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Energy conditions and their consequences

We consider n(=3) dimensions in the units 8ntG=c=1

the Einstein equations GW=TLLV



Standard Energy Conditions (ECSs)

¢ Imposed on T],Lv to single out physically reasonable matter fields
& Null (NEC): T k*k"20 for any null k*

¢ Weak (WEC):TMVV“VVZO for any timelike v*

®

Dominant (DEC): WEC + [JHJ“SO] for any timelike V4, where J“:=-va"

Non-negative
energy density observed

¢ Energy flux (J*) does not propagate faster than the speed of light

& Strong (SEC): (Tuv - éng)v“v"zo for any timelike v*

© Gravity is attractive: Violation of the SEC is not so pathological
(ex. Inflationary Universe, or around regular center)

In GR, the SEC is equivalent to the timelike convergence condition (TCC)
TCC: Ry v*v'20 for any timelike v

Exotic matter (outside NEC)

NEC

WEC
DEC




Strong results in GR under the ECs

¢ NEC

& Trapped surface is inside event horizon of
asymptotically flat BH (Wald ’84)

¢ Black-hole area theorem (Hawking ’72)
© Penrose’s singularity theorem (’64)
® WEC

¢ Third law of BH thermodynamics
(Israel " 86)

¢ SEC

¢ Various singularity theorems
(’66-"70 by Geroch, Hawking, Penrose)

¢ DEC

¢ BH topology theorem (Hawking ’72)

¢ Positive mass theorem (Schoen-Yau ’79
‘81, Nester ’81, Witten ’81)

¢ Black-hole positive mass theorem
(Gibbons-Hawking-Horowitz-Perry ’83)

& Zeroth law of BH thermodynamics
(Bardeen-Carter-Hawking ’73)

& See "A Primer on Energy Conditions"
by Curielin 2014 for more

? Area theorem ?
sn) ) BH




SEC violationiscommon in GR

& Consider a regular center in a spherical static spacetime

¢ Expansion around r=0 (a regular center for p=0)
Future null infinity

Regular center
(r=0)

= r2(d6? + sin? 8d¢?)

® For p=0 with A>0, only the SEC is violated
& Itoccursin many stellar models

® A <0 satisfies the SEC but violates the WEC (so DEC as well)

Past null infinity




Example of the DEC violation

¢ Arelativistic perfect fluid D: pressure

& Energy_momentum tensor L“; = ([) —+ ]))U“UV -+ ])_(h,p. p: energy denSIty
ut: four-velocity of the fluid element

Sound cone
& Propagation speed of the density perturbation (normal)

nght cone

¢ Asound coneis widerthan alight cone
¢ Information comes out from the BH horizon
Light cone Sound cone

eXOtIC




Wormhole spacetime

NEC violation

& NEC violation = Negative energy density

¢ Wormholes require violation of even weaker condition (averaged NEC)
by the topological censorship theorem (Friedman-Schleich-Witt ’93)

® Apparent horizon can shrink by capturing a matter field violating NEC
¢ Apparent horizon = Marginally trapped surface (outer boundary of the union of trapped regions)

© Consequence: One can escape from trapped regions (namely, from a “BH”)

& This is explicitly shown by the Schwarzschild-Vaidya solution

E Exotic evolution ?
BH ) ( BH




BH dynamics in Schwarzschild-Vaidya solution
M (v)

8

)(11'2 + 2dvdr + "2((192 -+ sin? 0d¢? ),
Energy density of a null dust
ill'“ ;l'“ = U

Shrink of a Schwarzschild BH (Exotic)

Apparent horizon

Apparent horiz . . ent hori
pipees. I (=Marginally trapped surface) L vent horizon M.>M,

(=Marginally trapped surface)

7

Vaidya solution Vaidya solution
(positive energy density) (negative energy density)




Hawking-Ellis type of T, and energy conditions



Hawking-Ellis classification

& For symmetric real two-tensors T,

. . . (a) (b , (@) !f
& Consider their components in an orthonormal frame VARSI VT AN

Basis vectors

E, = (Ef:ln Ecﬂl ’ E(ﬂn ln.J where EHHE'hH‘ = N(a J(b) — (h lL{

(a)

(b) pe (c) (d)
le Elhl WSl () Lay o)) = Na))

¢ ldea: To how much extent T®®) can be simplified by choosing basis vectors?
© Answer with the Euclidean signature: T@(®) can always be diagonal

