).
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Density of a sum with different n versus Gaussian density (n = 5,
n = 10, n = 25)
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Density of a sum with different n versus Gaussian density (n = 50,
n = 100).



For n = 5 (panel a), we see that the densities are not too close to
each other. When n = 10 (panel b), the two densities become
closer to each other compared to when n = 5. They are almost
identical when n = 25 (panel c). However, the two densities are
not as close when n = 50 (panel d) and when n = 100 (panel e).
Thus we see that the optimal N is about 25.



A very similar result is realized when the comparison is to a stable
distribution. Suppose that X1,X2, . . . ,Xn are i.i.d. random
variables with density function

p(x) = (1− ε)q(2x) + εs(x).

Here q(x) is a density with ch.f. (1 + |t|)−2, which belongs to a
region of attraction of the Cauchy distribution and s(x) is the
density of the standard Gaussian distribution. We choose ε = 0.03.



In panels a and b of Figure 1.2 we show the plot of the density of
the normalized sum

Sn =
1

n

n∑
j=1

Xj

(the dashed line) versus one of the density of the Cauchy
distribution (the solid line).
Panel a in the figure shows the two densities when n = 5. As can
be seen, the densities are not too close to each other. However, as
can be seen in panel b, the two densities become much closer to
each other when n = 50
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Density of a sum for various n (solid line) versus Cauchy density
(dashed line), n = 5, n = 50.



Let c and γ be two positive constants, and consider the following
semi-distance between random variables X and Y :

dc,γ(X ,Y ) = sup
|t|≥c

|fX (t)− fY (t)|
|t|γ

.

Here and in what follows FX and fX stand for the cumulative
distribution function (c.d.f.) and the characteristic function (ch.f.)
of X , respectively. Observe that in the case c = 0, dc,γ(X ,Y )
defines a well-known probability distance in the space of all random
variables for which d0,γ(X ,Y ) is finite3.

3See Zolotarev (1986) and Rachev (1991).



Next, recall that Y is a strictly α-stable random variable. If for
every positive integer n

Y1
d
= Un :=

Y1 + · · ·+ Yn

n1/α
,

where
d
= stands for equality in distribution and the Yj ’s, j ≥ 1, are

i.i.d. copies of Y 4.

4See Zolotarev (1983a) and Lukacs (1969).



Let X ,Xj , j ≥ 1, be a sequence of i.i.d. random variables such that
d0,γ(X ,Y ) is finite for some strictly stable random variable Y .
Suppose that Yj , j ≥ 1, are i.i.d. copies of Y and γ > α. Then5

d0,γ(Sn,Y ) = d0,γ(Sn,Un)

= sup
t

|f n
X (t/n1/α)− f n

Y (t/n1/α)|
|t|γ

≤ n sup
t

|fX (t/n1/α)− fY (t/n1/α)|
|t|γ

=
1

nγ/α−1
d0,γ(X ,Y ).

From this we can see that d0,γ(Sn,Y ) tends to zero as n tends to
infinity; that is, we have convergence (in d0,γ) of the normalized
sums of Xj to a strictly α-stable random variable Y provided that
d0,γ(X ,Y ) <∞. However, any truncation of the tail of the
distribution of X leads to d0,γ(X ,Y ) =∞.

5See Zolotarev (1983a).



Our goal is to analyze the closeness of the sum Sn to a strictly
α-stable random variable Y without the assumption about the
finiteness of d0,γ(X ,Y ), restricting our assumptions to bounds in
terms of dc,γ(X ,Y ) with c > 0. In this way, we can formulate a
general type of a central pre-limit theorem with no assumption on
the tail behavior of the underlying random variables. We shall
illustrate our theorem providing answers to the problems addressed
in Examples 1 and 2.



Central Pre-Limit Theorem

In our Central Pre-Limit Theorem we shall analyze the closeness of
the sum Sn to a strictly α-stable random variable Y in terms of the
following Kolmogorov metric,6 defined for any c.d.f.’s F and G as
follows:

kh(F ,G ) := sup
x∈R
|F ∗ h(x)− G ∗ h(x)|.

