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Abstract 

The methodology of computer simulations of crystal growth is described. Two main methods, kinetic Monte Carlo and 
molecular dynamics, are discussed. The principle of kinetic Monte Carlo simulations is explained in detail, including recent 
developments of algorithms. Particular attention is paid to approximations which are made in the construction of discrete 
growth models. Applications of the Monte Carlo method for three different kind of problems: kinetic roughening, near 
equilibrium growth, and far-from-equilibrium molecular beam epitaxy growth are presented together with examples of 
representative results. Possibilities of employing molecular dynamics simulations are discussed as well, and examples of 
results are also given. The range of applicability of different methods on present-day computers is evaluated. 

1. Introduction: microscopic theory of crystal 
growth 

Crystal growth is a very old branch of science and 
has many important practical applications. In particu- 
lar, to this field belongs the preparation of new arti- 
ficial materials by modern technologies that allow to 
design structures on the nanometer scale. Theory of 
crystal growth developed from a simple phenomeno- 
logical description on the macroscopic level to more 
complex methods [ 1,2]. In the last two decades more 
and more effort has been devoted to the understand- 
ing of growth phenomena on the microscopic level. 
This is caused on one side by pure theoretical interest 
in nonequilibrium phenomena, and on the other side 
by increasing demands of industrial applications di- 
rected to the preparation of well defined structures on 
smaller and smaller scales. 

The main theoretical tool of the microscopic theory 
are numerical simulations involving the application of 
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two basic methods: kinetic Monte Carlo (KMC) and 
molecular dynamics (MD).  Both these methods take 
explicitly into account atomistic processes such as de- 
position, surface diffusion, adatom attachment and de- 
tachment at step edges, desorption, and so on. Both 
methods also deal with the dynamics of the growth 
process; however, from the methodological point of 
view they are different. In MD simulations determin- 
istic dynamical equations of motion for a set of parti- 
cles are solved, whereas in KMC the growth process 
is treated as a stochastic process and a probabilistic 
description based on more or less complicated growth 
models is used. 

The goal of the microscopic theory of crystal 
growth is a detailed understanding of the mechanisms 
of growth and of the effects arising from the change 
of physical quantities and material parameters. To 
achieve this goal an iterative modeling procedure is 
used, which consists of the following steps: 

(i) formulation of a microscopic model, 
(ii) calculation of quantities of interest, 

(iii) direct or indirect comparison of the results of 
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calculation with experimental data, 
(iv) correction or modification of the model. 
These steps are repeated until the desired agreement 
with experiment is obtained. The procedure allows to 
evaluate the importance of different microscopic pro- 
cesses, to explain experimental results from an atom- 
istic point of view, and possibly even to predict results 
for a new situation (material). 

To be more specific, one is typically interested in the 
time dependence of theoretical quantities characteriz- 
ing the morphology of the surface (adatom coverage, 
average island size, roughness, step density, structure 
factor, height-difference correlation function and so 
on) which can be experimentally measured either in- 
directly using, for example, diffraction measurements 
(RHEED, TEAS, LEED) or by direct visualization 
(STM, AFM). Eventually the interest lies in the sta- 
tionary values of dynamical quantities like, for exam- 
ple, the rate of growth (the average velocity of the 
interface between solid and fluid). These quantities 
depend on physical parameters as substrate temper- 
ature, supersaturation (difference of chemical poten- 
tials, A/z = /./,solid - -  //.fluid), or flux of incoming par- 
ticles. The time evolutions (eventually the stationary 
values) of theoretical quantities which are calculated 
in some model are compared with corresponding ex- 
perimental data, usually for several values of the phys- 
ical parameters. For example, the evolution of the step 
density is compared with the evolution of RHEED in- 
tensity for different substrate temperatures. 

Computer modeling of the crystal growth has al- 
ready a long history (for a review of the older re- 
sults see Refs. [3,4] ) during which, however, mainly 
MC simulations have been used. The first applications 
of MC concerned thermal surface roughening [5], 
growth-rate dependence on supersaturation and tem- 
peratures [6-8 ], equilibrium and growth morpholo- 
gies of crystals [9], transitions between modes of 
growth [ 10] and the effect of a screw dislocation 
on growth [ 11 ]. Most of these studies were only 
qualitative, not related to any specific material. Later 
MC simulations were applied to molecular beam epi- 
taxy (MBE) growth in far-from-equilibrium condi- 
tions (see [ 12-14] for reviews and Subsection 4.3 
for further references). Models for specific semicon- 
ducting materials were developed and activity in this 
field is still continuing. Another more academic ap- 
plication of MC simulation of growth, which began 

in the middle of the eighties, is the study of kinetic 
roughening [15-19] (see Subsection 4.1). As far as 
molecular dynamics is concerned, it cannot be used 
for a realistic simulation of the crystal growth but it 
has been applied to the study of elementary dynam- 
ical processes during the crystal growth, as diffusion 
or impact phenomena (see Section 5). 

Due to the complexity of the phenomena studied, 
some approximations are necessary. In almost all 
works quantum effects are disregarded and the classi- 
cal description is used. In order to estimate a possible 
importance of quantum effects a full ab initio calcula- 
tion taking into account electronic degrees of freedom 
is required. Molecular dynamics calculations of this 
kind are, however, extremely demanding in computer 
power and even simulations of elementary growth 
processes on ab initio level are quite rare up to now. 
Nevertheless, a lot of electronic structure calculations 
of static properties of surfaces have been performed, 
and these results provide valuable information about 
the states of the system. Hence, ab initio calculations 
constitute another approach which can improve our 
understanding of processes on the microscopic level, 
although applications to dynamical processes are still 
very limited. 

A further common approximation concerns the con- 
cept of local equilibrium-local thermodynamic equi- 
librium between the growing film and the bulk (sub- 
strate). Growth is an intrinsically nonequilibrium pro- 
cess, but nevertheless, in the description (even of the 
far-from-equilibrium growth) it is often supposed that 
the local equilibrium exists. This assumption allows 
to introduce thermodynamics quantities, for example 
the temperature. 

There are various physical situations which have 
to be treated in the theory in a different way and in 
which different approximations can or cannot be used 
(I shall explain these further approximations in de- 
tail in Section 2). Most of all, it is very different if 
the crystal is growing from a gas (vapor) or from a 
liquid (melt). The growth from the gas is simpler to 
describe since the gas can be modeled more easily, 
whereas the correct description of a liquid is not an 
easy task. There are also other specific aspects which 
should be taken into account: whether the growth is 
free or directed, whether the growing crystal contains 
one or more components, whether the growth is quasi 
two-dimensional or three-dimensional, what is the ge- 
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ometry, and so on. Although some of the statements 
in this paper will be of general validity, I am not go- 
ing to cover all of these different situations, but I shall 
concentrate on the single-component 2 growth from 
gas. However, I shall discuss both near equilibrium 
and also far-from-equilibrium growth. 

In this review I shall explain the methodological as- 
pects of computer simulations of crystal growth illus- 
trated by selected examples. I do not attempt to present 
a complete review of any particular physical problem, 
and I refer the reader to existing review articles on the 
simulation of molecular beam epitaxy growth [ 12- 
14,21 ], on kinetic roughening [ 15-19], or on adatom 
diffusion [22]. Due to the large variety of physical 
situations, some of which require a specific modifica- 
tion of the method, even the methodological part will 
not be complete and is biased by the author's inter- 
est; nevertheless, I shall attempt to describe the main 
ideas and to evaluate the applicability of different ap- 
proaches. 

