Akční principy pro relativistickou částici

Princip extremální akce.

Geometrická akce pro relativistickou částici.

Lagrangeovský formalismus vůči inerciální soustavě.
Třírozměrný přepis akce. Lagragián relativistické částice. Lagrangeovy rovnice.

Hamiltonovský formalismus.

Formalismus “vnitřního” času.

Princip extremální akce pro srážky.
Princip extremální akce

Každý systém je popsán specifikací "historie" tj. celém světě (potenciálním) vývojem např.:
- prostorová trajektorie pro částice
- plné konfigurace pro pole
- světový řetěz pro strungy (či "brány")

na prostor historii je definoval funkčně akce
akce dává pro každou historii číslo
akce pro nezávislé systémy je aditivní
interakce systému bývá písovaná extra členem odbo
akce pro "nařizující" historie je aditivní

pohybové rovnice systému určující fyzikální realizaci historie
je dána podmínkou extremality akce, tzn.
prodloužením písaných obrazců v podmínkách

před je akce dává časový integrál Lagrangeovým

\[S[\gamma] = \int L(\gamma, \dot{\gamma}) \, dt \]

pohybové rovnice jsou dány Lagrangeovou rovnicí

\[\frac{\partial L}{\partial \gamma} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\gamma}} = 0 \]

v relativitě je akce často zadána v kovariantní formě, která není přímo trvan. (tut
jedno do tohoto trvan obvykle vyjadřuje variaci kovariance - např. výběr inertních současyyn
v různých úhlu vždy bez odti práce v různých kovariantním formách, což vedle něho kovariantní pohybová rovnic

\[S[\gamma] = \int L(\gamma, \dot{\gamma}) \, dt \]

pohybové rovnice jsou dány Lagrangeovou rovnicí

\[\frac{\partial L}{\partial \gamma} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\gamma}} = 0 \]

v relativitě je akce často zadána v kovariantní formě, která není přímo trvan. (tut
jedno do tohoto trvan obvykle vyjadřuje variaci kovariance - např. výběr inertních současyyn
v různých úhlu vždy bez odti práce v různých kovariantním formách, což vedle něho kovariantní pohybová rovnic
Geometrická akce pro relativistickou částici

Poloja historie částice
- směrovač částice, t.j. prostorová trajektorie
 \(Z(t) \) parametrizace pomocí vlastního času
 \(Z(x) \) obecná parametrizace pomocí parametru \(x \)
- souřadnicové výjádření
 \(x^m(a) = x^m(Z(a)) \) rysy \(x^m(a) = x^m(Z(x)) \)
- 4-rýchlost a vlastní čas
 \(u = \frac{Dx}{dτ} \quad ur = \frac{dx}{dτ} \) 4-rýchlost
 \(w = \frac{Dx}{dx} \quad wr = \frac{dx}{dx} \) tený vektor směrovačy pro parametr \(x \)
 \(c dt = \sqrt{-g_{\mu\nu}dx^\mu dx^\nu} = \sqrt{-w^2}dx \) vlastní čas

Abécze
"smutněka" část

\(S_{PP}[Z] = -m_0c^2 \int dt \)

abce jí dána geometrickou (pseudodélkovou) směrovačí interakce s elektromagnetickým polem

\(S_{PP}[Z, A]\) = \(q \int A_\mu Z^\mu dt \)

\(q \) elektrický náboj
abce nesouvise na parametrizaci \(w^\mu dx = ur^\mu dt \)
celá abce

\(S[Z, A] = \int (-m_0c^2 + qA_\mu w^\mu) dt \)
Variace úloha

fyzikálně realizované světločí slouží k vytvoření několika koncových bodů světlačí, nezávisle na parametrizaci světlačí.

Parametrizace světlačí

světlačí vytvořené dvěma fixovanými výchozími body musí být stejnou délku (vlastní čas).

Proto je náhodné při variaci parametrizovat vlastní časem a uzavírat fixované hodnoty vlastního času pro koncové body světlačí.