® Answer with the Lorentzian signature: Diagonalization is not always possible

o T@P) gre can be classified into 4 types

Orthonormal
basis vectors

EL ER
(0 = (1)
EH(Z)

E¥s)

Lorentz
boost




Hawking-Ellis type of Tpv

& Hawking-Ellis classification: Depending on the signature of eigenvectors n* of T,

¢ Eigenvalue equations (a)(b) I vy B criiiii
8 9 T ay— /-\r';"""r'-"'“ g o T n—=30" "0,

® There are 4 types in arbitrary n(=3) dimensions (Hawking & Ellis for n=4)

Eigenvectors
1 timelike, n — 1 spacelike
1 null (doubly degenerated), n — 2 spacelike
1 null (triply degenerated), n — 3 spacelike
2 complex, n — 2 spacelike

(Santos, Reboucas, Teixeira ’95, ‘04, Hall, Reboucas, Santos, Teixeira ’96)




Two dimensions (n=2) in the Euclidean case

0
[ i . @@p) _ [ @ P 4 = (0)
® Consider a symmetric real matrix T - ( 3 - Eug i

(( ) 0) . (1)
E;l}“ = COS HE;I‘ } — sIn HE;‘] 3
= . a(0) |

EWY .— sin0EY + cos HE;‘II".

Tlmu;n — T,e.':«-]',‘-}:l)']?;’u] — ¢0s2 0T @O _ 9 cos 0 sin 8T 1 gin2 T

T|(||!I| — Trl“l[::!,l“]::",]‘ . l)hlll Bf}TIUII(II + COS 2()7—.“"'1. . l)-\lll BHTIililll

—

7MW .= T"”'f:’;,]']::.',]] = sin? 8TV + 2 cos 0 sin 8TV 4 cos? g7V,

Can always be diagonal by choosing0 as Sy L
TEEN T (1) — T(0)(0)




Two dimensions (n=2) in the Lorentzian case

. . . T[(} .‘I[ }J| . 8 1)) EH(O) =
¢ Consider a symmetric real matrix =\ 5 - . Fu,

& Basis transformation with the Lorentzian signature (Lorenz boost) Lorentz boost

l-{',",”" = coshOE,” — sinh0E}" E¥

]‘:;')ll = —sinh (;1,_‘||{lh + cosh (i]'-;:] e 0

> EU
: ] (1)
¢ Components with new basis vectors

7O .= 7 EOE® = cosh? T — 2 cosh 6 sinh 6T + sinh? o7,

—(( T [ =1} 1 . [ ( ( 1 . \ \
TOW .= TWEPE" = —=sinh 20T + cosh 20T — ~sinh 207,

TOW = 7w EVEMD = sinh® 0T — 2 cosh 6 sinh 6T @™ + cosh? 6T,

QT‘:”'.‘ 1)

can be diagonal by choosing 6 as Fnerrs A
T (©) 1 T(1)(1)

—1 < tanh 260 < 1

so not always possible




Two, three, and many

(a)(b) T[U‘I'IUZ' THJHH
& Two dimensions (n=2) % - ( TO)(1)  P)(1) )

& If TO)=Q, T@®) js diagonal => type |

& Hawking-Ellis types for TOM=0 7| Pre———

1 timelike, n — 1 spacelike
1 null (doubly degenerated), n — 2 spacelike

(TOO) 4 TOM)2 5 47O = Typel,

('[*(”'l(“) s ]‘(l)(l'))‘;’ — _L(.‘.]‘[U)(l'))i! s T_\']')(,‘ 1L
(]"(“](“) s T(l)(l))i’ < —L(.’Z-‘(“)“))j =5 T.\'I)(‘ V.

