Special Topic Lectures UTF

Autumn 2023

Dr Aindriú Conroy

6th December 2023

Part I

Surface gravity and temperature in dynamical spacetimes

1 Introduction

1.1 What is surface gravity?

- Newtonian picture: surface gravity is the acceleration due to the force of gravity. That is, for a large spherical body of mass M, the acceleration due to the force of gravity is

$$
\begin{equation*}
a=\frac{G M}{r^{2}}, \tag{1}
\end{equation*}
$$

where G is the gravitational constant and r is the radius to the centre of mass. On Earth, this becomes the familiar $g \approx 9.81 \mathrm{~ms}^{-1}$ of Newtonian mechanics.

- More broadly: surface gravity is the acceleration required to keep a point particle (of negligible mass) in place on a given surface. This is consistent when we have in mind a large astronomical body such as a planet but what of a (static) black hole?
- Relativistic picture: Instead of physical surface, we have the abstract 'surface' of an event horizon. This horizon is generated by the failure of null rays to reach infinity which obscures information to a distant observer. Crucially, however, the acceleration blows up as the radius r approaches zero. To get around this, we must introduce the concept of a Killing vector which we will turn to shortly.

General trajectory of course:

- Surface gravity and temperature for a black hole \rightarrow Surface gravity and temperature for cosmology
- Mode decomposition in cosmology \rightarrow Unruh-DeWitt particle detector model
- Combine and analyse the behaviour of a detector in cosmological spacetimes.

References

- A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics by Eric Poisson (Cambridge University Press, 2004)
- Cosmological and Black Hole Apparent Horizons by Valerio Faraoni (Springer 2015)
- Dynamical surface gravity by A. B. Nielsen and J. H. Yoon, (Classical Quantum Gravity 25, 085010, 2008) arXiv:0711.1445.
- Unruh-DeWitt detectors in cosmological spacetimes by Aindriú Conroy (Phys.Rev.D 105 (2022) 12, 123513) arXiv:2204.00359

1.2 Preliminaries

Some things to note before we begin:

1. A stationary (or static) spacetime allows for the existence of a timelike Killing vector χ^{μ} which, by definition, satisfies the Killing equation

$$
\begin{equation*}
\nabla_{(\mu} \chi_{\nu)}=\frac{1}{2}\left(\nabla_{\mu} \chi_{\nu}+\nabla_{\nu} \chi_{\mu}\right)=0 . \tag{2}
\end{equation*}
$$

Note: both static and stationary spacetimes are independent of the time coordinate t while static spacetime also have no rotation. For example, compare an object in orbit (stationary) with an object remaining in a fixed position (static).
2. In the region where χ^{μ} is timelike, the norm $\chi^{\sigma} \chi_{\sigma}<0$, while a Killing horizon is formed on the surface where $\chi^{\sigma} \chi_{\sigma}=0$, i.e. a Killing horizon is formed where timelike and null Killing vectors coincide.
3. On a null (hyper)surface, any null vector that is normal to a null surface is also tangent to it, see diagrams.
4. This implies that the gradient of the norm $\nabla_{\mu}\left(\chi^{\sigma} \chi_{\sigma}\right)$ will be directed along χ_{μ}, i.e. they are proportional to each other so that we can write

$$
\begin{equation*}
\nabla_{\mu}\left(\chi^{\sigma} \chi_{\sigma}\right)=-2 \kappa \chi_{\mu}, \tag{3}
\end{equation*}
$$

where κ is a constant and the factor of -2 is for convenience with the benefit of hindsight.

2 Surface gravity on a Killing horizon

Before we turn to the open question of how to define surface gravity on a dynamical horizon, let us first review the situation in a static or stationary spacetime. The calculation proceeds as follows. We have already deduced that $\nabla_{\mu}\left(\chi^{\sigma} \chi_{\sigma}\right)=-2 \kappa \chi_{\mu}$. Unpacking yields

$$
\begin{align*}
\left(\nabla_{\mu} \chi^{\sigma}\right) \chi_{\sigma}+\chi^{\sigma}\left(\nabla_{\mu} \chi_{\sigma}\right) & =-2 \kappa \chi_{\mu}, \\
\chi^{\sigma} \nabla_{\mu} \chi_{\sigma} & =-\kappa \chi_{\mu} . \tag{4}
\end{align*}
$$