Here, ∗ stands for convolution, and the “smoothing” function h(x)
is a fixed c.d.f. with a bounded continuous density function,
supx |h

′
(x)| ≤ c(h) <∞. The metric kh metrizes the weak

convergence in the space of c.d.f.’s. The following central pre-limit
theorem appeared in Klebanov et al. (1999).

6See Kolmogorov (1953) and Rachev (1991).



Theorem (Central Pre-Limit Theorem)

Let X ,Xj , j ≥ 1, be i.i.d. random variables and
Sn = n−1/α

∑n
j=1 Xj . Suppose that Y is a strictly α-stable random

variable. Let γ > α and ∆ > δ be arbitrary given positive
constants and let n ≤ ( ∆

δ )α be an arbitrary positive integer. Then

kh(FSn ,FY ) ≤ inf
a>0

(√
2π

dδ,γ(X ,Y )(2a)γ

n
γ
α
−1γ

+ 2
c(h)

a
+ 2∆a

)
.



Remark
If ∆→ 0 and ∆/δ →∞, then n can be chosen large enough so
that the right-hand-side of the above bound is sufficiently small,
and we obtain the classical limit theorem for weak convergence to
an α-stable law. This result, of course, includes the central limit
theorem for weak distance.



Proof of Theorem.

For γ > α,
dc,γ(Sn,Y ) = dc,γ(Sn,Tn)

≤ n sup
|t|≥c

|fX (t/n1/α)− fY (t/n1/α)|
|t|γ

=
1

n
γ
α
−1

d c

n1/α
,γ(X ,Y ).

For any ∆ > δ and for all n ≤ ( ∆
δ )α, we have then

d∆,γ(Sn,Y ) ≤ 1

n
γ
α
−1

dδ,γ(X ,Y ).



The above relation can be rewritten in the form

sup
|t|≥∆

|fSn(t)− fY (t)|
|t|γ

≤ 1

n
γ
α
−1

dδ,γ(X ,Y ).

Denote by 1I(t) the indicator function of the interval [−∆,∆].
Then,

1

|t|
|(1− 1I(t))fSn(t)− (1− 1I(t))fY (t)| ≤ |t|

γ−1

n
γ
α
−1

dδ,γ(X ,Y ).



For any a > 0 define

Ṽa(t) =

√
π

2


1 for |t| < a,

1
a (2a− |t|) for a ≤ |t| ≤ 2a,

0 for |t| > 2a.

The function Ṽa(t) is now a Fourier transform of the
Vallée-Poussin kernel

Va(x) =
1

a

cos(ax)− cos(2ax)

x2
.



We have ∫
R

(1− 1I(t))
fSn(t)− fY (t)

t
h̃(t)Ṽa(t)e−itxdt

= ((FSn ∗ h(x)− FSn ∗ h ∗ U∆(x))− (FY ∗ h(x)− FY ∗ h ∗ U∆(x)))∗Va(x),

where h̃(t) is the ch.f. corresponding to the c.d.f. h and

U∆(x) =
1

2π

sin(∆x)

x
.

(Note that the Fourier transform of U∆ is the indicator function 1I.)



We now obtain

sup
x
|((FSn(x)− FSn ∗ U∆(x)) ∗ h(x)− (FY (x)− FY ∗ U∆(x)) ∗ h ∗ Va(x)|

≤
dδ,γ(X ,Y )

n
γ
α
−1

(2a)γ

γ

√
2π.

It is known7 that

|FSn ∗ h(x)− FSn ∗ h ∗ Va(x)| ≤ EFSn∗h(x)(a) ≤ Eh(a),

where EF (a) is the order of the best approximation of the function
F by entire functions of finite exponential type a.

7See Nikolskii (1977).



In our case, h has a bounded density function, so Eh(a) ≤ c(h)/a.
Similarly, |FY ∗ h(x)− FY ∗ h ∗ Va(x)| ≤ c(h)/a.
From a well-known relation between norms of entire functions of
finite exponential type (See, Nikolskii (1977, p. 131)), it follows
that

sup
x
|(FSn(x)− FY (x)) ∗ h ∗ Va ∗ U∆(x)| ≤ 2∆a.

