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DOC. 7 GRAVITATIONAL INDUCTION 175

3.
Gibt es eine Gravitationswirkung, die der elekiro-
dynamischen Induktionswirkung analog ist?

Van
Prof. Dr. Einstein-Prag.

Die in der Usberschrift anfgeworfeae Froge kann in Anlehnung
an cinen Gbersichtlichen Speaialfall in folgender Weise formuliort wer-
den. Es werde ein Systom ponderaMer
i Massen betrachtet, bestehend aus der Eugel-
k(M) sehale B mit homogen iiber dis Kugelflichs
verteilter Masse M ond dem im Mittelpunk
*‘ dieser Eugalschals aogeordueten materiellen
&L Punkt P mit der Masse m. Wickt agf den
! o P festgehaltenen materiellen Punki P eine
Eraft, wenn ich der Schale K eine Beschleu-
7 vigung I erteils? Die folgenden Usber- 113
-é legungen werden uns dazu fiihren, sine
F 4 R solehe Eraftwirkung als tatsichlich vorhand hen und uns die
Grdsse derselben in erster Anniherang ergeben,
L. Nach der Relativitits-Thearie ist dje trige Masso eines ab-
geschlossenen physikalischen Systems von dessen Encrgieinhait in
solcher Waise abhingig, dass ein Energiczuwachs des Systews um E
die trige Masse um = vergrissert, wean o die Vakuum-Lichtgoschwin- (2
digkoit bedeutet. Bezeichnet man also wit A die trige Masse von K 1
bei Abwesenheit von P, ind mit m die trige Masse von P hei Ab-
wesenhoit von K, oder mit anderen Worten mit M - m die trige
Nasso des aus P und K zusammen bestehenden Systems fiiy den Fall,
dass m sich inmdlielmrknt&rnung von K befindet, so folgt, duss -
dic trige Masse des aus K und m bestehonden Systems, fiir den Fall,
dass sich m im Mittelpunkt von K befindet, den Wesrt

Wopm—Xdm )

7. “Is There a Gravitational Effect
Which Is Analogous to
Electrodynamic Induction?”’

[Einstein 1912¢)

PusLisnen July 1912

L L S



Cé

w STBRRY i1 GHT "
. .

' ¥
* ® * 3 e e 3
. R "
»*
E
e
»
*
*
#
W ;
¥ é-. A *:
E
¥ W (oroy) = 2Jp Jre’ i
*: ¥ = 27 A'-W'w"‘s" %
'
PHY & /cc 2 ASTRoLOGY 2
G elle AP yy in __r?mert'.':q.l.r_ ra?ng jof.s -
7, luﬂ'ne.rf A /6’;/%;‘:7‘.:
2 Lol heians sai T .,.rh/.,/wfr f0. wshunamers

& 70 AL K



M A B
¥ - #
{ - ! N
it 2 -
g 3 fa -
it
" -~
N o
“Fixed L
2iSTANT ey
> - i =T F s g e
STARS A8 & Ve ALDRE
1 "
g ,
GR : -
W (drag) v '2‘79/!;3¢- 22/ miWarcee fyear
Elé&crro MBENETISAS CRRVvo M p CNE 7/15/7
E (m» &)
#y

Ro tat/n usgsgd phere
rowp =/, N L . 4 M?Mﬁ’di

Rotathng masiive sphere
Ny =Currengd e |
Aravemagnets file 17,



o4 !
(< dr'? —;/-q.f;%m?tne Axns ?J'Vl'h :z

- 4 Jx F/r3
g a?u&r m omentcwr of Earts

/’T Frahse ey a? Hbe Pok -
Lw

_.".?.."'!9 coe = 227 mitlseconds

o arc 2% ;tel‘

e S

[ I ~ G”’ ¥e; ® = 07 m:i’:ﬁmp/,r]

Braginsdy k&, FPolnarey A6, Borne LS.
4 Foucault Pendidem at the Seuth Pof.
Froposal For an &xperiment to Detect
Lhe ELarth’s Genera) Relatvishe
Gr"aw'z‘am?neﬁéz Frelot ”

Phys. Rev: Zez‘t,_d_'._? , £E€3 (f/%oy

e

i Bﬂf‘a'ﬂ-n- R%r_rp;, gﬂf,f'- recaton J"r.r’ b/acd .‘.,é_r

Art e



GMY

~6.600 mitare -.m-gy

AB =7 Ses GYRO 2
3" 77 T=1 YEAR
f
= i~

A8 =0.05 ﬁ"&

&2 MI%‘““ Sece. ;
(Hunsan ﬁw;."%
os? ar fa.h:)
gfy a? 7%, Noow

Figure 1

*
STANFoR D CYRO EXPERINENT

Idbn, < f’f, Lo el ﬂ#}" 4&, J"I .535».4?.
Ferst reaatty. BGpril 14 Loey ( #Fs, /adruw#'r e/ . l
Fraal Tesulls: Ena o CosF A/'O ! .,‘%omﬂ’.

