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Part II Quantum Cosmology
Methodology:

1. We write down an action and a metric (FLRW)

2. Compute and solve field equations (to derive mode functions)

3. Quantize by

(a) Postulating a mode expansion
(b) with commutation relations
(c) and a normalization condition

1 Mode decomposition
Again, we consider the FLRW metric

ds2 = −dt2 + a2(t)
(
dr2 + r2dΩ2

)
, (1)

which has flat geometry and dΩ2 ≡ dθ2 + sin2 θdϕ2. We write this in its conformal
form

ds2 = a2(t)
[
−a−2dt2 + dr2 + r2dΩ2

]
,

= a2(η)
[
−dη2 + dr2 + r2dΩ2

]
, (2)

by introducing a new conformal time parameter η defined via dη = a−1dt. Now,
consider a massless scalar field Φ with action

S = 1
2

∫
d4x
√
−g

(
gµν∂µΦ∂νΦ + ξRΦ2

)
, (3)
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i.e. a scalar field action which (at the moment) has a generic coupling to gravity
through the coupling constant ξ. Varying the action w.r.t. Φ

δΦS = 1
2

∫
d4x
√
−g (2gµν∂µδΦ∂νΦ + 2ξRΦδΦ)

=
∫

d4x
(
−∂µ

(√
−ggµν∂νΦ

)
+
√
−gξRΦ

)
δΦ + t.d., (4)

leads to the field equation
1√
−g

∂µ

[√
−ggµν∂νΦ

]
− ξRΦ = 0, i.e. (□− ξR)Φ = 0. (5)

This is the massless Klein-Gordon equation coupled to gravity. Let’s unpack this
wave equation for the given metric to yield

1√
−g

∂µ

[√
−ggµν∂νΦ

]
= 1√
−g

∂η

(√
−ggηη∂ηΦ

)
+ 1√
−g

∂i

(√
−ggij∂jΦ

)
= − 1

a4 ∂η

(
a2∂ηΦ

)
+ 1

a2
√
−δ

∂i

(√
−δδij∂jΦ

)
= 1

a2

[
−∂2

ηΦ− 2a′

a
∂ηΦ + ∆Φ

]
, (6)

where √−g = a4r2 sin θ and
√
−δ = r2 sin θ so √−g = a4√−δ'

&

$

%

Definitions:

• The Laplace operator in spherical coordinates:

∆ = 1√
−δ

∂i

[√
−δδij∂jΦ

]
= 1

r2 sin θ
∂r

[
r2 sin θ∂rΦ

]
+ 1

r2 sin θ
∂θ [sin θ∂jΦ] + 1

r2 sin2 θ
∂ϕ∂ϕΦ

= 1
r2 ∂r

(
r2∂rΦ

)
+ 1

r2 sin θ
∂θ (sin θ∂jΦ) + 1

r2 sin2 θ
∂2

ϕΦ (7)

• Curvature scalar (in FLRW conformal coordinates)

R = 6a′′(η)
a(η)3 (8)

Thus,
−∂2

ηΦ− 2a′

a
∂ηΦ + ∆Φ + 6ξ

a′′

a
Φ = 0. (9)

The single derivative term is problematic so we introduce an auxiliary field ϕ = aΦ
so that

∂ηΦ = a−1∂ηϕ− a′

a2 ϕ, and ∂2
ηΦ = −ϕa′′

a2 −
2a′

a2 ∂ηϕ + 2ϕa′2

a3 + 1
a

∂2
ηϕ (10)
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1 Mode decomposition

Putting this together leaves

−∂2
ηϕ + ∆ϕ + (1− 6ξ)a′′

a
ϕ = 0 (11)

Now, we see that the equation simplifies for the choice ξ = 1/6 which is precisely
the value of the conformal coupling in four dimensions. This choice leaves the action
conformally invariant. Thus, taking ξ = 1/6 leaves

(−∂2
η + ∆)ϕ(η, x) = 0. (12)