Combining our estimates, we have

kh(FSn ,FY ≤ inf
a>0

(√
2π

dδ,γ(X ,Y )(2a)γ

n
γ
α
−1γ

+ 2
c(h)

a
+ 2∆a

)
for all n ≤ ( ∆

δ )α. 2

Thus, the c.d.f. of a normalized sum of i.i.d. random variables is
close to the corresponding α-stable c.d.f. for “mid-size values” of
n. We also see that for these values of n, the closeness of Sn to a
strictly α-stable random variable depends on the “middle part”
(“body”) of the distribution of X .



Remark
Consider our example of radioactive decay and apply Theorem 1 to
the centralized time moments, denoted by Xj . If Y is Gaussian,
γ = 3, α = 2, ∆ = 10−15, δ = 10−30, then for n ≤ 1030 the
following inequality holds:

kh(FSn ,FY ) ≤ inf
a>0

(
√

2π
d10−30,3(X ,Y )(2a)3

3
√

n
+ 2

c(h)

a
+ 2 · 10−10a

)
.

Here, d10−30,3(X ,Y ) ≤ 1 in view of the fact that

|fX (t)− fY (t)| ∼ A2

(E 2
o + Γ2)2

t, as t → 0.

Thus, we obtain a rather good normal approximation of FSn(x) for
“not too large” values of n (n ≤ 1040). If c(h) ≤ 1 and n is of
order 1040, then kh(FSn ,FY ) is of order 10−5.



Relations with Robustness of Statistical Estimators

Let X ,X1, . . . ,Xn be a random sample from a population having
c.d.f. F (x , θ), θ ∈ Θ (which we shall call “the model” here). For
simplicity, we shall further assume that F (x , θ) is a c.d.f. of
Gaussian law with θ mean and unit variance, so that
F (x , θ) = Φ(x − θ) where Φ(x) is c.d.f. of standard normal law.
One uses the observations X1, . . . ,Xn to construct an estimator
θ∗ = θ∗(X1, . . . ,Xn) of the θ-parameter.
The main point in the theory of robust estimation is that any
proposed estimator should be insensitive (or weakly sensitive) to
slight changes of the underlying model; that is, it should be
robust.8

For mathematical formalization of this, we have to clarify two
notions. The first one is the idea of how to express the notation of
“slight changes of underlying model” in quantitative form. And the
second is the idea of the measurement of the quality of an
estimator.

8See Huber (1981).



The most popular definition of the changes of the model in the
theory of robust estimation is the following contamination scheme.
Instead of the normal c.d.f. Φ(x), is considered
G (x) = (1− ε)Φ(x) + εH(x), where H(x) is an arbitrary
symmetric c.d.f.. Of course, for small values of ε > 0, the family
G (x − θ) is close to the family Φ(x − θ).
Sometimes the closeness of the families of c.d.f.’s is considered in
terms of uniform distance between corresponding c.d.f.’s, or in
terms of Lévy distance. As to the measurement of the quality of
an estimator, then it is an asymptotic variance of the estimator. It
is a well known fact that the minimum variance estimator for the
parameter θ in a “pure” model x̄ = 1

n

∑n
j=1 xj is non-robust.



From our point of view, it is mostly connected not with the
presence of contamination, but with the use of asymptotic variance
as a loss function. For not too large n, we can apply Theorem 1. It
is easy to see that

dc,γ(Φ(x − θ),G (x − θ)) ≤ 2
ε

cγ
.

Suppose that z1, . . . , zn is a sample from the population with c.d.f.
G (x − θ), and let uj = (zj − θ), j = 1, . . . , n. Denote

Sn =
1√
n

n∑
j=1

uj =
√

n(z̄ − θ).

For any h(x) with a continuous density function, supx |h
′
(x)| ≤ 1,

we have



kh(FSn ,Φ) ≤ 2 inf
a>0

(√
2π

ε

δγ
(2a)γ

n
γ
2
−1γ

+
1

a
+ ∆ · a

)
.

Here γ > 2, n ≤
(

∆
δ

)2
, and ∆ > δ > 0 are arbitrary. It is not easy

to find the infimum over all positive values of a. Therefore, we set

a = ∆−
1
2 to minimize the sum of the two last terms. Also we

propose to find ∆ = εc and δ = εc1 to have ∆1/2δ = ε1/γ . And,
finally, we choose γ to maximize the degree c . The corresponding
value is

γ = 2 +

√
2

3
,

and therefore



kh(FSn ,Φ) ≤ 2

(√
2π2γ

γ

1

n1/
√

6
+ 2ε

√
6

12+
√

6

)
,

for all
n ≤ ε−

6
12+7
√

6 .