The plan of the paper is as follows. First I shall de- 
scribe the construction of discrete models which are 
used in KMC as well as further approximations which 
are made in this approach (Section 2). The method of 
KMC is then explained in Section 3. In the next sec- 
tion, examples of applications for three different prob- 
lems are given: kinetic roughening (Subsection 4.1), 
growth near equilibrium (Subsection 4.2), and molec- 
ular beam epitaxy (Subsection 4.3). In Section 5, pos- 
sibilities of employing MD simulation in the study of 
growth phenomena are discussed. Finally, Section 6 
contains an evaluation of the applicability of different 
methods and conclusions. 

2. Models of crystal growth 

KMC simulations of growth are based on simpli- 
fied growth models. In this section I shall explain the 
construction of these models. The strategy is, as usual, 
to concentrate on a few presumably important aspects 
(processes) and disregard other details. In principle 
MC can be applied to both continuous or discrete mod- 

2 It does not mean that we have to restrict to pure monatomic 
materials. Growth of a multi-component crystal can be dominated 
by the dynamics of one component. It is, for example, the case in 
the growth of GaAs. Under normal growth conditions the growth 
of GaAs can be well described by the growth of Ga only [20]. 
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els, however, in most simulations discrete models are 
used and I shall consider only these models here. This 
simplifies things a lot but it is, of course, an approxi- 
mation. 

Growth models have two essential ingredients: a 
geometrical part and a dynamical part. In the case of 
discrete models both crystal and vapor are described 
in a crude approximation: particles can occupy only 
discrete positions on some lattice. The system of solid 
and vapor is in this way approximated by a lattice with 
some sites occupied by particles and some left empty 
(lattice gas). The regions of high concentration of 
atoms correspond to the solid and the regions of low 
concentration of atoms to the vapor (Fig. la).  In this 
picture one is interested only in structural properties 
and many features of the real crystals are neglected. 
Atoms are treated as static classical objects 3, there- 
fore mechanical, chemical, optical, and other proper- 
ties have to be disregarded. The lattice gas model is 
a strong but acceptable approximation for a crystal, it 
is quite a good approximation for a (not very dense) 
gas phase; it is problematic for a liquid. The lattice gas 
model can be also justified for growth from solution 
if the concentration is not very high. 

In a discrete model we describe the system of solid 
and vapor as a lattice gas. It is natural to use the lat- 
tice with the same symmetry as is the symmetry of the 
crystal, but in some simulations the approximation is 
even more crude: a simple cubic lattice is used instead 
of the real structure of the material. This simplifies 
technically the simulation and in the spirit of approx- 
imate modelling one can still expect to get useful re- 
sults when explaining observed phenomena. However, 
some effects may be lost [23]. 

The schematization goes one step beyond assuming 
a lattice gas. One can suppose that the processes inside 
the fluid can be neglected and that the growth can be 
well described only by processes at the interface be- 
tween the fluid and the solid (Fig. lb).  On the same 
level of approximation one can also neglect bulk diffu- 
sion inside the crystal. In this picture we are interested 
only in movements of atoms representing the solid and 
the growth proceeds by adding atoms at positions de- 
termined by growth rules (see below). This is a well- 

3 In consequence of this fact interactions between atoms in a dis- 
crete model are necessarily artificial and the interaction parameters 
introduced are only effective. 
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Fig. I. Hierarchy of approximations in discrete growth models 
illustrated in the case of two dimensions (a) The configuration of 
lattice gas with the bottom region corresponding to solid and the 
top region corresponding to gas Atoms are represented by hatched 
squares. (b) Positions only of atoms of the solid are considered, 
new atoms are added by growth rules defined in a model. The 
darker square indicates the overhang. (c) Surface configurations 
in the SOS approximation. 

justified approximation for ballistic growth when mu- 
tual interactions of particles in the fluid are negligi- 
ble. An important example is MBE growth, where the 
surface is directly bombarded by atoms. Omission of 
processes inside the phases is problematic for growth 
from melt, and it may be also a quite crude approxi- 
mation in the case of growth from vapor not far from 
equilibrium [24]. In these situations there are gradi- 
ents of physical quantities (pressure, temperature) in 
the vicinity of the interface. Atoms inside the fluid 

are diffusing towards the interface where the growth 
process takes place. Again, one can hope that using 
appropriate growth rules a good qualitative model can 
be formulated, but the correct description of processes 
inside the phases may be crucial in some cases. 

On top of these approximations, in the case of 
growth with planar interface and under conditions 
where very few vacancies and overhangs (cf. Fig. lb) 
appear in the growing material, one can use the so- 
called solid-on-solid (SOS) approximation (Fig. 1 c). 
It means that each atom is sitting on top of another 
atom: then the surface is described by a single-valued 
function, h (x ) ,  of the substrate coordinate x. In all 
applications described below (Section 4) I shall deal 
with this situation. 

Although the most interesting problem is the growth 
in three-dimensional space sometimes the growth in 
two-dimensional space is also of interest, one example 
being the growth of step edges. Let us introduce for 
further purposes some general notation. We denote by 
d the dimensionality of the physical space and by d ~ = 
d - 1 the dimensionality of the surface. The system 
size will be denoted by L. 

The second ingredient of any growth model is the 
definition of dynamical growth rules. Also here some 
approximations are necessary. It is usually supposed 
that the motion of individual particles (atoms or 
molecules) take place instantaneously and that the 
motions are independent and Markovian. In order to 
develop a minimal model one selects only processes 
which are supposed to be relevant for phenomena to 
be studied, and other deemed inessential are ignored. 
Particles in the model are moved from site to site with 
a frequency proportional to the rates of processes. If  
we consider for simplicity the growth of a monatomic 
material, then the basic elementary processes (after 
omission of bulk diffusion) are the following: de- 
position of an atom on the surface, migration of an 
adatom on the surface and desorption of an atom 
from the surface. In the case of a multicomponent 
material, elementary processes for each component 
have to be considered separately. In principle quite 
complex rules, for example, for chemical reactions 
could be included. 

Usually the rates of elementary processes are very 
little known and they are guessed with the use of 
all available experimental and theoretical information. 
They often depend on the local surroundings, in the 
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crudest approximation dependence only on the occu- 
pation of nearest neighbors is considered (but again 
a quite complex dependence can be considered). I 
shall describe examples of SOS models with specific 
growth rules in Subsections 4.1, 4.2, and 4.3. I would 
like also to note that in the context of fractal growth 
a whole menagerie of growth models has been sug- 
gested [25,26,16,19] with applications ranging from 
crystal growth through aggregation phenomena to bi- 
ological growth. 

3. Kinetic Monte Carlo 

Ordinary MC is a method for the calculation of av- 
erage values in a given equilibrium thermodynamical 
ensemble. States in a space of configurations are gen- 
erated and used for the calculation of quantities of in- 
terest [ 27-29 ]. The focus is on the convergence of se- 
ries for the calculated quantities, and one is not inter- 
ested in the generation of a sequence of states which 
properly corresponds to the dynamics of a system (in 
many cases the opposite is true [30] ). Kinetic MC is 
a procedure for solving kinetic equations. The aim of 
KMC is to reproduce faithfully nonequilibrium, or re- 
laxation processes. This time the emphasis is on the 
correctness of time evolution in the simulation. Before 
describing the methods of KMC, I shall first briefly 
recall the basic idea of thermodynamical MC. 