Now, we transform the field ϕ into Fourier space using

ϕ(x) =
∫ d3k⃗

(2π)ϕk⃗(η)eik⃗·x⃗ (13)

so that the field equation becomes∫ d3k⃗

(2π)
(
−∂2

ηϕk⃗(η)eik⃗·x⃗ + ϕk⃗(η)∆eik⃗·x⃗
)

=
∫ d3k⃗

(2π)
(
−ϕ′′

k⃗
(η)eik⃗·x⃗ + ϕk⃗(η)∂2eikµxµ

)

=
∫ d3k⃗

(2π)
(
−ϕ′′

k⃗
(η)eik⃗·x⃗ + ϕk⃗(η)(ikµ)(ikµ)eik⃗·x⃗

)

=
∫ d3k⃗

(2π)eik⃗·x⃗
(
−ϕ′′

k⃗
(η)− k2ϕk⃗(η)

)
. (14)

We can then write

ϕ′′
k⃗
(η) + k2ϕk⃗(η) = 0 or ϕ′′

k⃗
(η) + ω2

k⃗
ϕk⃗(η) = 0, (15)

with ωk⃗ = |k| which has the general solution

ϕk⃗ = 1√
2
(
a−

k⃗
v∗

k + a+
−k⃗

vk

)
. (16)

Here, a± are complex constants of integration dependent only on the vector k⃗ sat-
isfying a+

k⃗
= (a−

k⃗
)∗, while the mode functions vk are normalised such that

ϕk⃗∂ηϕ∗
k⃗
− ϕ∗

k⃗
∂ηϕk⃗ = 1

2

[
v′

kv∗
k − vkv∗′

k

]
= i. (17)

'

&

$

%

Note: In writing down the normalization condition, one must take note of the
following identities: As ϕ is real, ϕ∗ = ϕ; from the Fourier transform, we have
ϕ∗

k⃗
= ϕ−k⃗; and as vk depends on |k|, we have vk = v−k. This, along with the

identity a+
k⃗

= (a−
k⃗

)∗, gives a+
k⃗

a−
k⃗

= a−
−k⃗

a+
−k⃗

, which is required to write down
the normalisation condition.

Note: Here, dΣ is the volume element of a spacelike hypersurface Σ (assumed
to be a Cauchy surface) and we define dΣµ ≡ nµdΣ for a future-directed unit
vector nµ orthogonal to the hypersurface.
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This normalisation condition is simply a result of defining the scalar product

(ϕ1, ϕ2) = −i
∫

Σ
dΣµ√−gΣ ϕ1

←→
∂µ ϕ∗

2, (18)

and noting that there exists a complete set of mode solutions vk satisfying

(vk, vk′) = δkk′ , (v∗
k, v∗

k′) = −δkk′ , (vk, v∗
k′) = 0. (19)

Substitution of (17) into (13) allows us to write down the mode decomposition

ϕ̂(x) = 1√
2

∫ d3k⃗

(2π)3/2

(
â−

k⃗
v∗

keik⃗·x⃗ + â+
k⃗

vke−ik⃗·x⃗
)

, (20)

where the constants a± have been elevated to creation and annihilation operators
satisfying the usual commutation relations

[â−
k , â+

k′ ] = δkk′ , [â−
k , â−

k′ ] = [â+
k , â+

k′ ] = 0, (21)

following canonical quantization, Refs. [Birell, Mukhanov].
Quantization of the field ϕ̂ is achieved by postulating the (1) mode expansion

along with the (2) commutation relations and (3) the normalisation condition, while
the mode functions vk are specific to the theory. As vk ≡ vk(η) form a basis of
solutions to field equations, we can find explicit expressions for these by solving the
differential equation

v′′
k + k2vk = 0 to find vk = ei|k|η√

|k|
. (22)

Exercise: From the differential equation v′′
k +k2vk = 0, it is clear that vk = nkei|k|η for

some unknown constant nk is a solution. Take this solution and insert it into the in-
ner product (18) to arrive at the appropriate form for the normalisation constant nk.

