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In a complete theory there is an element corresponding
to each element of reality. A um:mnt tion for the

ality of a physical quantity is the ity of predicting
& with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

1

NY serious consideration of a physical

theory must take into account the dis-
tinction between the objective reality, which is
independent of any theory, and the physical
concepts with which the theory operates. These
concepts are intended to correspond with the
objective reality, and by means of these concepts
we picture this reality to ourselves.

In attempting to judge the’ success of a
physical theory, we may ask ourselves two ques-
tions: (1) “Is the theory correct?” and (2) “Is
the description given by the theory lete?"”

quantum mechanics is not complete or (2) these two
o o or () these ©

of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.

Whatever the meaning assigned to the term
complete, the following requirement for a com-
plete theory seems to be a necessary one : every
element of the physical reality must have a counter-
part in the physical theory. We shall call this the
condition of completeness. The second question
is thus easily answered, as soon as we are able to
decide what are the elements of the physical
reality.

The elements of the physical reality cannot
be determined by a priori philosophical con-
siderations, but must be found by an appeal to
results of i and A

It is only in the case in which positive answers
may be given to both of these questions, that the
concepts of the theory may be said to be satis-
factory. The correctness of the theory is judged
by the degree of agreement between the con-
clusions of the theory and human experience.
‘This experience, which alone enables us to make
inferences about reality, in physics takes the
form of experiment and measurement. It is the
second question that we wish to consider here, as
applied to quantum mechanics.

comprehensive definition of reality is, however,
unnecessary for our purpose. We shall be satisfied
with the following criterion, which we regard as
reasonable. If, without in any way disturbing a
system, we can predict with cerlainty (i.e., wilh
probability equal to unity) the value of a physical
quantity, then there exisis an element of physical
reality corresponding to this physical quantity. It
seems to us that this criterion, while far from
exhausting all possible ways of recognizing a
physical reality, at least provides us with one
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such way, whenever the conditions set down in
it occur. Regarded not as a necessary, but
merely as a sufficient, condition of reality, this
criterion is in agreement with classical as well as
quantum-mechanical ideas of reality.

To illustrate the ideas involved let us consider
the quantum-mechanical description of the
behavior of a particle having a single degree of
freedom. The fundamental concept of the theory
is the concept of state, which is supposed to be
completely characterized by the wave function
¥, which is a function of the variables chosen to
describe the particle’s behavior. Corresponding
to each physically observable quantity A there
is an operator, which may be designated by the
same letter.

If ¢ is an eigenfunction of the operator 4, that
is, if

V'=Ay=ay, «

where a is a number, then the physical quantity
4 has with certainty the value a whenever the
particle is in the state given by y. In accordance
with our criterion of reality, for a particle in the
state given by ¥ for which Eq. (1) holds, there
is an element of physical reality corresponding
to the physical quantity 4. Let, for example,

Pmeleun s, @
where I is Planck’s constant, pq is some constant
number, and x the independent variable. Since

the operator corresponding to the momentum of
the particle is

p=(h/2mi)a/0x, @

we obtain
=pv=(h/27i)39 /%= po. @

Thus, in the state given by Eq. (2), the momen-
tum has certainly the value po. It thus has
meaning to say that the momentum of the par-
ticle in the state given by Eq. (2) is real.

On the other hand if Eq. (1) does not hold,
we can no longer speak of the physical quantity
A having a particular value. This is the case, for
example, with the coordinate of the particle. The
operator corresponding toit, say g, is the operator
of multiplication by the independent variable.
Thus,

gy =xyay. )

In accordance with quantum mechanics we can
only say that the relative probability that a
measurement of the coordinate will give a result
lying between a and b is

Pa, b)=.!“‘;¢dx=fbdx>b—a. 6)

Since this probability is independent of a, but
depends only upon the difference 5—a, we see
that all values of the coordinate are equally
probable.

A definite value of the coordinate, for a par-
ticle in the state given by Eq. (2), is thus not
predictable, but may be obtained only by a
direct measurement. Such a measurement how-
ever disturbs the particle and thus alters its
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sight this assumption is entirely reasonable, for
the information obtainable from a wave function
seems to correspond exactly to what can be
measured without altering the state of the
system. We shall show, however, that this as-
sumption, together with the criterion of reality
given above, leads to a contradiction.

2.

For this purpose let us suppose that we have
two systems, I and II, which we permit to inter-
act from the time t=0 to ¢=T, after which time
we suppose that there is no longer any interaction
between the two parts. We-suppose further that
the states of the two systems before {=0 were
known. We can then calculate with the help of
i 's equation the state of the combined

state. After the i is i the
particle will no longer be in the state given by
Eq. (2). The usual conclusién from this in
quantum mechanics is that when the momentum
of a particle is known, its coordinate has no physical
reality.

More generally, it is shown in quantum me-
chanics that, if the operators corresponding to
two physical quantities, say 4 and B, do not
commute, that is, if AB>BA, then the precise
knowledge of one of them precludes such a
knowledge of the other. Furthermore, any
attempt to determine the latter experimentally
will alter the state of the system in such a way
as to destroy the knowledge of the first.