Here √
2π2γ

γ
∼= 6.269467557,

1

11
>

√
6

12 +
√

6
∼= 0.08404082058 >

1

12
.

We see that (for very small ε) the properties of z̄ as an estimator
of θ do not depend on the tails of contaminating c.d.f. H for not
too large values of the sample size. Therefore, the traditional
estimator for the location parameter of the Gaussian law is robust
for a properly defined loss function. Note that the estimator of
“stability” does not depend on whether c.d.f. H(x) is symmetric or
not, though the assumption of symmetry is essential when the loss
function coincides with asymptotic variance.



Of course, we can obtain a corresponding estimator for both Lévy
and uniform distances, but the order of “stability” will be worse.
For example, the Lévy distance estimator has the form

L(FSn ,Φ) ≤ 2

(√
2π2γ

γ

1

n
√

3/10
+ 3ε

√
30

60+13
√

30

)

for all
n ≤ ε−

10
60+13

√
30 ,

where

γ = 2 +

√
30

5
.

We shall not provide here the estimator for uniform distance.



One possible objection is that the order of “stability” is very bad.
On the one hand, our estimators are not precise. On the other
hand, it is related to the “improper” choice of the distance
between the distributions under consideration. It would be better
to use dc,γ as a measure of closeness of the corresponding model
and real c.d.f.’s. If

dε,γ(Φ(x − θ),G (x − θ)) ≤ ε,

and c(h) ≤ 1, then

kh(FSn ,Φ) ≤ 4

(
2
√

2π

n
+ ε

1
4

)

for all n ≤ 1
ε .



Probably, the estimator of stability is better for other type of
distances. We can support this position with numerical examples.
Namely, let X1,X2, . . . ,Xn be i.i.d. random variables distributed as
a mixture of the standard Gaussian distribution (with weight 1− ε)
and Cauchy distribution (weight ε). The uniform distance between
distribution F (x , n, ε) of the normalized sum

Sn =
1√
n

n∑
j=1

Xj

for ε = 0.01, n = 50 and the standard Gaussian distribution is
approximately 0.014. For ε = 0.02, n = 50, this distance is about
0.027.
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This Figure provides graphs of F (x , n, ε)− 0.5 for n = 50 and
ε = 0 (solid line), ε = 0.01 (dashed line, short intervals), and
ε = 0.02 (dashed line, long intervals).
We propose the use of models that are close to each other in terms
of weak distances. Therefore, we cannot use such loss functions
like the quadratic one because the risk of one estimator can
become infinite. Therefore, we have to discuss possible choices for
the losses. This is a major separate problem in statistics, and we
refer to Kakosyan, Klebanov and Melamed (1984b) and to
Klebanov, Rachev and Fabozzi (2009).



Ill-Posed Problems in Computer Tomography

Now we will consider certain problems of computer tomography.
We will be concerned with studying the closeness of probability
distributions with common marginal distributions, or with some
common moments. Our methods are similar to those of the
classical moment problem.



The Radon Transform and its Applications to
Computer Tomography

The Radon Transform and its Applications to Computer
Tomography
The traditional methods of computer tomography are useful in
many branches of science, medicine, and technology.
Suppose we have an object, possibly a human body, through which
an X -ray passes, and we measure the intensities of the ray at both
the input Ii and the output I0. It is known, that under some
conditions imposed on the object and the intensity of the input ray,

log(
Ii
I0

) =

∫
L

p(x)dL,

where the integral of the densityp(x) at position x is taken along
L, the straight line that the X -ray follows through the body. We
should like to reconstruct the densityp(x) of the body based on the
line integrals calculated on some or all of the straight lines.



The transformation from the density p(x) to the set of all its line
integrals, considered as functions of the parameters of the line, is
the Radon transform introduced in 1917 by Radon. Radon gave
the formulae for the inversion of the transform and proved the
uniqueness of the reconstruction of the density p(x) from the
transform.
More precisely, an n−dimensional Radon transform R maps a
function given on Rn into the set of all its integrals over
hyperplanes in Rn:

Rf (θ, s) =

∫
〈x ,θ〉=s

f (x)dx =

∫
θ⊥

f (sθ + y)dy .