1 null (triply degenerated), n — 3 spacelike

2 complex, n — 2 spacelike

¢ Three dimensions (n=3): Another type (type lll) appears

¢ Four and higher dimensions (n=24): Same as three dimensions (4 Hawking-Ellis types)

¢ Reason: Additional eigenvectors are all spacelike

* Foreachtype, the canonicalformof T, is obtained by local Lorentz transformations (Martin-Moruno & Visser “17)
* Equivalent representations of the energy conditions for each type are available (HM & Martinez ‘20)




Hawking-Ellis type | and energy conditions

® Type |: Ex. Perfect fluid, Cosmological constant (Maxwell & Scalar field also can be)

& Canonical form (diagonal)

Characteristic equation to obtain eigenvalues

A+p)A=p1) (A= pay) =0,

Equivalent representation of the energy conditions
p+p;i >0 for i=12.-- . n—1,
p > 0 in addition to NEC,
cp—pi =0 for i=1,2,--- ,n—11n addition to WEC,
o (n— 3)p+ Zn:_.llp_l- > (0 1 addition to NEC

J




Hawking-Ellis type Il and energy conditions

® Type ll:Ex. Null dust (Maxwell & Scalar field also can be)

® Canonical form

Characteristic equation to obtain eigenvalues

2 p > 01n addition to NEC,
C: p=—p; 20 for 1=2,3,--- ., n—1 1n addition to WEC,
(n—4)p+ erl:—'_)l[)_j > (0 1 addition to NEC




Hawking-Ellis type Ill and energy conditions

& Type lll: Ex. Gyraton (Null dust with angular momentum), Rotating pressureless null shell

® Canonical form

Characteristic equation to obtain eigenvalues

(A + /,)7)3(,\ —p3) (A —p,_1) =0,

Type lll matter field violates all the energy conditions




Hawking-Ellis type IV and energy conditions

& Type IV:Ex. Quantum vacuum expectation value <T , > can be of type IV (Roman ‘86)

® Canonical form

Characteristic equation to obtain eigenvalues
T(U)(’J) -

[(A+p)2+ (A =po)---(A = pa_y) =0,

Type IV matter field violates all the energy conditions




A note: Matter field in static spacetimes

® Static solutions are consistent only with type | matter field in a large class of gravity
(Hall ‘93, HM ‘21) 1
o= 9 /([”,\/__(”‘( ]?.(H/IJO'- g"") + Sn.

¢ Quantum vacuum expectation value <T > in the static background can be of type IV
(Roman ‘86, Martin-Moruno & Visser ‘13)

® However, a type IV matter is not possible if back-reaction is taken into account
® A consequence for evaporating BHs
¢ A static Planck massrelic is possible E \\
as the final state only if the

semi-classical matter field is of type | BH

- @

Planck mass relic

//'_
N

Evaporating semi-classical BH




A note: Hawking-Ellis type on the Killing horizon

¢ Spherically symmetric spacetime
in the diagonal coordinates

& T@b)js diagonal, where [IERENNS (0) ., { —VHdt (if H(x) > 0)
E L —
i H N e s = | TR (TR o G
& However, T@®) js NOT of type | everywhere H= dx (if H(x) <0)
AT Tl (if A
© Because the coordinates do not cover Killing horizons { H~1dz (if H(x) > 0)

@ Killing horizon: Regular null hypersurface given by H(x)=0

—v/—=Hdt (if H(z) <0) °

Basis one-forms

& Atypical pitfallin the GR research (many have fallen)

¢ One has to use coordinates covering horizons to obtain a correct result

2

ds? = —H(J,‘f]dt"”) + 2dvdzx + r(x) i (2 \dz'dz?.

Single null coordiantes

Result (HM ‘21) : The matter field on the horizon is of type | if r’’(x,,)=0 and of type Il if r”’(x,)#0




Energy conditions for various matter fields



Fluid and A

i ' ' NEC: =i
& Perfect fluid [FIERTES TSIy e NEC: p+p2

e WEC: p > 0 1n addition to NEC.

® Cosmologicalconstant e DEC: P—0DP 2 0 1 addition to WEC.

e SEC: (n—3)p+ (n—1)p > 0 1 addition to NEC.

p=Aand p=—A.
¢ Positive A : Only the SEC is violated
© Negative A : Only the NEC & SEC are satisfied

& Null dust fluid kit =0

¢ Allthe energy conditions are equivalent to u=0




Minimally coupled scalar field

® Lagrangian density: B —(V8)* +V(9) ), Ty = (Vu0) (Vo) — q,u( (Vo)* + V(¢ )).