Y, GROVITY PROBE 3° (vRsp) i




Guide Star

IM Pegasi
(HR 8703)

*

Frame~dragging Precession
39 milliareseco nds/ye:

\ (0.000011 degre

Geodetlc Precessnon
6,606 m:lIl HCSPCOH

GM1e




&l

Myssior Update ~ Movember 42, Lo0g

7he mun;? o GP-B resuls has imyroved
IE x Since APS mn"’-y n Aorit Qo077

» past J!J;wqr.r medehing and remaw'?’z
Phree Alewdornian sources %ffor ~ taien. Lorefl
f) dw# ”fb.* me "" o« I fermedhat inm:

aws of max. inech
2) hw':aé,"mn} ‘fozuf;
o YHhe & whew spacecraffs
ks #?m# ne¥ nf;‘"md M’“,f‘.’f axes
J) rol-polhegy resenane
Ay 38/‘{:.":)‘: Sue 7o ’)!’qi“cé-efui"

anemalies
v While mecharcally both rotor and Aotsin

are eac«aﬂ'?/ sphericel, ekehricaly Hy are not

pa f<b C’?a?“ arise from varyin .rar/a'nee
electrical ponfials /n ?a?e{j’rﬂn&‘m maTetials’

ﬂm?.u:r w H now

CormgInED #- GYRO RESULT GIvES STATISTICAL
UNCERTAINTY OF H% (.é.ﬁ»m‘amny
FOR THE FRAME DRACGING




Ch17

hlm Classical mrd Quantum Grave

Hass. Quantum Grav. 32 (015) 224001 (20pm 109088 02040881 /52 22 24001

(*Aobvnw das Qﬁjf

The Gravity Probe B test of general relativity

& A-Saud, A Al-Jadaan’, H Al-Jibreen, M Al-Meshayi” and

¥ Stanfond University, USA

INASA Murshall Space Flight Center, USA

YNASA Ames Space FElight Center, USA

*Lockheed Martin, USA

*King Abdulnziz City Science and Technology (KACST), Soudi Arabia
Eeinail; ameis @ relpsau mantind. edu, iy @ velgyro.suanfiond ey, habebwat stasid,
g.h_@gn—-' ] B Lo, july i e, alan.pteil am,

"l coms, qieal’? ilom, email com, wi ipple
couy, MImﬂmlmd.mm ooshent § berde 6 punaii wom, bower@relpyro,
s eedi, Brumse ety stafond wdo, shtsctimian 6 stagitord o, Kewinam
Bt & binco,eonm, Druce.d clarker s pav, Iweonklin® uil.cda, mike,

il com, gaylondp 06 ot ner, EEEROLY S grnail com, gwogpy 6 il
i, gahoe g, hexi i v, roil_ b 6yl v
dbsipkins @ relgyro sanford exlu, tadimes com, rakih

b by, stmfond o, Kovaszuk stimfont ol tou I tunfind oy
iie,uinmwyalul.unm.jﬁmib stanfird cdu, joaluck @ af.cdu, ming 056 yahia
coat, il el el i, fi 2mail.com, o, awel sty

TS B, 1224001 § 2083300 TI0NS 10F Putihiing L i Piirhod] i thha LK



CHL

BLAIR
-
RUFFINI PROCEEDINGS OF THE FIFTH
SERIES EDITOR
MARCEL GROSSMANN
MEETING ON

. GENERAL RELATIVITY
mx» 8 D.G. BLAIR

03 i M.J. BUCKINGHAM eorrors
g p é REMO RUFFINI series eoitor
089 e

2 g =

o ? m

2 = ;

m>

g Z

ot

p )

m

3

<

>,

PART B



1200 J. Bigék, V. Karas

only recall that each Fuy can be expressed as a sum of two terms,
one being proportional to.B, the magnitude of the component of the
field asymptotically aligned with the hole's rotation axis, the
other, B,, being the magnitude of the component perpendicular to
the axis. Following Christodoulou and Rutfini’* we define the
magnetic (electric) lines of force as the lines tangent to the

direction of the Lorentz force experienced by a test magnetic

(electric) charge at rest with respect to the locally non-rotating
frame. For the magnetic field lines this definition vields dr/de =
= —F,?/F,-’ = B,./Bp and dr/de¢ = F,,/ﬁ-g 'B;-/Ep.