3.1. Thermodynamical Monte Carlo 

Let us denote the space of all possible configura- 
tions, C, in a statistical-mechanical model by S = {C}, 
and by P (C) a time independent distribution (for ex- 
ample, the canonical distribution) on this space. Let A 
be a quantity of interest (magnetization, energy, and 
so on). We want to calculate the average value (A) = 
~-]~c A(C)P(C) .  In MC a sequence of configurations, 
Ck, k = 1 ..... M, is generated in such way that they 
form a Markovian chain with a distribution converg- 
ing to the desired distribution P(C).  This chain is then 
used for the construction of series for the quantities 
to be calculated. In order to generate the Markovian 
chain one needs a matrix of transition probabilities, 
W(C ~ C~), between two states. The transition prob- 
abilities in the standard thermodynamical MC do not 
need to have any relation to the dynamics of the sys- 

tem. They are not considered as given a priori but they 
are constructed in a way that guarantees that the dis- 
tribution of generated states converges to P(C).  

At each MC step a trial configuration is generated, 
which is then either accepted or rejected. The inner 
loop of the algorithm in the kth time step is as follows. 

Algorithm 1 
(i) Generate a new configuration C from the origi- 

nal configuration C~. 
(ii) Calculate the transition probability W(C --~ C'). 

(iii) Generate a random number r E [0, 1), with a 
uniform distribution. 

(iv) Compare r with W(C ~ Cr), if W(C ~ C)  > 
r then accept the new configuration, Ck+l = C ~, 
or else reject it, Ck+l = C. 

This is repeated until some convergence criterion is 
fulfilled, and the calculation stops. 

The condition of detailed balance, 

W(C ~ C')P(C) = W(C' ~ C)P(C' ) ,  (1) 

is a sufficient (but not necessary) condition for the 
convergence of the generated Markov chain 4. There is 
freedom in the choice of the form of W's, provided the 
convergence is guaranteed. The most common choice 
is that of Metropolis et al. [ 31 ] which can be formally 
written as 

( V(C' --~ C)P(C')  ) 
W < M ) ( C ~ C ' ) = m i n  1, V(C-- - ,C ' )P(C)  , (2) 

where V(C ~ C ~) is some "underlying ", or "trial", 
stochastic matrix specifying possible transitions. For 
example, in the case of the Ising model, when the trial 
to generate a new configuration consists in flipping of 
one randomly selected spin we have V(C ~ C )  = 
l/A/" (.N" being the number of sites) when C 1 differs 
from C just by one spin, and V(C -+ C p) is zero other- 
wise. (In the case of a cluster algorithm [32] V has a 
different form.) If  P(C)  is the canonical distribution, 
P(C)  = e -a ec /Z  (13 being the inverse temperature 
and Ec an energy of the configuration C), one recov- 
ers the popular form of W<M)(C ~ C'):  a possible 
new configuration C' is accepted with certainty if it 
has a lower energy than the initial configuration C, and 

4 More precisely, it is one of the conditions together with other 
assumptions which are ergodicity, Ve. c, W(C ~ C') > O, and 
Vc ~ c '  W(C -+ C') = I. 
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with the probability e -#(Ec'-Ec) if Ec, > Ec. Notice 
that W's are normalized between zero and one. It is 
easy to check that the detailed balance is satisfied for 
the Metropolis choice. There are also other possibili- 
ties for the choice of  the transition matrix [ 33,34 ], but 
one can expect that the Metropolis form is more effi- 
cient than alternatives, since it makes the acceptance 
rate as high as possible. 

The Monte Carlo technique can be also viewed as a 
method of solving the master equation associated with 
the transition probabilities W, 

aP(C, t )  
= - ~ W(C ~ C ' ) P ( ¢ ,  t) 

3t 
C' 

+ ~-~ W(C' ~ C)P(C ' , t ) ,  (3) 
C' 

which describes a stochastic process in the Markovian 
approximation [35]. Here, P(C, t) is the probability 
distribution of configurations at time t. 

It should be clear that a straightforward application 
of the algorithm 1 cannot be expected, in general, to 
describe correctly the dynamic properties. In the calcu- 
lation of static quantities, the configurational changes 
do not need to correspond to physical events. It is only 
important that the transition probabilities which are 
used produce the correct equilibrium solution of the 
master equation (3).  Note that for P(C,  t) = P(C) ,  
both sums on the r.h.s, of (3) exactly cancel due to 
the detailed balance condition ( 1 ). 

3.2. Principle of kinetic Monte Carlo 

About 20 years ago MC started to be used also for 
the study of kinetic processes [36,37]. In this case 
the configurational changes have to correspond to real 
events. Each of the events can happen with some prob- 
ability per unit time (rate). To be specific, let N be the 
number of  possible events in a given configuration C; 
in the case of crystal growth they are, for example, the 
hopping of an adatom, the adsorption of an atom, and 
so on. The rates of these event are Ra, a = 1 ..... N. 
Both N and the set {Ra} depend on the configuration 
C. Let us define the total rate 

N 

Q = Q ( C )  = ~ R a .  
a=l 

(4) 

The transition probabilities can now be formally 
written as 

N 

C') = ~ Rava ( c ---* C'), (5) W(C 
a=l 

where Va(C ~ C') is again an "underlying" stochas- 
tic matrix for an event a, specifying whether the tran- 
sition C ~ C' is possible by this event. The stochas- 
tic evolution of the system is again described by the 
master equation (3) with transition probabilities (5).  
KMC is a method of solving this equation. The way 
of solving is similar as in the thermodynamical MC: 
making random choices a Markov chain is generated. 
However, now this chain has to represent a possible 
evolution of the simulated system. In the simulation 
event a should occur with probability Ra/Q(C).  It is 
realized in a way that possible events are selected with 
probabilities proportional to their physical rates 5. In 
principle, transition probabilities in KMC do not have 
to obey the detailed balance condition ( 1 ), but it was 
observed [38] that in the case of diffusion it is ad- 
vantageous to use models with rules which satisfy this 
condition. 

A simple, straightforward way to implement the 
idea of KMC is the following. Select the largest rate 
Rmax of all rates of possible events in a model, calcu- 
late the relative probabilities Pa = Ra/Rmax and create 
the list of possible events in the starting configuration. 
Then in each time step use the algorithm 2 6 : 

Algorithm 2 
(i) Select a possible event which can be realized in 

the starting configuration Ck. 
(ii) Generate a uniform random number, r E [0, 1). 

(iii) Compare r with the probability of event Pe, if 
r < Pe then carry out this event leading to a new 
state Ck+~ = C', if not stay in the same state. 

However, this algorithm is not used in practice be- 
cause in many cases, in particular in the problems of 

5 Also here some approximation enters, since usually in the 
simulations white noise is used and the real situation may be more 
complicated. In principle one can use in the simulation also other 
kinds of noise but this will be still only an attempt to model the 
reality. 

