Solution 00000000000 Numerical solution

Conclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Effect of magnetic advection on spectral characteristics of thin accretion disks

Radek Vavřička

Charles University, Institute of Theoretical Physics

radek.vavricka@cern.ch

November 16, 2021

Introduction •••••••• Solution

Numerical solution

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What are accretion disks?

- Infall of matter onto a graviting central object, usually with non-trivial angular momentum.
- Pre-eminent role in the formation of astrophysical structure:
 - formation of galaxies through collapse onto protogalaxies, and further enlargement,
 - formation of stars through collapse onto protostellar nebulae,
 - formation of planets from protoplanetary disks.
- What interests us: stationary accretion disks as a source of radiant power.

Accretion disks as sources of radiant power

- Matter infalls with non-trivial angular momentum.
- A process for propagation of angular momentum outward must exist to faciliate the inward motion of matter.
- Keplerian orbits exhibit differential rotation:
 - viscous stress exists,
 - angular momentum is propagated outward,
 - a portion of energy is spent on viscous dissipation.
- The energy generated by viscous dissipation is wholly (or nearly wholly) converted to radiant power.

Solution

Numerical solution

Conclusion

Thin disks

 Luminosity can be estimated by conversion of infalling energy to radiation at star surface

$$L_{acc} = \frac{GM\dot{M}}{R_*}\eta \dot{M}c^2.$$
 (1)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• For thin accretion disks, we have modified Eddingtonian luminosity

$$L_{\text{Edd}} = \frac{1}{16} \dot{M_{\text{Edd}}} c^2, \dot{M}_{\text{Edd}} = \frac{16 \times 4\pi GM}{c\kappa_T}.$$
 (2)

Conclusion

X-ray black hole-star binaries

- X-ray binaries (XRB) powerful source of radiation in the universe can convert up to tenths of rest-mass, thermonuclear fusion only cca 0.7 percent.
- During outburst traversal through hardness-intensity diagram eventually settling to high/soft state.
- Emits principally thermally, can stay "soft" from days to months.
- Eventually falls back to the hard state.
- In the soft state, the disk is formed as thin and optically thick, extending down to the innermost stable circular orbit.
- Can be described by approximate models radiant flux predicted by black hole parameters.
- Studying spectra as they change through time obtain realisations of predicted luminosity/accretion rate.

Solution

Numerical solution

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thin disks

1. Thinnes:

- the vertical scale $H(R) \ll R$,
- equivalently $c_s \ll v_{\phi}$.
- 2. Optical thickness:
 - the diffusion approximation holds, the disk surface can be ascribed a black-body spectrum.
- 3. Disk boundedness:
 - an inner edge *R_{in}* exists, physics above and below are decoupled.

Solution

Numerical solution

Conclusion

Thin disk models

- Problem how to prescribe viscosity?
- Kinematic viscosity does not suffice!
- Most likely source of viscosity magnetically driven turbulences.
- Hard/impossible to describe analytically.
- Phenomenological prescription of viscosity based on the vertical scale of the disk

$$\nu = \alpha c_s H, \alpha \in (0, 1).$$
(3)

Alternatively

$$\int_{-\infty}^{\infty} t_{\widehat{R}\widehat{\phi}} \mathrm{d}z = \alpha P. \tag{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Solution 00000000000 Numerical solution

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thin disk models

- Thin disk requirements
- + the α -prescription
- + " $Q_+ = Q_-$ "
- => Newtonian Shakura-Sunyaev model (1973),
- => relativistic Novikov-Thorne model (1973).

olution

Numerical solution

Conclusion

Confrontation with observation

- Fit the Novikov-Thorne model to the observed spectra, obtain the accretion rate/luminosity vs the BH spin.
- The spin ought to be constant - it is conserved in the time window.
- But there is spin decay!
- The model is possibly incorrect...

