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What are accretion disks?

• Infall of matter onto a graviting central object, usually with
non-trivial angular momentum.

• Pre-eminent role in the formation of astrophysical structure:
• formation of galaxies through collapse onto protogalaxies, and

further enlargement,
• formation of stars through collapse onto protostellar nebulae,
• formation of planets from protoplanetary disks.

• What interests us: stationary accretion disks as a source of
radiant power.
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Accretion disks as sources of radiant power

• Matter infalls with non-trivial angular momentum.

• A process for propagation of angular momentum outward
must exist to faciliate the inward motion of matter.

• Keplerian orbits exhibit differential rotation:
• viscous stress exists,
• angular momentum is propagated outward,
• a portion of energy is spent on viscous dissipation.

• The energy generated by viscous dissipation is wholly (or
nearly wholly) converted to radiant power.



Introduction Solution Numerical solution Conclusion

Thin disks
• Luminosity can be estimated by conversion of infalling energy

to radiation at star surface

Lacc =
GMṀ

R∗
ηṀc2. (1)

• For thin accretion disks, we have modified Eddingtonian
luminosity

LEdd =
1

16
˙MEddc

2, ṀEdd =
16× 4πGM

cκT
. (2)
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X-ray black hole-star binaries

• X-ray binaries (XRB) - powerful source of radiation in the
universe - can convert up to tenths of rest-mass,
thermonuclear fusion only cca 0.7 percent.

• During outburst - traversal through hardness-intensity
diagram - eventually settling to high/soft state.

• Emits principally thermally, can stay ”soft” from days to
months.

• Eventually falls back to the hard state.

• In the soft state, the disk is formed as thin and optically thick,
extending down to the innermost stable circular orbit.

• Can be described by approximate models - radiant flux
predicted by black hole parameters.

• Studying spectra as they change through time - obtain
realisations of predicted luminosity/accretion rate.
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Thin disks

1. Thinnes:
• the vertical scale H(R)� R,
• equivalently cs � vφ.

2. Optical thickness:
• the diffusion approximation holds, the disk surface can be

ascribed a black-body spectrum.

3. Disk boundedness:
• an inner edge Rin exists, physics above and below are

decoupled.
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Thin disk models

• Problem - how to prescribe viscosity?

• Kinematic viscosity does not suffice!

• Most likely source of viscosity - magnetically driven
turbulences.

• Hard/impossible to describe analytically.

• Phenomenological prescription of viscosity based on the
vertical scale of the disk

ν = αcsH, α ∈ (0, 1). (3)

• Alternatively ∫ ∞
−∞

t
R̂φ̂

dz = αP. (4)
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Thin disk models

• Thin disk requirements

• + the α-prescription

• + ”Q+ = Q−”

• => Newtonian Shakura-Sunyaev model (1973),

• => relativistic Novikov-Thorne model (1973).
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Confrontation with observation

• Fit the Novikov-Thorne
model to the observed
spectra, obtain the accretion
rate/luminosity vs the BH
spin.

• The spin ought to be
constant - it is conserved in
the time window.

• But there is spin decay!

• The model is possibly
incorrect...
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Equations of state - valid for spacetime flat in vertical
direction

• State variables:

1. cs ,
2. τ ,
3. P,
4. Σ,
5. H,
6. Tc .

c2s =
P

Σ
,

P(1− β′) =
ΣkTc

µmp
+ H

4σ

3c
T 4
c ,

τ = Σκ(Σ,H,Tc).

(5)
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Equations of state - magnetic pressure

• Powerful and heterogenous magnetic fields thread accretion
disks.

• Uttermost importance in viscosity-creating turbulences and
other accretion disks processes.

• Contribute to a fraction of total pressure, apart from gaseous
and radiant fractions.

• Hard/impossible to describe analytically.

• Numerical simulation suggest a constant ratio across a stable
disk - namely existence of equilibrium.