Použijeme obecnou parametrizaci parametru x

$Z: \{x_1, x_2\} \rightarrow \mathbb{R}$

obecně lze zapsat

$s = \frac{1}{m \cdot c} \left[\int \left(-\frac{dx^r}{dx} \right) \left(\frac{dx^v}{dx} \right) \right] dx$

$s = q \int A(x) \left(\frac{dx^v}{dx} \right) dx$
Variace až ce

\[Z(\alpha) \rightarrow Z(\alpha) + \delta Z(\alpha) \]

\[\delta Z(\alpha) \] je vektor variace sunitární

obrazové podmínky \(\delta Z(\alpha) = 0 \)

\(\delta Z(\alpha) = 0 \)

\[X^r(\alpha) \rightarrow X^r(\alpha) + \delta X^r(\alpha) \]

\[\frac{dx^r}{d\alpha}(\alpha) \rightarrow \frac{dx^r}{d\alpha}(\alpha) + \frac{d\delta x^r}{d\alpha}(\alpha) \]

\[c \frac{dx^r}{d\alpha} \rightarrow \left[-\frac{dx^r}{d\alpha} \frac{d^2x^r}{d\alpha^2} \right] = \left[-\left(\frac{dx^r}{d\alpha} + \frac{d^2x^r}{d\alpha^2}\right) \frac{dx^r}{d\alpha} + \frac{d^3x^r}{d\alpha^3}\right] \]

\[= \left(c^2 \left(\frac{dx^r}{d\alpha} \right) - 2 \frac{dx^r}{d\alpha} \frac{d^2x^r}{d\alpha^2} \frac{dx^r}{d\alpha} + \frac{d^3x^r}{d\alpha^3} \right) \frac{dx^r}{d\alpha} \]

\[= c \frac{dx^r}{d\alpha} \left(1 - \frac{1}{c^2} \frac{d^2x^r}{d\alpha^2} \frac{dx^r}{d\alpha} + \frac{d^3x^r}{d\alpha^3} \right) \]

\[\frac{dx^r}{d\alpha} = u^r \rightarrow c \frac{dx^r}{d\alpha} - \frac{1}{c} u^r \frac{d^2x^r}{d\alpha^2} \]

\[A_r(x^r) \rightarrow A_r(x^r + \delta x^r) = A_r(x^r) + \delta x^r \nabla_r A_r(x^r) + \ldots \]

\[S \rightarrow -\left[m_0 (c \frac{dx^r}{d\alpha} - \frac{1}{c} u^r \frac{d^2x^r}{d\alpha^2}) - q (A_r + \delta x^r \nabla_r A_r) \left(\frac{dx^r}{d\alpha} + \frac{d^2x^r}{d\alpha^2} \right) \right] d\alpha \]

\[= -\int \left[m_0 c^2 - q \frac{\partial A_r}{\partial x^r} \right] d\alpha + \int \left[m_0 u_r \frac{d^2 x^r}{d\alpha^2} + q A_r \frac{d^2 x^r}{d\alpha^2} + q (\nabla_r A_r) \frac{d^2 x^r}{d\alpha^2} \right] d\alpha \]

\[= S_0 + \int \left[m_0 u_r + q A_r \right] \frac{d^2 x^r}{d\alpha^2} d\alpha + \left[\frac{\partial}{\partial x^r} (m_0 u_r) + q \frac{d^2 x^r}{d\alpha^2} \nabla_r A_r + q \frac{d x^r}{d\alpha} \frac{d^3 x^r}{d\alpha^3} \right] d\alpha \]

\[= S_0 + \int \left[(m_0 u_r + q A_r) \delta x^r \right] \frac{d^2 x^r}{d\alpha^2} + \int \left[\frac{\partial}{\partial x^r} (m_0 u_r) + q F_{nr} u^r \right] \delta x^r d\alpha \]

\[\forall \delta x^r \quad \delta S = 0 \quad \rightarrow \]

\[\frac{d}{dt} (m_0 u_r) = q F_{nr} u^r \]

polobozová rovnice měnitelné relativistické částice

- první strana = Lorentzova 4-síla
- obě strany balmi na 4-rychlost u_r
- m_0 je konstantní, W_0 = 0
Lagrangeův formalismus vůči inertiální soustavě

Třívrstvění přípis abec.