¢ € =1:Realscalarfield, e =-1: Ghost scalar field
¢ Equivalent representations to the energy conditions (HM-Harada ‘22):
& IfV,0=0:NEC holds, WECisV=0,DECisV=0,SECisV<0
& IfV 0 # 0:with e =-1: AlLECs are violated
& IfV, 0 # 0:withe =1: NEC holds, and others depend on signature of V¢ as

VoGO wile=1] WEC TDECT —— SEC

Allthe ECs are satisfied if and only if the scalar field is real (¢ = 1) and massless (V=0)




Maxwell & Yang-Mills field

1 .
: ,.,I = I.(/;AI'EWFI )

: 1
- (8 ) " ¥ — a ' a apo
L’Ill — __)Tl( F,(u!Fw ‘J . _IE?I’F”‘[” . EU‘E" 4.‘.]!”']?,,»,TF ;

Fg, = 0,A% — 0,A% +i(f*u AL AC

[y | S [T i

¢ All the energy conditions are equivalent to 0:=0 (HM-Martinez ‘20)

The result for Maxwell field has been recently generalized for a p-form field
(Bernardo-Brahma-Faruk ‘22)




A lemma for more complicated matter fields

& Consider the sum of several matter fields Non-negative functions

7 —5sr 1A74 IR Energy—momentumtensors
Iz

- A=1 Qv

(A=1,2,...,p)

Associated current vector

& If satisfy the NEC, WEC, or SEC for all p, then satisfies the same energy condition
& If satisfy the DEC for all p and [l is satisfied for any set of A and B,

(0)-

also satisfies the DEC

thenys

Hv




Maxwell field + Something

" 1 | I '
® Proca field f Lo = —a (—F F* + —m*AFA )
m 4 i) H

<)

\ 1 _ 9 1 _
T.;u' = O {EU’E;P - I.‘-Y}lt’ﬁm F!m —L(“lu-'lw - 3.(]',”,:1"-"1,:) }

© All the energy conditions are equivalent to =0

¢ Proca-dilaton field 1 9 - i . '
. e(Vo) + I'(o)) —e ¢ (—E,,,F‘”' - 3171‘-4'“-4,,).

N

'] 1 y 2
F,u,u]:;,’ — I."fpVF.ur,TF’w +m” -"lp -"111 _

If the scalar field satisfies an energy condition, the Proca-dilaton field satisfies as well




Energy conditions for thin shell

& Attach two spacetimes at a hypersurface X
& Regular matching: No matter field induced on X (Metricis C'-' at X)
¢ Thin shell: An induced matter field t,,, on X (Metric is C%' at %)

¢ Useful for model building of physical phenomena
(Gravitational collapse, cosmic bubble, braneworld, etc)

& 0N 2 is determined by junction conditions
¢ Localized version of the gravitational equations
® Junction condition for non-null 2 in GR

(Israel "66) | K] — b [K]) = ot Spacelike shell

(e=1)

K,=87nG, huv: Induced metricon X

Kyy: Extrinsic curvature of 2, €: Signature of
t,, : Induced energy-momentum tensor on -

(M.g°,)




Matter field on a lightlike thin shell

l: surface density
Ja: surface current (A=2,3,...,n-1)
p: isotropic surface pressure

¢ Junction conditions for lightlike (null) X

& Generalformoft,, :
(Poisson ‘02)

¢ In any theory of gravity

induced metricon X
® Junction conditions for null X in GR (z,
(Barrabes-Israel "~ 91, Poisson " 02)

¢ K,=81G =0 ¥
1~ Null generator of X

)

¢ C,g: Transverse curvature of ]
1Y

Lightlike shell X -




Energy conditions for a lightlike thin shell

& General form of t, in general gravitation theory

¥ o ' . LA A, A_B
'Sﬂ“-’ — /’lv'“l!]; —-}-‘1(/',11( e 0 (“ l‘lf) —+— [}(T__LB( “( e

—

* Rotating pressureless null shell is of type Il
* Thisresult can be used in any gravitation theory in arbitrary dimensions




Caution: Slow-rotation approximation

¢ Slow-rotation approximation is sometimes used to analyze rotating BHs
¢ Only upto linear order of a/r is taken into account

¢ Location of the event horizon remains the same

¢ Approximation may mislead to different types Light cone

¢ Ex. Type lll (Full-order) -> Type |l (linear approximation) (approximation)

©® because light cones in the full order and under the Light cone

approximation may be different (full order)
E \ /9
WS e

Light cone
(approximation)




Applications in modified gravity



Effective Energy Conditions

¢ Modified gravity: Field equations are not GM\,=Tllv

& Scalar-tensor theories, Higher-curvature theories (Einstein-Gauss-Bonnet, Lovelock gravity, etc)