• Prescribe the magnetic pressure with a free parameter
β′ = Pmag/Ptot .

• Expecting an equilibrium value of 0.5.
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Relativistic solution

ds2 = −R2∆

A
dt2 +

A

R2
(dφ− ωdt)2 +

R2

∆
dR2 + dz2, (6)

• Kerr metric near the horizontal plane.

• ω = 2MaR
A signifies the angular frequency of a

zero-angular-momentum-observer (ZAMO) - an observer that
rotates with zero angular momentum as seen from affine
infinity - a courtesy of the frame-dragging effect brought
about by the Kerr metric.
• We assemble the laws of conservation:

• of rest-mass,
• of angular momentum,
• of energy.

• As well as the ”vertical gravity”.

• Complete the set of the equations of state.
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Relativistic solution

A = 1 +
a2

R2
+ 2

a2

R3
,

B+ = B = 1 +
a

R
3
2

,

C = 1− 3

R
+ 2

a

R
3
2

,

D = 1− 2

R
+

a2

R2
,

E = 1 + 4
a2

R2
− 4

a2

R3
+ 3

a4

R4
,

F = 1− 2
a

R
3
2

+
a2

R2
.

(7)
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Relativistic solution

• Stable circular orbits, describable by the 4-velocity

uµ = ξt + Ωξφ

= ut


1
0
Ω
0

 ,
(8)

with ξt and ξφ being Killing vector fields in the t and φ
directions, which naturally exist in extremelly simple forms for
a t and φ independent metric.

• The ut is such that the 4-vector is normalized.
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Relativistic solution

• Ω = dφ
dt is the angular frequency seen from infinity.

• For the 4-acceleration in the R direction aR to be zero (hence
the studied object undergoing a circular orbital motion)

Ω± = ± M
1
2

R
3
2 ± aM

1
2

=
1

B±
M

1
2

R
3
2

. (9)

• We have 2 results - the ± corresponds to prograde and
retrograde motion.

• Henceforth we will consider solely Ω+ = Ω - only prograde
orbits correspond to a true stationary point in the accretion
disk’s phase space.
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Vertical correctional force
• A rest-mass element displaced in the vertical direction feeld a

”gravitational force”.
• In the first order of expansion in the vertical displacement z ,

the acceleration is (RT in co-rotating coordinates)

g̃ := zRz
0z0, (10)

• The law of hydrostatic equilibrium

∂p

∂z
= ρzRz0z0 = ρ

z

R3

B2DE
A2C

. (11)

• Vertically integrate the equation of hydrostatic equilibrium -
get another equation of state

(cs
′)2 ∼=

1

R3

B2DE
A2C

H2 = Ξ2H2. (12)
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Conservation of rest-mass
• Continuity equation (∂t = 0)

∇ · (ρu) = 0. (13)

• Velocity field of the form Uµ = (ut , ur , 0,Ωut).
• Ω is the fluid angular velocity with respect to the stationary

observer.
• In the frame co-rotating with the fluid, specific angular

momentum is uφ.
• An observer at fixed r who co-rotates with the fluid has

4-momentum U(a) = (1− V )−1/2 (1,V , 0, 0).

v r = V /
√

1− V 2 = ur
√
grr . (14)

• After vertical integration

− 2πrΣD
1
2 v r = Ṁ, (15)

where the integration constant Ṁ is the mass accretion rate -
constant across the disk.
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Conservation of angular momentum

• Proceeding from the divergence-less-ness of the angular
momentum vector density

(
− Ṁ

2π
L̃ + R2BC−

1
2DαP

)
,R

+ 2RL̃F = 0, (16)

• L̃ signifies the specific angular momentum.

• This equations couples the radiant flux F with the vertically
integrated (v. i.) pressure P.

• This pressure is merely a state variable describing the scale of
the v. i. stress tensor.