Zvolená inertiální soustava
čas soustavy jako parametr měříká
\[
\frac{dt}{\partial t} = \frac{1}{\delta} = \sqrt{1 - \frac{v^2}{c^2}} \quad \text{a} \quad \frac{dx^i}{\partial t} = \frac{dt}{\partial t} \frac{dx^i}{\partial t} = \left[\frac{c}{v} \right]
\]
abec
\[
S = -\int \left[m_0 c^2 - q A_i u^i \right] dt = -\int \left[m_0 c^2 \frac{dt}{\partial t} - q A_i u^i \right] dt
\]
\[
= \int \left[-m_0 c^2 \sqrt{1 - \frac{v^2}{c^2}} - q \phi + q \overrightarrow{A} \cdot \overrightarrow{v} \right] dt
\]
\[
= \int L(x^i, v^i, t) dt
\]

Lagrangeův zápis

\[
L(x^i, v^i, t) = -m_0 c^2 \sqrt{1 - \frac{v^2}{c^2}} - q \phi(t, x^i) + q v^i \overrightarrow{A}_i(t, x^i)
\]

- nemá tvar T-V a do ani bez EF-členů
- kinetické část pro části není kvadratické v rybolosti

Lagrangeovy rovnice

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial v^i} \right) - \frac{\partial L}{\partial x^i} = 0
\]
\[
\frac{\partial L}{\partial v^i} = \frac{m_0 v_i}{\sqrt{1 - \frac{v^2}{c^2}}} + q A_i
\]
\[
\frac{\partial L}{\partial x^i} = -q \overrightarrow{\nabla} \phi + q v_i \overrightarrow{A}_i
\]
\[
\frac{d}{dt} \left(\frac{\partial L}{\partial v^i} \right) = \frac{\partial}{\partial t} \left(\frac{m_0 v_i}{\sqrt{1 - \frac{v^2}{c^2}}} + q v^i \overrightarrow{A}_i \right) + q \frac{\partial \overrightarrow{A}_i}{\partial t}
\]
\[
\frac{\partial}{\partial t} \left(\frac{\partial L}{\partial v^i} \right) = -q \left(\overrightarrow{\nabla} \phi + \frac{\partial \overrightarrow{A}_i}{\partial t} \right) + q \left(\overrightarrow{\nabla} \phi \overrightarrow{A}_i - \overrightarrow{\nabla} \overrightarrow{A}_i \right) v^i
\]
\[
\frac{\partial}{\partial t} \overrightarrow{P} = q (E + \overrightarrow{v} \overrightarrow{B})
\]

ekvivalentní proktorové části kovarianční rovnice
\[
\frac{\partial}{\partial t} \overrightarrow{P} = q F_{\overrightarrow{x}} \overrightarrow{v}
\]
Hamiltonovský formalismus

Lagrangian
\[L = -m_0c^2\sqrt{1 - \frac{v^2}{c^2}} - q\phi + q\vec{v}\cdot\vec{A} \]
\[= -m_0c^2(1 - \frac{v^2}{c^2}) - q\phi + q\vec{v}\cdot\vec{A} \]
\[m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \]

Kanonické hybnosti
\[\vec{p} = \frac{\partial L}{\partial \dot{\vec{v}}} = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \]
\[\vec{v} + q\vec{A} = m\vec{v} + q\vec{A} \]
\[m\vec{v} \cdot \vec{p} = \vec{p} - q\vec{A} \]
\[m^2 = \frac{m_0^2}{1 - \frac{v^2}{c^2}} = m_0^2 + \frac{4m_0^2v^2}{c^2} = m_0^2 + \frac{4}{c^2}(\vec{p} - q\vec{A})^2 \]