The Killing equation states that $\nabla_{\mu} \chi_{\sigma}=-\nabla_{\sigma} \chi_{\mu}$ so that

$$
\begin{equation*}
\chi^{\sigma} \nabla_{\sigma} \chi_{\mu}=-\kappa \chi_{\mu} . \tag{5}
\end{equation*}
$$

Then

$$
\begin{equation*}
\kappa^{2} \chi_{\mu} \chi^{\mu}=\left(\chi^{\sigma} \nabla_{\sigma} \chi_{\mu}\right)\left(\chi^{\lambda} \nabla_{\lambda} \chi_{\mu}\right) \quad \text { i.e. } \quad \kappa^{2}=V^{-2}\left(\chi^{\sigma} \nabla_{\sigma} \chi_{\mu}\right)\left(\chi^{\lambda} \nabla_{\lambda} \chi^{\mu}\right), \tag{6}
\end{equation*}
$$

where $V=\sqrt{\left|\chi_{\mu} \chi^{\mu}\right|}$ is the red-shift factor. We can write this in terms of the fouracceleration $a_{\mu}=u^{\sigma} \nabla_{\sigma} u_{\mu}$ like so

$$
\begin{equation*}
\kappa^{2}=V^{2} a^{\mu} a_{\mu}, \quad \text { or }\left.\quad \kappa\right|_{r=r_{H}}=\left.V \cdot A\right|_{r=r_{H}} . \tag{7}
\end{equation*}
$$

where $A=\sqrt{\left|a_{\mu} a^{\mu}\right|}$. One way of seeing this is by noting that $a_{\mu}=u^{\sigma} \nabla_{\sigma} u_{\mu}=\nabla_{\mu} \ln V$ (Exercise: see Appendix A) so that

$$
\begin{align*}
a_{\mu} & =\nabla_{\mu} \ln V \\
& =\frac{\nabla_{\mu} V}{V}, \\
& =V^{-1} \nabla_{\mu} \sqrt{\chi_{\sigma} \chi^{\sigma}} \\
& =\frac{1}{2} V^{-2} \nabla_{\mu}\left(\chi_{\sigma} \chi^{\sigma}\right) \\
& =-\kappa V^{-2} \chi_{\mu} \tag{8}
\end{align*}
$$

from which we obtain

$$
\begin{equation*}
A^{2}=\left.\frac{\kappa^{2}}{V^{2}} \quad \Longrightarrow \quad \kappa\right|_{r=r_{H}}=\left.V \cdot A\right|_{r=r_{H}} \tag{9}
\end{equation*}
$$

Interpretation:

- We interpret A as the locally-applied force required to hold a particle in position at some radius r.
- This quantity diverges on the horizon r_{H} which in the case of a static black hole is the event horizon.
- The redshift factor serves to shift the application of this force to infinity so that the interpretation of κ is the gravitational force (acceleration) that must be applied in order to hold a particle in place near the horizon (i.e. the surface gravity), where this force is not locally-applied but applied at infinity.
- This ensures that the surface gravity κ is regular when evaluated on the horizon while also demonstrating the non-local nature intrinsic to this definition, Refs. [Poisson, Nielsen, Faraoni].

3 Surface gravity on a dynamical horizon

3.1 Hayward-Kodama surface gravity

As dynamical spacetimes don't allow for timelike Killing vectors, we need an alternative approach. One such approach is the Hayward-Kodama prescription which is applicable to spherically symmetric, dynamical spacetimes and, in particular, FLRW spacetimes,

$$
\begin{equation*}
d s^{2}=-d t^{2}+a^{2}(t)\left(d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right. \tag{10}
\end{equation*}
$$

which we write as $d s^{2}=\gamma_{a b} d x^{a} d x^{b}+\tilde{r}^{2} d \Omega_{2}^{2}$, where $\tilde{r}=a(t) r$ is the areal radius with indices $a, b \in\{r, t\}$.

Methodology:

- First, define the Kodama vector

$$
\begin{equation*}
k^{a} \equiv \epsilon^{a b} \nabla_{b} \tilde{r} \tag{11}
\end{equation*}
$$

where $\epsilon^{a b}$ is the $(1+1)$-dimensional Levi-Civita tensor with $\epsilon^{00}=\epsilon^{11}=0$ and $\epsilon^{01}=1=-\epsilon^{10}$.