From this follows that either (1) the quantum-
mechanical description of reality given by the wave
function is not complele or (2) when the operators
corresponding to two physical quantities do mot
commute the two quantilies cannol have simul-
taneous reality. For if both of them had simul-
taneous reality—and thus definite values—these
values would enter into the complete description,
according to the condition of completeness. If
then the wave function provided such a complete
description of reality, it would contain these
values ; these would then be predictable. This
not being the case, we are left with the alter-
natives stated.

In quantum mechanics it is usually assumed
that the wave function does contain a complete
description of the physical reality of the system
in the state to which it corresponds. At first

system I++1I at any subsequent time; in par-
ticular, for any ¢>7. Let us designate the cor-
responding wave function by ¥. We cannot,
however, calculate the state in which either one
of the two systems is left after the interaction.
This, according to quantum mechanics, can be
done only with the help of further measurements,
by a process known as the reduction of the wave
packet. Let us consider the essentials of this
process.

Let ai, @y, as, --- be the eigenvalues of some
physical quantity 4 pertaining to system I and
w(x), ua(xr), us(x), the corresponding
eigenfunctions, where ; stands for the variables
used to describe the first system. Then ¥, con-
sidered as a function of x1, can be expressed as

W, 2= 3 daeunted, ™

where x; stands for the variables used to describe
the second system. Here y.»(x2) are to be regarded
merely as the coefficients of the expansion of ¥
into a series of orthogonal functions ua(x.).
Suppose now that the quantity A is measured
and it is found that it has the value as. It is then

luded that after the the first
system is left in the state given by the wave
function #x(x.), and that the second system is
left in the state given by the wave function
¥x(xs). This is the process of reduction of the
wave packet; the wave packet given by the
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infinite series (7) is reduced to a single term
Valxnualx).

The set of functions ua(x) is determined by
the choice of the physical quantity 4. If, instead
of this, we had chosen another quantity, say B,
having the eigenvalues by, bs, bs, -+ and eigen-
functions i(x1), a(xy), v(x1), -+ we should
have obtained, instead of Eq. (7), the expansion

¥z =)= F eteine, ®

where ¢,'s are the new coefficients. If now the
quantity B is measured and is found to have the
value b,, we conclude that after the measurement
the first system is left in the state given by v,(x1)
and the second system is left in the state given
by er(x2).

We see therefore that, as a consequence of two
different measurements performed upon the first
system, the second system may be left in states
with two different wave functions. On the other
hand, since at the time of measurement the two
systems no longer interact, no real change can
take place in the second system in consequence
of anything that may be done to the first system.
This is, of course, merely a statement of what is
meant by the absence of an interaction between
the two systems. Thus, it is possible to assign two
different wave functions (in our example ¥ and
@) to the same reality (the second system after
the interaction with the first).

Now, it may happen that the two wave func-
tions, ¥ and ¢,, are eigenfunctions of two non-
commuting operators corresponding to some
physical quantities P and Q, respectively. That
this may actually be the case can best be shown
by an example. Let us suppose that the two
systems are two particles, and that

¥, %2

-

where x, is some constant. Let A be the momen-
tum of the first particle ; then, as we have seen
in Eq. (4), its cigenfunctions will be

PRESEPCIIE (10)

corresponding to the eigenvalue p. Since we have
here the case of a continuous spectrum, Eq. (7)
will now be written
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Y= [ bl an
where -
e, (12)
This ¢, however is the eigenfunction of the
operator
P=(h/2i)3/dxs, (13)

corresponding to the eigenvalue —p of the
momentum of the second particle. On the other
hand, if B is the coordinate of the first particle,
it has for eigenfunctions

(1) =8(x1—2), 149

corresponding to the eigenvalue x, where
3(x1—x) is the well-known Dirac delta-function.
Eq. (8) in this case becomes

Uewrd= [ esemtends, (15

where

LEED

[ conimommiooniy

=hé(x—xs+x0). (16)

This ¢., however, is the eigenfunction of the
operator

0=x an

corresponding to the eigenvalue x+x, of the
coordinate of the second particle. Since

PQ—-QP=h/2ri, (18)

we have shown that it is in general possible for
¥i and ¢, to be eigenfunctions of two noncom-
muting operators, corresponding to physical
quantities.

Returning now to the general case contem-
plated in Eqgs. (7) and (8), we assume that ¢,
and ¢, are indeed eigenfunctions of some non-
commuting operators P and Q, corresponding to
the eigenvalues px and g,, respectively. Thus, by
measuring either 4 or B we are in a position to
predict with certainty, and without in any way

disturbing the second system, either the value
of the quantity P (that is p4) or the value of the
quantity Q (that.is g,). In accordance with our
criterion of reality, in the first case we must
consider the quantity P as being an element of
reality, in the second case the quantity Q is an
element of reality. But, as we have seen, both
wave functions ¢i and ¢, belong to the same

usly we proved that either (1) the
quantum-mechanical description of reality given
by the wave function is not complete or (2) when
the operators corresponding to two physical
quantities do not commute the two quantities
cannot have simultaneous reality. Starting then
with the assumption that the wave function
does give a complete description of the physical
reality, we arrived at the conclusion that two
physical quantities, with noncommuting oper-
ators, can have simultaneous reality. Thus the
negation of (1) leads to the negation of the only
other alternative (2). We are thus forced to
conclude that the quantum-mechanical descrip-
tion of physical reality given by wave functions
is not complete.

