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in dynamical spacetimes
1 Introduction

1.1 What is surface gravity?
• Newtonian picture: surface gravity is the acceleration due to the force of grav-

ity. That is, for a large spherical body of mass M , the acceleration due to the
force of gravity is

a = GM

r2 , (1)

where G is the gravitational constant and r is the radius to the centre of mass.
On Earth, this becomes the familiar g ≈ 9.81 ms−1 of Newtonian mechanics.

• More broadly: surface gravity is the acceleration required to keep a point
particle (of negligible mass) in place on a given surface. This is consistent
when we have in mind a large astronomical body such as a planet but what
of a (static) black hole?

• Relativistic picture: Instead of physical surface, we have the abstract ‘surface’
of an event horizon. This horizon is generated by the failure of null rays to
reach infinity which obscures information to a distant observer. Crucially,
however, the acceleration blows up as the radius r approaches zero. To get
around this, we must introduce the concept of a Killing vector which we will
turn to shortly.

General trajectory of course:

• Surface gravity and temperature for a black hole → Surface gravity and tem-
perature for cosmology
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1.2 Preliminaries

• Mode decomposition in cosmology → Unruh-DeWitt particle detector model

• Combine and analyse the behaviour of a detector in cosmological spacetimes.
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1.2 Preliminaries
Some things to note before we begin:

1. A stationary (or static) spacetime allows for the existence of a timelike Killing
vector χµ which, by definition, satisfies the Killing equation

∇(µχν) = 1
2 (∇µχν + ∇νχµ) = 0. (2)

Note: both static and stationary spacetimes are independent of the time co-
ordinate t while static spacetime also have no rotation. For example, compare
an object in orbit (stationary) with an object remaining in a fixed position
(static).

2. In the region where χµ is timelike, the norm χσχσ < 0, while a Killing horizon
is formed on the surface where χσχσ = 0, i.e. a Killing horizon is formed where
timelike and null Killing vectors coincide.

3. On a null (hyper)surface, any null vector that is normal to a null surface is
also tangent to it, see diagrams.

4. This implies that the gradient of the norm ∇µ(χσχσ) will be directed along
χµ, i.e. they are proportional to each other so that we can write

∇µ(χσχσ) = −2κχµ, (3)

where κ is a constant and the factor of −2 is for convenience with the benefit
of hindsight.
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2 Surface gravity on a Killing horizon

2 Surface gravity on a Killing horizon
Before we turn to the open question of how to define surface gravity on a dynamical
horizon, let us first review the situation in a static or stationary spacetime. The
calculation proceeds as follows. We have already deduced that ∇µ(χσχσ) = −2κχµ.
Unpacking yields

(∇µχ
σ)χσ + χσ(∇µχσ) = −2κχµ,

χσ∇µχσ = −κχµ. (4)
The Killing equation states that ∇µχσ = −∇σχµ so that

χσ∇σχµ = −κχµ. (5)
Then

κ2χµχ
µ = (χσ∇σχµ)(χλ∇λχµ) i.e. κ2 = V −2(χσ∇σχµ)(χλ∇λχ

µ), (6)

where V =
√

|χµχµ| is the red-shift factor. We can write this in terms of the four-
acceleration aµ = uσ∇σuµ like so

κ2 = V 2aµaµ, or κ|r=rH
= V · A|r=rH

. (7)

where A =
√

|aµaµ|. One way of seeing this is by noting that aµ = uσ∇σuµ = ∇µ ln V
(Exercise: see Appendix A) so that

aµ = ∇µ ln V

= ∇µV

V
,

= V −1∇µ

√
χσχσ

= 1
2V

−2∇µ(χσχ
σ)

= −κV −2χµ (8)
from which we obtain

A2 = κ2

V 2 =⇒ κ|r=rH
= V · A|r=rH

. (9)

Interpretation:
• We interpret A as the locally-applied force required to hold a particle in posi-

tion at some radius r.

• This quantity diverges on the horizon rH which in the case of a static black
hole is the event horizon.

• The redshift factor serves to shift the application of this force to infinity so
that the interpretation of κ is the gravitational force (acceleration) that must
be applied in order to hold a particle in place near the horizon (i.e. the surface
gravity), where this force is not locally-applied but applied at infinity.