6 Several other algorithms were suggested in [36]. Probabilities 
Pa can also be calculated from the fraction Ra/Q(C). Then they 
are, however, depending on the configuration and have to be 
updated at each time step. 
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crystal growth, it can be quite slow. The reason is that 
there could be a large difference (many orders of  mag- 
nitude) in rates for different events. The low proba- 
bility events are then selected and often rejected. For 
example, in the simulation of  diffusion, the program 
would select the movement of  a highly coordinated 
atom and a low coordinated atom with the same fre- 
quency, but the atom with high coordination moves 
very little in comparison to the low coordinated atom. 
The ratio of  both rates is proportional to e t~aE, where 
AE is a difference in the binding energy of  both atoms. 
This procedure leads to many unsuccessful attempts 
especially for low temperatures. Sometimes the low- 
rate processes can be disregarded and not included in 
the model, but in some situations the low-rate events 
have to be necessarily performed during the evolution 
because the system has to pass through states where 
these events are dominant. An example of  this situ- 
ation is the nucleation of  an island on a flat surface 
in the onset o f  layer-by-layer growth close to equilib- 
rium. In this case the probability of  condensation of  
an adatom on the flat surface is much smaller than the 
probability of  desorption of  that atom. In reality a crit- 
ical island is formed after many fluctuations, and it is 
difficult to simulate these fluctuations by the simple 
algorithm described above. 

A much faster algorithm without unsuccessful at- 
tempts (also called N-fold way algorithm) was for- 
mulated by Bortz, Kalos, and Lebowitz (BKL) [39] 
for the Ising model, and it is often used in KMC simu- 
lations of  crystal growth [40,41 ]. I shall describe first 
the simplest variant of  this algorithm. Let us consider 
again the kth time step, and use the same notation as 
before. 

Algorithm 3 (BKL algorithm) 
(i) Choose a random number r with uniform distri- 

bution in the range [0,Q(Ck) ). 
(ii) Find the corresponding event. This is done 

by the choice of  the first index s for which 
~,=1 Ra(C) >_ r. 

(iii) Carry out event s leading to a new configuration, 
Ck+l. 

(iv) Update those R,, that have changed as a result of  
event s, update Q and any data structure being 
used. 

The whole procedure is repeated in the next time 
step and so on, until the simulation is complete. 

This algorithm shows how to circumvent the prob- 
lem of small acceptance probabilities, but it is usually 
not applied in this form but in a modified more effec- 
tive form (cf. Algorithm 4 below). Let us consider 
the dependence of  the computer time needed on N, 
which is related to the system size. Steps (i) and (iii) 
take a time independent of  N, but step (ii) is time 
consuming. If  the linear search is used the search time 
is (.9(N). Since the growth rules are usually local the 
updating in (iv) does not have to cost too much com- 
puter time, although careful programming is needed. 
One has to identify events which are not possible any 
more in a new configuration, they have to be removed 
from the list, and new events which become possible 
have to be added to the list. Depending on the data 
structure used, the time needed in step (iv) is (..9(N) 
at the most. 

A faster algorithm according to Maksym [40] can 
be obtained if one considers, instead o f  individual 
events, groups of  events. Let us group events into n 
groups, labeled by ot = 1 ..... n. This can be done ei- 
ther formally forming groups with the same number 
of  events, which allows maximal effectivity of  the al- 
gorithm, or in a way which keeps physics clear, form- 
ing groups of  the same kind of  events, corresponding 
to a certain kind of  process (diffusion of  an adatom 
over the specific energy barrier, desorption of  an atom 
with the specific binding energy, and so on).  Let us 
consider explicitly the second case: each group will 
represent a certain kind of  process, all processes in a 
group have the same rate p,~. 

In a given configuration, C, there are some possible 
processes, and each kind of  a possible process can be 
realized in one or more ways, by one or more events. 
Let that a process a can be realized in n,~ (C) ways, in 
the configuration C. I shall call quantities n,~ (C) multi- 
plicities. For example, there may be nadat(C) adatoms 
with the same surroundings which can diffuse, or there 
are n~ev(C) sites where a new particle can be de- 
posited. Some particles can take part in more pro- 
cesses, and some processes may not be possible in the 
given configuration. To each kind of  process we assign 
a partial rate, q,~(C) = n,~ (C)p,~, and a relative prob- 
ability, p,~ ( C ) = q,~ ( C ) / Q (C), which are conditional 
to the given configuration. The total transition rate in 
a configuration C is now Q(C) = ~]=l  n,~(C)p,~. In 
each step of  the simulation (in the given configura- 
tion) the multiplicities of  processes are known. The 
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algorithm in the kth step of the simulation proceeds 
as follows. 

Algorithm 4 
(i) Choose a random number rl in the range 

[0,Q(Ck)). 
(ii) Decide which kind of process will take 

place choosing the first index ~r for which 

~,~:l q~(C) > rl. 
(iii) Select a realization of the process o-. Technically 

this can be done with the help of a list of coor- 
dinates for each kind of movement, and an inte- 
ger random number r2 in the range [ 1,n<~(Ck) ]; 
r2 is generated and the corresponding member 
from the list is selected. 

(iv) Perform the selected movement. 
(v) Update multiplicities n~, relative rates q,,, the 

total rate Q and any data structure being used. 

To estimate computer time demands let us suppose that 
the multiplicities are approximately the same, n,, 
N/n. The search has two parts: searching for the group, 
which takes time (.9(N/n), and searching within the 
group, which takes time O(n) .  Minimizing the total 
time leads to an optimal number of groups n c~ N 1/2, 
and the computer time then scales as O(N1/2). 

An even faster algorithm for large N can be obtained 
if we instead of the two level search scheme, use a 
K > 2 level search scheme [42], i.e., if we divide 
the groups into subgroups, and these subgroups again 
into smaller subgroups, and so on down to the level 
K. Then the total search time scales as O(KNWX).  
The best asymptotic behavior O(ln2 N) is obtained by 
using the largest possible K, for which there are only 
two events in the lowest level subgroups. In practice, 
for typical simulation sizes, K = 4, or K = 5, can give 
a faster scheme than the O(inz N) method [42]. 

I shall conclude this subsection with several com- 
ments: 

(a) In kinetic Monte Carlo simulations one has 
to take care about similar sources of possible errors 
(defects in pseudorandom number generators, finite 
size effects, and so on) as in the thermodynamical 
MC. Also similar techniques (periodic boundary con- 
ditions, finite size scaling, and so on) are used. Since 
these simulations are usually very long, it is useful to 
write the code in a way allowing to restart the calcula- 
tion from a checkpoint in the case of system failures. 

(b) The same algorithm can be applied also to other 
problems (both equilibrium and nonequilibrium) 
where there are large differences in rates for different 
events, or in other words, where during the dynamical 
evolution the system is mostly trapped in deep local 
minima (as it happens for example in glasses). 

(c) The advantage of the BKL algorithm is that 
in each time step a configuration is generated. But 
even with this algorithm the system can be trapped in 
isolated deep minima. We force it to make a transition 
out of them, but very shortly after having escaped a 
minimal configuration, the system simply falls back 
into it. Recently Krauth and Pluchery [43 ] suggested 
an algorithm in which in each step a new configuration, 
different from the previous, is selected. They showed 
that this gives an improvement of several orders of 
magnitude in computational speed with respect to the 
BKL algorithm. This modification is especially useful 
for "tough" optimalization problems [43] but it is not 
expected to be convenient for the study of growth. 