One could object to this conclusion on the
grounds that our criterion of reality is not suf-
ficiently restrictive. Indeed, one would not arrive
at our conclusion if one insisted that two or more
physical quantities can be regarded as simul-
taneous elements of reality only when they can be
simultaneously measured or predicted. On this
point of view, since either one or the other, but
not both simultaneously, of the quantities P
and Q can be predicted, they are not simultane-
ously real. This makes the reality of P and Q
depend upon the process of measurement carried
out on the first system, which does not disturb
the second system in any way. No reasonable
definition of reality could be expected to permit
this.

While we have thus shown that the wave
function does not provide a complete description
of the physical reality, we left open the question
of whether or not such a description exists. We
believe, however, that such a theory is possible.
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Miize byt kvantové-mechanicky popis fyzikdlni reality
povazovdn za uplny?

Upln4 teorie obsahuje pojem [element] odpovidajici kazdému elementu
reality.

Dostate¢na podminka pro realitu fyzikalni veli¢iny je moznost jejiho
jednoznac¢ného urceni, aniz by byl ovlivnén systém.

V kvantové mechanice, v pfipadé dvou fyzikalnich veli¢in popsanych
nekomutujicimi operatory, znalost jedné z nich vylucuje znalost druhé. Tedy
bud

(1) kvantové-mechanicky popis reality dany vlnovou funkci neni aplny nebo
(2) tyto dvé veli¢iny nemohou mit sou¢asnou realitu.

Diskuze situace, kdy provadime predpovédi o systému na zdkladé méteni
provedeném na jiném systému, se ktery predtim systém interagoval, vede

k zavéru, Ze pokud (1) neplati, pak (2) téZ neplati.

Lze tedy vyvodit, Ze popis reality dany vlnovou funkci neni aplny.
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In a complete theory there is an element corresponding
to each element of reality. A sufficient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

1.

NY serious consideration of a physical

theory must take into account the dis-
tinction between the objective reality, which is
independent of any theory, and the physical
concepts with which the theory operates. These
concepts are intended to correspond with the
objective reality, and by means of these concepts
we picture this reality to ourselves.

In attempting to judge the success of a
physical theory, we may ask ourselves two ques-
tions: (1) “Is the theory correct?”” and (2) “Is
the description given by the theory complete?”’
It is only in the case in which positive answers
may be given to both of these questions, that the
concepts of the theory may be said to be satis-
factory. The correctness of the theory is judged
by the degree of agreement between the con-
clusions of the theorv and human experience.
This experience, which alone enables us to make
inferences about reality, in physics takes the
form of experiment and measurement. It is the
second question that we wish to consider here, as
applied to quantum mechanics.

quantum mechanics is not complete or (2) these two
quantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.

Whatever the meaning assigned to the term
complete, the following requirement for a com-
plete theory seems to be a necessary one: every
element of the physical reality must have a counter-
part in the physical theory. We shall call this the
condition of completeness. The second question
is thus easily answered, as soon as we are able to
decide what are the elements of the physical
reality.

The elements of the physical reality cannot
be determined by @ priori philosophical con-
siderations, but must be found by an appeal to
results of experiments and measurements. A
comprehensive definition of reality is, however,
unnecessary for our purpose. We shall be satisfied
with the following criterion, which we regard as
reasonable. If, without in any way disturbing a
system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical
quantity, then there exists an element of physical
reality corresponding to this physical quantity. It
seems to us that this criterion, while far from
exhausting all possible ways of recoghizing a
physical reality, at least provides us with one



Pfi snaze posuzovat uspésnost fyzikalni teorie si miZeme polozit dvé otazky:

(1) ,Je teorie spravna?"

(2) ,Je popis dany teorii tplny?*

Spravnost teorie se posuzuje podle miry souhlasu mezi zavéry teorie a

lidskou zkuSenosti.

At uz prisuzujeme pojmu uplnosti jakykoli vyznam, nasledujici poZzadavek se zda byt nezbytny:
kazdy element fyzikdIni reality musi mit protéjsek ve fyzikdlni teorii. Tuto
podminku budeme nazyvat uplnosti.

... Uplna definice reality nebude pro nase ucely potiebnd. Uspokojime se s nasledujicim kritériem,
které povazujeme za rozumneé:

Pokud, bez jakéhokoli ovlivnéni systému, miizeme s jistotou ... urcit hodnotu

fyzikdlni veliciny, pak existuje element fyzikdlni reality odpovidajici této

fyzikdlni veliciné.
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In a complete theory there is an element corresponding
to each element of reality. A sufficient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

1.

NY serious consideration of a physical

theory must take into account the dis-
tinction between the objective reality, which is
independent of any theory, and the physical
concepts with which the theory operates. These
concepts are intended to correspond with the
objective reality, and by means of these concepts
we picture this reality to ourselves.