- One can verify that the divergence $\nabla_{a} k^{a}$ vanishes. As this is nothing more than the expansion tensor $\theta=\nabla_{a} k^{a}$, we expect, from the point of view of a Kodama observer that the background will appear not to expand and the areal radius will be a constant, i.e.

$$
\begin{equation*}
r \stackrel{?}{=} \frac{K}{a} \tag{12}
\end{equation*}
$$

will be the radial coordinate for some constant K.

- Taking a lead from the Killing vector case, we write

$$
\begin{equation*}
k^{c} \nabla_{a} k_{c}=\kappa_{H K} k_{a} \tag{13}
\end{equation*}
$$

where k_{a} and the gradient $\nabla_{a}\left(k^{c} k_{c}\right)$ are both normal to some null surface (e.g. a trapping surface or apparent horizon) analogous to the null hypersurface in the stationary example. We have a + sign rather than a - sign due to the cosmological setting where the direction is reversed, i.e. moving away from the singularity.

- In place of the Killing equation, we have the amended form

$$
\begin{equation*}
k^{a}\left(\nabla_{a} k_{b}+\nabla_{b} k_{a}\right)=8 \pi G \tilde{r} \psi_{b}, \tag{14}
\end{equation*}
$$

where ψ_{b} is the energy flux vector which tracks the deviation of the Kod. vector from the Kill. vector.

- We can, however, set $\psi_{b}=0$ which ensures that the Kod. vector conforms to the Killing equation. Indeed. we must do this to ensure $\kappa_{H K}$ is uniquely defined. The consequence of this is that the Kod. trajectory is no longer geodesic and requires some acceleration. From Eq. 13, we can write

$$
\begin{align*}
\frac{1}{2} k^{c}\left(\nabla_{a} k_{c}+\nabla_{a} k_{c}\right) & =\kappa_{H K} k_{a} \\
\frac{1}{2} k^{c}\left(\nabla_{a} k_{c}-\nabla_{c} k_{a}\right) & =\kappa_{H K} k_{a} \\
\frac{1}{2} g^{a b} k^{c}\left(\nabla_{a} k_{c}-\nabla_{c} k_{a}\right) & =\kappa_{H K} k^{b} \tag{15}
\end{align*}
$$

- Again, we can express this as

$$
\begin{equation*}
\kappa_{H K}=V_{k} \cdot A, \quad \text { where } \quad V_{k}=\sqrt{\left|k_{c} k^{c}\right|} \tag{16}
\end{equation*}
$$

and $a^{a}=u^{c} \nabla_{c} u^{a}=V_{k}^{-2} k^{c} \nabla_{c} k^{a}$ meaning that our prior interpretation of surface gravity is retained. Exercise.

- By decomposing into $d s^{2}=\gamma_{a b} d x^{a} d x^{b}+\tilde{r}^{2} d \Omega_{2}^{2}$, we can write $\kappa_{H K}$ in the covariant form (Exercise)

$$
\begin{equation*}
\kappa_{H K}=-\frac{1}{2} \square_{\gamma} \tilde{r}=-\frac{1}{2} \frac{1}{\sqrt{-\gamma}} \partial_{a}\left(\sqrt{-\gamma} \gamma^{a b} \partial_{b} \tilde{r}\right) \tag{17}
\end{equation*}
$$

- The Kodama Miracle. Due to the divergence-free nature of the Kod. vector, i.e. $\quad \nabla_{a} k^{a}=0$, one can define a current $J^{a} \equiv G^{a b} k_{b}$ which is covariantly conserved, i.e. $\nabla_{a} J^{a}=0$. This allows us to define physical quantities such as the four acceleration or surface gravity in a meaningful way.
- In an FLRW spacetime, we compute the surface gravity to be

$$
\begin{equation*}
\kappa_{H K}=\tilde{r}\left(H^{2}+\frac{1}{2} \dot{H}\right) \tag{18}
\end{equation*}
$$

on some surface \tilde{r}. Question: without an event horizon, upon which surface should we evaluate this expression?

