Special Topic Lectures UTF Autumn 2023

Dr Aindriú Conroy

December 14, 2023

Part II Quantum Cosmology

Methodology:

1. We write down an action and a metric (FLRW)
2. Compute and solve field equations (to derive mode functions)
3. Quantize by
(a) Postulating a mode expansion
(b) with commutation relations
(c) and a normalization condition

1 Mode decomposition

Again, we consider the FLRW metric

$$
\begin{equation*}
d s^{2}=-d t^{2}+a^{2}(t)\left(d r^{2}+r^{2} d \Omega^{2}\right) \tag{1}
\end{equation*}
$$

which has flat geometry and $d \Omega^{2} \equiv d \theta^{2}+\sin ^{2} \theta d \phi^{2}$. We write this in its conformal form

$$
\begin{align*}
d s^{2} & =a^{2}(t)\left[-a^{-2} d t^{2}+d r^{2}+r^{2} d \Omega^{2}\right], \\
& =a^{2}(\eta)\left[-d \eta^{2}+d r^{2}+r^{2} d \Omega^{2}\right], \tag{2}
\end{align*}
$$

by introducing a new conformal time parameter η defined via $d \eta=a^{-1} d t$. Now, consider a massless scalar field Φ with action

$$
\begin{equation*}
S=\frac{1}{2} \int d^{4} x \sqrt{-g}\left(g^{\mu \nu} \partial_{\mu} \Phi \partial_{\nu} \Phi+\xi R \Phi^{2}\right), \tag{3}
\end{equation*}
$$

i.e. a scalar field action which (at the moment) has a generic coupling to gravity through the coupling constant ξ. Varying the action w.r.t. Φ

$$
\begin{align*}
\delta_{\Phi} S & =\frac{1}{2} \int d^{4} x \sqrt{-g}\left(2 g^{\mu \nu} \partial_{\mu} \delta \Phi \partial_{\nu} \Phi+2 \xi R \Phi \delta \Phi\right) \\
& =\int d^{4} x\left(-\partial_{\mu}\left(\sqrt{-g} g^{\mu \nu} \partial_{\nu} \Phi\right)+\sqrt{-g} \xi R \Phi\right) \delta \Phi+t . d . \tag{4}
\end{align*}
$$

leads to the field equation

$$
\begin{equation*}
\frac{1}{\sqrt{-g}} \partial_{\mu}\left[\sqrt{-g} g^{\mu \nu} \partial_{\nu} \Phi\right]-\xi R \Phi=0, \quad \text { i.e. } \quad(\square-\xi R) \Phi=0 . \tag{5}
\end{equation*}
$$

This is the massless Klein-Gordon equation coupled to gravity. Let's unpack this wave equation for the given metric to yield

$$
\begin{align*}
\frac{1}{\sqrt{-g}} \partial_{\mu}\left[\sqrt{-g} g^{\mu \nu} \partial_{\nu} \Phi\right] & =\frac{1}{\sqrt{-g}} \partial_{\eta}\left(\sqrt{-g} g^{\eta \eta} \partial_{\eta} \Phi\right)+\frac{1}{\sqrt{-g}} \partial_{i}\left(\sqrt{-g} g^{i j} \partial_{j} \Phi\right) \\
& =-\frac{1}{a^{4}} \partial_{\eta}\left(a^{2} \partial_{\eta} \Phi\right)+\frac{1}{a^{2} \sqrt{-\delta}} \partial_{i}\left(\sqrt{-\delta} \delta^{i j} \partial_{j} \Phi\right) \\
& =\frac{1}{a^{2}}\left[-\partial_{\eta}^{2} \Phi-2 \frac{a^{\prime}}{a} \partial_{\eta} \Phi+\Delta \Phi\right], \tag{6}
\end{align*}
$$

where $\sqrt{-g}=a^{4} r^{2} \sin \theta$ and $\sqrt{-\delta}=r^{2} \sin \theta$ so $\sqrt{-g}=a^{4} \sqrt{-\delta}$

Definitions:

- The Laplace operator in spherical coordinates:

$$
\begin{align*}
\Delta & =\frac{1}{\sqrt{-\delta}} \partial_{i}\left[\sqrt{-\delta} \delta^{i j} \partial_{j} \Phi\right] \\
& =\frac{1}{r^{2} \sin \theta} \partial_{r}\left[r^{2} \sin \theta \partial_{r} \Phi\right]+\frac{1}{r^{2} \sin \theta} \partial_{\theta}\left[\sin \theta \partial_{j} \Phi\right]+\frac{1}{r^{2} \sin ^{2} \theta} \partial_{\phi} \partial_{\phi} \Phi \\
& =\frac{1}{r^{2}} \partial_{r}\left(r^{2} \partial_{r} \Phi\right)+\frac{1}{r^{2} \sin \theta} \partial_{\theta}\left(\sin \theta \partial_{j} \Phi\right)+\frac{1}{r^{2} \sin ^{2} \theta} \partial_{\phi}^{2} \Phi \tag{7}
\end{align*}
$$

- Curvature scalar (in FLRW conformal coordinates)

$$
\begin{equation*}
R=6 \frac{a^{\prime \prime}(\eta)}{a(\eta)^{3}} \tag{8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
-\partial_{\eta}^{2} \Phi-2 \frac{a^{\prime}}{a} \partial_{\eta} \Phi+\Delta \Phi+6 \xi \frac{a^{\prime \prime}}{a} \Phi=0 . \tag{9}
\end{equation*}
$$