In attempting to judge the success of a
physical theory, we may ask ourselves two ques-
tions: (1) “Is the theory correct?”” and (2) “Is
the description given by the theory complete?”’
It is only in the case in which positive answers
may be given to both of these questions, that the
concepts of the theory may be said to be satis-
factory. The correctness of the theory is judged
by the degree of agreement between the con-
clusions of the theorv and human experience.
This experience, which alone enables us to make
inferences about reality, in physics takes the
form of experiment and measurement. It is the
second question that we wish to consider here, as
applied to quantum mechanics.

quantum mechanics is not complete or (2) these two
quantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.

Whatever the meaning assigned to the term
complete, the following requirement for a com-
plete theory seems to be a necessary one: every
element of the physical reality must have a counter-
part in the physical theory. We shall call this the
condition of completeness. The second question
is thus easily answered, as soon as we are able to
decide what are the elements of the physical
reality.

The elements of the physical reality cannot
be determined by @ priori philosophical con-
siderations, but must be found by an appeal to
results of experiments and measurements. A
comprehensive definition of reality is, however,
unnecessary for our purpose. We shall be satisfied
with the following criterion, which we regard as
reasonable. If, without in any way disturbing a
system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical
quantity, then there exists an element of physical
reality corresponding to this physical quantity. It
seems to us that this criterion, while far from
exhausting all possible ways of recoghizing a
physical reality, at least provides us with one
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Z tohoto vyplyva, Ze bud

(1) kvantové-mechanicky popis reality dany vinovou funkci neni tplny nebo
(2) pokud operatory odpovidajici dvéma fyzikalnim veli¢inam nekomutuji,

tyto dvé veli¢iny nemohou mit soucasnou realitu.

Fyzika jako dobrodruzstvi poznani

Kvantova osobitost

778 EINSTEIN, PODOLSKY AND ROSEN

such way, whenever the conditions set down in
it occur. Regarded not as a necessary, but
merely as a sufficient, condition of reality, this
criterion is in agreement with classical as well as
quantum-mechanical ideas of reality.

To illustrate the ideas involved let us consider
the quantum-mechanical description of the
behavior of a particle having a single degree of
freedom. The fundamental concept of the theory
is the concept of state, which is supposed to be
completely characterized by the wave function
¥, which is a function of the variables chosen to
describe the particle’s behavior. Corresponding
to each physically observable quantity A4 there
is an operator, which may be designated by the
same letter.

If ¢ is an eigenfunction of the operator 4, that
is, if

V=Ay=ay, ©)
where a is a number, then the physical quantity
A has with certainty the value a whenever the
particle is in the state given by ¥. In accordance
with our criterion of reality, for a particle in the
state given by y for which Eq. (1) holds, there
is an element of physical reality corresponding
to the physical quantity 4. Let, for example,

'\l,:e(irllh)m-r' (2)

where % is Planck’s constant, p, is some constant
number, and x the independent variable. Since
the operator corresponding to the momentum of
the particle is

p=(h/27i)3/dx, ®)
we obtain

V' =py=(h/21)0¢/0x=pop. )

Thus, in the state given by Eq. (2), the momen-
tum has certainly the value po. It thus has
meaning to say that the momentum of the par-
ticle in the state given by Eq. (2) is real.

On the other hand if Eq. (1) does not hold,
we can no longer speak of the physical quantity
A having a particular value. This is the case, for
example, with the coordinate of the particle. The
operator corresponding to it, say ¢, is the operator
of multiplication by the independent variable.
Thus,

@p=x¢=ay. (5)

In accordance with quantum mechanics we can
only say that the relative probability that a
measurement of the coordinate will give a result
lying between @ and b is

b b
P(a,b)=f ¢¢{1x=f di=b—a.  (6)

Since this probability is independent of a, but
depends only upon the difference b—a, we see
that all values of the coordinate are equally
probable.

A definite value of the coordinate, for a par-
ticle in the state given by Eq. (2), is thus not
predictable, but may be obtained only by a
direct measurement. Such a measurement how-
ever disturbs the particle and thus alters its
state. After the coordinate is determined, the
particle will no longer be in the state given by
Eq. (2). The usual conclusion from this in
quantum mechanics is that when the momentum
of a particle is known, its coordinate has no physical
reality.

More generally, it is shown in quantum me-
chanics that, if the operators corresponding to
two physical quantities, say 4 and B, do not
commute, that is, if AB##BA, then the precise
knowledge of one of them precludes such a
knowledge of the other. Furthermore, any
attempt to determine the latter experimentally
will alter the state of the system in such a way
as to destroy the knowledge of the first.

From this follows that either (1) the quantum-
mechanical description of reality given by the wave
Sfumction is not complete or (2) when the operators
corresponding to two physical quantities do not
commute the two quantities cannot have simul-
taneous reality. For if both of them had simul-
taneous reality—and thus definite values—these
values would enter into the complete description,
according to the condition of completeness. If
then the wave function provided such a complete
description of reality, it would contain these
values ; these would then be predictable. This
not being the case, we are left with the alter-
natives stated.