Here the integral is taken over the hyperplane perpendicular to the
vector θ and situated at the distances from the origin. Similarly,
the X−ray transform P maps a function given on Rn into the set
of its line integrals:

Pf (θ, x) =

∫ ∞
−∞

f (x + tθ)dt.

This integral is taken over the straight line through the point x in
the direction θ.



It is interesting to note that the Radon transform allows for a
unique reconstruction of any probability measure on an
n-dimensional Euclidean spacefrom the probabilities of half spaces.
This is essentially Cramér - Wold principle, obtained independently
by Cramér and Wold in 1932 using characteristic functions.
Medical applications of Radon’s result began in 1963 with the first
tomography machine of A. Cormack and the use of the commercial
tomography machine of G. Hounsfield. Both were awarded the
Nobel prize in Medicine in 1979 for their work.



Computer tomography is based on the inversion of the Radon
transformation, which allows us to reconstruct uniquely the density
of a measure. The corresponding formulas were obtained by
Radon. Other numerical algorithms can be found, for example, in
Natterer. But such a unique reconstruction is possible only if one
knows all, i.e. an infinite number of marginals. In practice one only
has a finite number of marginals, or partially known data.
In some situations the incompleteness of the data is connected
with the construction of the tomography machines, in others with
the possibility of directing an X−ray through a part of the body.
In both situations it is interesting to investigate how to reconstruct
the density of the body and how precise the reconstruction is.



Reconstruction of the Density from a Finite Number of
Marginals

Let Q1 and Q2 be a pair of probabilities (measures) defined on the
Borel σ-field of R1. Lorentz gave criteria for the existence of a
probability density function on R2 taking only the values 0 or 1
and having Q1 and Q2 as marginals. Kellerer generalized this
result, obtaining necessary and sufficient conditions for the
existence of a density f on R2 which satisfies the inequalities
0 ≤ f (x) ≤ 1 and has Q1 and Q2 as marginals (see also Strassen
and Jacobs. Lagarrias, Reeds and Shepp were able to show that
Kellerer’s and Lorentz’s conditions are equivalent, i.e. for any
density f on R2 satisfying 0 ≤ f (x) ≤ 1, there exists a density g
taking only the values 0 and 1 and having the same marginals. In
general, similar results hold for probability densities on Rm, m ≥ 2,
when the (m − 1)− dimensional marginals are prescribed.



Guttmann, Kempermann, Reeds and Shepp strengthened this
result by showing that for any probability densityf on Rm satisfying
0 ≤ f ≤ 1 and for any finite number of directions, there exists a
probability density g taking only the values 0, 1 and having the
same marginals as f in the chosen directions. It follows that
densities having the same marginals in a finite number of arbitrary
directions may differ considerably in the uniform metric. This leads
to the following computer tomography paradox:



For any human object and the corresponding projection
data there exist many different reconstructions, in
particular, a reconstruction, consisting only of bone and
air (density 1 or 0), but still having the same projection
data as the original object. Such non uniqueness results
are common in tomography and are usually ignored
because CT machines seem to produce useful images. It
is likely that the “explanation” of this apparent paradox
is that point reconstruction in tomography is impossible.



Let us note that the existence of probability measures with fixed
marginals is an important problem in the theory of probability
metrics. This is especially true when studying the structure of
minimal metrics (see Rachev). Most of our results will make use of
relationships among different probability metrics, presented in a
monographic form in Kakosyan, Klebanov and Rachev.
The purpose of this section is to show that under moment-type
conditions, measures having a “large” number of coinciding
marginals are close to each other in the weak metrics. Our method
is based on techniques used in the classical moment problem. In
showing that measures with large numbers of common marginals
are close to each other in the weak metrics, the key idea is best
understood by comparing three results. The first is the theorem of
Guttmann, Kempermann, Reeds and Shepp mentioned above.