Hamiltonián
\[H = \vec{v}\cdot\vec{p} - L = \frac{(\vec{p} - q\vec{A})\cdot\vec{p}}{m} + m_0c^2(1 - \frac{(\vec{p} - q\vec{A})^2}{m_0^2 c^2}) + q\phi - \frac{(\vec{p} - q\vec{A})\cdot q\vec{A}}{m_0} \]
\[= m_0c^2 + q\phi = \sqrt{(m_0c^2)^2 + c^2(\vec{p} - q\vec{A})^2} + q\phi \]

Hamiltonovy kanonické normice
\[\dot{\vec{p}} = \frac{1}{2m_0c^2}2c^2(\vec{p} - q\vec{A}) = \frac{\vec{p} - q\vec{A}}{m} \]
\[\dot{\vec{v}} = -\frac{1}{m_0c^2}c^2q(q\vec{V})\cdot(\vec{p} - q\vec{A}) + q\vec{V}\phi = \frac{-q(q\vec{V})\cdot(\vec{p} - q\vec{A})}{m_0} + q\vec{V}\phi \]
\[\vec{v} = \frac{\dot{\vec{p}}}{m} = \frac{\vec{p} - q\vec{A}}{m} \quad \Rightarrow \quad \vec{p} = m\vec{v} + q\vec{A} \]
\[\frac{d}{dt}\vec{v} = -\frac{d}{dt}(m\vec{v} + q\vec{A}) = \frac{d}{dt}(m\vec{v}) + q\frac{d}{dt}\vec{A} + q\vec{v}\cdot\vec{A} = -q\vec{V}\phi + q(q\vec{V})\cdot\vec{v} \]
\[\frac{d}{dt}(m\vec{v}) = -q(\frac{d}{dt}\vec{v} + \vec{v}\phi) + q\vec{E} \cdot \vec{v} \]
\[\frac{d}{dt}\vec{p} = q(\vec{E} + \vec{v}\times\vec{B}) \]
Formalismus "unitního" času

Unitní čas

alternativní formulace zavádějící nový preferovaný parametr, jehož světového směru odpovídá unitní čas

též hmotnostní či hybnostní čas

Při parametrizaci pomocí θ je třetí súčet 4-hybnost

\[p^\mu = \frac{dx^\mu}{d\theta} \quad \Rightarrow \quad p = \frac{Dx}{d\theta} \]

mohou

- možnost jednotného popisu časy podobné, nulové a prostružné světce
- kovariantní Lagrangeovu kovariaci znázorňuje v rychlosti
- možnost vyhovování kovariantního Hamiltonova formalismu

mohou

- fyzikálně je částice většinou charakterizovaná hmotovou hmotností, která je v tomto pásmu pouze odvozena veličíně

\[P^\mu = m_0 u^\mu \quad u^\mu u^\nu \eta_{\mu\nu} = -c^2 \]

\[c^2 m_0^2 = -\frac{1}{c^2} P^\mu P^\nu \eta_{\mu\nu} \]

větší, slabší a unitního času

\[\frac{dx^\mu}{d\theta} = P^\mu = m_0 \frac{dx^\mu}{d\theta} \Rightarrow \frac{dt}{d\theta} = m_0 \theta \]

kozalní charakter světce

- časy podobné $\theta \in \mathbb{R}$, $m_0 \in \mathbb{R}^+$, $p < 0$
- světelné $\theta \in \mathbb{R}$, $m_0 = 0$, $p = 0$
- prostružné $\theta \in \mathbb{R}$, $m_0 \in \mathbb{R}^+$, $p > 0$
Ačeká a kovariantní Lagrangiján

\[S = \int \left[\frac{1}{2} \frac{d}{ds} \gamma_{rr} + q \frac{d}{ds} \gamma_r \right] ds \]

kovariantní Lagrangiján

\[L(x^r, \frac{dx^r}{ds}) = \frac{1}{2} \frac{d}{ds} \gamma_{rr} + q \frac{d}{ds} \gamma_r \]

kanonická hybnost, derivace Lagrangiján

\[P_r = \frac{\partial L}{\partial \frac{dx^r}{ds}} = \gamma_{rr} \frac{dx^r}{ds} + q \gamma_r \]

\[\frac{\partial L}{\partial x^r} = q \left(\nabla_r \gamma_r \right) \frac{dx^r}{ds} \]

