Geometrical Methods of Theoretical Physics I – NTMF059 – 2023 – tutorials

Exercise: Assume a sphere S^2 covered by the coordinates ϑ and φ . Calculate the Lie brackets [Y, Z] and [X, Y], where the vector fields X, Y, and Z are defined as

$$X = -\sin\varphi \frac{\partial}{\partial\vartheta} - \cos\varphi \cot\vartheta \frac{\partial}{\partial\varphi} , \qquad Y = \cos\varphi \frac{\partial}{\partial\vartheta} - \sin\varphi \cot\vartheta \frac{\partial}{\partial\varphi} , \qquad Z = \frac{\partial}{\partial\varphi} . \tag{1}$$

Exercise: Assume the spherical coordinates

$$x = r \sin \vartheta \cos \varphi, \qquad y = r \sin \vartheta \sin \varphi, \qquad z = r \cos \vartheta.$$
 (2)

Find the inverse relations and express the related coordinate basis

$$\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \varphi}, \quad \text{in term of} \quad \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}.$$
 (3)

The vector ∂_{φ} generates rotation around z axis. Permutation $z\,x\,y \to x\,y\,z$ then leads to the rotation generator around x axis. Express such generator using $\{\partial_r\,,\partial_\vartheta\,,\partial_\varphi\}$.

Exercise: Torsion of a dyad derivative in polar coordinates. Assume the 2-dimensional Euclidean metric

$$g = \mathrm{d}x^2 + \mathrm{d}y^2 = \mathrm{d}\rho^2 + \rho^2 \mathrm{d}\varphi^2, \tag{4}$$

and the orthonormal dyad

$$e^{\rho} = \mathrm{d}\rho \,, \ e^{\varphi} = \rho \mathrm{d}\varphi \,, \qquad \text{i.e.} \,, \qquad e_{\rho} = \frac{\partial}{\partial \rho} \,, \ e_{\varphi} = \frac{1}{\rho} \frac{\partial}{\partial \varphi} \,, \tag{5}$$

and the associated dyad derivative $\eth e^{\rho} = 0$ and $\eth e^{\varphi} = 0$.

Express the second derivative of a function $\eth\eth f$ and their commutator $\eth_a\eth_b f - \eth_b\eth_a f$.

Determine the torsion $t = \text{Tor}[\mathfrak{F}]$ using the above commutator.

Calculate the torsion using $t^j = d e^j$.

Find the torsion using the Lie bracket $t_{kl} = -[e_k, e_l]$.

Exercise: Find an explicit form of the vector ξ that is parallelly transported along a circle of constant latitude on S^2 , i.e., along a line parametrized by $\vartheta = \vartheta_0 = \text{const}$ and angle φ . The metric on S^2 is given by

$$g = r_0^2 (\mathrm{d}\vartheta^2 + \sin^2\vartheta \,\mathrm{d}\varphi^2)\,,\tag{6}$$

and the non-trivial components of the tensor connecting coordinate and Levi-Civita covariant derivative (Christoffel's symbols) are

$$\Gamma^{\varphi}_{\vartheta\varphi} = \Gamma^{\varphi}_{\varphi\vartheta} = \cot\vartheta, \qquad \Gamma^{\vartheta}_{\varphi\varphi} = -\sin\vartheta\cos\vartheta.$$
 (7)

The condition for ξ to be parallelly transported along a constant latitude circle is

$$\frac{\nabla}{\mathrm{d}\varphi}\xi = 0. \tag{8}$$

Find components of ξ using the coordinate basis ∂_{ϑ} and ∂_{φ} , and the normalized dyad $e_{\hat{\vartheta}}$ and $e_{\hat{\varphi}}$, respectively,

$$\xi = \xi^{\vartheta} \frac{\partial}{\partial \vartheta} + \xi^{\varphi} \frac{\partial}{\partial \varphi} = \xi^{\hat{\vartheta}} e_{\hat{\vartheta}} + \xi^{\hat{\varphi}} e_{\hat{\varphi}}. \tag{9}$$

Exercise: Geodesics on S^2 . Explicitly calculate the equations constraining $z(\alpha)$ to be a geodesic,

$$\frac{\nabla}{\mathrm{d}\alpha} \frac{\mathrm{D}z}{\mathrm{d}\alpha} = 0, \quad \text{i.e.} \quad \frac{\mathrm{d}^2 z^a}{\mathrm{d}\alpha^2} + \Gamma^a_{bc} \frac{\mathrm{d}z^b}{\mathrm{d}\alpha} \frac{\mathrm{d}z^c}{\mathrm{d}\alpha} = 0.$$
 (10)

Find the solution in the form $\vartheta(\alpha)$ and $\varphi(\alpha)$, or $\vartheta(\varphi)$.