The second states that if a finite number of moments µ1, . . . , µn of
a function f are given and 0 ≤ f (x) ≤ 1, then there exists a
function g taking only the values 0 or 1 and having the same
moments (see Karlin and Studden). It is clear that these two
results are similar. However, the condition of equality of the
marginals is more complex than the coincidence of the moments.
Finally the third result gives estimates of the closeness in the
λ−metric on R1 for measures having common moments µ1, . . . , µn
(n <∞). These estimates are expressed in terms of the truncated

Carleman series βm =
∑2m

j=1 µ
−1/(2j)
2j (2m < n). The result shows

that the closeness in the λ−metric is of order β−1/4. Of course,
since the condition of common marginals seems more restrictive
than the condition of equal moments, one should be able to
construct a similar estimate expressed in terms of the common
marginals only. Furthermore, the technique required for such a
construction should be similar to that used here.



Let us first derive estimates for closeness of measures in R2 having
the same marginals in n directions. We consider the case when one
of the measures has a compact support, in which case the
λ−closeness of measures has order 1/n. Further, the compactness
assumption will be relaxed by Carleman’s assumption for the
problem of moments. Here the λ−closeness of measures is of the

order β
−1/4
n/2 . We also derive estimates of the closeness of measures

with the proportion ε (0 < ε < 1) of coinciding marginals. These
estimates differ from the ones with equal marginals by an additional
term of order 1/ log(1/ε). We conclude by applying our results to
the problems of computer tomography. In particular we offer a
solution of the computer tomography paradox mentioned above.



To highlight the basic ideas, let us consider only the 2−dimensional
case in full. Let θ1, . . . , θn be n unit vectors on the plane and let
IP1, IP2 be two probability measures on R2, having the same
marginals in the directions θ1, . . . , θn. Various probability metrics
can be used to estimate the closeness of IP1 and IP2. We find it
convenient to use the λ− metric (see, e.g., Zolotarev), defined as

λ(IP1, IP2) = min
T>0

max{ max
‖t‖≤T

|
∫
R2

exp(i〈t, x〉)(IP1−IP2)(dx) |, 1

T
},

where 〈·, ·〉 and ‖ · ‖ are the inner product and the Euclidean norm
in R2, respectively. Clearly, the λ metrizes the weak convergence.



In our first result, we consider the important case where one of the
measures considered has a compact support.

Theorem
Let θ1, . . . , θn be n ≥ 2 unit vectors in R2, no two of which are
collinear. Let the support of the probability measure IP1 be a
subset of the unit disc, and let the probability measure IP2 have
the same marginals as IP1 in the directions θ1, . . . , θn. Then,

λ(IP1, IP2) ≤
(

2

s!

)1/(s+1)

,

where

s = 2

[
n − 1

2

]
and [r ] is the integer part of r .



Remark
Note that we can replace the right-hand side of previous inequality

by C/s, where C is some constant, since
(

2
s!

)1/(s+1) ∼ e
s as

s →∞.

The above result leads to the following corollaries:

Corollary

Let θ1, . . . , θn be n ≥ 2 directions in R2 no two of which are
collinear. Suppose that the marginals of the probabilities IP1 and
IP2 with respect to the directions θ1, . . . , θn have moments up to
the even order k ≤ n − 1. Then the marginals of IP1 and IP2 with
respect to any direction t have the same moments up to order k.



Corollary

Theorem 2 still holds if we replace the assumption that IP1 and IP2

have the same marginals with respect to the directions
θj (j = 1, . . . , n) with the assumption that these marginals have the
same moments up to order n − 1.



Let us now relax the condition of compactness for the support of
IP1, assuming only the existence of all moments together with the
Carleman condition (which is a sufficient condition for the
moments to determine the distribution uniquely, see, e.g., Harris
(1966)). For convenience, let us introduce the following notation:

µk = sup
θ∈S1

∫
R2

〈x , θ〉kIP1(dx), k = 0, 1, . . . ,

βs =

(s−2)/2∑
j=1

µ
− 1

2j

2j ,

where the number s is determined from (??) and S1 is the unit
circle.



Theorem
Let θ1, . . . , θn be n ≥ 2 directions in R2 no two of which are
collinear. Suppose that the measure IP1 has moments of any order.
Suppose also that the marginals of the measures IP1 and IP2 in the
directions θ1, . . . , θn have the same moments up to order n − 1.
Then there exists an absolute constant C such that

λ(IP1, IP2) ≤ Cβ
− 1

4
s (µ0 + µ

1/2
2 )1/4.