& Definition [Effective energy-momentum tensor]: T',,=G,,,
o If Tuv violates energy conditions, something (interesting) happens
¢ Wormbhole, non-singular BH, etc
® Recently, a model-building study has been very active in astrophysics

¢ Consider not a solution but just a metric to find something new beyond GR

& Tuv of such a model metric should satisfy the Energy Conditions in Asymptotically Flat regions




Asymptotic Effective Energy Conditions

¢ Definition [Asymptotic effective energy conditions]:
ECs for an effective energy-momentum tensor TW=GLLV in asymptotically flat regions

® Proposal:
Physically reasonable solutions must satisfy all the asymptotic effective energy conditions

& Originally proposed in HM ‘22 in the context of non-singular BHs

¢ AEEC can single out physically reasonable metrics without specifying the theory

© Example: A variety of metrics describing non-singular BHs




4 non-singular BHs with a regular center

162 = — f(r)di? + 2
as” = — J(r)« + )

2M(r)

r

Jirj:=1-—

& Parameters: m &l
& f(r)=0: Two Killing horizons
& Asymptotically flat as r— oo

® Regular center (r=0): de Sitter core

-+ 72(d#? + sin® 8d¢?).

® Bardeen (‘68):

¢ Hayward (‘06):

® Dymnikova (‘04) M(r) = Eﬂ*{ﬂ.u?tan (;—)— r 3}

2
T e

¢ Fan & Wang (‘16):

A model building study




Where are Energy Conditions respected?

~ T NeC | weC | DEC | sEC
 Bardeen (1 > )| everywhere | everywhere |__0<r <21 ]

~ Badeen(m<0) | 0 | 0 |7 ——T §
Hayward (11 > 0) | everywhere | everywhere [0 < r < (1mP) ]| 7 > ()"
Hayward (n, < i < 0) | everywhere | everywhere | | everywhere
CDymkoan<0) | 0 | 0 | 0 | 0
CFaWagon<0) | 0| 0 | 0 | 0

¢ Bardeen & Hayward BHs don’t respect the DEC at infinity: Discarded

¢ Dymnikova & Fan-Wang BHs respect the DEC everywhere

¢ We will focus on the rotating counterparts of these two BHs




Rotating counterparts: Metric ansatz

& Gurses-Gursey (GG) metric (" 74): M(r) is a function and A(r)=0 is a Killing horizon

9 - ] j 'H. 2H
2M (7)1 )(lf' _ M(lf{lm

Yi(r, 0) Y(r,8)
ot ; : . o 2a*M(r)rsin®6 4 "
dr? + 2(r.0)de* + [ +a®> + ——" ——  |sin? 0d¢?,
A(r) | ( d(r, 0) (
Y(r.0) := 1% + a® cos?® 0, Alr) =12 +a® —2rM(r).

rM"Y + IM'a? cos? 0

Y

L




Rotating counterparts with GG metric

& Rotating Dymnikova BH:

M(r) = . { aa_.n::'t-a.n( %) e f_,—;_ B }
ITr h, & ;‘.‘_ 3

¢ Singularity-free in -co<r<oco
except for the ring (r,0)=(0,7/2)

¢ AllLECs are respected at spatial infinity

¢ DEC isrespected on & outside the event
horizon

¢ Rotating Fan-Wang BH:

® Curvature singularity at r=-1(<0)
¢ Domain of ris r,<r<oco
¢ All ECs are respected at spatial infinity

¢ Discarded by its singular nature




Rotating Dymnikova BH for m>m_,

violated ~_

identif A1 X
= i

{

4 non-degenerate Killing horizons in -co<r<oo
The ring (r,0)=(0,m/2) could be a p.p. curvature singularity




Summary

Tuv is classified into 4 Hawking-Ellis types

¢ Type lll and IV violate all the standard energy conditions

¢ Equivalent representations of the energy conditions are available for type | and Il
¢ Onlytype |l is compatible with static spacetime

Some criteria are available to check energy conditions

¢ Minimally coupled scalar field, fluid, lightlike shell, etc

¢ Be careful for approximation that changes light cones

Asymptotic effective energy conditions (AEEC) have been proposed

¢ They should be checked in the model-building study in astrophysics

¢ The meaning of the violation of effective DEC should be clarified

FIN