• This ensures that the surface gravity κ is regular when evaluated on the horizon
while also demonstrating the non-local nature intrinsic to this definition, Refs.
[Poisson, Nielsen, Faraoni].
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3 Surface gravity on a dynamical horizon

3.1 Hayward-Kodama surface gravity
As dynamical spacetimes don’t allow for timelike Killing vectors, we need an alter-
native approach. One such approach is the Hayward-Kodama prescription which is
applicable to spherically symmetric, dynamical spacetimes and, in particular, FLRW
spacetimes ,

ds2 = −dt2 + a2(t)
(
dr2 + r2(dθ2 + sin2 θdϕ2

)
, (10)

which we write as ds2 = γabdx
adxb + r̃2dΩ2

2, where r̃ = a(t)r is the areal radius with
indices a, b ∈ {r, t}.

Methodology:

• First, define the Kodama vector

ka ≡ ϵab∇br̃, (11)

where ϵab is the (1+1)−dimensional Levi-Civita tensor with ϵ00 = ϵ11 = 0 and
ϵ01 = 1 = −ϵ10.

• One can verify that the divergence ∇ak
a vanishes. As this is nothing more

than the expansion tensor θ = ∇ak
a, we expect, from the point of view of

a Kodama observer that the background will appear not to expand and the
areal radius will be a constant, i.e.

r
?= K

a
(12)

will be the radial coordinate for some constant K.

• Taking a lead from the Killing vector case, we write

kc∇akc = κHKka (13)

where ka and the gradient ∇a(kckc) are both normal to some null surface (e.g.
a trapping surface or apparent horizon) analogous to the null hypersurface in
the stationary example. We have a + sign rather than a − sign due to the
cosmological setting where the direction is reversed, i.e. moving away from
the singularity.

• In place of the Killing equation, we have the amended form

ka(∇akb + ∇bka) = 8πGr̃ψb, (14)

where ψb is the energy flux vector which tracks the deviation of the Kod. vector
from the Kill. vector.
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4 Cosmological horizons

• We can, however, set ψb = 0 which ensures that the Kod. vector conforms
to the Killing equation. Indeed. we must do this to ensure κHK is uniquely
defined. The consequence of this is that the Kod. trajectory is no longer
geodesic and requires some acceleration. From Eq. 13, we can write

1
2k

c (∇akc + ∇akc) = κHKka

1
2k

c (∇akc − ∇cka) = κHKka

1
2g

abkc (∇akc − ∇cka) = κHKk
b (15)

• Again, we can express this as

κHK = Vk · A, where Vk =
√

|kckc| (16)

and aa = uc∇cu
a = V −2

k kc∇ck
a meaning that our prior interpretation of sur-

face gravity is retained. Exercise.

• By decomposing into ds2 = γabdx
adxb + r̃2dΩ2

2, we can write κHK in the
covariant form (Exercise)

κHK = −1
2□γ r̃ = −1

2
1√
−γ

∂a

(√
−γγab∂br̃

)
(17)

• The Kodama Miracle. Due to the divergence-free nature of the Kod. vector,
i.e. ∇ak

a = 0, one can define a current Ja ≡ Gabkb which is covariantly
conserved, i.e. ∇aJ

a = 0. This allows us to define physical quantities such as
the four acceleration or surface gravity in a meaningful way.

• In an FLRW spacetime, we compute the surface gravity to be

κHK = r̃
(
H2 + 1

2Ḣ
)
, (18)

on some surface r̃. Question: without an event horizon, upon which surface
should we evaluate this expression?

4 Cosmological horizons
For the purposes here, we work within a geometrically-flat FLRW universe with line
element

ds2 = −dt2 + a2(t)
(
dr2 + r2dΩ2

)
, (19)

and define the expansion via the divergence

θ ≡ ∇µn
µ = 1√

−g
∂µ

(√
−gnµ

)
, (20)
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for some null ray nµ. By appealing to the geodesic equation for null tangent vectors,
see Appendix B. we find the ingoing null ray nµ, and its associated outgoing ray lµ,
to be given by

nµ =
(1
a
,− 1

a2 , 0, 0
)
, lµ =

(1
a
,

1
a2 , 0, 0

)
, (21)

where we have used the fact that the determinant of metric is given by g = det gµν =
−a6r4 sin2 ϕ. The ingoing and outgoing expansions are then

θIN = 2
a

(
H − 1

r̃

)
, θOUT = 2

a

(
H + 1

r̃

)
, (22)

where r̃ ≡ ar is the areal radius.

Some terminology.

• An apparent horizon is defined by the locus of vanishing expansion of a null
geodesic congruence, Ref. [Faraoni].