Theorem
Suppose that, in addition to the conditions of previous Theorem,
the characteristic function of the measure IP1 admits analytic
continuation in some disc centered at the origin. Then

λ(IP1, IP2) ≤ CIP1/ log(s),

where the constant CIP1 depends on the measure IP1, and not on
the measure IP2 or the number of directions.



Let us now consider a more realistic situation where the marginals
of IP1 and IP2 in the directions θ1, . . . , θn are not the same but are
close in the metric λ. We use the same notation as that
introduced in Theorem 2.

Theorem
Let θ1, . . . , θn be n ≥ 2 directions in R2, no two of which are
collinear. Suppose that the supports of the measures IP1 and IP2

lie in the unit disc, where they have ε−coinciding marginals with
respect to the directions θj (j = 1, . . . , n) i.e.,

λ(IP
(θj )
1 , IP

(θj )
2 ) = min

T>0
max

(
max
|τ |≤T

| ϕ1(τ, θj)−ϕ2(τ, θj) |, 1/T
)
≤ ε,

j = 1, . . . , n. Then there exists a constant C depending on the
directions θj (j = 1, . . . , n) such that for sufficiently small ε > 0, we
have

λ(IP1, IP2) ≤ C (1/ log(
1

ε
) + 1/s),

where s is defined as before.



Remark
The conclusion of this Theorem still holds if instead of the ε−
coincidence of the marginals we require the ε-coincidence of the
moments up to order s of these marginals. For the latter, we
require the inequalities

|
∫
R2

〈x , θj〉kIP1(dx)−
∫
R2

〈x , θj〉kIP2(dx)| ≤ ε, k ≤ s.



All the theorems stated above admit generalizations to probability
measures defined on Rm. However, here we can no longer choose
the directions θ1, . . . , θn in an arbitrary way. Furthermore, to
obtain the order of precision corresponding to the n directions in
R2, we need nm−1 directions in Rm for m ≥ 2. The results can be
obtained by induction on the dimension m.
We need to define the set of directions we are going to use.
Choose n ≥ 2 distinct real numbers u1, . . . , un, all different from
zero, and construct first the set of n two-dimensional vectors:

(1, u1), (1, u2), . . . , (1, un).

Then, construct n2 three-dimensional vectors

(1, uj1 , uj2), j1, j2 = 1, . . . , n.

Repeating the last step, we shall eventually construct nm−1 vectors
in Rm:

(1, uj1 , uj2 , . . . , ujm−1), jl = 1, . . . , n, l = 1, . . . ,m − 1.



Denote these m−dimensional vectors by θ1, . . . , θN , where
N = nm−1 (the choice of enumeration is irrelevant here). These
inductive arguments lead to the following extensions of previous
Theorems.

Proposition

The results of Theorems 2 - 5 still hold if we consider the measures
IP1 and IP2 in Rm, and we choose as directions the N = nm−1

vectors given above. Further, s = 2
[
n−1

2

]
.



The above results are concerned with closeness between the
probability measures IP1 and IP2 in terms of the λ-metric. We can
also consider the cases of the Lévy-Prokhorov distance and the
distance in variation with the additional assumptions of existence
and differentiability of the densities of the relevant probability
distributions. To obtain the corresponding estimates, it is sufficient
to use the results relating these distances to the λ-metric. We do
not formulate the corresponding theorems since the inequalities
already obtained are far from being final. We belive the estimates
of closeness between the densities of smoothed distributions are
more interesting.



Quantum mechanics and computer tomography
Let physical system has one continuous degree of freedom, having
generalized coordinate operator x̂ and conjugate operator p̂. Let
”rotated quadrature” operators x̂θ, p̂θ are defined as

x̂θ = x̂ cos θ + p̂ sin θ, p̂θ = −x̂ sin θ + p̂ cos θ

for all angles θ (x̂θ, p̂θ are related with x̂ , p̂ (θ = 0) by unitary
transformations). Let Pθ(xθ) is the probability distribution of
observable x̂θ. It was shown that if we know an infinite and
continuous (uncountable) set of such distributions {Pθ(xθ)}, then
it is possible to determine in unique way by the Radon transform
the corresponding Wigner distribution W (x , p):

W (x , p) =
1

π

∫ ∞
−∞

ψ(x + x ′)ψ∗(x − x ′)e i2px
′
dx ′

which is in one-to-one relation to the wave function:

ψ(x + x ′)ψ∗(x − x ′) =

∫ ∞
−∞

W (x , p)e i2px
′
dp.