4 Cosmological horizons

For the purposes here, we work within a geometrically-flat FLRW universe with line element

$$
\begin{equation*}
d s^{2}=-d t^{2}+a^{2}(t)\left(d r^{2}+r^{2} d \Omega^{2}\right) \tag{19}
\end{equation*}
$$

and define the expansion via the divergence

$$
\begin{equation*}
\theta \equiv \nabla_{\mu} n^{\mu}=\frac{1}{\sqrt{-g}} \partial_{\mu}\left(\sqrt{-g} n^{\mu}\right) \tag{20}
\end{equation*}
$$

for some null ray n^{μ}. By appealing to the geodesic equation for null tangent vectors, see Appendix B. we find the ingoing null ray n^{μ}, and its associated outgoing ray l^{μ}, to be given by

$$
\begin{equation*}
n^{\mu}=\left(\frac{1}{a},-\frac{1}{a^{2}}, 0,0\right), \quad l^{\mu}=\left(\frac{1}{a}, \frac{1}{a^{2}}, 0,0\right), \tag{21}
\end{equation*}
$$

where we have used the fact that the determinant of metric is given by $g=\operatorname{det} g_{\mu \nu}=$ $-a^{6} r^{4} \sin ^{2} \phi$. The ingoing and outgoing expansions are then

$$
\begin{equation*}
\theta_{I N}=\frac{2}{a}\left(H-\frac{1}{\tilde{r}}\right), \quad \theta_{O U T}=\frac{2}{a}\left(H+\frac{1}{\tilde{r}}\right), \tag{22}
\end{equation*}
$$

where $\tilde{r} \equiv a r$ is the areal radius.

Some terminology.

- An apparent horizon is defined by the locus of vanishing expansion of a null geodesic congruence, Ref. [Faraoni].
- Here, we consider the horizon which is formed when the ingoing expansion vanishes while the outgoing expansion remains positive. This is the past-inner trapping horizon of an expanding cosmology which we call the cosmological apparent horizon and it forms the boundary of the minimally anti-trapped surface, i.e. the anti-trapped surface of minimal size.
- This is not to be confused with the particle horizon, which is the maximum distance a particle can travel along a geodesic in proper conformal time, i.e.

$$
\begin{equation*}
r_{P H}=\int_{0}^{t} \frac{d t^{\prime}}{a\left(t^{\prime}\right)} \tag{23}
\end{equation*}
$$

which (as we will see in Lecture 2) is related to conformal time η. As such, setting the ingoing expansion $\theta_{I N}$ to zero yields an apparent horizon with areal radius

$$
\begin{equation*}
\tilde{r}_{A H}=H^{-1} \quad \text { where } \quad \tilde{r}_{A H} \equiv a r_{A H} . \tag{24}
\end{equation*}
$$

- From Eq. (22), we can observe that when $\tilde{r}>\tilde{r}_{A H}$ both the ingoing and outgoing expansions are positive, i.e. $\theta_{I N, O U T}>0$. The surfaces described by the expansion in this region are called anti-trapped, while surfaces in the region $0 \leq \tilde{r}<\tilde{r}_{A H}$, with $\theta_{O U T}>0$ and $\theta_{I N}<0$, are called normal surfaces. Trapped surfaces occur when $\theta_{\text {IN,OUT }}<0$ and (by the Hawking-Penrose singularity theorems) lead to the formation of a singularity.
- In simple terms, outgoing geodesics in the normal region trace out a surface of larger area while ingoing geodesics trace out a shrinking surface with this being the familiar behaviour in flat space. We visualise the cosmological apparent horizon which forms the border between the normal and anti-trapped regions by considering an observer centred on a sphere, which we have positioned at $r=0$. Events beyond the sphere are causally disconnected from our observer, meaning information is obscured, see Ref. [Faraoni] for a more detailed discussion on cosmological horizons.

Evaluating the surface gravity on the cosmological apparent horizon then leads to

$$
\begin{equation*}
\kappa_{H K}=\left.\tilde{r}\left(H^{2}+\frac{1}{2} \dot{H}\right) \quad \Longrightarrow \quad \kappa_{H K}\right|_{\tilde{r}=1 / H}=\frac{1}{H}\left(H^{2}+\frac{1}{2} \dot{H}\right), \tag{25}
\end{equation*}
$$

which is sometime written in terms of the apparent horizon $\tilde{r}_{A H}=1 / H$ and its derivative $\dot{\tilde{r}}_{A H}=-\tilde{r}_{A H}^{3} H \dot{H}$ like so

$$
\begin{equation*}
\left.\kappa_{H K}\right|_{\tilde{r}=\tilde{r}_{A H}}=\frac{1}{\tilde{r}}\left(H-\frac{1}{2} \dot{\tilde{r}}_{A H}\right) \quad \text { with } \quad T=\frac{\kappa_{H K}}{2 \pi} \text {. } \tag{26}
\end{equation*}
$$

We now have a working definition of temperature on the cosmological apparent horizon.