(d) Another nice feature is that the BKL algo- 
rithm allows to take into account easily additional con- 
straints on possible configurations as, for example, re- 
strictions on the difference of height between nearest 
neighbours in the restricted SOS model; ([hi - hjl <_ 
K, i, j being nearest-neighbour sites, K is some inte- 
ger). One consider only those processes which con- 
serve the constraint, and does not have to check ex- 
plicitly whether the constraint is satisfied. 

(e) It has been found [30] that dynamical quanti- 
ties measured in MC depend on the choice of transition 
probabilities, and that neither Metropolis (although it 
is the most effective in respect of the convergence), 
nor Kawasaki dynamics can be expected, in general, 
to describe correctly thermally excited, time depen- 
dent phenomena. The form of the transition proba- 
bilities should be chosen in agreement with physical 
processes. 

3.3. Time in kinetic Monte Carlo 

Now I would like to discuss the calculation of time 
in MC simulations. There is no real time in thermody- 
namical MC, and usually the number of steps, or bet- 
ter the number of steps per site (number of sweeps) 
is used as "time". But we need to know the real time 
in the simulation of dynamical processes in order to 
calculate correctly time dependent physical quantities, 
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or time derivatives like rates of growth, and so on. 
Hence, we need to find some relation to the real phys- 
ical time t. The number of MC steps, which I denote 
by tMC, is clearly not the correct measure, since it does 
not take into account that different processes last dif- 
ferent time intervals. Nevertheless, in some cases in a 
good approximation one can take t cx tMC. This is true, 
for example, when the system evolves periodically in 
the space of states and the time interval is sufficiently 
long. This is the case of more or less perfect layer- 
by-layer growth. Or we can find a quantity which is 
easy to measure is the simulation and which is pro- 
portional to the real time. This is the case of far-from- 
equilibrium growth when there is a constant flux of 
particles falling on the surface, and when all particles 
are incorporated. Then the number of layers grown is 
proportional to the real time. In this case the kinetics 
is trivial (constant velocity), but one can look at the 
dependence of geometrical properties as a function of 

tMC. 
It the situation when we cannot justify proportion- 

ality t oc tMc we need to introduce somehow the phys- 
ical time into a KMC simulation. This can be done 
provided some assumptions are justified [44]. Sup- 
pose that all physical processes can be separated so 
that in any time instance only one event takes place, 
and that the events are Poisson processes [35]. Let 
us have again N processes with rates Ra, a = 1 ... . .  N 
as before. Then the probability that in time t (mea- 
sured from zero) there were p events is P ( p )  = 
[ ( Q t ) p / p ! ] e  -at,  where Q is again Q = Q(C) = 

~-~aNl Ra. The time interval between two successive 
events (waiting time), r, is a random variable with 
the distribution P ( r )  = Qe -or, and the average value 
(r) = 1/Q. This consideration allows us to generate a 
time increment between two events in KMC. In point 
(iv) of the above-described Algorithm 4 we will also 
generate another random number, r3, uniformly dis- 
tributed between 0 and 1 and calculate a time interval, 
Atk=  - [ 1/Q(Ck) ] in r3, spent before the passage to 
a new configuration Ck+l. Note that Q(Ck) depends 
on the configuration C~. In an approximation one can 
only suppose that the system stays in the state Ck for a 
time inversely proportional to the total transition rate 
O(Ck) [45]. 

Mean quantities during the growth are then calcu- 
lated as time averages over M time points, 
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M 

(A) = t - l  Z A t k A ( C k ) ,  
k=l 

(6) 

where the total time is t = ~ ' ~ l  Atk. It was tested 
that this procedure agrees with the results of the exact 
solution of master equations [45]. 

4. Applications of MC method 

4.1. Kinetic roughening 

The study of kinetic roughening is connected with 
previous activity on fractal growth [25,46]. In kinetic 
roughening one is interested in the evolution of rough- 
ness during growth. A remarkable fact is that there is 
a scaling with the time and the system size (self-affine 
scaling) [47], which is characterized by two inde- 
pendent exponents, called the dynamic (z )  and the 
roughness (s r)  exponent. This allows to classify dif- 
ferent kinds of growth from the statistical-mechanical 
point of view. In fact, it has been observed that asymp- 
totic values (values for very large system size and long 
time) of the exponents z and s r can take only some 
definite values corresponding to different universality 
classes. 

There has been much interest in the study of kinetic 
roughening in various growth models, which were mo- 
tivated by different physical situations; for reviews 
see Refs. [ 15-19]. There are two approaches in this 
field: (i) investigation of stochastic continuous equa- 
tions describing growth, and (ii) numerical simula- 
tion of discrete models. Here I shall discuss only the 
simulation of discrete models. These models are usu- 
ally much simpler than models used in qualitative, or 
semi-quantitative studies of growth (see the two fol- 
lowing subsections). The reason is that it is believed 
that the scaling behavior is universal, i.e., that it is the 
same in a simple (toy) model as in a more realistic 
but also more complicated model of the same physical 
situation provided that both capture the same essential 
features of a growth process. 

Several universality classes have been found. Two 
most important are the Edwards-Wilkinson [48] 
(EW) class and the Kardar-Parisi-Zhang [49] 
(KPZ) class. In many growth models (ballistic depo- 
sition, restricted SOS model, Eden model) the KPZ 
behavior was observed and the results agreed with the 
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Fig. 2. Growth rules for the Wolf-Villain model in l+l dimen- 
sion. Arrows indicate all possible jumps which can happen after 
incidence of a new particle (dashed box). 

concept of universality - a small change in the growth 
rules did not caused a change of exponents. Phys- 
ically this behavior is observed in situations where 
lateral correlations are important; this kind of growth 
is not volume conserving. The EW class corresponds 
to simple conserved growth leading to a relatively 
smooth surface. An example of the physical situa- 
tion is the process of sedimentation of small material 
particles in a liquid caused by gravity. 

Recently, much effort has been devoted to the iden- 
tification of a possible universal behavior of  MBE 
growth in which the dominant physical mechanism is 
surface diffusion. Several simple discrete models have 
been suggested [50-54] in which a particle relaxes 
only immediately after deposition and then remains 
immobile for the rest of the simulation. Because of this 
unrealistic feature these models are called "toy" mod- 
els with surface diffusion. The Wolf-Villain (WV) 
model [50], which I present as the first example (Fig. 
3), is one of them. A particle arriving at a randomly 
selected site moves to a site which provides the highest 
coordination (number of bonds to nearest-neighbors). 
Although the WV model looks very simple it turned 
out that finding a universal behavior for models with 
surface diffusion was not easy and very extensive nu- 
merical simulation were needed [55]. 

In the earlier works on toy models with surface dif- 
fusion different exponents were measured [50-54].  
These results did not allow a clear identification of the 
universality class. Later it was found that this is due 
to the fact that such models have a complicated struc- 
ture of slow crossovers [ 56,57 ]. Hence, to observe the 
true asymptotic behavior more extensive simulations 
were needed. In Fig. 2 I show the time evolution of 
the surface width (roughness) in the WV model in 
1 +1 dimensions. The crossover to slope 0.25, corre- 
sponding to the EW class, can be seen at a long time 
after more than ~ 10 6 deposited layers. Another pe- 
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Fig. 3. The t ime evolution of the surface width in the Wolf-Vil lain 

model in 1 + 1 dimensions. The time is measured in terms of the 
number of deposited layers. 

culiar feature of these models is that they show an 
anomaly in the scaling [58,56]. Moreover, in some 
cases growth turned out to be unstable [ 59,55]. 