A D > A P > A B > A B >

Solution 00000000000 Numerical solution

Conclusion

Equations of state - valid for spacetime flat in vertical direction

- State variables:
 - c_s,
 τ,
 P,
 Σ,
 H,
 T_c.

$$c_s^2 = \frac{P}{\Sigma},$$

$$P(1 - \beta') = \frac{\Sigma k T_c}{\mu m_p} + H \frac{4\sigma}{3c} T_c^4,$$

$$\tau = \Sigma \kappa (\Sigma, H, T_c).$$
(5)

ヘロト ヘヨト ヘヨト ヘヨト

3

Conclusion

Equations of state - magnetic pressure

- Powerful and heterogenous magnetic fields thread accretion disks.
- Uttermost importance in viscosity-creating turbulences and other accretion disks processes.
- Contribute to a fraction of total pressure, apart from gaseous and radiant fractions.
- Hard/impossible to describe analytically.
- Numerical simulation suggest a constant ratio across a stable disk namely existence of equilibrium.
- Prescribe the magnetic pressure with a free parameter $\beta' = P_{mag}/P_{tot}$.
- Expecting an equilibrium value of 0.5.

Solution ●0000000000 Numerical solution

Conclusion

Relativistic solution

$$\mathrm{d}s^2 = -\frac{R^2\Delta}{A}\mathrm{d}t^2 + \frac{A}{R^2}(\mathrm{d}\phi - \omega\mathrm{d}t)^2 + \frac{R^2}{\Delta}\mathrm{d}R^2 + \mathrm{d}z^2, \qquad (6)$$

- Kerr metric near the horizontal plane.
- $\omega = \frac{2MaR}{A}$ signifies the angular frequency of a zero-angular-momentum-observer (ZAMO) an observer that rotates with zero angular momentum as seen from affine infinity a courtesy of the frame-dragging effect brought about by the Kerr metric.
- We assemble the laws of conservation:
 - of rest-mass,
 - of angular momentum,
 - of energy.
- As well as the "vertical gravity".
- Complete the set of the equations of state.

Solution

Numerical solution

Conclusion

Relativistic solution

$$\mathcal{A} = 1 + \frac{a^{2}}{R^{2}} + 2\frac{a^{2}}{R^{3}},$$

$$\mathcal{B}_{+} = \mathcal{B} = 1 + \frac{a}{R^{\frac{3}{2}}},$$

$$\mathcal{C} = 1 - \frac{3}{R} + 2\frac{a}{R^{\frac{3}{2}}},$$

$$\mathcal{D} = 1 - \frac{2}{R} + \frac{a^{2}}{R^{2}},$$

$$\mathcal{E} = 1 + 4\frac{a^{2}}{R^{2}} - 4\frac{a^{2}}{R^{3}} + 3\frac{a^{4}}{R^{4}},$$

$$\mathcal{F} = 1 - 2\frac{a}{R^{\frac{3}{2}}} + \frac{a^{2}}{R^{2}}.$$
(7)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Solution

Numerical solution

Conclusion

Relativistic solution

• Stable circular orbits, describable by the 4-velocity

$$u^{\mu} = \xi_t + \Omega \xi_{\phi}$$
$$= u^t \begin{pmatrix} 1\\0\\\Omega\\0 \end{pmatrix}, \tag{8}$$

with ξ_t and ξ_{ϕ} being Killing vector fields in the t and ϕ directions, which naturally exist in extremelly simple forms for a t and ϕ independent metric.

• The *u^t* is such that the 4-vector is normalized.

Solution

Numerical solution

Conclusion

Relativistic solution

- $\Omega = \frac{d\phi}{dt}$ is the angular frequency seen from infinity.
- For the 4-acceleration in the *R* direction *a_R* to be zero (hence the studied object undergoing a circular orbital motion)

$$\Omega_{\pm} = \pm \frac{M^{\frac{1}{2}}}{R^{\frac{3}{2}} \pm aM^{\frac{1}{2}}} = \frac{1}{\mathcal{B}_{\pm}} \frac{M^{\frac{1}{2}}}{R^{\frac{3}{2}}}.$$
 (9)

- We have 2 results the \pm corresponds to prograde and retrograde motion.
- Henceforth we will consider solely Ω₊ = Ω only prograde orbits correspond to a true stationary point in the accretion disk's phase space.

