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Thermodynamical Approach to the Traveling Salesman 
Problem: An Efficient Simulation Algorithm I 

V. C E R N Y  2 

Communicated by S. E. Dreyfus 

Abstract. We present a Monte Carlo algorithm to find approximate 
solutions of the traveling salesman problem. The algorithm generates 
randomly the permutations of the stations of the traveling salesman 
trip, with probability depending on the length of the corresponding 
route. Reasoning by analogy with statistical thermodynamics, we use 
the probability given by the Boltzmann-Gibbs distribution. Surprisingly 
enough, using this simple algorithm, one can get very close to the 
optimal solution of the problem or even find the true optimum. We 
demonstrate this on several examples. 

We conjecture that the analogy with thermodynamics can offer a 
new insight into optimization problems and can suggest efficient 
algorithms for solving them. 

Key Words. Traveling salesman problem, Monte Carlo optimization, 
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I. Introduction 

In this paper,  we present a Monte Carlo algorithm to find approximate 
solutions of  the traveling salesman problem. It simulates the behavior of  a 
statistical system which is equivalent to the traveling salesman problem in 
the following sense. Each permutation of  the stations on the traveling 
salesman trip is considered to be the configuration of  the statistical system. 
The corresponding length of  the trip is then called the energy of the system 
in that particular configuration. 
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Statistical thermodynamics tells us that large systems at a given tem- 
perature approach spontaneously the so-called equilibrium state, character- 
ized by a certain mean value of the energy, depending, of course, on the 
temperature. The temperature is a rather arbitrary parameter for the traveling 
salesman problem. However, simulating the transition to the equilibrium 
and decreasing the temperature, one can find smaller and smaller values of 
the mean energy of the system ( = length of  the trip). We shall demonstrate 
on several examples that, by this method, we obtain an efficient algorithm 
for getting close to the optimal solution of the traveling salesman problem 
or even finding the true optimum. 

The algorithm is very simple, and it could perhaps be proposed without 
any reference to statistical physics. However, we feel that the thermodynami- 
cal analogy can be used as a general strategy to approach optimization 
problems characterized by a big combinatorial complexity. We therefore 
describe in the next section a few basic principles of statistical thermody- 
namics which are essential for our reasoning. The details of the algorithm 
are then presented in Section 3. In Section 4, we demonstrate the efficiency 
of the algorithm on a few examples. The last section contains the discussion 
and conclusions. 

2. Brief Review of Basic Principles of Statistical Thermodynamics 

We describe here basic principles of  statistical thermodynamics (Ref. 
l) on a simple example. We consider a one-dimensional lattice. In each 
point of the lattice, there is a small arrow (representing the spin of a particle), 
which can exist in two states: pointing up or down (Fig. 1). If the lattice 
has N points, there are 2 N different possibilities of  how to arrange the 
orientation of  the arrows. We say that there are 2 N possible configurations 
of the system. We further suppose that, in each configuration, the system 
has a definite energy (not necessarily different for different configurations). 
For example, one can have 

E=B(n+-n_), 

where n+ (n_) is the number of arrows oriented up (down) in the configur- 
ation considered and B is some constant 3. 

Practical experience tells us that large systems of this kind approach 
spontaneously the equilibrium state, in most cases irrespectively of the 
initial configuration. The equilibrium is, however, by no means a static 
situation. In equilibrium, the system randomly changes its state 4 from one 

3 Such a system represents the behavior of noninteracting spins in an external magnetic field. 
4 Because of interaction with the environment. 
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Fig. 1. One-dlmensional spin system on a lattice. 

possible configuration to another in such a way that the probability of  
finding the system in a particular configuration is given by the Boltzmann- 
Gibbs distribution 

P(conf)  = C exp(-Econff T). (1) 

Here, Econr is the energy of the configuration, T is the temperature, and C 
is a normalization constant. The mean energy of the system in the equilibrium 
is then 

The numerical calculation o f / ~  might be quite difficult if the number  of 
configurations is high. However,  one can simulate the behavior of  the system 
on a computer  and, in many cases, one can in this way find experimentally 
the va lue /~  (and any other physical quantity of  interest). 

