Point symmetry groups of SF_6

Deadline: Monday, November 4, 2024

- 1. (5 points) For the molecule of sulfur hexafluoride SF_6 (it is used as electrical insulation) in its equilibrium geometry, determine
 - (a) its point group of symmetry (for further reference, let us denote it as G_1),
 - (b) the conjugacy classes of this group,
 - (c) and whether this group is a direct or semidirect product of its two subgroups.

Explain briefly your answers for (b) and (c), based on general considerations discussed during lectures.

- 2. (10 points) Three fluorine atoms of SF6 with the same distance from each other form an equilateral triangle. We can deform the molecule by rotating this triangle by an angle φ around the axis that goes through its center of mass and the sulfur atom.
 - (a) Determine the symmetry group of this new non-equilibrium configuration for $\varphi = 60^{\circ}$ (let us denote it as G_2) and also for $0^{\circ} < \varphi < 60^{\circ}$ (a group G_3).
 - (b) Are these groups a direct or semidirect product of its two subgroups?
 - (c) Are these groups isomorphic to some subgroups of G_1 ?
 - (d) For the group G_2 , find its conjugacy classes and for two chosen classes with more than one element determine their corresponding isotropy groups (when the inner automorphism on G_2 is considered) and also class constants of their product.
 - (e) Find a subgroup of order 4 of the group G_2 and determine all its left cosets. Is it a normal subgroup?
- 3. (5 points) When using some particular codes in quantum chemistry calculations, we can often choose only commutative point groups of symmetry, even for molecules with higher symmetry.
 - (a) What are the largest commutative subgroups of G_1 , G_2 , and G_3 ? To what point groups are they isomorphic? What relations are among them?
 - (b) Find examples of non-equilibrium configurations of SF_6 which have as their symmetry groups these commutative subgroups.