Conclusion

Vertical correctional force

- A rest-mass element displaced in the vertical direction feeld a "gravitational force".
- In the first order of expansion in the vertical displacement *z*, the acceleration is (RT in co-rotating coordinates)

$$\tilde{g} := z R_{0z0}^z, \tag{10}$$

• The law of hydrostatic equilibrium

$$\frac{\partial p}{\partial z} = \rho z R^z 0 z 0 = \rho \frac{z}{R^3} \frac{\beta^2 \mathcal{D} \mathcal{E}}{\mathcal{A}^2 \mathcal{C}}.$$
 (11)

• Vertically integrate the equation of hydrostatic equilibrium - get another equation of state

$$(c_s')^2 \cong \frac{1}{R^3} \frac{\mathcal{B}^2 \mathcal{D} \mathcal{E}}{\mathcal{A}^2 \mathcal{C}} H^2 = \Xi^2 H^2.$$
(12)

Conclusion

Conservation of rest-mass

• Continuity equation $(\partial_t = 0)$

$$\nabla \cdot (\rho u) = 0. \tag{13}$$

- Velocity field of the form U^μ = (u^t, u^r, 0, Ωu^t).
- Ω is the fluid angular velocity with respect to the stationary observer.
- In the frame co-rotating with the fluid, specific angular momentum is u_{ϕ} .
- An observer at fixed r who co-rotates with the fluid has 4-momentum $U^{(a)} = (1 V)^{-1/2} (1, V, 0, 0).$

$$v^r = V/\sqrt{1-V^2} = u^r \sqrt{g_{rr}}.$$
 (14)

• After vertical integration

$$-2\pi r \Sigma \mathcal{D}^{\frac{1}{2}} \mathbf{v}^r = \dot{M},\tag{15}$$

where the integration constant \dot{M} is the mass accretion rate constant across the disk.

Conclusion

Conservation of angular momentum

• Proceeding from the divergence-less-ness of the angular momentum vector density

$$\left(-\frac{\dot{M}}{2\pi}\tilde{L}+R^{2}\mathcal{B}\mathcal{C}^{-\frac{1}{2}}\mathcal{D}\alpha P\right)_{,R}+2R\tilde{L}F=0,\qquad(16)$$

- \tilde{L} signifies the specific angular momentum.
- This equations couples the radiant flux *F* with the vertically integrated (v. i.) pressure *P*.
- This pressure is merely a state variable describing the scale of the v. i. stress tensor.
- We do not derive it from first principles, rather we proceed in the opposite direction.

Solution 0000000000000 Numerical solution

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conservation of energy

• Proceeding from orthogonality of the SE tensor's divergence to the 4-momentum

$$-\frac{\dot{M}}{2\pi R}T_{c}\frac{\partial s}{\partial R} + 2F + 2\sigma_{\widehat{R}\widehat{\phi}}\alpha P = 0,$$

$$Q_{adv} + Q_{-} - Q_{+} = 0,$$
(17)

- the individual positive Q terms correspond to heat advection, energy being radiated away and energy production by viscous dissipation.
- $\sigma_{\widehat{R}\widehat{\phi}}$ signifies the planar shear rate.

Solution 0000000000000 Numerical solution

Conclusion

Relativistic solution - advection

$$\frac{\dot{M}}{2\pi R^2} \frac{P}{\Sigma} \xi + 2F + 2\sigma_{\widehat{R}\widehat{\phi}} \alpha P = 0, \qquad (18)$$

- The advection-with equation of energy conservation.
- The ξ function is phenomenologically approximated.

Solution

Numerical solution

Relativistic solution - magnetoadvective coupling

$$\begin{pmatrix} -\frac{\dot{M}}{2\pi}\tilde{L} + R^{2}\mathcal{B}\mathcal{C}^{-\frac{1}{2}}\mathcal{D}\alpha P \end{pmatrix}_{,R} + 2R\tilde{L}F = 0, \\ \frac{\dot{M}}{2\pi R^{2}}\frac{P}{\Sigma}\xi + 2F + 2\sigma_{\widehat{R}\widehat{\phi}}\alpha P = 0,$$
 (19)

- completely describes the radiant flux *F* and the v. i. pressure *P*, for non-advective case.
- No need to solve the equation of state the flux F given without knowledge of T_c.

$$P(1 - \beta') = \frac{\sum k_N T_c}{\mu m_p} + H \frac{4\sigma}{3c} T_c^4,$$

$$\beta' = \frac{P_{mag}}{P_{tot}},$$
(20)

Solution 00000000000 Numerical solution

Conclusion

Novikov-Thorne solution

Auxilliary function f to solve the equation (19).
 The vertically integrated total pressure and the radiant flux are

$$W_{1} = \frac{\dot{M}}{2\pi} \frac{\tilde{f}}{R^{2} \mathcal{D}},$$

$$P_{1} = \frac{\dot{M}}{2\pi \alpha} \frac{\tilde{f}}{R^{2} \mathcal{D}},$$

$$F_{1} = \frac{\dot{M}}{4\pi R} f.$$
(21)

(日) (四) (日) (日) (日)

Solution 00000000000 Numerical solution

Conclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

How to choose pressure?