In the case of the aligned field we can easily verify (by

using Fuy from Ref. 3) that the field lines lie on the surfaces of
constant flux,

& =mB[ A+ 2Mr=7'( r’-a®)] sin% = const.,
where

A = rPeaMrsa® | 3 o= 2 g2 cos®e ; r,8,¢ are Boyer-Lindquist
coordinates. The field lines, as constructed numerically, are in
the case of the extreme Kerr black hole shown in Fig. 1. We can
also define an "effective cross section" of the black hole, which
is a circle determined by all field lines that eventually thread

the horizon. Its radius at infinity

1! can be shown to read

4{.:“ tr e ex B b=2M(1-a’/Mz)'®. This relation and

Fig. 1 clearly show how the

magnetic field is expelled from the

horizon when the angular momentum

of the hole increases. Analogously

to the Reissner-Nordstrom casas, no

- field line of the asymptotically

uniform magnetic field enters the

r horizon of an extreme Kerr black
B hole.

The structure of an
asymptotically non-aligned field is
much more complicated. In this case

By#0 and the field lines are dragged around the black hole. The
lines, originally parallel to each other, are twisted, some of

Fig. 1:
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Near-horizon structure of escape zones of electrically

charged particles around weakly magnetized rotating black
hole: Case of oblique magnetosphere
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Abstract

We study the effects of large-scale magnetic fields on the dynamics of charged
}particles near a rotating black hole, We consider a scenario in which the initiall

ally
neutral particles on geodesic orbits in the equatorial plane become ionized, and

Vladimir Karas, Bo&ni I 1401, CZ-14100

Prague, Czech Republic.
Email: vladimirkaras@cuni.cz

Qggg;:_ they are destabilized by the charging process. Fraction of charged par-

ticles are then accelerated out of the equatorial plane and then follow jet-like

trajectories with relativistic velocities

. We explore nonaxisymmetric systems in

Funding information

which the magnetic field is inclined with respect to the black hole spin. We

Czech Ministry of Education, Youth and
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study the system numerically in order to locate the zones of escaping trajecto-
ries and compute the terminal escape velocity, By breaking the axial symmetry,
We notice increasing fraction of unbound orbits which allow for acceleration tp

Foundation, Grant/Award Number;
19-011371
KEYWORDS

1 | INTRODUCTION

Nuclei of many galaxies are thought to harbor supermas-
sive black holes. Strong gravity is manifested by a variety
of effects, ranging from very rapid motion of stars in dense
nuclear clusters, shape of broadened skewed spectral lines
from gaseous accretion disks, and other indirect evidence
(Bambi 2016; Haardt et al. 2016). Furthermore, electro-
magnetic field plays an important role in shaping the
gaseous structures and accelerating particles in the imme-
diate vicinity of black holes in active galaxies (Klein &
Fletcher 2015; Meier 2012). The system can be described
by a set of mutually coupled Einstein-Maxwell equations
within the framework of General Relativity.

Although the presence of Supermassive, strongly grav-
itating, dark compact objects is indicated by numerous

ultrarelativistic velocities,

accretion, accretion disks, black hole physics, chaos, magnetic fields, relativity

independent approaches, the individual pieces of evi-
dence for the black hole event horizon are challenging
and not unique; new progress is expected with the help
of multi-messenger observations in the near future (see
Mészéros et al. 2019, and further references cited therein).

Mathematically rigorous and astrophysically relevant
solution is defined with great precision by Kerr metric
(Carter 1971; Kerr 1963), where only the mass and angu-
lar momentum are free parameters that characterize the
black hole and need to be measured by observation, Cog-
mic black holes are surrounded by gaseous environment
and embedded in magnetic fields of external origin which
are both essential for the process of mass accretion and
light emission, however, these two ingredients have very
little impact on resulting form of the gravitational field
unless the black hole forms a compact binary system, in

Astron. Nachr. / AN. 2021;342:357-363.
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©2021 Wiley VCH GmbH | 347



l

]

Astronomische
Nachrichten

KARAS AND KOPACEK

which case the dynamical space-time emerges and gravi-
tational waves are released - we do not consider the latter
possibility in the present paper.