In quantum mechanics it is usually assumed
that the wave function does contain a complete
description of the physical reality of the system
in the state to which it corresponds. At first



EPR

Vidime tak, Ze d@isledkem dvou rtiznych méfeni provedenych na prvnim
systému, druhy systém miiZe skoncit ve stavech danych dvéma riznyma
vinovyma funkcemi [ a ¢, ].

Na druhou stranu, jelikoz v okamzik méfeni spolu jiz oba systémy
neinteragovaly, v druhém systému nemohlo dojit k zddné zméné zptisobené
¢imkoli provadéném na prvnim systému.

Je tedy mozné priradit dvé riizné vinové funkce (v nasem piipadé ¢y a ¢,.)
stejné realité (druhému systému po interakci s prvnim).

Nyni ale mtiZe nastat, Ze tyto dvé vlnové funkce ¥, a ¢,- jsou vlastnimi
funkcemi dvou nekomutujicich operatort odpovidajicim fyzikalnim
veli¢indm P a Q. ...
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sight this assumption is entirely reasonable, for
the information obtainable from a wave function
seems to correspond exactly to what can be
measured without altering the state of the
system. We shall show, however, that this as-
sumption, together with the criterion of reality
given above, leads to a contradiction.

2.

For this purpose let us suppose that we have
two systems, I and II, which we permit to inter-
act from the time ¢=0 to {=T, after which time
we suppose that there is no longer any interaction
between the two parts. We suppose further that
the states of the two systems before t=0 were
known. We can then calculate with the help of
Schridinger’s equation the state of the combined
system I4II at any subsequent time; in par-
ticular, for any ¢>7. Let us designate the cor-
responding wave function by ¥. We cannot,
however, calculate the state in which either one
of the two systems is left after the interaction.
This, according to quantum mechanics, can be
done only with the help of further measurements,
by a process known as the reduction of the wave
packet. Let us consider the essentials of this
process.

Let ai, as, a3, - - - be the eigenvalues of some
physical quantity 4 pertaining to system I and
ui(xr), ua(xr), us(xy), the corresponding
eigenfunctions, where x; stands for the variables
used to describe the first system. Then ¥, con-
sidered as a function of x;, can be expressed as

Wy, w2) = § Palw) (), 1%

where x; stands for the variables used to describe
the second system. Here ¥, (x2) are to be regarded
merely as the coefficients of the expansion of ¥
into a series of orthogonal functions w,(x1).
Suppose now that the quantity 4 is measured
and it is found that it has the value a;. It is then
concluded that after the measurement the first
system is left in the state given by the wave
function u,(x), and that the second system is
left in the state given by the wave function
Yi(x2). This is the process of reduction of the
wave packet; the wave packet given by the

PHYSICAL REALITY 719

infinite series (7) is reduced to a single term
V() un(x).

The set of functions #,(x:) is determined by
the choice of the physical quantity 4. If, instead
of this, we had chosen another quantity, say B,
having the eigenvalues by, by, b3, -+ and eigen-
functions v1(x1), v2(x1), v3(x1), --- we should
have obtained, instead of Eq. (7), the expansion

V(o x9) = i oo, ®

where ¢,'s are the new coefficients. If now the
quantity B is measured and is found to have the
value b,, we conclude that after the measurement
the first system is left in the state given by v,(x;)
and the second system is left in the state given
by ¢.(x).

We see therefore that, as a consequence of two
different measurements performed upon the first
system, the second system may be left in states
with two different wave functions. On the other
hand, since at the time of measurement the two
systems no longer interact, no real change can
take place in the second system in consequence
of anything that may be done to the first system.
This is, of course, merely a statement of what is
meant by the absence of an interaction between
the two systems. Thus, ¢ is possible to assign two
different wave functions (in our example y; and
@) to the same reality (the second system after
the interaction with the first).

Now, it may happen that the two wave func-
tions, ¥y and ¢,, are eigenfunctions of two non-
commuting operators corresponding to some
physical quantities P and O, respectively. That
this may actually be the case can best be shown
by an example. Let us suppose that the two
systems are two particles, and that

o
\I/(xl, xz)__-f e(z,m'/n)(acrzgﬂ:a)pd{,Y )
—o

where x, is some constant. Let 4 be the momen-
tum of the first particle; then, as we have seen
in Eq. (4), its eigenfunctions will be

Up(ay) =e@rilm Py (10)

corresponding to the eigenvalue p. Since we have
here the case of a continuous spectrum, Eq. (7)
will now be written
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... Méfenim A nebo B miizeme tak s jistotou urcit, aniz bychom pfitom
jakkoli ovlivnili druhy systém, bud hodnotu veli¢iny P (tj. py) nebo veli¢iny
Q (tj. gr). V souhlase s nasim kritériem reality, v prvnim piipadé musime
veli¢inu P povazovat za element reality, vdruhém ptipadé je elementem
reality veli¢ina Q.

Ale, jak jsme vidéli, obé vinové funkce ¢, a ¢, patii do stejné reality.