In Raymer, it was realized experimental method in QO for
measuring of corresponding distributions Pθ(xθ; W )

Pθ(xθ; W ) =

∫ ∞
−∞

W (xθ cos θ−

−pθ sin θ, xθ sin θ + pθ cos θ)dpθ

which are marginals of W (x , p). The Wigner distributions W (x , p)
cannot be, in general, measurable, because W (x , p) are, in general,
not non-negative. It was proved in Hudson that W (x , p) are
non-negative iff the wave functions are Gaussian.



So for ”measuring” of the wave functions we must solve two
inverse problems:

{Pθ(xθ; W )} →W (x , p) (A);

W (x , p)→ ψ(x) (B).

Both (A) and (B) inverse problems are ill-posed problems.
Moreover, in reality we can measure only finite number N of
marginals of the Wigner function. But for finite number of
marginals this non-uniqueness produces so called tomography
paradox mentioned above. In our terms this means that two
different Wigner distributions W1(x , p) and W2(x , p), which have
the same N marginals may differ dramatically. It is also an
additional trouble - the Wigner distributions W (x , p) cannot have
finite support.



Therefore in CAT scans in reality are measured only a finite
number of truncated marginals P̃θ(xθ; W ):

P̃θ(xθ; W ) =

{
Pθ(xθ; W ), x ∈ [Xθ1 ,Xθ2 ]
0, x 6∈ [Xθ1 ,Xθ2 ]

where finite Xθ1,Xθ2 determined by real possibilities of the
experimental device. From the finiteness of the number of
truncated marginals P̃θ(xθ; W ), θ ∈ {θ1, . . . , θN}, necessary
discretization of the integral Radon transform (see Natterer)
follows that the solution of problem (A) has so-called artifacts.



Artifacts are non-existing details in the exact W (x , p) and ψ(x),
which originate from the non-accuracy of mathematical part of the
original CAT scans. Such artifacts easy to see in the results of the
original works Raymer, Smeethy, even for the simplest case of the
Gaussian W (x , p).
We obtain main result.



Theorem
Let ψ1, ψ2 be two wave functions and W1,W2 be corresponding
Wigner distributions. Suppose that ψl (l = 1, 2) is 2s time
differentiable and

|ψl(x)| ≤ C1,

∫ ∞
−∞
|ψl(x)dx | ≤ C2,

sup
a
| ∂

2s

∂a2s
e−σ

2a2/2

∫ ∞
−∞

ψ(u − ζ)ψ∗(u)e iauζdu| ≤

≤ C (|ζ|2s + 1),

gl(a, ζ;σ) =

=
1

2πσ2

∫ ∞
−∞

∫ ∞
−∞

ψl(a− ζ − ξ1 − ξ2)ψ∗l (a− ξ2)×

exp(−(ξ2
1 + ξ2

2)/(2σ2))dξ1dξ2,

(l = 1, 2), where C , C1, C2 are positive constants. For any ε > 0
and any integer N ≥ 2 there exist (N + 1) directions



θ0, . . . , θN such that if the marginals of W1 and W2 on these
directions are ε-identical, e.i.

|Pθj (xθj ; W1)− Pθj (xθj ; W2)| ≤ ε

j = 0, 1, . . . ,N, then for any A > 0

sup
a
|g1(a, ζ;σ)− g2(a, ζ;σ)| ≤

2

σ

[ Cπ2sAs(1 + ζ2s)(8 + 4
π ln N)

ζs2s(N + 1)2(N − 1)2 . . . (N − 2s + 3)2
+

+ε

√
π

2
(8 +

4

π
ln N) + C1C2

∫ ∞
σA

e−x
2/2dx

]
.

The directions θ0, . . . , θN may be chosen such that the points

a0 = −1/ tan θ0, . . . , aN = −1/ tan θN

are the Tchebyshev knots of interpolation for [−A,A].



From here we see that it is impossible to determine local
information on the wave function basing on a finite number N ≥ 2
of marginals, but it is possible to estimate the distance between
two functions g1, g2, connected to the wave functions.