Hybnové rovnice

\[\frac{\partial}{\partial s} \left(\frac{\partial L}{\partial \frac{dx^r}{ds}} \right) - \frac{\partial L}{\partial x^r} = 0 \]

\[\frac{\partial}{\partial s} \left(\frac{\partial L}{\partial \frac{dx^r}{ds}} \right) = \gamma_{rr} \frac{d^2 x^r}{ds^2} + q \left(\nabla_r \gamma_r \right) \frac{dx^r}{ds} \]

\[\gamma_{rr} \frac{d^2 x^r}{ds^2} = q \left(\nabla_r \gamma_r - \gamma_r \gamma_r \right) \frac{dx^r}{ds} = q \left(\nabla_r P_r - P_r \gamma_r \right) \frac{dx^r}{ds} = q \gamma_r \frac{dx^r}{ds} \]

Klidová hmotnost

Konstanta pohybu - zobecněná energie

\[E = \gamma_{rr} \frac{dx^r}{ds} P_r - L = \gamma_{rr} \frac{dx^r}{ds} (\gamma_{rr} \frac{dx^r}{ds} + q \gamma_r) - 1 \frac{d}{ds} \frac{d}{ds} \gamma_{rr} \gamma_r - q \frac{d}{ds} \frac{dx^r}{ds} \gamma_r = 1 \frac{dx^r}{ds} \frac{dx^r}{ds} \gamma_r = \frac{1}{c^2} \frac{dx^r}{ds} \frac{dx^r}{ds} \gamma_r \]

specifické toto konstanty vznikají klidovou hmotnost

\[m_0^2 = -\frac{1}{c^2} \frac{dx^r}{ds} \frac{dx^r}{ds} \gamma_r \]

Mechanická a kanonická 4-hybnost

\[P^r = \frac{dx^r}{ds} \]

Mechanická 4-hybnost

\[P^r = \frac{dx^r}{ds} + q \gamma_r \]

Kanonická 4-hybnost

\[\partial \gamma_r \gamma_r = -m_0^2 c^2 \]
Uvlastní čas a 4-rychlost

\[u^r = \frac{dx^r}{d\tau}, \quad p^r = \frac{dx^r}{d\sigma} \]

\[u^r = m_0 u^r, \quad p^r = p^r \]

\[d\tau = m_0 ds \]

Pohybová rovnice ve vlastním čase

\[\frac{d}{d\tau} \left(\frac{dx^r}{d\tau} \right) = q F^r - \frac{dx^r}{d\tau} \]

\[d\tau \frac{dx^r}{d\tau} = q F^r \frac{dx^r}{d\tau} \]

Stejně jako pro geometrickou akci

Hamiltonův

\[\frac{dx^r}{d\sigma} = P^r - q A^r \]

\[H = \frac{dx^r}{d\sigma} P^r - L = (P^r - q A^r) P^r - \frac{1}{2} (P^r - q A^r)(P^r - q A^r) \frac{dx^r}{d\tau} - (P^r - q A^r) q A^r \]

\[= \frac{1}{2} (P^r - q A^r)(P^r - q A^r) \frac{dx^r}{d\tau} \]
Princip extremální akce pro sražky

Formulace úlohy

Určíme systém navzájem se sražujících a ponižujících částic bez interakce s vnějším plenem.