Vychazeje z predpokladu, Ze vlnova funkce predstavuje uplny popis reality,
jsme tak dospéli k zavéru, ze fyzikalni veli¢iny s nekomutujicimi operatory
mohou mit soucasnou realitu. ...

[ coZ je spor |

Musime tak vyvodit, Ze kvantové-mechanicky popis fyzikalni reality dany
vlnovymi funkcemi neni uplny.

Fyzika jako dobrodruzstvi poznani Kvantova osobitost
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o x= [ Vueuleddp, (1)

where
Y p(0) = e~ il (r—z0) v, (12)

This ¢, however is the eigenfunction of the
operator

P=(h/271)3/d%s, (13)

corresponding to the eigenvalue —p of the
momentum of the second particle. On the other
hand, if B is the coordinate of the first particle,
it has for eigenfunctions

v(21) = 8(x1—x), (14)

corresponding to the eigenvalue x, where
8(x1—x) is the well-known Dirac delta-function.
Eq. (8) in this case becomes

W(x1, x2) =fw @a(%2)v2(x1)dx, (15)

where

o
¢z(x2)=f e@mill) (s—arta0)pdp

=hé(x—xs+x0). (16)

This ¢,, however, is the eigenfunction of the
operator

Q=2 (€Y

corresponding to the eigenvalue x+x, of the
coordinate of the second particle. Since

PQ—QP=h/2ri, (18)

we have shown that it is in general possible for
Y& and ¢, to be eigenfunctions of two noncom-
muting operators, corresponding to physical
quantities.

Returning now to the general case contem-
plated in Egs. (7) and (8), we assume that ¢;
and ¢, are indeed eigenfunctions of some non-
commuting operators P and Q, corresponding to
the eigenvalues p; and ¢,, respectively. Thus, by
measuring either 4 or B we are in a position to
predict with certainty, and without in any way

disturbing the second system, either the value
of the quantity P (that is p;) or the value of the
quantity Q (that is ¢,). In accordance with our
criterion of reality, in the first case we must
consider the quantity P as being an element of
reality, in the second case the quantity Q is an
element of reality. But, as we have seen, both
wave functions ¢, and ¢, belong to the same
reality.

Previously we proved that either (1) the
quantum-mechanical description of reality given
by the wave function is not complete or (2) when
the operators corresponding to two physical
quantities do not commute the two quantities
cannot have simultaneous reality. Starting then
with the assumption that the wave function
does give a complete description of the physical
reality, we arrived at the conclusion that two
physical quantities, with noncommuting oper-
ators, can have simultaneous reality. Thus the
negation of (1) leads to the negation of the only
other alternative (2). We are thus forced to
conclude that the quantum-mechanical descrip-
tion of physical reality given by wave functions
is not complete.

One could object to this conclusion on the
grounds that our criterion of reality is not suf-
ficiently restrictive. Indeed, one would not arrive
at our conclusion if one insisted that two or more
physical quantities can be regarded as simul-
taneous elements of reality only when they can be
stmultaneously measured or predicted. On this
point of view, since either one or the other, but
not both simultaneously, of the quantities P
and Q can be predicted, they are not simultane-
ously real. This makes the reality of P and Q
depend upon thé process of measurement carried
out on the first system, which does. not disturb
the second system in any way. No reasonable
definition of reality could be expected to permit
this.

While we have thus shown that the wave
function does not provide a complete description
of the physical reality, we left open the question
of whether or not such a description exists. We
believe, however, that such a theory is possible.
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... k tomuto zavéru bychom nedosli, pokud bychom trvali na tom, Ze dvé
fyzikalni veli¢ciny mohou byt povazovany za soucasné elementy reality,
pouze pokud mohou byt méreny ¢i predikovdny soucasné.

Podle tohoto pohledu, jelikoz bud’ jedna ¢i druhd, ale ne obé soucasné, z
veli¢in P a Q mtize byt urc¢ena, nejsou tyto veli¢iny soucasné realné.
Tudiz realita P a Q by zavisela na procesu méfeni provedeném na prvnim
systému, aniz by byl jakkoli ovlivnén systém druhy.

Nelze predpokladat, Ze by jakakoli rozumna definice reality mohla néco
takového pfipustit.

Ackoli jsme ukazali, Ze vinova funkce neposkytuje uplny popis fyzikalni
reality, nezodpovédéli jsme otazku, zda takovy popis existuje ¢i neexistuje.
Vétime vsak, Ze takova teorie je mozna.

Fyzika jako dobrodruzstvi poznani Kvantova osobitost
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corresponding to the eigenvalue x+x, of the
coordinate of the second particle. Since

PQ—QP=h/2ri, (18)

we have shown that it is in general possible for
Y& and ¢, to be eigenfunctions of two noncom-
muting operators, corresponding to physical
quantities.