Difficult Exercise: Try and solve the differential equation (−∂2
η + ∆)ϕ(η, x) = 0 by

the ‘separation of variables method’, i.e. separate the variables according to the
Ansatz ϕ(η, x) = φk(η)u(r)v(θ)w(ϕ) and substitute into the differential equation.

Hint: consider the expression ϕ−1(η, x)(−∂2
η +∆)ϕ(η, x) = 0 and isolate functions

of the same variable.
Further hint: begin by focusing on the angular coordinates and note that w′′

w

must be equal to a constant. Choose w′′/w = −l2,solve and then follow the same
methodology focusing on the θ−dependent terms.

2 Wightman two point function
Next, we turn our attention to the two-point Wightman function

W (x; x′) ≡ ⟨0|Φ(x)Φ(x′)|0⟩, (23)
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2 Wightman two point function

which will be instrumental in understanding the interaction of the detector with the
quantum field. Substitution of the mode decomposition, while noting that we have
defined the field Φ̂ in terms of the auxiliary field ϕ̂ like so Φ̂ ≡ a−1ϕ̂, gives

W (x; x′) = ⟨0|Φ(x)Φ(x′)|0⟩

= ⟨0| ϕ̂(x)ϕ̂(x′)
a(η)a(η′) |0⟩

= ⟨0| 1
a(η)a(η′)

1√
2

∫ d3k⃗

(2π)3/2

(
â−

k⃗
v∗

keik⃗·x⃗ + â+
k⃗

vke−ik⃗·x⃗
)

× 1√
2

∫ d3k⃗′

(2π)3/2

(
â−

k⃗′v
∗
k′eik⃗′·x⃗′ + â+

k⃗′vk′e−ik⃗′·x⃗′
)
|0⟩

= ⟨0| 1
a(η)a(η′)

1
2

∫ d3k⃗

(2π)3/2

∫ d3k⃗′

(2π)3/2

(
[â−

k⃗
, â+

k⃗′ ]v∗
kvk′ei(k⃗·x⃗−k⃗′·x⃗′)

)
|0⟩

= ⟨0| 1
a(η)a(η′)

1
2(2π)3

∫
d3k⃗

∫
d3k⃗′δ(k − k′)v∗

kvk′ei(k⃗·x⃗−k⃗′·x⃗′)|0⟩

=
∫ d3k⃗

2(2π)3
v∗

k(η)vk(η′)
a(η)a(η′) eik⃗·(x⃗−x⃗′) (24)

where ⟨0|a+ = 0 and a−|0⟩ = 0 and
∫∞

−∞ f(x)δ(x − x′)dx = f(x′). Now, vk = ei|k|η√
|k|

so that

W (x, x′) =
∫ d3k⃗

2(2π)3
1
|k|

e−i|k|(η−η′−iϵ)+ik⃗·(x⃗−x⃗′)

a(η)a(η′) , (25)

where we have inserted the small parameter ϵ > 0 to ensure that the expression is
a distribution.

How do we compute this integral? Consider

I =
∫ d3k⃗

|k|
e−i|k|η+ik⃗·x⃗. (26)

Uusing dimensionsal regularisation, we find

d3k⃗ =
∫

dΩ
∫

dk k2

=
∫ 2π

0
dϕ
∫ π

0
dθ sin θ

∫
dk k2

= 4π
∫

dk k2. (27)

We also note that we can rewrite the expression eik⃗·x⃗ without vectors like so

eik⃗·x⃗ =
∫ 1

−1
du ei|k|ux. (28)
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Putting this together and we find

I = 4π
∫ ∞

0
dk|k|e−i|k|η sin(|k|x)

|k|x

= 4π
∫ ∞

0
dke−ikη sin(kx)

x

= 4π

−|η|2 + |x|2 (29)

which we have computed using contour integration or the theorem of residues. That
is,

Wϵ(x; x′) = 1
(2π)2

1
a(η)a(η′)

1
−|η − η′ − iϵ|2 + |x⃗− x⃗′|2

. (30)