Exercise: Geometry on S^3 . Assume the metric

$$g = d\chi^2 + \sin^2 \chi (d\vartheta^2 + \sin^2 \vartheta d\varphi^2), \tag{11}$$

and calculate the Christoffel symbols Γ^a_{bc} (i.e., components of the tensor connecting coordinate and Levi-Civita covariant derivatives). Then calculate the divergence $\nabla_a \alpha^a$ with α given as a 1-form

$$\alpha = f(\chi) \sin^{-2} \chi d\chi. \tag{12}$$

Exercise: Geometry of 2-dimensional surfaces. Assume an axially symmetric surface N given in terms of 3-dimensional Euclidean space

$$g_{\mathbb{R}^3} = dZ^2 + dP^2 + P^2 d\Phi^2 \tag{13}$$

as

$$Z = z(\rho), \qquad P = \rho, \qquad \Phi = \varphi.$$
 (14)

Calculate the metric g restricted on such a surface, i.e., $g = g_{\mathbb{E}^3}|_N$. The result should be

$$g = (1 + z'^2)d\rho^2 + \rho^2 d\varphi^2.$$
 (15)

Consider the Schwarzschild metric

$$g_{Sch} = -\left(1 - \frac{r_0}{r}\right) dt^2 + \frac{1}{1 - \frac{r_0}{r}} dr^2 + r^2 \left(d\vartheta^2 + \sin^2\vartheta d\varphi^2\right). \tag{16}$$

Find the static equatorial plane geometry, i.e., t = const and $\vartheta = \frac{\pi}{2}$, and its embedding into \mathbb{E}^3 .

Assume a 2-dimensional surface N and the metric in the form

$$g = \alpha^2 d\rho^2 + \rho^2 d\varphi^2$$
, with $\alpha = \alpha(\rho)$. (17)

Calculate associated Levi-Civita covariant derivative ∇ on N, i.e., express the Christoffel symbols Γ^a_{bc} determining its relation to the coordinate derivative.

Then, calculate the curvature of ∇ on N, i.e., the Riemann tensor components R_{abcd} , Ricci tensor Ric_{ab} , and the scalar curvature $\mathcal{R} = 2K$.

Find the function α such that the curvature \mathcal{R} will be constant.

Discuss the possible embeddings of such constant curvature geometries into the Euclidean space \mathbb{E}^3 , i.e., solve $\alpha^2 = 1 + z'^2$ with respect to $z(\rho)$. Various subcases have to be distinguished with respect to the values of integration constants.

Exercise: Prove the identity

$$\nabla_m C_{ab}^{\ m}{}_c = (d-3)Cot_{cab} \,. \tag{18}$$

Exercise: Prove the identity

$$(p+1)^{[p+1]} \delta_{a_0 \dots a_p}^{b_0 \dots b_p} = \delta_{a_0}^{b_0 [p]} \delta_{a_1 \dots a_p}^{b_1 \dots b_p} - p \delta_{a_0}^{[b_1} \delta_{a_2}^{[b_0]} \delta_{a_2}^{b_2} \dots \delta_{a_p}^{b_p]}$$

$$(19)$$

and rewrite it in diagramatic notation. By expressing the first term on the right-hand side, adding this term p-times to both sides of the new equation, and dividing by p + 1 we arrive at the decomposition

$$^{(1)[p]}\boldsymbol{\delta} = \boldsymbol{A} + \boldsymbol{S} . \tag{20}$$

Using diagrammatic notation prove that all terms in this equation are projectors. Note that $S^2 = S$ actually follows also from $\binom{(1)[[p]}{\delta}^2 = \binom{(1)[[p]}{\delta}$, $A^2 = A$, $A \bullet S = 0$, but the exercises is to prove $S^2 = S$ directly (at least for p = 2). [The solution is available at https://utf.mff.cuni.cz/vyuka/NTMF059/2023/poznamky/GM-tenzory%20a%20tenzorova%20pole, page 12-13.]