Because of high conductivity of plasma that forms
accretion flows and due to strong differential rotation near
the black hole, the effect of even weak electromagnetic

fields is crucial. Near the equatorial plane, within the

accretion torus, magnetic fields are turbulent and entan-
gled on small-length scales # (less than the geometrical

thickness of the disk, # < h(R)); this leads to effective vis-
cosity and drives the accretion process (Balbus & Haw-

ley 1991). On the other hand, in relatively empty funnels

near the rotation axis, magnetic lines become organized
on large scales (exceeding gravitational radius, £ 2 R,);

_this accelerates some plasma in collimated jets away from

the black hole, so that only a small fraction of accreted
material plunges into the event horizon (Tchekhovskoy
etal. 2011). However, details of the mechanism responsible
for this acceleration and collimation still remain a matter
of debate (Rezzolla & Zanotti 2013).

In Kopégek & Karas (2018), we studied the role of a
large-scale magnetic field aligned with the rotation axis of
arotating black hole. We assumed that an equatorial accre-
tion disk orbits the black hole down to the innermost stable
circular orbit (ISCO, originally called the marginally stable
orbit by Bardeen et al. (1972) and we explored the pro-
cess of acceleration of electrically charged particles from
the disk plane. In particular, we were interested in the
terminal velocity that particles can reach under astrophys-

ically realistic intensity of the aligned magnetic field (a few

% 10% gauss), and we found that the magnetic acceleration
oes operate, however, the particles typically reach only
moderate Lorentz factors, y < 3. We also found that the reg-
ular (non-chaotic, integrable) motion typical for particles
near an unperturbed (vacuum) black hole is broken; the
-imposed component of the external magnetic field leads to
the emergence of zones of chaotic motion. Furthermore,
in Kopacek & Karas (2020) we relaxed the assumption of
axial symmetry of the magnetic field and we studied the
acceleration and chaoticity of motion by the magnetic field
inclined with respect to the rotation axis. Interestingly, the

oblique component leads to a more efficient acceleration

and a larger terminal velocity, and a ‘more complex (fractal)

structure of the zones of chaotic motion. Let us empha-
size that a combination of magnetic acceleration with the
frame dragging by the black hole angular momentum are
important. This happens because both the motion of par-
_ticles as well as the shape of the magnetic field lines are
affected by rotation.

In the present contribution, we further explore how a
moderately inclined magnetic field influences the terminal
acceleration as a function of the black hole spin parame-
ter (Ja| <1). We concentrate our attention to the case of

co-rotation, a >0, and we focus on small radii, where the
General Relativity effects operate most prominently. An
interesting aspect of the adopted scenario is the fact that
the acceleration process is most efficient in the vicinity of
the plunging region boundary. It can thus be expected that
the ejected particles form a hollow structure, which only
further out spreads into a uniform collimated jetoran out-
flow. To this end, the chaotic character of the outgoing
trajectories enhances the mixing.

2 | EJECTION OF CHARGED

PARTICLES FROM MAGNETIZED
ERGOSPHERE

The spacetime metric coefficients of the Kerr black hole
can be written in the well-known Boyer-Lindquist coor-
dinate system (Chandrasekhar 1983; Misner et al. 1973;
Wald 1984). The metric obeys the axial symmetry about the
rotation axis and stationarity with respect to time, with a
singularity hidden below the event horizon, where the cur-
vature rises above all limits, Far from the event horizon,
at spatial infinity the spacetime becomes asymptotically
flat. All its mass M is thus concentrated in the origin. The
only other free parameter a of the Kerr metric describes
its rotation; the condition about the presence of the outer
event horizon at a certain radius, r = R, (where the hori-
zon encompasses the singularity) leads to the condition
on maximum value of the dimensionless spin rate: [a <1|.
However, the case of excessive spin and the naked singu-
larity is not a priori forbidden and the hereby described
mathematical description remains in most of its aspects
still valid without any change. The Kerr black hole solu-
tion can be then written in the form of the metric element
(Chandrasekhar 1983; Misner et al. 1973)

d?=-2Z g 4 Do | pagr L ASDE 4o e
A A >3]