Kinetic roughening in more realistic full dif- 
fusion models have been studied simultaneously 
[ 51,60,61,55 ]. At present the situation can be summa- 
rized as follows [ 15,55]. There are two generic situ- 
ations: either the growing surface is relatively smooth 
and the growth process belongs to the Edwards- 
Wilkinson class, or there is instability. The usefulness 
of some models for the study of universal behavior, 
however, has to be questioned since their asymptotic 
behavior switches between the Edwards-Wilkinson 
type and the morphologically unstable type following 
a change of space dimensionality, lattice coordination, 
or minor modification of its relaxation rules [ 55 ]. 
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Fig. 4. Surface width vs t ime in the Wolf-Vil lain model  with 

biased move up [53] in 2+1 dimensions for different system sizes. 
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Fig. 5. Example of the surface morphology in the (2+1)-dimensional Wolf-Villain model with biased move up on a 160 × 160 lattice 
after 216 monolayers were deposited. 

The problem of instabilities is of great interest, and 
it is presently a subject of detailed study [ 62,63 ]. Un- 
stable growth is not compatible with the traditional 
self-affine scaling. As an example I show strong un- 
stable growth in a modification of the Wolf-Villain 
model, in which moves in the upward direction are 
positively biased, in 2+1 dimensions [53]. Fig. 4 
shows the time evolution of the roughness for differ- 
ent system sizes. There is a critical system size Lc = 
10 (the value of Lc depends on growth rules, and can 
be quite large when the amount of additional upward 
moves is small) below which the growth is stable - 
in the long time limit the roughness saturates to a fi- 
nite value. The self-affine scaling is valid up to this 
critical size Lc. If the system size is larger than Lc the 
instability appears. The roughness is still increasing 
as a power law but the exponent (slope of the time 
dependence of the roughness) is much larger than at 
the beginning of the regime of stable growth. Hence, 
the self-affine scaling breaks down in this model. To 
understand better this instability it is useful to look 
at surface configurations. Fig. 5 shows an example of 
the morphology in the same model on a 160 × 160 
lattice at time 216 . The surface is very rough and the 
lateral size of instabilities corresponds to the critical 

size found in the time evolution of the roughness. 
At the end of this subsection I would like to com- 

ment briefly some specific feature of kinetic roughen- 
ing simulations. Typically these simulations are quite 
long (cf. Fig. 3), much longer then the simulations in 
which one is interested only in properties in the ini- 
tial stages of the growth; however, often also much 
simpler models are used. To write a program for the 
simulation of a simple model is usually also simple. 
However, the analysis of the simulation results is far 
from being simple, requiring special care due to finite 
size and finite time effects, crossover behavior, and 
other complications which can cause deviation of the 
measured exponents from the real exponents. There 
are several methods for measuring the exponents and 
I refer the interested reader, for example, to Appendix 
A in Ref. [ 16]. 

4.2. Near equilibrium growth 

The simulations of crystal growth originated in the 
study of near equilibrium growth [3]. In this situ- 
ation in principle all three basic processes (deposi- 
tion, desorption, and diffusion) have to be considered. 
Although the diffusion is certainly an important pro- 
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cess it was not considered in some simulations [3] 
This is a serious drawback but it is not completely 
wrong, since a condensation-evaporation process can 
be viewed as containing some effective diffusion; an 
adatom is evaporated from one position but later an- 
other adatom will stick again in the vicinity of this 
position. Hence, one can hope to obtain qualitatively 
correct results even without an explicit diffusion pro- 
cess. Of course, quantitatively the results will be dif- 
ferent, for example, when the diffusion is included 
growth rate is several times larger [4]. When the dif- 
fusion is not considered the simulation greatly simpli- 
fies and speeds up. In this subsection I shall restrict to 
this simpler case. 

At the beginning of crystal growth simulations the 
kinetic SOS model was developed [6,3]. I shall de- 
scribe it here as the second example. It assumes many 
approximations discussed in Section 2. In the original 
model the simple cubic lattice was used and the dy- 
namics was introduced by the condensation rate in the 
f o r m  7 

C = Ceqe flAlz, A ~  = / z  -- P/'eq, (7) 

and the evaporation rate 

E = v e  ~ ' ,  Eb=me, (8) 

where m is a number of lateral neighbors (0 < m < 4 
in the simple cubic lattice), e is energy per bond - the 
parameter of the kinetic SOS model, and/3 = 1/ksT 
is the inverse temperature (T being the substrate tem- 
perature, kB is the Boltzmann constant). 

In Fig, 6 1 show surface configurations for different 
processes. Notice that in this variant of the model the 
evaporation rate naturally depends on a local configu- 
ration but not so the condensation rate. In this simple 
model without diffusion there is only one parameter, 
e, which can be related to a specific material, and ev- 
erything can be described by only two dimensionless 
variables flA/~ and fie. 

The prescription for the condensation and the evap- 
oration rates is not unique. Another possibility is to 
use rates in the form of the Giauber kinetics 

e #au 1 
• C=et~ae+~, E=e~ae+~,  (9) 

AE is a change of the energy of surface configura- 
tion for the elementary process considered. We have 
applied this form in the case of the kinetic BCSOS 
model [45], which is a modification of the kinetic 
SOS model for the bcc lattice 

A typical problem which is solved using these mod- 
els is the calculation of the rate of growth as a function 
of the temperature T and the disequilibria/3A/z. The 
rate of growth in the configuration C is 

G(C) =~-~ 

where a and b label different condensation and evapo- 
ration processes, c n~ ( C) are n~ (C) and multiplicities 

of these processes, and 1/L a' is the normalization per 
site. In the simulation the average value is calculated 
using time averaging (6) and/or averaging over in- 
dependent runs. As an example I show in Fig. 7 re- 
cent results [64] for the dependence of the mobility, 
K(T, flA/z) = G(T, flAtz)/flAtz on the temperature, 
in the vicinity of the equilibrium thermal roughening 
transition, for three values of flA/z. These results ex- 
plain an enhancement of the mobility below the rough- 
ening temperature, TR, observed in the experiment on 
helium [65]. The numerical simulation allows a de- 
tailed study of the surface morphology, and it was 
found that the enhancement of  mobility is connected 
with a change of the growth mode from layer-by-layer 
to the continuous, 3-dimensional, mode of growth. The 
driving force causes the surface to be rough even be- 
low T~, and this in turn results in a different growth 
mode and kinetics. 

Models of this kind are somewhat simplified, never- 
theless they provide a qualitative explanation of many 
effects observed in experiments. To my knowledge 
there is not very much done on the simulation of con- 
crete materials s. 

4.3. MBE growth 

7 The probability of condensation is proportional to the pressure 
of the gas. If we use the statistical-mechanical expression relating 
the pressure, p, and the chemical potential, /1, (/x = f (T)  + 
kBTlnp, f (T)  being a function only of the temperature T), we 
arrive at (7). 