4.1 Kodama trajectory

Here we compute the Kodama trajectory. First, decompose the metric like so

$$
\begin{equation*}
d s^{2}=\gamma_{a b} d x^{a} d x^{b}+\tilde{r}^{2} d \Omega^{2} \tag{27}
\end{equation*}
$$

so that the Kod. vector develops like so

$$
\begin{align*}
k^{a} & =\epsilon_{\perp}^{a b} \nabla_{b} \tilde{r} \\
& =\epsilon_{\perp}^{a b}\left(\delta_{b}^{t} \dot{a} r+\delta_{b}^{r} a\right) \\
& =\sqrt{-\gamma}\left(\gamma^{a t} \gamma^{b r}-\gamma^{a r} \gamma^{b t}\right)\left(\delta_{b}^{t} \dot{a} r+\delta_{b}^{r} a\right) \\
& =\sqrt{-\gamma}\left(\gamma^{a t} \gamma^{t r} \dot{a} r+\gamma^{a t} \gamma^{r r} a-\gamma^{a r} \gamma^{t t} \dot{a} r-\gamma^{a r} \gamma^{r t} a\right) . \tag{28}
\end{align*}
$$

If we further restrict our metric to be isotropic, i.e. where off-diagonal terms vanish, we find the Kodama vector to be given by

$$
\begin{align*}
k^{a} & =\sqrt{-\gamma}\left(a \gamma^{a t} \gamma^{r r}-\dot{a} r \gamma^{a r} \gamma^{t t}\right) . \\
& =\sqrt{-\gamma}\left(a \delta_{t}^{a} \gamma^{t t} \gamma^{r r}-\dot{a} r \delta_{r}^{a} \gamma^{r r} \gamma^{t t}\right) \tag{29}
\end{align*}
$$

For an FLRW metric, $d s_{\gamma}^{2}=-d t^{2}+a^{2}(t) d r^{2}$ we have $\sqrt{-\gamma}=a$ and

$$
\begin{equation*}
k^{a}=-\delta_{t}^{a}+\delta_{r}^{a} H r=(-1, H r) . \tag{30}
\end{equation*}
$$

That is, $k^{0}=-1, k^{1}=H r$ and so $k^{c} k_{c}=\gamma_{00} k^{0} k^{0}+g_{11} k^{1} k^{1}=-1+a^{2} H^{2} r^{2}=$ $-1+H^{2} \tilde{r}^{2}$, i.e. in terms of the apparent horizon $\tilde{r}_{A H}=1 / H$ we can write

$$
\begin{equation*}
k^{c} k_{c}=-1+\left(r / r_{A H}\right)^{2} . \tag{31}
\end{equation*}
$$

In this form, it is clear to see that the Kodama vector does indeed mimic the Killing vector in that it becomes null on the surface of the apparent horizon $r_{A H}$ and is timelike in the region $r<r_{A H}$. In the region where it is timelike, the Kodama vector evokes a class of preferred observers with four-velocity $u^{a} \equiv k^{a} / V_{k}$, given by

$$
\begin{equation*}
u^{a}=\frac{1}{\sqrt{1-\dot{a}^{2} r^{2}}}(-1, H r) . \tag{32}
\end{equation*}
$$

Let's now compute the trajectories starting with the radial trajectory which is related to the time trajectory like so

$$
\begin{equation*}
\frac{d r}{d \tau}=-H r \frac{d t}{d \tau} . \tag{33}
\end{equation*}
$$