(1)
where A(r) = rP-2r+a?, X0 = P+ cos?4,
A(r,0) = (r* +a?)® — Aa?sin0, w(r,0) = 2ar/A(r, 0) (geo-
metrical units are assumed with the speed of light ¢ and
gravitational constant G set to unity). The above-given
metric describes the vacuum spacetime, where the
right-hand-side of the Einstein equations vanishes (no
terms contribute to the energy-momentum tensor). This
is clearly an astrophysical unrealistic assumption, never-
theless, it can be substantiated to certain precision if the
amount of accreted matter is relatively small and the exter-
nal electromagnetic fields are weak. Both assumptions
are usually imposed, although this needs to be checked
in each particular case. For example, the presence of a
dense nuclear star-cluster and/or a massive accretion
torus can change the gravitational field of the central
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black hole significantly; moreover the infall and a merger
of a secondary black hole must lead to a non-stationary
situation where gravitational waves are produced and
the line element of the gravitational field is very differ-
ent from the Kerr metric, albeit for only a limited period
of time.

Finding self-consistent solutions of mutually coupled
Einstein-Maxwell fields is a difficult task because of inher-
ent non-linearity of the problem. Only a very limited class
of exact solutions have been found under the simplifying
assumptions about axial Symmetry and stationarity (Karas
& Budinova 2000; Karas & Vokrouhlicky 1991; Kramer &
Schmutzer 1980); otherwise, one has to resort to numerical
approaches. Fortunately, astrophysically realistic electro-
magnetic fields are usually weak with regard to their grav-
itational influence. One can thus explore test solutions of
the Maxwell fields on the curved background of Kerr met-
ric. The imposed spacetime is kept fixed, so that it does
not evolve in time. Even if non-axisymmetric configura-
tions cannot be stationary, the expected time scale of the
spacetime evolution are very long. On the technical side,
this assumption means that we neglect all coupling terms
of higher than the second order in electric and magnetic
components,

On the black hole background, the electromagnetic
fields must be generated by currents flowing in the ¢
 plasma far outside the event horizon, Within the limited

volume around the black hole, the prevailing term corre-
sponds to an asymptotically uniform magnetic field, which
we will adopt hereafter. Even in this case, near the hori-
zon the field line structure becomes increasingly entan-
gled by the frame dragging Bigak & Dvorak ( 1976); King
et al. (1975). This structure becomes éven more complex
once the assumption about an axial symmetry is aban-
doned; the twisted field lines develop magnetic null points
where reconnection events can occur (see, e.g., Doviiak
et al. 2000; Karas et al. 2012). In the adopted weak elec-
tromagnetic field limit, the immediate consequence of
the linearization is the fact that resulting electromagnetic
four-vector can be written as a superposition of two parts
A¥ =AY + Al the first one corresponding to an asymptot-
ically uniform field aligned with the black hole rotation
axis, and the other one corresponding to an asymptotically
perpendicular configuration. Let us note that a small con-
tribution to the black hole intrinsic electromagnetic field
can originate from Kerr-Newman electric charge; how-
ever, this component is negligible due to rapid discharge
by selective accretion of charged particles.

The case of uniform test magnetic field (correspond-
ing to the aligned orientation) was first studied by
Wald (1974). The magnetic field along the black hole rota-
tion is described by two non-vanishing components of the
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four-potential,

Aoy =Boa [r=7 (14 42) - 1],

@)

Aoy =By [% (P+a®) —a?rz? (14 ,uz)] o @)

in dimension-less spheroidal coordinates (4 = cos#,
o = sin §). Equations (2)~(3) represent an asymptotically
homogeneous magnetic field. The component perpen-
dicular to the black hole axis has been given by Bitak

et al. (2007; Bitdk & Janis (1985),

A1y = BiaS"Woy, | @
Ay ==Bi(r—1)ousiny, 5
Ayg = =B [(ro® + y®) acosy

+ (P + (a® - r) (4 —0%))siny],| (6)
Arp =—B) [Acosy + (r*+d?) 2] oy, (@)

where y =¢+a5 In[(r~R,)/(r—R.)], ¥ = rcosy —
asiny,5=R,~R_,andR, =1+ y1—a2 An arbitrarily

ic

inclined magnetic field can be obtained as superposition
of the two above-given components. Their mutual relation
defines the asymptotic angle of the magnetic lines of force,
The set of four-potential vector components defines the
structure of the electromagnetic tensor, Fuy =41,