All that one needs is a Monte Carlo algorithm which s imula tes the  
random change of the state of  the system from one configuration to another 
in such a way that in the equilibrium Eq. (1) holds. An algorithm of  this 
kind is more or less standard (Ref. 2). We shall describe a particular example 
of such an algorithm in the next section. 

Typically, if one starts the simulation with an arbitrary configuration, 
one reaches the equilibrium state after a reasonable number  of  Monte Carlo 
trials. One recognizes this by the fact that the energy of the configurations 
generated starts to fluctuate around some value, which corresponds, of  
course, to F (Fig. 2). 

Fig. 2. 

". f luctuat ion 
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comp. time 

Transition to equilibrium. Sketch of the typical results of computer simulation. 
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3. Algorithm 

We start by introducing some notations. We consider the traveling 
salesman problem for N stations. Let D be a N x N matrix with the elements 
D(i,j) giving the distance from the ith station to the j th  station. Let {s~} N, 
{ c~} N, { ti} ~ denote permutations 5 of integers 1, 2 , . . . ,  hr. Then, the problem 
is to find a permutation c for which the total length 

N - - 1  

d=D(CN, C l ) +  • D(ck, ck+l) 
k = l  

is minimal. We propose the following algorithm. 

Step O. Choose an arbitrary starting permutation {si}~'. Choose a real 
number (temperature) T. 

Step I. Set ck = sk, for k = l, 2 , . . . ,  B. Calculate the corresponding 
length 

N - - I  

d =D(cN, Cl) AV ~ D(Ck, Ok+l). (3) 
k = I  

Step 2. Set i = 1. 

Step 3. Generate randomly an integer j, 1 <~j <~ N, j # i. 

Step 4. Construct a trial permutation from the current permutation 
as follows. 6 Find 

f =  max(i,j).  7 = min(i, j ) ,  

Set 

tk=ck, k =  1 , 2 , . . . ,  i - l ,  

t~+k~-Cf-k, k=O, 1 , 2 , . . . , j - i ,  

tk = ck, k = j +  1 , f + 2 , . . . ,  N. 

Step 5. Calculate the length corresponding to the trial permutation 7 

N - - l  

d'=D(tN, tl)+ ~ D(tk, tk+,). (4) 
k : l  

s A permutat ion of integers corresponds to a particular way to make the trip. For example, 
the permutat ion {4, 2, 1 ,3 , . . . }  means that the traveling salesman has to go first to the fourth 
station, then to the second, then to the first, etc. We shall call the permutations s, c, t as 
starting, current, and trial permutations.  

6 By this construction, the stations in the ith and j th  positions are interchanged and the route 
between them is taken with the reversed direction. 

7 Note that, if the matrix D is symmetric, then only two terms in the sum (4) are different 
from the terms in the sum (3). This fact can be used to speed up the calculations. 
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Step 6. I f  d ' <  d, go to Step 7 (see F o o t n o t e  8); o therwise  9, genera te  

a r a n d o m  n u m b e r  x, 0 < x <  1. Then,  i f  x<exp[(d-d ' ) /T] ,  go to Step 7 
(see F o o t n o t e  8); o therwise ,  go to Step 8 (see F o o t n o t e  10). 

Step 7. Set Ck=tk, k = l , 2 , . . . , N .  Set d = d ' .  

Step 8. Increase  i by  one. Then,  if  i-< N, to to Step 3; otherwise,  go 

to Step 2. 

The a lgor i thm,  as it s tands ,  is not  finite. I t  genera tes  an infinite sequence  
o f  cur rent  pe rmuta t ions .  So, some comments  are in order .  