Akce je dána součtem všech akcí pro světovářské částice mezi interakcími a vnějšími plochami.

\[S = \sum_{k} \int_{0}^{\infty} \, \left(\frac{\{a} dx_{4} \right) \left(\frac{\{d} dx_{5} \right) \text{ pro do} \]

Popis sražky

sražky je plošná graflen a neutronový částice k báz
vnější vrcholy - plochy satrupujících a vystupujících částic
vnější vrcholy - plochy interakcii
hrany - světovářské částice mezi interakcími
vnější čas - délka vnějšího času světovářské mezi vrcholy

Značení

vrcholy \(X_{1} \), \(X_{2} \)
hrany \(\beta X(\beta) \), \(\beta X(\beta) \)
vnější čas \(G_{2} \), \(X_{2} = \beta X(\beta) \)
vnější čas \(G_{2} \)

\(X_{4} = \beta X(\beta) \)

absolvent čas \(T_{2} \)

náleží do \(X_{4} \)

\(X_{4} = \beta X(\beta) \)

klidová hmotnost \(\beta m_{0} \)

4-hmotnost \(\beta p \)
Graph of interactions

Smallest possible particles are shown by dots.

Interactions are indicated by arrows.

Example: 4 smallest possible particles are connected using interactions.

Example: 3 smallest possible particles are connected using interactions.

Variable $h = 1 \ldots 5$

Variable $j = 1 \ldots 6$

Variable $h = 1 \ldots 8$

Variable $j = 1 \ldots 8$

X_5 - smallest possible particle

X_3 - smallest possible interaction

$X_5(0)$ - vertices representing a particle

$X_5(0)$ - vertices representing interactions

$X_5(0)$ - vertices representing interactions
Variační ažce

Variace se plánoji vzniká ze světočení všechn částic při fixovaných vnějších podmínkách a randemých vnějších časech:

\[x^r = x^r_0 + \delta x^r \]
\[x^r_0 = x^r_T = 0 \]
\[x_r(x_0) = x_r(x_0) + \delta x_r(x_0) \]
\[\delta x_r(x_0) = \delta x_r^x \]
\[\delta x_r(x_0) = \delta x_r^x \]

Variace tohoto druhu sestavově odpovídají

\[S = \sum \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 x'}{dx} \frac{d^2 x}{dx} \eta_{ij} d\eta d\sigma = \]
\[= \sum \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 x'}{dx} \frac{d^2 x}{dx} \eta_{ij} d\eta d\sigma - \sum \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 x'}{dx} \frac{d^2 x}{dx} \eta_{ij} d\eta d\sigma = \]
\[= \sum \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 x'}{dx} \frac{d^2 x}{dx} \eta_{ij} d\eta d\sigma - \sum \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 x'}{dx} \frac{d^2 x}{dx} \eta_{ij} d\eta d\sigma = \]
\[= \sum \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 x'}{dx} \frac{d^2 x}{dx} \eta_{ij} d\eta d\sigma - \sum \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 x'}{dx} \frac{d^2 x}{dx} \eta_{ij} d\eta d\sigma = \]
\[= \sum \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 x'}{dx} \frac{d^2 x}{dx} \eta_{ij} d\eta d\sigma - \sum \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d^2 x'}{dx} \frac{d^2 x}{dx} \eta_{ij} d\eta d\sigma = \]
Rovnice polynómu

4. člen
\[P_r = \frac{d^n x_r}{dx} \]

Variace světločaru
\[\frac{d}{dt} P_r = 0 \]

4. člen konstanty mezi světločarami

Variace interakce \[8 \]

Pro každý interakční vchod \[S \]

\[\sum \pm P_r = 0 \Rightarrow \sum \frac{d P_r}{dx} = \sum \frac{d P_r}{dx} \]

Rázej řešením 4. členů oka do každé interakce

Reálně pro světločary

\[x_0(t) = \text{půmbo} \pm \text{koncové body} X_{x_0} \pm X_{x_0} \]

\[x_0(t) = x_{x_0} + \frac{x_{x_0} - x_{x_0}}{G_{x_0}} \]

\[G = 0 \Rightarrow x_{x_0} \]

\[G = G_{x_0} \Rightarrow x_{x_0} \]

\[P = \frac{dx}{dt} = \frac{x_{x_0} - x_{x_0}}{G_{x_0}} \]