Let us note that the adopted solution for the black
hole gravitational and electromagnetic fields is a very spe-
cial one. Regarding the space-time metric, two Killing
Symmetries are imposed (stationarity and axial symmetry)
and no further material is allowed to contribute to gravity
(electro-vacuum test solution). These assumptions imme-
diately exclude any significant mass in stars and the sur-
rounding gas, and it also ignores the curvature arising from
distant cosmological terms (an asymptotically flat metric
is employed). Also the electromagnetic part of the solution
represents merely the first term in the multipole expan-
sion of the general solution for weak electric and magnetic
intensities, which are stationary and organized on length
scales exceeding the gravitational radius (no time depen-
dent, turbulent currents are allowed). However, we have
relaxed the assumption about axial Symmetry: the mag-
netic field at spatial infinity is inclined at an arbitrary angle
with respect to the black hole rotation axis,

The present paper builds on Kopacek & Karas (2020);
Wwe proceed systematically over the range of spin values
and we demonstrate how the chaos gradually emerges in
the particle motion. The transition to non-integrability is
an interesting effect which requires the electromagnetic
acceleration; it does not occur in the case of geodesic

L3
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motion which is known to be completely integrable in Kerr
metric (Kopagek & Karas 2014).

3 | MOTION WITHIN ESCAPE

ZONES AND THE TRANSITION TO
CHAOS

As mentioned above, we extend the numerous studies
of the particle motion near black holes by considering
one additional aspect that influences the trajectories in
a distinct manner. This is the interplay between rota-
tion of the black hole, as specified by the spin parameter
a (dimensionless angular momentum of the black hole
—1<a<1), which defines the axis of symmetry of the
gravitational field and the corresponding (perpendicular)
equatorial plane, and an asymptotically uniform magnetic
field, which is aligned along a different (arbitrary) angle
of inclination « (@ = 0 refers to the aligned configuration,
whereas « = z/2 the case of magnetic field perpendicu-
lar to the rotation axis). New features emerge which are
not observed for particles near classical Kerr (rotating) and
Kerr-Newman (rotating, electrically charged) black holes.
Firstly, corridors of unbound escape motion occur for elec-
trically charged particles that are injected into magneto-
spheres and start their acceleration on the fractal boundary
region between plunging and bound trajectories. Secondly,
these regions of chaotic motion develop where initially
neighboring trajectories separate exponentially from each
other, as characterized covariantly in terms of properly
defined Lyapunov coefficients and Poincaré sections (and
alternative signatures of chaos, such as the method of
recurrence plots; Kopacek et al. 2010a, 2010b).

Two main characteristics of the black hole spacetime
are the mass M and spin a=J/M?c, where J is the black
hole angular momentum. Gravitational radius in physical
units is then given by Ry = GM/c?=1.5 x 105M /Mg [cm],
the outer horizon is located at radius R, (1 + \/f——az)

and the ergosphere at R, (1 +V1l- azcoszﬂ). Besides
these canonical parameters, in our current model we
have additional freedom in the above-mentioned mag-
netic angle a, which relates two intensity components B,
B,, and the particle specific electric charge g/m. The sys-
tem thus requires to specify a set of three independent
parameters to be fully defined in geometrical units.

By introducing the external electromagnetic interac-
tion the particle motion loses integrability. In conse-
quence, we have to resort to numerical integration which
needs to be performed systematically over the entire
parameter space in order to reveal the emerging islands
of chaos. For the purposes of the present investigation, we
start by setting the inclination angle o and magnetization

parameter gB, and we integrate the system of equations

of particle motion in their Hamiltonian form (Kopakek &
Karas 2020),

3= %g‘"’ (7.~ qA,) (m,—gA,), @)

where 7, is the canonical momentum and g** contravari-

ant components of the metric tensor. The equations of
motion then read

det _ , _0H dm, oH

L a2 e

with A= z/m being the affine parameter and « proper time
along the trajectory.