- In advection-with case, *P* is strongly coupled to other variables.
- Do we have to treat *P* as another state variable?
- The answer is no!
- The Novikov-Thorne pressure well approximates the advection-with case as well.

Solution

Numerical solution

Conclusion

Effect of loss of angular momentum through radiation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Advection-with disk - limits of analycality

- Put all equations of state together.
- Simplify as possible, keep P prescribed by Novikov-Thorne.
- The final equation, of only one troublesome variable T_c , is

$$-\frac{32\dot{M}_{L}R^{\frac{3}{4}}T_{c}^{4}\tilde{f}\sigma\mathcal{A}}{\mathcal{B}\sqrt{\mathcal{E}}\sqrt{\mathcal{D}}\sqrt{384\dot{M}_{L}^{2}\tilde{f}\xi+R^{4}T_{c}^{4}\alpha\kappa_{T}\sigma\mathcal{D}}} -\frac{32\dot{M}_{L}\tilde{f}\beta'}{R^{2}\alpha\kappa_{T}\mathcal{D}} +\frac{32\dot{M}_{L}\tilde{f}}{R^{2}\alpha\kappa_{T}\mathcal{D}} -\frac{64\dot{M}_{L}T_{c}\tilde{k}\xi\mathcal{C}}{3\sqrt{R}\alpha\kappa_{T}\mu\mathcal{D}} -\frac{R^{\frac{7}{2}}T_{c}^{5}\tilde{k}\sigma\mathcal{C}}{18\dot{M}_{L}\tilde{f}\mu} = 0.$$

$$(22)$$

Solution 00000000000 Numerical solution

Conclusion

Advection-with disk - limits of analycality

• The radiant flux is given as

$$F = \frac{4\sigma T_c^4}{3\tau},\tag{23}$$

inputing the solved equations of state

$$\mathsf{F} = -\frac{\sigma_{\widehat{R}\widehat{\phi}}\alpha P}{1 + \frac{12\dot{N}_L\xi P}{R^2\sigma T_c^4}}.$$
(24)

- This flux reduces to the viscous energy production with no advection.
- Solve the temperature equation numerically (easily by Newton/Halley method).
- Input the temperature and the NT pressure we have the advection-with radiant flux!

Solution 00000000000 Numerical solution

Conclusion

Radiant fluxes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Solution 00000000000 Numerical solution

Conclusion

Radiant fluxes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Solution 00000000000 Numerical solution

<ロト <回ト < 注ト < 注ト

æ

Conclusion

Radiant fluxes - full solution of P

Solution 00000000000 Numerical solution

ヘロト 人間ト 人間ト 人間ト

æ

Conclusior

Solution 00000000000 Numerical solution

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Testing our model

- How to test our model?
- Most straightforwardly fit our model to observed spectra.
 - Not immediately viable:
 - observed spectra must be carefully selected, to be "nice" enough.
- Alternative generate fake spectra.
 - Put a virtual accretion disk far away from the Earth.
 - Ray-trace radiation.
 - Simulate transmission through interstellar hydrogen clouds.
 - Simulate detection at a satellite's view matrix including errors.
- Fit the Novikov-Thorne model to these spectra.
- See if the spin-against- \dot{M} plot shows a spin decay.

Solution 00000000000 Numerical solution

Conclusion

Testing our model - Newtonian, $\beta' = 0.5$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Solution 00000000000 Numerical solution

Conclusion

Testing our model - Newtonian, $\beta' = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Solution 00000000000 Numerical solution

Conclusion

Testing our model - relativistic, $\beta' = 0.5$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Solution 00000000000 Numerical solution

Conclusion

Testing our model - relativistic, $\beta' = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Solution 00000000000 Numerical solution

Conclusion

Fitting - Accretion rate = 0.2

data and folded model

Solution 00000000000 Numerical solution

Conclusion

Fitting - Accretion rate = 0.8

data and folded model

Solution

Numerical solution

Conclusior

Conclusion

5900