Exercise: Prove that the 1-form

$$\omega = -\frac{y}{\rho^2} \mathbf{d}x - \frac{x}{\rho^2} \mathbf{d}y \tag{21}$$

is closed in $\mathbb{E}^2 \setminus \{0\}$ covered by Cartesian coordinates x, y with $\rho^2 = x^2 + y^2$. Show that ω cannot be exact in $\mathbb{E}^2 \setminus \{0\}$ by calculating $d\varphi$, where $\tan \varphi = y/x$. [The solution is available at https://utf.mff.cuni.cz/vyuka/NTMF059/2023/poznamky/GM-vnejsi%20kalkulus, page 8.]

Exercise: Consider a homogeneous metric on \mathbb{S}^2 ,

$$\mathbf{g} = r_0^2 \left(\mathbf{d}\vartheta^2 + \sin^2\vartheta \mathbf{d}\varphi^2 \right) , \tag{22}$$

and calculate its curvature using the Cartan's structure equations

$$\mathbf{d}e^{k} + \boldsymbol{\omega}^{k}{}_{l} \wedge e^{l} = 0 , \quad \boldsymbol{\omega}^{k}{}_{l} = -\boldsymbol{\omega}^{l}{}_{k} ,$$

$$\boldsymbol{\Omega}^{k}{}_{l} = \mathbf{d}\boldsymbol{\omega}^{k}{}_{l} + \boldsymbol{\omega}^{k}{}_{j} \wedge \boldsymbol{\omega}^{j}{}_{l} , \quad \boldsymbol{\Omega}^{k}{}_{l} = -\boldsymbol{\Omega}^{l}{}_{k} ,$$
(23)

where e_k is the orthonormal vector frame and e^k its dual coframe. The Riemann tensor is given by

$$R_{ab}{}^{c}{}_{d} = \Omega_{ab}{}^{k}{}_{l}e_{k}^{c}e_{d}^{l}. \tag{24}$$

Calculate Riemann tensor with all indices down ${}^{\flat}R$, the Ricci tensor Ric, and the Ricci scalar \mathcal{R} . (It is also instructive to find components $R_{\vartheta\varphi}{}^{\vartheta}{}_{\phi}$ and $R_{\vartheta\varphi}{}^{\varphi}{}_{\vartheta}$.) [The solution is available at https://utf.mff.cuni.cz/vyuka/NTMF059/2023/poznamky/GM-vnejsi%20kalkulus, page 9-10.]

Exercise: Consider the embedding $\iota: N \to M$ of a 2-dimensional manifold N covered by coordinates x, y into a 3-dimensional manifold M with flat metric covered by Cartesian coordinates,

$$\mathbf{q} = \mathbf{d}X^2 + \mathbf{d}Y^2 + \mathbf{d}Z^2 \ . \tag{25}$$

The embedding ι is given by

$$X = x , \quad Y = y, \quad Z = \mathcal{Z}(x, y) . \tag{26}$$

Calculate its differential $D\iota$ and determine the induced metric $g|_N=\iota^*g$ for a generic function $\mathcal{Z}(x,y)$. Now, consider the half-sphere $\mathcal{Z}=\sqrt{R_0^2-x^2-y^2}$ and show that the calculation can be simplified when done in spherical coordinates. [The solution is available at https://utf.mff.cuni.cz/vyuka/NTMF059/2023/pozna mky/GM-indukovana%20zobrazeni,%20toky%20a%20Lieova%20derivace, page 11.]