Figure 1 depicts three different types of trajectories that
start from the black hole equatorial plane (x, y) atsome ini-
tial radius r = ry. These trajectories are distinguished into
three categories according to the final fate of the particle:
(i) plunging orbits which enter into the black hole horizon;
(ii) stable orbits bound to the black hole while avoiding
accretion; and (iii) ejected orbits along which particles can
escape away from the black hole to radial infinity. Distinct
features can be observed, which are obviously invariant
with respect to the choice of coordinate system. Firstly, the
escaping trajectories start to emerge for non-zero values of
spin and they exist up to a — 1. These orbits spatially occur
approximately in between stable and plunging trajectories;
however, the image suggests an interesting fractal struc-
ture. This would be naturally expected on the basis of the
fact that some selected trajectories in the escaping region
appear to be chaotic by numerical integration.

In order to reveal details of this complex region, we
can zoom progressively into small parts of the phase
space. An example is shown in Figure 2, where we plot
the three classes of the trajectories in (a,ro) plane. Let
us note that the region of escaping orbits can come
up above ISCO at certain value of a~0.5, However, for
high values of |gB| the resulting escape zone can even
get inside the ergosphere, although the region is then
very narrow. Because the plots have been generated by
numerical integration, a natural question has to be raised
regarding the precision and the sensitivity to initial con-
ditions. We integrated the motion equations in the hamil-
tonian form via Adams-Bashforth-Moulton multi-step
integrator, as described in a recent paper (Kopagek &
Karas 2020) in more detail. The routine is based on the
predictor-corrector loop with the adaptive step-size and
the local truncation error controlled by a relative toler-
ance parameter. Further, to verify the precision, we also
employed Dormand & Prince explicit Runge-Kutta type
scheme (ode873; Dormand & Prince 1978; Prince & Dor-
mand 1981). Comparing the output, we conclude that



KARAS AND KOPACEK

FIGURE 1 The three classes of
the orbits parameterized by the black
hole spin @ and projected on the top
view of the equatorial plane around the
black hole. A hollow structure of
escaping particles is visible (yellow).
Color-coding: blue for plunging orbits,
red for stable orbits, and yellow for
escaping trajectories. The green circle
denotes the innermost stable circular
orbit (ISCO), which moves from
Risco(a =0) =6 down to

Risco(a = 1) = 1. The white circle is the
boundary of the ergosphere. The inner
black region marks the horizon of the
black hole, = R, (a). The other param-
eters of the system are « = 35% and

gB= —5.The asymptotic direction of the
magnetic field is inclined in the positive
x-axis direction

FIGURE 2 The fractal structure emerges of escaping,
increasing resolution is shown going from left to right. Para

the overall structure produced by the two independent
schemes is consistent and the regions of different classes
of trajectories agree. However, let us also note that cau-
tion always has to be paid with respect to the precision.
For example, the standard fourth-order Runge-Kutta inte-
gration routines are not adequately accurate to reflect the
regions of chaos (Kopagek et al. 2014).

Regarding the class of escaping trajectories an inter-
esting question concerns the final velocity that the ejected
particles can reach. To this end, we construct a color-coded
map of the terminal Lorentz factor v in Figure 3. In this
particular example, we set gB, <0 (a necessary condition
for the particle escape). The main ingredients that are

plunging, and bound trajectories with the rising value of spin a. Gradually
meters: & = 35% gB = —~5and ¢, = 135°

necessary and sufficient to launch the outflow of charged
particles are a combination of rotation of the central black
hole with the imposed large-scale magnetic field. A mod-
erately misaligned configuration increases the efficiency of
acceleration. On the other hand, a perfect alignment (mag-
netic vector parallel with the spin, for the same values of
all other parameters) restricts considerably the efficiency
of the acceleration mechanisms.

The escape zone is clearly distinguished in the plot by
yellow to green colors, where the acceleration reaches up
toy = 2.5 for the given set of other (frozen) parameters. The
plots confirm that the escaping particles originate from
a rather narrow range of radii between 2.55r<53.5. This
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FIGURE 3

angle of the magnetic field a = 25°, charge and magnetization gB
a=35%gB= -50,a=04

is a generic picture which appears typically for moderate
@ 545°. On the other hand, for & > 45° we found that the
particles can escape from only certain azimuthal locations
(for further details, see also Kopacek & Karas 2020).