• We do not derive it from first principles, rather we proceed in
the opposite direction.
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Conservation of energy

• Proceeding from orthogonality of the SE tensor’s divergence
to the 4-momentum

− Ṁ

2πR
Tc

∂s

∂R
+ 2F + 2σ

R̂φ̂
αP = 0,

Qadv + Q− − Q+ = 0,

(17)

• the individual positive Q terms correspond to heat advection,
energy being radiated away and energy production by viscous
dissipation.

• σ
R̂φ̂

signifies the planar shear rate.
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Relativistic solution - advection

Ṁ

2πR2

P

Σ
ξ + 2F + 2σ

R̂φ̂
αP = 0, (18)

• The advection-with equation of energy conservation.

• The ξ function is phenomenologically approximated.
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Relativistic solution - magnetoadvective coupling

(
− Ṁ

2π
L̃ + R2BC−

1
2DαP

)
,R

+ 2RL̃F = 0,

Ṁ

2πR2

P

Σ
ξ + 2F + 2σ

R̂φ̂
αP = 0,

(19)

• completely describes the radiant flux F and the v. i. pressure
P, for non-advective case.

• No need to solve the equation of state - the flux F given
without knowledge of Tc .

P(1− β′) =
ΣkNTc

µmp
+ H

4σ

3c
T 4
c ,

β′ =
Pmag

Ptot
,

(20)
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Novikov-Thorne solution

• Auxilliary function f to solve the equation (19).
The vertically integrated total pressure and the radiant flux are

W1 =
Ṁ

2π

f̃

R2D
,

P1 =
Ṁ

2πα

f̃

R2D
,

F1 =
Ṁ

4πR
f .

(21)
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How to choose pressure?

• In advection-with case, P is strongly coupled to other
variables.

• Do we have to treat P as another state variable?

• The answer is no!

• The Novikov-Thorne pressure well approximates the
advection-with case as well.
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Effect of loss of angular momentum through radiation
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Advection-with disk - limits of analycality

• Put all equations of state together.

• Simplify as possible, keep P prescribed by Novikov-Thorne.

• The final equation, of only one troublesome variable Tc , is

− 32ṀLR
3
4T 4

c f̃ σA

B
√
E
√
D
√

384Ṁ2
L f̃ ξ + R4T 4

c ακTσD
− 32ṀLf̃ β

′

R2ακTD

+
32ṀLf̃

R2ακTD
− 64ṀLTc k̃ξC

3
√
RακTµD

− R
7
2T 5

c k̃σC
18ṀLf̃ µ

= 0.

(22)
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Advection-with disk - limits of analycality
• The radiant flux is given as

F =
4σT 4

c

3τ
, (23)

• inputing the solved equations of state

F = −
σ
R̂φ̂
αP

1 + 12ṀLξP
R2σT 4

c

. (24)

• This flux reduces to the viscous energy production with no
advection.

• Solve the temperature equation numerically (easily by
Newton/Halley method).

• Input the temperature and the NT pressure - we have the
advection-with radiant flux!
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Radiant fluxes
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Radiant fluxes
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Radiant fluxes - full solution of P

Newton

GR
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Spectra
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Testing our model

• How to test our model?
• Most straightforwardly - fit our model to observed spectra.

• Not immediately viable:
• observed spectra must be carefully selected, to be ”nice”

enough.

• Alternative - generate fake spectra.
• Put a virtual accretion disk far away from the Earth.
• Ray-trace radiation.
• Simulate transmission through interstellar hydrogen clouds.
• Simulate detection at a satellite’s view matrix - including

errors.

• Fit the Novikov-Thorne model to these spectra.

• See if the spin-against-Ṁ plot shows a spin decay.
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Testing our model - Newtonian, β′ = 0.5
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Testing our model - Newtonian, β′ = 0
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Testing our model - relativistic, β′ = 0.5
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Testing our model - relativistic, β′ = 0
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Fitting - Accretion rate = 0.2
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Fitting - Accretion rate = 0.8
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Conclusion
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