(i) F o r  a given p rob l em,  one has to find an a p p r o p r i a t e  value  o f  the 
t e m p e r a t u r e  T. One can ei ther  make  some educa t ed  guess 1~ or  one can 
s imply  find the  r ight  va lue  expe r imen ta l ly  by  a t r i a l - and-e r ro r  method .  

(ii) One  has to run  the ca lcu la t ion  unt i l  an equ i l ib r ium seems to be 
reached.~2 Then,  one shou ld  decrease  the t empe ra tu r e  and  start  the ca lcula-  
t ion again  unt i l  a new equ i l ib r ium is reached.  Repea t ing  this,  one shou ld  
find smal le r  and  smal le r  values  o f  length d, and  one has to dec ide  where  
to s top the p r o c e d u r e  accord ing  to some sui table  criteria.  

(iii) In  o rde r  to increase  the accep tance  rate,  it is somet imes  useful  
to change  Step 3 of  the a lgor i thm into the fo l lowing  step. 

Step 3: G e n e r a t e  r a n d o m l y  an integer  j,  such that  1 ~< m ~< n < N/2, 
where  n is some fixed n u m b e r  and  

m = min{I j - i[, I J -  i +  NI,  ]j - i -  NI}. 

Using  this op t ion ,  the  change  f rom the current  p e r m u t a t i o n  to the tr ial  
p e r m u t a t i o n  is more  local .  Empi r ica l ly ,  we found  tha t  this op t ion  is useful  
in s i tua t ions  near  the  equ i l ib r ium,  where  tak ing  n o f  o rde r  N~ 10 increases  
the accep tance  rate r e a s o n a b l y ]  3 

4. Some Examples 

Example  4.1. We cons ide r  100 poin ts  un i fo rmly  d i s t r ibu ted  on a uni t  
circle. We  take  the d is tances  be tween  the po in t s  to be Eucl idean .  The op t ima l  

8 The trial permutation is accepted as a new current permutation. 
9 It is here where the analogy with thermodynamics is used. The trial configuration will be 

accepted with probability given by the Boltzmann factor. 
~o The trial permutation is not accepted as a new current permutation. 
~ According to the analogy with thermodynamics, a typical value of the temperature for a 

particular problem should be related to the mean distance between the stations. 
~2 See the examples of the next section. 
~3 One can perhaps find other methods of increasing the acceptance rate, specific to a particular 

problem. 
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Fig. 3. Part of the route corresponding to the initial configuration, Example 4.1. 

path is clearly that which goes around the circle, and its length is 6.28. We 
start with a path corresponding to a randomly generated perm,utation of 
the points. In our particular case, its length is 150.9 (Fig. 3). We applied 
the proposed algorithm using the value T =  0.1. The results are presented 
in Fig. 4, where we plot the length of the path corresponding to the current 
permutation after every 200 Monte Carlo trials. Qualitatively, the picture 
has the character expected by the thermodynamical analogy. The equili- 
brium regime seems to begin after some 4000 Monte Carlo trials, and the 
corresponding mean length is about 20. After 6600 trials we decided to 
decrease the temperature T to the value T = 0.01. Again, a new equilibrium 
was reached. We repeated the procedure again, choosing T=0.001 and 
using the modified algorithm with Step 3' instead of  Step 3. After a total 
of 25,000 Monte Carlo trials a value 6.28 was reached, which means that 

Fig. 4. 
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Results of the computer simulation, Example 4.1. In the last part of the calculation, 
Step 3' was used, instead of Step 3 of the algorithm. 
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Fig. 5. Results of the computer simulation, Example 4.2. 

the true optimum was found. It corresponds to finding one particular 
permutation out of 99! possible configurations. Since this might be due to 
a rather special geometry in this case, we investigated the following example. 