There is an extensive original literature as well as 
several review articles [ 12-14,66] on MC simulations 

8 An attempt to find parameters for some materials was done in 
Ref. [ 10l. 
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d) e) 

c) 

f) 

g) 
Fig. 6. The different kinds of growth-evaporation process on the surface of the simple cubic lattice. 

of  MBE growth. The dominant mechanism here is sur- 
face diffusion. Particles are falling down on the sur- 
face and then migrate. At not very high temperatures 
desorption can be neglected. In this subsection I shall 
restrict to one example, I shall describe the so-called 
full diffusion (FD) SOS model with the simple cubic 
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Fig. 7. Interface mobility K, as a function of reduced temperature 
T/TR in the vicinity of roughening transition for the kinetic BCSOS 
model. The curves correspond to different values of disequilibria 

lattice [66] which has been successfully used for the 
study of  MBE growth [41,20,67]. 

I shall first describe the simplest variant o f  the FD 
model: a model with Arrhenius dynamics and random 
deposition without additional relaxation. In the FD 
model any particle on the surface can diffuse during 
the whole simulation; usually jumps only to nearest- 
neighbors are considered. In the model with Arrhe- 
nius dynamics the hopping rate depends only on the 
bonding energy at the initial position (before a hop).  
The hopping rate of  a surface adatom is k0 exp ( - f i E ) ,  
where k0 is the vibration frequency of  a surface adatom 
(of  the order of  1013s-l ), and E is the energy barrier to 
hopping. The energy barrier, E, is a sum of  two contri- 
butions, a site-independent surface term Es and a term 
given by the number m of  lateral nearest-neighbors, 
mEw, where EN is the in-plane bond energy. There are 
two basic rates in this model, one for the deposition of  
new particles F, and another for the surface diffusion 
of  a free adatom, D = koexp(- f lEs) .  New arriving 
particles are deposited at randomly selected sites. 

I f  we define the energy function, H = ~-~di,j) [he - 
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hjl, which is simply the number of unsaturated lateral 
bonds, we can check that the transition probabilities 
for diffusion, Wi~j <x e -Be, obey the detailed balance 
condition 

Wi~j 
- exp { - - t~(mi  -- mj) }. ( 11 ) 

W j ~ i  

There are different modifications of the model de- 
scribed above, and one can modify both the rules for 
deposition and the rules for diffusion. Instead of purely 
random deposition one can consider some mechanism 
for the incorporation of arriving particles. Similar rules 
as in the case of toy models with surface diffusion 
were used (cf. the rules in the Wolf-Villain model 
described in Section 4.1). In this case the incoming 
particle searches the "best" site for deposition in some 
region (for computational simplicity a square of size 
2S ÷ 1, centered upon the site initially chosen, is used 
[41 ] ). A possibility which was used [41 ] for the best 
choice is that the particle searches the site which pro- 
vides the highest nearest-neighbor coordination, and 
in the case of conflict the closest site to the arrival site. 
Recently the FD model has been modified by introduc- 
ing additional interaction to next-nearest-neighbors in 
planes below and above the hopping atom [67,68], in 
order to mimic the Ehrlich-Schwoebel effect [69]. 

In the simulations of the FD model [66,41], the 
two level BKL algorithm has been used (cf., however, 
Ref. [42] ). Selection of the site for deposition is very 
simple, one of the L a' sites is chosen in random. The 
diffusion event is selected using a look up table with 
a special randomizing procedure [41 ]. 

The FD model has been successfully applied to the 
study of growth of different materials: Si [41 ], GaAs 
[20], Pt [67], in spite of the fact that it uses a simple 
cubic lattice instead of the proper structure of the ma- 
terial. I shall not review numerous applications of the 
FD model in the study of MBE growth, but I present 
the nice result by Smilauer and Vvedensky [70] (Fig. 
8) demonstrating that good semi-quantitative agree- 
ment between measured RHEED intensity and the step 
density of simulated surfaces for the GaAs(001) can 
be achieved. 

The advantage of the described FD model is its 
simplicity and flexibility in contrast to previous mod- 
elling work on the growth of III-V compounds [ 12] 
which took into account the structural and composi- 
tional complexity of the growing system. I want to 
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Fig. 8. Direct comparison between measured RHEED intensity and 
the step density of simulated surfaces for a GaAs(001 ) vicinal 
surface misoriented by 2 ° degrees toward [0101 direction at a 
growth rate of 0.47 ML/s (left panel) and 0.20 ML/s ( right panel) 
[70]. The step density increases downward and data at different 
temperatures has been scaled by the same factor to facilitate 
comparisons with the RHEED. Courtesy of Pavel Smilauer. 

stress that the energy parameters determining the rates 
which are found in the modelling of growth by discrete 
models are only effective and should not be identified 
with energy barriers for diffusion even if very good 
agreement with experiment is obtained. 

5. Molecular dynamics 

In molecular dynamics [71 ] the evolution of a sys- 
tem of N mutually interacting particles is calculated 
by numerical integration of the equations of motion 
(Newton's, Hamilton's, or Lagrange's equations). 
The method of MD is explained in many textbooks 
[28,71,72] and I shall not repeat it here, but I shall 
discuss possible applications of MD in the case of 
crystal growth. 

MD allows in principle to describe the true dynam- 
ics of a system and therefore it is the attractive method 
for the investigation of growth phenomena. However, 
there are two obstructions to the practical application 
of MD in the study of crystal growth. The first im- 
pediment concerns the time scale of the simulation. 
The time interval in which MD simulation can be per- 
formed is determined by the time step in the inte- 
gration of the equations of motion and by the num- 
ber of computational steps which can be calculated 
on present-day computers. The demands on computer 
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power for the simulation of crystal growth are beyond 
today's possibilities. In the MD method all the dynam- 
ical processes should be described: from the atomic 
vibration (10-13S) over  adatom diffusion (10-9s) tO 

the growth of several monolayers (order of s!). The 
time step in integration is of the order 10-14s or  less, 
and it is set by an integration procedure. The number 
of steps in the simulation for systems of I000 parti- 
cles is about 106. Clearly a realistic MD simulation of 
crystal growth is not possible and it is unlikely that a 
computer will soon be available that can move thou- 
sands of atoms for 1015 time steps. 

A second impediment is the reliability of poten- 
tials. In classical MD all of the physics is contained 
in the forces which are determined by the interatomic 
potentials. Because of computer demands simple pair 
potentials like Lennard-Jones, or modified Lennard- 
Jones are preferable; however, they may be inadequate 
(for example for semiconductors three body forces are 
important and more complicated potential such as the 
Stillinger-Weberpotentiai [73] should be used). Bet- 
ter quality potentials could be obtained from first prin- 
ciple calculations; however, a simulation of the growth 
on this level is nowadays not possible at all. An alter- 
native approach is the development of phenomenolog- 
ical potentials for different materials, which is, how- 
ever, a time-consuming task. 

In spite of these difficulties some authors have tried 
to perform MD simulation of growth [ 74-80]. Neces- 
sarily they have had to use unrealistically high growth 
rates in order to deposit a significant amount of ma- 
terial during the simulation. Mostly simple model po- 
tentials were used. These studies are instructive and 
could reveal some qualitative features. However, one 
has to be careful in the evaluation of their importance. 