Next note that $H=\frac{1}{a} \frac{d a}{d t}=\frac{1}{a} \frac{d \tau}{d t} \frac{d a}{d \tau}=\frac{d \tau}{d t} H(\tau)$ so that we can write

$$
\begin{equation*}
\frac{r^{\prime}(\tau)}{r(\tau)}=-\frac{a^{\prime}(\tau)}{a(\tau)} \quad \Longrightarrow \quad \int d \tau \frac{r^{\prime}(\tau)}{r(\tau)}=-\int d \tau \frac{a^{\prime}(\tau)}{a(\tau)} \tag{34}
\end{equation*}
$$

which we solve to find

$$
\begin{equation*}
\ln (r / K)=-\ln (a) \quad \Longrightarrow \quad r(\tau)=\frac{K}{a} \tag{35}
\end{equation*}
$$

for some constant K. This agrees with our earlier intuition of a constant areal radius for a Kod. observer. Thus

$$
\begin{equation*}
\frac{d t}{d \tau}=-\frac{1}{\sqrt{1-\dot{a}^{2} r^{2}}} \quad \Longrightarrow \quad\left(\frac{d t}{d \tau}\right)^{2}\left[1-H^{2} K^{2}\right]=1 \tag{36}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\left(\frac{d t}{d \tau}\right)^{2}=1+H^{2}(\tau) K^{2} \tag{37}
\end{equation*}
$$

Defining $V(\tau)=1+H^{2}(\tau) K^{2}$, we arrive at the trajectories

$$
\begin{equation*}
t(\tau)=\int \sqrt{V(\tau)} d \tau, \quad r(\tau)=\frac{K}{a(\tau)} \tag{38}
\end{equation*}
$$

We will return to these trajectories later in the course when considering an UnruhDeWitt particle detector traveling through a cosmological spacetime.

4.2 Unified first law of thermodynamics

Claim: The Hayward-Kodama prescription is consistent with a unified first law of thermodynamics:

$$
\begin{equation*}
d E=T d S+W d V, \tag{39}
\end{equation*}
$$

where

- $E=$ total energy, temperature $T=\kappa / 2 \pi$, entropy $S=$ Area $/ 4 G$, work density $W=\frac{1}{2}(\rho-p)$, and V is the volume of the apparent horizon.

A Exercise 1

Exercise: Show that $a_{\mu}=u^{\sigma} \nabla_{\sigma} u_{\mu}=\nabla_{\mu} \ln V$. (tip: also show that $\left.a_{\mu} u^{\mu}=0\right)$. Consider

$$
\begin{aligned}
\nabla_{\mu} \ln V & =\frac{\nabla_{\mu} V}{V} \\
& =V^{-1} \nabla_{\mu} \sqrt{\chi_{\sigma} \chi^{\sigma}} \\
& =-\frac{1}{2 V^{2}} \nabla_{\mu}\left(\chi_{\sigma} \chi^{\sigma}\right) \\
& =-\frac{1}{V^{2}} \chi^{\sigma} \nabla_{\mu} \chi_{\sigma} \\
& =\frac{1}{V^{2}} \chi^{\sigma} \nabla_{\sigma} \chi_{\mu} \\
& =\frac{1}{V} u^{\sigma} \nabla_{\sigma}\left(V u_{\mu}\right) \\
& =\frac{1}{V} u^{\sigma} \nabla_{\sigma} V u_{\mu}+u^{\sigma} \nabla_{\sigma} u_{\mu} \\
& =u_{\mu} u^{\sigma} \nabla_{\sigma} \ln V+a_{\mu}
\end{aligned}
$$

Contract with u^{μ} so that

$$
u^{\mu} \nabla_{\mu} \ln V=-u^{\sigma} \nabla_{\sigma} \ln V \quad \Longrightarrow \quad u^{\mu} \nabla_{\mu} \ln V=0
$$

where

$$
\begin{aligned}
a_{\mu} u^{\mu} & =u^{\lambda} \nabla_{\lambda} u_{\mu} u^{\mu} \\
& =\frac{1}{2}\left(u^{\lambda} \nabla_{\lambda} u_{\mu} u^{\mu}+u^{\lambda} \nabla_{\lambda} u_{\mu} u^{\mu}\right) \\
& =\frac{1}{2}\left(u^{\lambda} \nabla_{\lambda}\left(u_{\mu} u^{\mu}\right)-u^{\lambda} u_{\mu} \nabla_{\lambda} u^{\mu}+u^{\lambda} \nabla_{\lambda} u_{\mu} u^{\mu}\right) \\
& =0
\end{aligned}
$$