• Here, we consider the horizon which is formed when the ingoing expansion
vanishes while the outgoing expansion remains positive. This is the past-inner
trapping horizon of an expanding cosmology which we call the cosmological
apparent horizon and it forms the boundary of the minimally anti-trapped
surface, i.e. the anti-trapped surface of minimal size.

• This is not to be confused with the particle horizon, which is the maximum
distance a particle can travel along a geodesic in proper conformal time, i.e.

rP H =
∫ t

0

dt′

a(t′) , (23)

which (as we will see in Lecture 2) is related to conformal time η. As such,
setting the ingoing expansion θIN to zero yields an apparent horizon with areal
radius

r̃AH = H−1 where r̃AH ≡ arAH . (24)

• From Eq. (22), we can observe that when r̃ > r̃AH both the ingoing and
outgoing expansions are positive, i.e. θIN,OUT > 0. The surfaces described by
the expansion in this region are called anti-trapped, while surfaces in the region
0 ≤ r̃ < r̃AH , with θOUT > 0 and θIN < 0, are called normal surfaces. Trapped
surfaces occur when θIN,OUT < 0 and (by the Hawking-Penrose singularity
theorems) lead to the formation of a singularity.

• In simple terms, outgoing geodesics in the normal region trace out a surface
of larger area while ingoing geodesics trace out a shrinking surface with this
being the familiar behaviour in flat space. We visualise the cosmological ap-
parent horizon which forms the border between the normal and anti-trapped
regions by considering an observer centred on a sphere, which we have posi-
tioned at r = 0. Events beyond the sphere are causally disconnected from
our observer, meaning information is obscured, see Ref. [Faraoni] for a more
detailed discussion on cosmological horizons.
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4 Cosmological horizons

Evaluating the surface gravity on the cosmological apparent horizon then leads to

κHK = r̃
(
H2 + 1

2Ḣ
)

=⇒ κHK |r̃=1/H = 1
H

(
H2 + 1

2Ḣ
)
, (25)

which is sometime written in terms of the apparent horizon r̃AH = 1/H and its
derivative ˙̃rAH = −r̃3

AHHḢ like so

κHK |r̃=r̃AH
= 1
r̃

(
H − 1

2
˙̃rAH

r̃AH

)
with T = κHK

2π . (26)

We now have a working definition of temperature on the cosmological apparent
horizon.

4.1 Kodama trajectory
Here we compute the Kodama trajectory. First, decompose the metric like so

ds2 = γabdx
adxb + r̃2dΩ2, (27)

so that the Kod. vector develops like so

ka = ϵab
⊥ ∇br̃

= ϵab
⊥

(
δt

bȧr + δr
ba
)

=
√

−γ(γatγbr − γarγbt)
(
δt

bȧr + δr
ba
)

=
√

−γ
(
γatγtrȧr + γatγrra− γarγttȧr − γarγrta

)
. (28)

If we further restrict our metric to be isotropic, i.e. where off-diagonal terms vanish,
we find the Kodama vector to be given by

ka =
√

−γ
(
aγatγrr − ȧrγarγtt

)
.

=
√

−γ
(
aδa

t γ
ttγrr − ȧrδa

rγ
rrγtt

)
(29)

For an FLRW metric, ds2
γ = −dt2 + a2(t)dr2 we have √

−γ = a and

ka = −δa
t + δa

rHr = (−1, Hr). (30)

That is, k0 = −1, k1 = Hr and so kckc = γ00k
0k0 + g11k

1k1 = −1 + a2H2r2 =
−1 +H2r̃2, i.e. in terms of the apparent horizon r̃AH = 1/H we can write

kckc = −1 + (r/rAH)2. (31)

In this form, it is clear to see that the Kodama vector does indeed mimic the Killing
vector in that it becomes null on the surface of the apparent horizon rAH and is
timelike in the region r < rAH . In the region where it is timelike, the Kodama
vector evokes a class of preferred observers with four-velocity ua ≡ ka/Vk, given by

ua = 1√
1 − ȧ2r2

(−1, Hr). (32)

7



4.2 Unified first law of thermodynamics

Let’s now compute the trajectories starting with the radial trajectory which is
related to the time trajectory like so

dr

dτ
= −Hr dt

dτ
. (33)