On the other side, MD can be well applied, and can 
be very useful in detailed studies of elementary pro- 
cesses as the relaxation of an atom on the surface af- 
ter deposition, or adatom diffusion. Many simulations 
of surface diffusion have been performed (for a re- 
view, see Ref. [22] ), and there are also some studies 
of impact phenomena [ 81,82]. Most of these studies 
were devoted to processes on fiat surfaces with differ- 
ent crystallographic orientations. Only very recently 
some works for imperfect surfaces with steps appeared 
[83,84]. 

Using MD one can estimate the rates for different 
moves of an adatom on the surface. By following the 
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trajectories of migrating particles one can calculate a 
diffusion constant from the time dependence of the 
mean-square distance from initial position. If  this is 
done for several temperatures then one can extract an 
energy barrier for diffusion from the Arrhenius plot. 
Energy barriers can also be calculated directly using 
molecular statics at zero temperature. A very simple, 
naive way is to calculate the energy profile of a sur- 
face adatom as the superposition of potentials from 
individual particles in a model of the surface. Doing 
this along the path connecting two local minima over a 
saddle point, one can extract a barrier. However, the in- 
teraction of the adatom with the surface is neglected in 
this procedure. In reality, atoms can relax and this sig- 
nificantly changes the energy barriers. Hence, a more 
correct but also more computer time demanding pro- 
cedure is to allow for this relaxation. One looks for a 
minimum of the potential energy of the adatom with 
its position in the plane parallel with the surface fixed, 
allowing relaxation of all substrate atoms and relax- 
ation of the adatom in the direction perpendicular to 
the surface, instead of calculating directly the poten- 
tial energy. I show an example of the surface energy 
profile obtained in this way in Fig. 9. It is an energy 
map for an A-step (a step with a (100) microfacet) on 
the fcc( 111 ) surface with kink, which was calculated 
using a modified Lennard-Jones potential for iridium 
[ 85]. One can again extract energy barriers. 

To have a complete energy map is nice but its cal- 
culation is quite costly. In order to obtain energy bar- 
riers it is sufficient to perform the calculation only at 
points along a path connecting initial and final points 
for diffusion. It is a straightforward task, provided the 
precise positions of the minima and the saddle point 
are known (this is the case for a flat surface), but a 
more sophisticated procedure is needed to find correct 
barriers (diffusion path) if these positions are not a 
priori known. In Fig. 10 an example of the result of 
such calculation is shown. It is a profile of  the po- 
tential in the direction perpendicular to an A-step on 
the fcc(111) surface calculated again using a mod- 
ified Lennard-Jones potential for iridium [85]. An 
Ehrlich-Schwoebel barrier and deep minima near the 
step edge can be seen. Energy barriers obtained in this 
way are lower than those obtained from a naive cal- 
culation without relaxation, but they are still not quite 
correct, since they are obtained for zero temperature 
and entropy effects are neglected. Nevertheless, such 
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Fig. 9. The energy map of a fcc(ll 1) surface with a kink on an A-step (a step with (100) microfacet) calculated using a modified 
Lennard-Jones potential for iridium. The different shades of grey correspond to different levels of the energy measured in Rydbergs. 
Courtesy of O.S. Trushin. 

results are useful for qualitative considerations. 6. Summary and outlook 
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Fig. 10. The profile of potential along a diffusion path of an Ir 
atom over a (100) faceted step on l r ( l l l )  [85]. The ),-axis is 
parallel to the surface and perpendicular to the step, with the 
zero at the center of a step-edge atom obtained for configuration 
without an adatom. 

In this paper I have discussed the methods of  numer- 
ical simulation of  crystal growth. The two basic meth- 
ods, kinetic Monte Carlo and molecular  dynamics,  are 
complementary (see Table 1 where both methods are 
compared) .  In the first approach, kinetic Monte  Carlo 
simulations, simplified models  with a few elementary 
processes are built, and investigated on a long t ime 
scale. This is a flexible method allowing qualitative 
and also semi-quantitative explanation of  phenomena 
observed in experiments. By varying rates of  processes 
and comparing the results of  the simulations with ex- 
perimental data and possibly also with other theoreti- 
cal predictions, we can identify the atomic processes 
which are essential for the phenomena under study. In 
general there is no guarantee that the model  is cor- 
rect, and only after careful testing of  the model we 
can hope that it will have also some predictive power. 
Nevertheless, this model l ing procedure turned out to 
be quite successful in the explanation of  MBE growth 
of  semiconductors [41,20,13] (both of  the IV and of  
the I I I - V  groups) ,  and also metals [67] as well as 
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Table 1 
Comparison of methods used in numerical simulations of crystal growth 

Methods Monte Carlo Classical First principle 
molecular dynamics molecular dynamics 

Characteristics stochastic deterministic deterministic 
lattice models continuous space electronic structure 
a few fitted parameters simple potentials ab initio 

Results evolution of morphology growth mechanism static morphology 
kinetics of growth rates of processes energy barriers 
scaling exponents energy barriers potentials 

Stages of growth early to asymptotic a few layers submonolayer 

Time scales 1-1000 s ~I0 ns 10-I00 ps 

Length scales a 10-1000 10-100 ~. 10 

Computer mainly both huge on both 
demands CPU time CPU time + memory CPU time + memory 

a Atomic distances. 

near equilibrium growth [64,86]. 
As far as applications of molecular dynamics for 

crystal growth are concerned, they are not numerous 
because of principle and technical problems. The main 
difficulty is that the simulated growth is by many or- 
ders of magnitude faster than in the reality. However, 
molecular dynamics is a useful complementary tool 
for the study of elementary processes, energy barri- 
ers, impact phenomena, diffusion pathways, and so on. 
Results obtained by molecular dynamics can help to 
develop further discrete models used in Monte Carlo 
simulations. One can perform also ab initio calcula- 
tions for the same purpose hoping to get a better un- 
derstanding of elementary processes than using clas- 
sical molecular dynamics simulations with model, or 
pseudoempirical potentials. However, up to now cal- 
culations of this kind are quite rare [87]. 

There are different kinds of applications differing 
by the level of abstraction. 

(i) Academic statistical-mechanical studies of 
growth processes. Besides the problem of ki- 
netic roughening (briefly discussed above) to 
this group belong also measurements of the 
fractality of grown objects, determination of dy- 
namical exponent for evolution of instabilities, 
and so on. Monte Carlo methods are used here. 

(ii) Qualitative studies based on simplified models 
for Monte Carlo with parameters not fixed by 
the comparison with experimental data or stud- 

ies based on simple model potentials in clas- 
sical molecular dynamics. On this level gen- 
eral rules predicted by phenomenological theo- 
ries can be tested, and the importance of various 
microscopic processes can be evaluated. Either 
kinetic Monte Carlo or molecular dynamics is 
employed. 

(iii) Material oriented research aiming to quantita- 
tive explanation of experiments and endeavour- 
ing for development of models with predictive 
power. Combined application of both Monte 
Carlo and molecular dynamics is desirable here. 

All these applications have mutual influence and 
contribute to our understanding of crystal growth on 
the microscopic level. A combination of molecular dy- 
namics simulation and kinetics Monte Carlo approach 
offers a promising avenue for further studies. How- 
ever, in order to explain more complex phenomena, 
or the growth of more complex, composite materials a 
generalization and an extension of the present models 
are required. Also advances in algorithms for both ki- 
netic Monte Carlo and molecular dynamics are desir- 
able. One aim is to develop an effective parallel code 
for kinetic Monte Carlo [88]. 
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