Example 4.2. We consider again t 00 points with the distances given by 

D(i,j)=~)(i,j)+Pi+Pj, i , j =  1 , 2 , . . . ,  100, 

where /} ( i , j )  are the distances as given by the previous example and {P~} ~1 °° 
is a set of randomly chosen numbers. 14 It is easy to see that the optimal 
solution for this case is given by the same permutation as in the previous 
example, although the geometry of  the problem is now completely different 
and, because of its Monte Carlo origin, in some sense unbiased. 15 We 
proceeded essentially in the same way as in the previous example. The 
results are presented in Fig. 5. It is really surprising that the true optimum 
was again found in this case after some 40,000 Monte Carlo trials. 

Example 4.3. We investigated 100 points arranged in a rectangular 
lattice and considered the Euclidean distances between the points. After 
50,000 Monte Carlo trials, we found the path presented in Fig. 6. Its length 
is 103.3 units of the lattice spacing, while the optimum value is clearly 100. 
However, one can proceed with the same algorithm and wait for even better 
results. 

Example 4.4. To see whether the algorithm can get rid quickly of 
permutations which are obviously far from the optimum, we considered 
200 points distributed randomly within two unit squares, which were 10 
units apart (Fig. 7). The points numerated by odd numbers lied in the first 
square, and those numerated by even numbers lied in the second square. 

J4 We used Pi = i~/2- [i,/23. 
is The author thanks S. Pegko for suggesting this example, 
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Fig. 6. Best path found for the problem of Example 4.3. 

We started the minimization with the permutation 1, 2, 3 , . . . ,  199, 200. The 
corresponding path contains 200 jumps from one square to the other, insteaa 
of just two as it clearly happens in the otherwise unknown optimal path. 
We found that, after some 12,000 trials at the temperature t =0.01, the 
algorithm got rid of all the 198 unnecessary jumps. 

5. Comments and Conclusions 

We demonstrated on several examples that, using the proposed 
algorithm, one can get quite close to the optimal solution of the traveling 
salesman problem. In some cases, we even found the true optimum. It 
would be nice if we could present here some rigorous theoretical results 
concerning our algorithm, the conditions for its convergence, etc. This is, 
however, not the case. We have, at least at present, nothing to add to our 
heuristic arguments based on the analogy with thermodynamics. Anyhow, 
from an utilitarian point of view, it seems that the proposed algorithm might 
be useful in solving practical problems, although larger computational 
experience is still necessary. 

One can even speculate that the algorithm (or at least its main prin- 
ciples) might be used also as a general-purpose optimization procedure. ~6 

1 1 
10 

Fig. 7. Geometry of the problem, Example 4.4. 

~6We do not, however, try to specify the class of optimization problems which can be 
approached by this procedure. 
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This belief is based on the fact that the algorithm operates with only two 
concepts: the configuration (which we shall denote now as () and a function 
F( ( )  which is to be minimized. These two concepts are typical of any 
optimization problem. The other details, specific for the traveling salesman 
problem, are of marginal importance for our procedure. Of course, the 
configuration might mean quite different things for different problems. It 
might mean the set of particular values of some variables or, for example, 
a particular order of manipulations to assemble a certain product. 

The optimization procedure should work as follows. Having a current 
configuration s c, a trial configuration ~ is to be generated, which,however, 
should be (in some sense) close to the configuration ~. Then, F(~:) is to be 
calculated, and one has to decide whether to accept ~ as a new current 
configuration. Perhaps, the main idea of our traveling salesman algorithm 
is that, even in the case when F( [ )  > F(~:), the trial configuration s e should 
be considered for acceptance. Our proposal was to accept it with the 
probability given by the Boltzmann f a c t o r  17 

exp((F(~:) - F ( g ) ) / T ) .  

The meaning of the term "~ close to ~:" should be specified with respect to 
the particular optimization problem. This is an important point, since it is 
here that the procedure differs from a crude Monte Carlo optimization, 
where one just randomly generates trial configurations independently of 
previous trials and, therefore, irrespectively of all the information about 
the problem gained by previous trials. Allowing only configurations ~ which 
are close to the current configuration ~:, one introduces an effective import- 
ance sampling into the Monte Carlo method. However, this is a two-edged 
procedure. If  one allows only configurations ~ which are too close to ~:, one 
can get into trouble with shallow local minima. We demonstrated it on the 
traveling salesman problem. 