Next note that H = 1
a

da
dt

= 1
a

dτ
dt

da
dτ

= dτ
dt
H(τ) so that we can write

r′(τ)
r(τ) = −a′(τ)

a(τ) =⇒
∫
dτ
r′(τ)
r(τ) = −

∫
dτ
a′(τ)
a(τ) , (34)

which we solve to find

ln(r/K) = − ln(a) =⇒ r(τ) = K

a
(35)

for some constant K. This agrees with our earlier intuition of a constant areal radius
for a Kod. observer. Thus

dt

dτ
= − 1√

1 − ȧ2r2
=⇒

(
dt

dτ

)2 [
1 −H2K2

]
= 1 (36)

i.e. (
dt

dτ

)2

= 1 +H2(τ)K2 (37)

Defining V (τ) = 1 +H2(τ)K2, we arrive at the trajectories

t(τ) =
∫ √

V (τ)dτ, r(τ) = K

a(τ) . (38)

We will return to these trajectories later in the course when considering an Unruh-
DeWitt particle detector traveling through a cosmological spacetime.

4.2 Unified first law of thermodynamics
Claim: The Hayward-Kodama prescription is consistent with a unified first law of
thermodynamics:

dE = TdS +WdV, (39)

where

• E =total energy, temperature T = κ/2π, entropy S = Area/4G, work density
W = 1

2(ρ− p),and V is the volume of the apparent horizon.
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B Expansion tensor FLRW

A Exercise 1
Exercise: Show that aµ = uσ∇σuµ = ∇µ ln V . (tip: also show that aµu

µ = 0).
Consider

∇µ ln V = ∇µV

V
,

= V −1∇µ

√
χσχσ

= − 1
2V 2 ∇µ(χσχ

σ)

= − 1
V 2χ

σ∇µχσ

= 1
V 2χ

σ∇σχµ

= 1
V
uσ∇σ(V uµ)

= 1
V
uσ∇σV uµ + uσ∇σuµ

= uµu
σ∇σ ln V + aµ

Contract with uµ so that

uµ∇µ ln V = −uσ∇σ ln V =⇒ uµ∇µ ln V = 0

where

aµu
µ = uλ∇λuµu

µ

= 1
2
(
uλ∇λuµu

µ + uλ∇λuµu
µ
)

= 1
2
(
uλ∇λ(uµu

µ) − uλuµ∇λu
µ + uλ∇λuµu

µ
)

= 0

Thus

aµ = ∇µ ln V = uσ∇σuµ

B Expansion tensor FLRW
Derive the expansion tensor for an FLRW metric with line element

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (40)

Without loss of generality, we cane restrict the trajectory to xµ = (t(λ), x(λ), 0, 0)
due to the isotropic nature of the spacetime. From the geodesic equation

d2xµ

dλ2 + Γµ
αβ

dxα

dλ

dxβ

dλ
= 0, (41)
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we read off

d2t

dλ2 + Γ0
αβ

dxα

dλ

dxβ

dλ
= 0 and d2x

dλ2 + Γ1
αβ

dxα

dλ

dxβ

dλ
= 0. (42)

The non-vanishing Christoffel symbols are

Γ0
ij = gij

ȧ

a
and Γi

0j = Γi
j0 = δi

j

ȧ

a
. (43)

Thus
d2t

dλ2 + ȧa

(
dx

dλ

)2

= 0 and d2x

dλ2 + Γ1
01
dt

dλ

dx

dλ
= 0. (44)

Restricting the line element to null rays with ds2|null = 0 implies dt2 = a2(t)dx2,i.e.

dt

dλ
= a(t)dx

dλ
=⇒ d2t

dλ2 + ȧ

a

(
dt

dλ

)2

= 0. (45)

Next note that from the chain rule we have

ȧ

a
= da

dt

1
a

= dλ

dt

da

dλ

1
a

(46)

so that
t′′(λ) + a′(λ)

a(λ) t
′(λ) = 0 =⇒

∫ t′′(λ)
t′(λ) dλ = −

∫ a′(λ)
a(λ) dλ (47)

which we solve to find

ln(t′/C) = − ln a = ln(1/a) i.e. dt

dλ
= C

a
. (48)

Thus (
dt

dλ
,
dx

dλ

)
=
(
C

a
,
C

a2

)
. (49)

More generally, we note that dt2 = a2(t)dx2 implies dt
dλ

= ±a(t)dx
dλ

so that for a
general trajectory kµ = (k0, ki) we can write

kµ =
(1
a
,± 1

a2

)
= (k0, ki), (50)

where the sign attached to the spatial vectors indicates whether it is an ingoing (−)
or outgoing (+) null tangent vector and we have set the integration constant C = 1.
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