Exercise: Consider the embedding $\iota: N \to M$ of a 2-dimensional manifold N covered by coordinates z, φ into a 3-dimensional manifold M with flat metric covered by cylindrical coordinates,

$$g = dP^2 + dZ^2 + P^2 d\Phi^2. \tag{27}$$

The embedding ι is axially symmetric and given by

$$Z = z$$
, $\Phi = \varphi$,, $P = \mathcal{P}(z)$. (28)

Calculate the induced metric $\mathbf{q} = \mathbf{g}|_N = \iota^* \mathbf{g}$. Evaluate $\pounds_{\partial_z} \mathbf{q}$ and find under which conditions ∂_z is a Killing vector and under which it is a conformal Killing vector. Find the flow u_ξ generated by the vector field ∂_z , calculate $U_{\xi*}\mathbf{q}$ for the above metric \mathbf{q} with the conformal symmetry, and use it to compute $\pounds_{\partial_z}\mathbf{q}$ from definition of the Lie derivative. [The solution is available at https://utf.mff.cuni.cz/vyuka/NTMF059/2023/pozna mky/GM-indukovana%20zobrazeni,%20toky%20a%20Lieova%20derivace, page 12-13.]

Exercise: Consider a homogeneous metric on \mathbb{S}^2 ,

$$g = \mathbf{d}\vartheta^2 + \sin^2\vartheta \mathbf{d}\varphi^2 \,, \tag{29}$$

and show by calculating $\pounds_{X}g$, $\pounds_{Y}g$, $\pounds_{Z}g$ that the vector fields

$$X = -\sin\varphi \partial_{\vartheta} - \cos\varphi \cot\vartheta \partial_{\varphi} ,$$

$$Y = \cos\varphi \partial_{\vartheta} - \sin\varphi \cot\vartheta \partial_{\varphi} ,$$

$$Z = \partial_{\varphi} ,$$
(30)

are the Killing vectors of g. [The solution is available at https://utf.mff.cuni.cz/vyuka/NTMF059/2023/poznamky/GM-indukovana%20zobrazeni,%20toky%20a%20Lieova%20derivace, page 14.]

Exercise: Consider a homogeneous metric on \mathbb{S}^2 ,

$$\mathbf{g} = r_0^2 \left(\mathbf{d}\vartheta^2 + \sin^2\vartheta \mathbf{d}\varphi^2 \right) , \tag{31}$$

and determine the Levi-Civita tensor ϵ from the orthonormal frame. Compute $\mathcal{L}_{\partial_{\vartheta}}\epsilon$ and $\mathcal{L}_{\partial_{\varphi}}\epsilon$. Find a function $f(\vartheta)$ so that $\mathcal{L}_{f\partial_{\vartheta}}\epsilon=0$. (Notice that $\mathcal{L}_{\xi}g=0 \implies \mathcal{L}_{\xi}\epsilon=0$ but not the other way around.) [The solution is available at https://utf.mff.cuni.cz/vyuka/NTMF059/2023/poznamky/GM-metricka%20struktura, page 12.]

Exercise: Consider a homogeneous metric on \mathbb{S}^3 ,

$$g = d\chi^2 + \sin^2\chi \left(d\vartheta^2 + \sin^2\vartheta d\varphi^2\right) , \qquad (32)$$

and calculate ϵ and $^{\sharp}\epsilon$. Let us now consider the 1-form

$$\alpha = f(\chi) \sin^{-2} \chi d\chi \tag{33}$$

and find $*d*\alpha$. [The solution is available at https://utf.mff.cuni.cz/vyuka/NTMF059/2023/poznamky/GM-metricka%20struktura, page 12-13.]

Exercise: Calculate the length of the pseudo-circle $z(\tau)$, $\tau \in (0, \tilde{\tau})$ in 2-dimensional Minkowski spacetime,

$$g = -\mathbf{d}t^2 + \mathbf{d}x^2 \,, \tag{34}$$

that is parametrized by

$$t(\tau) = b \sinh(\tau) ,$$

$$x(\tau) = b \cosh(\tau) .$$
(35)

[The solution is available at https://utf.mff.cuni.cz/vyuka/NTMF059/2023/poznamky/GM-metricka%20 struktura, page 13.]