Returning now to the general case contem-
plated in Egs. (7) and (8), we assume that ¢;
and ¢, are indeed eigenfunctions of some non-
commuting operators P and Q, corresponding to
the eigenvalues p; and ¢,, respectively. Thus, by
measuring either 4 or B we are in a position to
predict with certainty, and without in any way

disturbing the second system, either the value
of the quantity P (that is p;) or the value of the
quantity Q (that is ¢,). In accordance with our
criterion of reality, in the first case we must
consider the quantity P as being an element of
reality, in the second case the quantity Q is an
element of reality. But, as we have seen, both
wave functions ¢, and ¢, belong to the same
reality.

Previously we proved that either (1) the
quantum-mechanical description of reality given
by the wave function is not complete or (2) when
the operators corresponding to two physical
quantities do not commute the two quantities
cannot have simultaneous reality. Starting then
with the assumption that the wave function
does give a complete description of the physical
reality, we arrived at the conclusion that two
physical quantities, with noncommuting oper-
ators, can have simultaneous reality. Thus the
negation of (1) leads to the negation of the only
other alternative (2). We are thus forced to
conclude that the quantum-mechanical descrip-
tion of physical reality given by wave functions
is not complete.

One could object to this conclusion on the
grounds that our criterion of reality is not suf-
ficiently restrictive. Indeed, one would not arrive
at our conclusion if one insisted that two or more
physical quantities can be regarded as simul-
taneous elements of reality only when they can be
stmultaneously measured or predicted. On this
point of view, since either one or the other, but
not both simultaneously, of the quantities P
and Q can be predicted, they are not simultane-
ously real. This makes the reality of P and Q
depend upon thé process of measurement carried
out on the first system, which does. not disturb
the second system in any way. No reasonable
definition of reality could be expected to permit
this.

While we have thus shown that the wave
function does not provide a complete description
of the physical reality, we left open the question
of whether or not such a description exists. We
believe, however, that such a theory is possible.
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... Vidime tak, Ze dtisledkem dvou rtiznych méteni provedenych na prvnim systému, druhy systém mtze skoncit
ve stavech danych dvéma rtiznymi vektory (napi. |T)a |-)).

Na druhou stranu, jelikoz v okamzik méfeni spolu jiz oba systémy neinteragovaly, v druhém systému nemohlo
dojit k Zadné zméné zptisobené ¢imkoli provadéném na prvnim systému.

Je tedy mozné priradit dva riizné kvantové stavy (v nasem pripadé |T) a |-)) stejné realité (druhému systému ...).

... tyto dva kvantové stavy |T) a |—) jsou vlastnimi vektory dvou nekomutujicich operatort odpovidajicim
fyzikdlnim veli¢inam { a . ...

Fyzika jako dobrodruzstvi poznani Kvantova osobitost
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Je tedy mozné priradit dva riizné kvantové stavy (v nasem pripadé |T) a |-)) stejné realité (druhému systému ...).

... tyto dva kvantové stavy |T) a |—) jsou vlastnimi vektory dvou nekomutujicich operatort odpovidajicim
fyzikalnim veli¢inam { a . ...

... Méfenim [ nebo <> mtzeme tak s jistotou predpovédét, aniz bychom pfitom jakkoli ovlivnili druhy systém,
bud hodnotu veli¢iny { nebo veli¢iny <. Podle naseho kritéria reality, v prvnim pfipadé musime povazZovat
veli¢inu { za element reality, v druhém priipadé je elementem reality veli¢ina <.

Fyzika jako dobrodruzstvi poznani Kvantova osobitost
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Je tedy mozné priradit dva riizné kvantové stavy (v nasem pripadé |T) a |-)) stejné realité (druhému systému ...).

... tyto dva kvantové stavy |T) a |—) jsou vlastnimi vektory dvou nekomutujicich operatort odpovidajicim
fyzikalnim veli¢inam { a . ...

... Méfenim { nebo & mizeme tak s jistotou predpovédét, aniz bychom pfitom jakkoli ovlivnili druhy systém,
bud hodnotu veli¢iny I nebo veli¢iny <. Podle naseho kritéria reality, v prvnim pfipadé musime povazovat
velic¢inu { za element reality, vdruhém ptipadé je elementem reality veli¢ina ©.

Ale, jak jsme vidéli, oba kvantové stavy |T) a | =) patii do stejné reality [druhy systém].

Vychazeje z predpokladu, Ze kvantovy stav pfedstavuje Gplny popis reality, jsme tak dospéli k zavéru, ze fyzikalni
velic¢iny s nekomutujicimi operatory mohou mit soucasnou realitu.
[ coz je spor |

Musime tak vyvodit, Ze kvantové-mechanicky popis fyzikalni reality dany kvantovymi stavy neni tplny.

Fyzika jako dobrodruzstvi poznani Kvantova osobitost
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Je tedy mozné priradit dva riizné kvantové stavy (v nasem pripadé |T) a |-)) stejné realité (druhému systému ...).

... tyto dva kvantové stavy |T) a |—) jsou vlastnimi vektory dvou nekomutujicich operatort odpovidajicim
fyzikalnim veli¢inam { a . ...

... Méfenim { nebo & mizeme tak s jistotou predpovédét, aniz bychom pritom jakkoli ovlivnili druhy systém,
bud hodnotu veli¢iny I nebo veli¢iny <. Podle naseho kritéria reality, v prvnim pfipadé musime povazovat
velic¢inu { za element reality, vdruhém pfipadé je elementem reality veli¢ina ©.