Thus

$$
a_{\mu}=\nabla_{\mu} \ln V=u^{\sigma} \nabla_{\sigma} u_{\mu}
$$

B Expansion tensor FLRW

Derive the expansion tensor for an FLRW metric with line element

$$
\begin{equation*}
d s^{2}=-d t^{2}+a^{2}(t)\left(d x^{2}+d y^{2}+d z^{2}\right) \tag{40}
\end{equation*}
$$

Without loss of generality, we cane restrict the trajectory to $x^{\mu}=(t(\lambda), x(\lambda), 0,0)$ due to the isotropic nature of the spacetime. From the geodesic equation

$$
\begin{equation*}
\frac{d^{2} x^{\mu}}{d \lambda^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d \lambda} \frac{d x^{\beta}}{d \lambda}=0 \tag{41}
\end{equation*}
$$

we read off

$$
\begin{equation*}
\frac{d^{2} t}{d \lambda^{2}}+\Gamma_{\alpha \beta}^{0} \frac{d x^{\alpha}}{d \lambda} \frac{d x^{\beta}}{d \lambda}=0 \quad \text { and } \quad \frac{d^{2} x}{d \lambda^{2}}+\Gamma_{\alpha \beta}^{1} \frac{d x^{\alpha}}{d \lambda} \frac{d x^{\beta}}{d \lambda}=0 . \tag{42}
\end{equation*}
$$

The non-vanishing Christoffel symbols are

$$
\begin{equation*}
\Gamma_{i j}^{0}=g_{i j} \frac{\dot{a}}{a} \quad \text { and } \quad \Gamma_{0 j}^{i}=\Gamma_{j 0}^{i}=\delta_{j}^{i} \frac{\dot{a}}{a} . \tag{43}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{d^{2} t}{d \lambda^{2}}+\dot{a} a\left(\frac{d x}{d \lambda}\right)^{2}=0 \quad \text { and } \quad \frac{d^{2} x}{d \lambda^{2}}+\Gamma_{01}^{1} \frac{d t}{d \lambda} \frac{d x}{d \lambda}=0 \tag{44}
\end{equation*}
$$

Restricting the line element to null rays with $\left.d s^{2}\right|_{\text {null }}=0$ implies $d t^{2}=a^{2}(t) d x^{2}$, i.e.

$$
\begin{equation*}
\frac{d t}{d \lambda}=a(t) \frac{d x}{d \lambda} \quad \Longrightarrow \quad \frac{d^{2} t}{d \lambda^{2}}+\frac{\dot{a}}{a}\left(\frac{d t}{d \lambda}\right)^{2}=0 \tag{45}
\end{equation*}
$$

Next note that from the chain rule we have

$$
\begin{equation*}
\frac{\dot{a}}{a}=\frac{d a}{d t} \frac{1}{a}=\frac{d \lambda}{d t} \frac{d a}{d \lambda} \frac{1}{a} \tag{46}
\end{equation*}
$$

so that

$$
\begin{equation*}
t^{\prime \prime}(\lambda)+\frac{a^{\prime}(\lambda)}{a(\lambda)} t^{\prime}(\lambda)=0 \quad \Longrightarrow \quad \int \frac{t^{\prime \prime}(\lambda)}{t^{\prime}(\lambda)} d \lambda=-\int \frac{a^{\prime}(\lambda)}{a(\lambda)} d \lambda \tag{47}
\end{equation*}
$$

which we solve to find

$$
\begin{equation*}
\ln \left(t^{\prime} / C\right)=-\ln a=\ln (1 / a) \quad \text { i.e. } \quad \frac{d t}{d \lambda}=\frac{C}{a} . \tag{48}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left(\frac{d t}{d \lambda}, \frac{d x}{d \lambda}\right)=\left(\frac{C}{a}, \frac{C}{a^{2}}\right) . \tag{49}
\end{equation*}
$$

More generally, we note that $d t^{2}=a^{2}(t) d x^{2}$ implies $\frac{d t}{d \lambda}= \pm a(t) \frac{d x}{d \lambda}$ so that for a general trajectory $k^{\mu}=\left(k^{0}, k^{i}\right)$ we can write

$$
\begin{equation*}
k^{\mu}=\left(\frac{1}{a}, \pm \frac{1}{a^{2}}\right)=\left(k^{0}, k^{i}\right) \tag{50}
\end{equation*}
$$

where the sign attached to the spatial vectors indicates whether it is an ingoing (-) or outgoing $(+)$ null tangent vector and we have set the integration constant $C=1$.