4 | DISCUSSION AND
CONCLUSIONS

We further examined aspects of charged particle accelera-
tion in the region of organized magnetic field near rotation
axis of Kerr black hole. While the magnetic field develops
a prevailing toroidal component in the equatorial torus,
Where they are highly turbulent, in the diluted above the
torus the large/scale poloidal filed lines help to accelerate
a stream of outflowing particles which eventually form a
collimated jet. This picture has been suggested by several
independent numerical simulations Rezzolla et al. (2011).
It turns out that a moderate (non-zero) inclination of the
large-scale magnetic field helps the acceleration; the effect
operates less efficiently in the axially symmetric (aligned,
@ = 0) configuration, and it is also less efficient in the
highly inclined (or even perpendicular, a — z/2) case. We
find that the ejection mechanism requires an interplay
between rotation of the black hole and the magnetic field,
The particles originate from the region in the equatorial
plane near above the outer boundary of the ergosphere and
below the innermost stable circular orbit, therefore very
close to the horizon.

The ejection region exhibits fractal structure and the
trajectories show signatures of chaos. Although we had to
resort to numerical integration of the trajectories, we veri-
fied the precision of our method by employing two highly
accurate schemes and checking the results independently
by recurrence analysis; all approaches qualitatively agree.

Final Lorentz factor y of the escaping trajectories. Values of several

2 - 0
X [M]

parameters have been kept fixed. Left panel: moderate

= —5, and almost maximally rotating Kerr hole a = 0.98. Right panel:

The emergence of chaos is an interesting feature in the
black hole spacetime, where the orbits of the unperturbed
Kerr metric are known to be fully integrable. Although
any direct observation confirmation about the character of
motion is difficult or impossible because of an insufficient
resolution, it is interesting to recall the hollow structure
of the wobbling jet in the core of M87 elliptical galaxy
(Britzen et al. 2017; Hada et al. 2016). Here, the resolution
of the interferometric images reaches down to the hori-
zon scale, and it indeed appears that the material of the
Jet might start from around the inner rim of the accretion

torus, corresponding to the region indicated by the ejected
(yellow) orbits in our graphs.
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In linear analysis one can use simple prescribtion

Y
Yin(t, 1,0, 6) ~ Re ¢

[ (f-'+l*22+r3 ] L

In nonlinear terms, we may need an explicit form

Y (0, (P)e-—iwr

gl
Yim(t,r, 6, @) ~ (E) 1 P}"(cose) cos(me¢p — At,r))
[(a2+r2 —r2)3+4a212] -
at
2at
Alt:r) = (14 1) arctan— +:2 —

O B+ «Br « By B Hac
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Expansion of (odd parity) symmetric second-rank covariant tensor into tensor harmonics
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Now we have solved the first order Einstein equations

Gl ] = 0
In general the second-order metric perturbations 4(2) can be obtained by solving

Guuolh®] = ~GR D, 40

right-hand side is the source term in the form of an effective energy-momentum tensor
GOnD] = — [,,(2),& +hES 4 nia _ e =7 (h(é) B h(z)ﬁ;) ] :

Rotation ¢’ = ¢ — wot — ds? = ... + 2 gin? 0(de — wodt)? is most easily identified in

(2) 2

Sy = —wp1” sin’ @

since t¢-component is associated only with the following tensor harmonic component

’l
c = e (—3in 88, ¥;
Olmeo 20+ 1) ( o Yim)

the dragging of inertial frames near the origin is given by / = 1, m = 0 perturbation

[m] = T

W
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Cosmological perturbation theory, instantaneous gauges, and local inertial frames
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Linear perturbations of Friedmann-Robertson-Walker universes with any curvature and cosmological
constant are studied in a general gauge without decomposition into harmonics. Desirable gauges are
selected as those which embody best Mach’s principle: in these gauges local inertial frames can be
determined instantaneously via the perturbed Einstein field equations from the distributions of energy and
momentum in the universe. The inertial frames are identified by their “accelerations and rotations” with
respect to the cosmological frames associate

d with the “Machian gauges.” In closed spherical universes,

integral gauge conditions are imposed to eliminate motions generated by the conformal Killing vectors.

The meaning of Traschen’s integral-constraint vectors is thus elucidated, For all three types of Friedmann-
Robertson-Walker universes the Machian gauges admit much less residual freedom than the synchronous
or generalized harmonic gauge. Mach’s principle is best exhibited in the Machian gauges in closed
spherical universes. Independent of any Machian motivation, the general perturbation equations and
discussion of gauges are useful for cosmological perturbation theory.
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