Ale, jak jsme vidéli, oba kvantové stavy |T) a | =) patfi do stejné reality [druhy systém].

Vychazeje z predpokladu, Ze kvantovy stav pfedstavuje Gplny popis reality, jsme tak dospéli k zavéru, ze fyzikalni
velic¢iny s nekomutujicimi operatory mohou mit soucasnou realitu.
[ coz je spor |

Musime tak vyvodit, Ze kvantové-mechanicky popis fyzikalni reality dany kvantovymi stavy neni tplny. 4

(1) kvantové-mechanicky popis reality dany kvantovym stavem neni tiplny nebo
(2) pokud operatory odpovidajici dvéma fyzikalnim veli¢indm nekomutuji, tyto dvé
veli¢iny nemohou mit soucasnou realitu

—

Fyzika jako dobrodruzstvi poznani Kvantova osobitost



EPR

Musime tak vyvodit, Ze kvantové-mechanicky popis fyzikalni reality dany kvantovymi stavy neni uplny.

... k tomuto zavéru bychom nedosli, pokud bychom trvali na tom, Ze dvé fyzikalni veli¢iny mohou byt
povazovany za soucasné elementy reality, pouze pokud mohou byt méreny ¢i predikovdny soucasné.

Podle tohoto pohledu, jelikoz bud jedna ¢i druhd, ale ne obé soucasné, z veli¢in I a <> mize byt urcena,
nejsou tyto veli¢iny soucasné realné. Tudiz realita { a <> by zavisela na procesu méfeni provedeném na
prvnim systému, aniz by byl jakkoli ovlivnén systém druhy.

Nelze predpokladat, Ze by jakakoli rozumna definice reality mohla néco takového pfipustit.

Fyzika jako dobrodruzstvi poznani Kvantova osobitost



Ackoli jsme ukazali, ze vinova funkce
neposkytuje uplny popis fyzikalni
reality, nezodpovédéli jsme otazku, zda
takovy popis existuje ¢i neexistuje.
Vérime vsak, Ze takova teorie je mozna.

Fyzika jako dobrodruzstvi poznani

\ﬁp(xz) =g~ (27t/h) (z2—=z0) p (12)

This ¢, however is the eigenfunction of the
operator

P=(h/271)8/dxs, 13)

corresponding to the eigenvalue —p of the
momentum of the second particle. On the other
hand, if B is the coordinate of the first particle,
it has for eigenfunctions

V(1) = (21— x), (14)

corresponding to the eigenvalue x, where
0(x1—x) is the well-known Dirac delta-function.
Eq. (8) in this case becomes

W(x1, x2) sz @s(%X2)v4(21)dx, (15)

where

o
(h(x?):f e(27ri/h)(:c~—z2+20)12dp

=hé(x—xa+2x0). (16)

This ¢, however, is the eigenfunction of the
operator

Q=12 (17)

corresponding to the eigenvalue x+4x, of the
coordinate of the second particle. Since

PQ—QP=h/2i, (18)

we have shown that it is in general possible for
¥i and ¢, to be eigenfunctions of two noncom-
muting operators, corresponding to physical
quantities.

Returning now to the general case contem-
plated in Egs. (7) and (8), we assume that ¢,
and ¢, are indeed eigenfunctions of some non-
commuting operators P and Q, corresponding to
the eigenvalues p; and ¢, respectively. Thus, by
measuring either 4 or B we are in a position to
predict with certainty, and without in any way

Kvantova osobitost

criterion of reality, in the first case we must
consider the quantity P as being an element of
reality, in the second case the quantity Q is an
element of reality. But, as we have seen, both
wave functions ¢, and .¢, belong to the same
reality.

Previously we proved that either (1) the
quantum-mechanical description of reality given
by the wave function is not complete or (2) when
the operators corresponding to two physical
quantities do not commute the two quantities
cannot have simultaneous reality. Starting then
with the assumption that the wave function
does give a complete description of the physical
reality, we arrived at the conclusion that two
physical quantities, with noncommuting oper-
ators, can have simultaneous reality. Thus the
negation of (1) leads to the negation of the only
other alternative (2). We are thus forced to
conclude that the quantum-mechanical descrip-
tion of physical reality given by wave functions
is not complete.

One could object to this conclusion on the
grounds that our criterion of reality is not suf-
ficiently restrictive. Indeed, one would not arrive
at our conclusion if one insisted that two or more
physical quantities can be regarded as simul-
taneous elements of reality only when they can be
simultaneously measured or predicted. On this
point of view, since either one or the other, but
not both simultaneously, of the quantities P
and Q can be predicted, they are not simultane-
ously real. This makes the reality of P and Q
depend upon the process of measurement carried
out on the first system, which does. not disturb
the second system in any way. No reasonable
definition of reality could be expected to permit
this.

While we have thus shown that the wave
function does not provide a complete description
of the physical reality, we left open the question
of whether or not such a description exists. We
believe, however, that such a theory is possible.
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