Exercise: Consider a 2-dimensional Minkowski spacetime,

$$g = -\mathbf{d}t^2 + \mathbf{d}x^2 \,, \tag{36}$$

and find all its Killing vectors by solving $\mathcal{L}_{\boldsymbol{\xi}}\boldsymbol{g} = 0$ directly in inertial coordinates t, x. Show also, that the boost Killing vector $x\boldsymbol{\partial}_t + t\boldsymbol{\partial}_x$ can be alternatively obtained by rewriting the metric to the accelerated coordinates τ, ρ ,

$$\mathbf{g} = -\rho^2 \mathbf{d}\tau^2 + \mathbf{d}\rho^2 \ . \tag{37}$$

Find g and ϵ in null coordinates,

$$u = t - x ,$$

$$v = t + x .$$
(38)

and express ∂_u , ∂_v by means of ∂_t , ∂_x . [The solution is available at https://utf.mff.cuni.cz/vyuka/NT MF059/2023/poznamky/GM-metricka%20struktura, page 14-15.]

Exercise: Consider 3-dimensional Minkowski spacetime,

$$g = -\mathbf{d}t^2 + \mathbf{d}x^2 + \mathbf{d}y^2,$$

= $-\mathbf{d}t^2 + \mathbf{d}r^2 + r^2\mathbf{d}\varphi^2,$ (39)

and determine the induced metrics at pseudospherical surfaces $-t^2+r^2={\rm const}<0$ and $-t^2+r^2={\rm const}>0$. (They represent the hyperbolic 2-space \mathbb{H}^2 and the de Sitter spacetime dS_2 .) Calculate the subalgebra of SO(2,1) group of symmetries of ${\boldsymbol g}$, i.e., evaluate all Lie brackets of ${\boldsymbol \partial}_{\varphi},\,x{\boldsymbol \partial}_t+t{\boldsymbol \partial}_x,\,y{\boldsymbol \partial}_t+t{\boldsymbol \partial}_y$. [The solution is available at https://utf.mff.cuni.cz/vyuka/NTMF059/2023/poznamky/GM-metricka%20struktura, page 16.]

Exercise: An anti-symmetric 2-form \mathcal{F} on the complexification of $\Lambda^2 M$ is called (anti-)self-dual if it satisfies $*\mathcal{F} = \mp \mathcal{F}$, i.e., it is the eigenfunction of * with the eigenvalues $\mp i$. (This is due to the fact that the Hodge dual forms a complex unit, $**=-\mathrm{id}$.) One can see that the real electromagnetic tensor \mathbf{F} and its dual $*\mathbf{F}$ are related to the self-dual \mathcal{F} and the anti-self-dual $\bar{\mathcal{F}}$ via

$$F = \frac{1}{2} \left(\mathcal{F} + \bar{\mathcal{F}} \right) ,$$

$$*F = -\frac{i}{2} \left(\mathcal{F} - \bar{\mathcal{F}} \right) ,$$
(40)

This allows us to rewrite the vacuum Maxwell's equations, $d\mathbf{F} = 0$, $d * \mathbf{F} = 0$, together as $d\mathcal{F} = 0$. Show that the energy-momentum tensor of the electromagnetic field,

$$T_{ab} = F_{am}F_{bn}g^{mn} - \frac{1}{2}F^2g_{ab}, \quad F^2 = F \bullet F,$$

$$(41)$$

can be written as

$$T_{ab} = \frac{1}{2} \mathcal{F}_{am} \bar{\mathcal{F}}_{bn} g^{mn} . \tag{42}$$

[The solution is available at https://utf.mff.cuni.cz/vyuka/NTMF059/2023/poznamky/GM-podvariety% 20a%20tecne%20distribuce, page 12.]

Exercise: Consider a 4-dimensional Minkowski spacetime in spherical coordinates,

$$\mathbf{g} = -\mathbf{d}t^2 + \mathbf{d}r^2 + r^2 \left(\mathbf{d}\vartheta^2 + \sin^2\vartheta \mathbf{d}\varphi^2\right) , \tag{43}$$

and calculate $*\mathbf{d} * \mathbf{F}$ for the electromagnetic field given by $\mathbf{F} = \mathbf{d}\mathbf{A}$ with

$$\mathbf{A} = -f(r)\mathbf{d}t. \tag{44}$$

[The solution is available at https://utf.mff.cuni.cz/vyuka/NTMF059/2023/poznamky/GM-podvariety% 20a%20tecne%20distribuce, page 13.]