4. člen je dívka 4. světločarem světločary důležitá

Vlastní čas světločary

\[c^2 t^2 = (x_{x_0} - x_{x_0})^2 = (x_{x_0} - x_{x_0}) (x_{x_0} - x_{x_0}) \]

Glidová hmotnost kůze

\[\sqrt{m_0} = -\frac{1}{c^2} P^2 = -\frac{1}{c^2} \left(\frac{x_{x_0} - x_{x_0}}{G_{x_0}} \right) = \frac{T_{x_0}}{G_{x_0}} \Rightarrow \sqrt{m_0} = \frac{T_{x_0}}{G_{x_0}} \]
Rešení pro plochy interakcí pro každou interakci máme zákon zach. 4-lybnosti
\[\sum x_P = \sum y_P \]

kde \(x_P = \frac{X_{2e} - X_{1e}}{G_0} \)

jedná se o soustavu rovník lineárních v \(X_1 \)

kde 1 plocha vnitřní urvelby

tj. \(X_1 \) rovník pro \(X_1 \) vzájemných

kde \(X_1 \) je počet interakcí v urvelních urvelbách

vzájemné (alejno v principu) rešit

Rešení

zadáno \(X_e \) \(S \) - probíhá mější urvelby

\(X_e \) \(G_0 \) \(h \) - probíhá všechny barevné

1) plochy interakcí

\[X_1 \] \(G_0 \) probíhá vnitřní urvelby

2) 4-lybnosti částic

\[x_P = \frac{X_{2e} - X_{1e}}{G_0} \]

3) hmotností částic (a vlastní části)

\[x^2 M^2_0 = -\frac{4}{c^2} x^2 P^2 \]

\[x^2 = -\frac{4}{c^2} (X_{2e} - X_{1e})^2 \]

částka je zde v reálné koncové poloze v

urvelnách částky částic

fyzikální údajom epáze částky v urvelnější 4-lybnosti

a klidové hmotnosti částice
Jméno proměná

Je nejít značit úloha pro

- zadání místě 4-hybnosti
- umístění úlohy
- fyzikální hodnoty

V principu ano, ale jedná se o velmi vším úlohy, které nesou s rozumem řešením

Lze rozložit do 2 kroků

1. Zmiňte mějších poloh na mější 4-hybnosti a umístění značky - přímo černé

2. Zmiňte místnější části a na fyzikální hodnoty

1. Mější polohy = mější 4-hybnosti + umístění mější 4-hybnosti musí splňovat celkový stav zachován 4-hybnosti

\[\sum \# P = \sum \# P \]

Tj. jedna mější 4-hybnost lze doplnit rád ostatně

aby translační symetrie v mějších 4-hybností nelze doplnit "umístěn" značky

lze najít 1:1 korespondence

mější polohy \(X_e \) ↔ mější 4-hybnosti \(\# P \)

+ centrum značky

\[X_0 = \frac{1}{N} \sum X_e \]

úloha značit, lineární pro mější polohy

interakce \(X_2 \)
2) změna \(g_0 \) na \(\tilde{m}_0 \)

\[g_0 \rightarrow \tilde{m}_0 = \frac{7a}{g_0} \]

nelinéární transformace protože te jsou kvadratické v plochách interakce obecně není reálné řešení

Kauzální charakter částice
částice zúčastněná v zadušce nemůže vyjít částečně - taky jenom vždy existuje řešení pro interakci jeho jeho \(X_k \), \(\tilde{X}_m \) a zóna světce nemůže být plošně částečně

pro taky jenom
\[\tilde{p}^2 > 0 \rightarrow \tilde{m}_0^2 < 0 \rightarrow \tilde{m}_0 \text{ imaginární} \]
\[(X_{\tilde{x}} - X_{\tilde{x}})^2 > 0 \rightarrow T^2 < 0 \rightarrow \tilde{a} \text{ imaginární} \]

Podmínky kauzálnosti dovádědáme omezením na zadane veličiny