Instead of Step 4 of our algorithm, we also tried to use the following step. 

Step 4: Construct the trial permutation as follows. Set 

tk=ck, k =  1 , 2 , . . . ,  N , k # i , j ,  

ti = cj, 

t j  -~- C i. 

Here, only the stations in the ith and the j th  positions are interchanged 
without reversing the route between them, as in Step 4. This looks 

t7 The analogy with thermodynamics suggests that this acceptance criterion can perhaps be 
used universally, irrespective of the particular optimization problem. In principle, one could 
try to use other increasing functions, instead of exponential functions. 
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Fig. 8. Results of the computer simulation, Example 4.1. In the calculation, Step 4' was used, 
instead of Step 4 of the algorithm. 

reasonable since by this procedure one can reach (in several steps) any 
permutation. 

Modifying the algorithm in this way, we obtained for Example 4.1 the 
results presented in Fig. 8. When compared to Fig. 4, the qualitative behavior 
is the same. Quantitatively, however, the results are different significantly. 
The mean energy found at corresponding temperatures is much higher when 
using Step 4'. This means that some metastable equilibrium was found in 
this way. In other words, the computation ended in a local minimum. The 
same behavior was observed in other examples. 

We investigated the problem more closely, and our conjecture is that 
the algorithm using Step 4' is not able to untie efficiently the loops in the 
route (such as those seen in Fig. 9). To undo such a loop, it might be 
necessary to go through many configurations of higher energy. This is in 
principle possible, but highly improbable. The construction of Step 4 is 
chosen with the aim of undoing such loops quickly. 

One cannot avoid mentioning analogous situations in physics where 
various topologically stable objects, like magnetic vortex lines, are well 
known. Changing Step 4' to Step 4 means, in this language, changing the 
type of interaction of  the system with the environment. This can make such 
strange objects unstable. 

We do not want to argue that the construction corresponding to Step 
4 is a universal method for avoiding local minima in the traveling salesman 

Fig. 9. Example of loop in the path, which causes difficulties when using Step 4' instead of 
Step 4 of the algorithm. 
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problem. Our experience with nonlinear optimization suggests that it is 
impossible to find such a universal method. It is more practical to have a 
package of  various optimization procedures and to choose the one which 
is empirically the most efficient for a particular problem. So, it might well 
happen that, in some cases, it would be better to use Step 4', instead of 
Step 4, in the traveling salesman algorithm. 

In this respect, one can also use the possibility of changing the tem- 
perature to get out of a local minimum. Increasing the temperature, one 
gets higher fluctuations; the configurations with higher energies become 
more probable,  and this hopefully can help to get through the potential 
barrier around the local minimum. After decreasing the temperature again, 
one can hope to find a better approximation to the true optimum. 

There is perhaps more poetry than mathematics in the speculations 
presented in this section. However, we believe that detailed mathematical 
studies of  the proposed type of optimization algorithms are both possible 
and worth the labor, provided the experience shows their efficiency. The 
main purpose of the present paper  is to show, on a few examples, that the 
algorithm, inspired by the way in which thermodynamical  systems with 
many degrees of  f reedom really work, may be efficient for solving optimization 
problems in which many  degrees of  freedom make the situation rather 
complicated. These algorithms might be even more appropriate  for the next 
generation of  multiprocessing machines, where different degrees of  freedom 
can be treated simultaneously. 

In thermodynamics,  it is well known that the equilibrium state is a 
state with maximum entropy (subject to some constraints specified by the 
external conditions). In this sense, the transition to an equilibrium is an 
optimization problem: the search for the maximum of the entropy. It might 
be surprising that our simple algorithm worked so well in the examples 
described above. We believe that this is caused by the fact that our algorithm 
simulates what Nature does in looking for the equilibrium of complex 
systems. And Nature often does its job quite efficiently] 8 
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