We can express these in terms of proper time like so

Wϵ(τ ; s) = 1
(2π)2

1
a(τ)a(τ − s)

1
−|η(τ)− η(τ − s)− iϵ|2 + |x⃗(τ)− x⃗(τ − s)|2 , (31)

where now the coordinates have been elevated to trajectories, i.e. functions of proper
time. This two point function allows us to encode the history and trajectory of a
detector as it propagates through a classical spacetime. In the next lecture we will
try and understand conceptually what this means in terms of quantum phenomena
and particle detection.
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A Transition rate in de Sitter space (additional notes for Lecture 3)

A Transition rate in de Sitter space (additional
notes for Lecture 3)

Consider the transition rate

Ḟτ (ω) = 2
∫ ∆τ

0
ds
(

cos ωs Wϵ(τ, s) + 1
4π2s2

)
+ 1

2π2∆τ
− ω

4π
. (32)

We interpret this as the rate of particle detection for the detector per unit τ . The
counter term is added to ensure regularity. ∆τ = τ − τ0 is the detection time and
ω = E − E0 is the energy gap. Let’s consider a comoving detector, i.e. t = τ and
x = x′ . Express like so

Ḟτ (ω) = 2
∫ ∞

0
ds
(

cos ωs Wϵ(τ, s) + 1
4π2s2

)
− 2

∫ ∞

∆τ
ds
(

cos ωs Wϵ(τ, s) + 1
4π2s2

)
+ 1

2π2∆τ
− ω

4π
(33)

= 2
∫ ∞

0
ds
(

cos ωs Wϵ(τ, s) + 1
4π2s2

)
− Jτ +

[
−2

∫ ∞

∆τ

ds

4π2s2 + 1
2π2∆τ

]
︸ ︷︷ ︸

cancel

− ω

4π

for fluctuating tail

Jτ ≡ 2
∫ ∞

∆τ
ds (cos ωs Wϵ(τ, s)) . (34)

Next

Ḟτ (ω) = 2
∫ ∞

0
ds
(

cos ωs Wϵ(τ, s) + cos ωs

4π2s2

)
− Jτ + 1

2π2

∫ ∞

0
ds
(1− cos ωs

s2

)
− ω

4π

= 2
∫ ∞

0
ds
(

cos ωs Wϵ(τ, s) + cos ωs

4π2s2

)
− Jτ + |ω| − ω

4π
(35)

Recall that our conformal time trajectory was defined via

dη = a−2dt =⇒ η(τ) =
∫ dτ

a(τ) . (36)

For de Sitter space, we have a(τ) = eHτ where H is the (constant Hubble parameter)
and

η(τ) = −H−1e−Hτ (37)
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while

W0(τ ; s) = − 1
(2π)2

1
a(τ)a(τ − s)

1
|η(τ)− η(τ − s)|2

= − 1
(2π)2

1
eHτ eH(τ−s)

1
|H−1e−Hτ (−1 + e+Hs)|2

= − 1
(2π)2

H2

e−Hs(−1 + e+Hs)2

= − 1
(2π)2

H2

2 + e−Hs + eHs

= − 1
(2π)2

H2

2[−1 + cosh(Hs)]

= − 1
(2π)2

H2

4 sinh2(Hs/2)
(38)

as 2 sinh2 x = cosh(2x)− 1. Thus

Ḟτ (ω) = 1
4π2

∫ ∞

0
ds cos ωs

(
− H2

4 sinh2(Hs/2)
+ 1

s2

)
− Jτ + |ω| − ω

4π
(39)

Define S ≡ Hs/2 then

Ḟτ (ω) = H2

8π2

∫ ∞

−∞
dSe−2iωS/H

(
− 1

sinh2 S
+ 1

S2

)
− Jτ + |ω| − ω

4π
. (40)

Evaluating at τ →∞ gives

Ḟτ (ω) = ω

2π

( 1
eω/TdS − 1

)
, TdS = 2π, (41)

where TdS is the de Sitter temperature, i.e. the temperature a thermalised observer
in de Sitter space will read on their thermometer.
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