The single derivative term is problematic so we introduce an auxiliary field $\phi=a \Phi$ so that

$$
\begin{equation*}
\partial_{\eta} \Phi=a^{-1} \partial_{\eta} \phi-\frac{a^{\prime}}{a^{2}} \phi, \quad \text { and } \quad \partial_{\eta}^{2} \Phi=-\frac{\phi a^{\prime \prime}}{a^{2}}-\frac{2 a^{\prime}}{a^{2}} \partial_{\eta} \phi+\frac{2 \phi a^{\prime 2}}{a^{3}}+\frac{1}{a} \partial_{\eta}^{2} \phi \tag{10}
\end{equation*}
$$

Putting this together leaves

$$
\begin{equation*}
-\partial_{\eta}^{2} \phi+\Delta \phi+(1-6 \xi) \frac{a^{\prime \prime}}{a} \phi=0 \tag{11}
\end{equation*}
$$

Now, we see that the equation simplifies for the choice $\xi=1 / 6$ which is precisely the value of the conformal coupling in four dimensions. This choice leaves the action conformally invariant. Thus, taking $\xi=1 / 6$ leaves

$$
\begin{equation*}
\left(-\partial_{\eta}^{2}+\Delta\right) \phi(\eta, x)=0 \tag{12}
\end{equation*}
$$

Now, we transform the field ϕ into Fourier space using

$$
\begin{equation*}
\phi(x)=\int \frac{d^{3} \vec{k}}{(2 \pi)} \phi_{\vec{k}}(\eta) e^{i \vec{k} \cdot \vec{x}} \tag{13}
\end{equation*}
$$

so that the field equation becomes

$$
\begin{align*}
\int \frac{d^{3} \vec{k}}{(2 \pi)}\left(-\partial_{\eta}^{2} \phi_{\vec{k}}(\eta) e^{i \vec{k} \cdot \vec{x}}+\phi_{\vec{k}}(\eta) \Delta e^{i \vec{k} \cdot \vec{x}}\right) & =\int \frac{d^{3} \vec{k}}{(2 \pi)}\left(-\phi_{\vec{k}}^{\prime \prime}(\eta) e^{i \vec{k} \cdot \vec{x}}+\phi_{\vec{k}}(\eta) \partial^{2} e^{i k^{\mu} x_{\mu}}\right) \\
& =\int \frac{d^{3} \vec{k}}{(2 \pi)}\left(-\phi_{\vec{k}}^{\prime \prime}(\eta) e^{i \vec{k} \cdot \vec{x}}+\phi_{\vec{k}}(\eta)\left(i k^{\mu}\right)\left(i k_{\mu}\right) e^{i \vec{k} \cdot \vec{x}}\right) \\
& =\int \frac{d^{3} \vec{k}}{(2 \pi)} e^{i \vec{k} \cdot \vec{x}}\left(-\phi_{\vec{k}}^{\prime \prime}(\eta)-k^{2} \phi_{\vec{k}}(\eta)\right) \tag{14}
\end{align*}
$$

We can then write

$$
\begin{equation*}
\phi_{\vec{k}}^{\prime \prime}(\eta)+k^{2} \phi_{\vec{k}}(\eta)=0 \quad \text { or } \quad \phi_{\vec{k}}^{\prime \prime}(\eta)+\omega_{\vec{k}}^{2} \phi_{\vec{k}}(\eta)=0 \tag{15}
\end{equation*}
$$

with $\omega_{\vec{k}}=|k|$ which has the general solution

$$
\begin{equation*}
\phi_{\vec{k}}=\frac{1}{\sqrt{2}}\left(a_{\vec{k}}^{-} v_{k}^{*}+a_{-\vec{k}}^{+} v_{k}\right) . \tag{16}
\end{equation*}
$$

Here, $a^{ \pm}$are complex constants of integration dependent only on the vector \vec{k} satisfying $a_{\vec{k}}^{+}=\left(a_{\vec{k}}^{-}\right)^{*}$, while the mode functions v_{k} are normalised such that

$$
\begin{equation*}
\phi_{\vec{k}} \partial_{\eta} \phi_{\vec{k}}^{*}-\phi_{\vec{k}}^{*} \partial_{\eta} \phi_{\vec{k}}=\frac{1}{2}\left[v_{k}^{\prime} v_{k}^{*}-v_{k} v_{k}^{* \prime}\right]=i . \tag{17}
\end{equation*}
$$

Note: In writing down the normalization condition, one must take note of the following identities: As ϕ is real, $\phi^{*}=\phi$; from the Fourier transform, we have $\phi_{\vec{k}}^{*}=\phi_{-\vec{k}}$; and as v_{k} depends on $|k|$, we have $v_{k}=v_{-k}$. This, along with the identity $a_{\vec{k}}^{+}=\left(a_{\vec{k}}^{-}\right)^{*}$, gives $a_{\vec{k}}^{+} a_{\vec{k}}^{-}=a_{-\vec{k}}^{-} a_{-\vec{k}}^{+}$, which is required to write down the normalisation condition.

Note: Here, $d \Sigma$ is the volume element of a spacelike hypersurface Σ (assumed
 vector n^{μ} orthogonal to the hypersurface.

This normalisation condition is simply a result of defining the scalar product

$$
\begin{equation*}
\left(\phi_{1}, \phi_{2}\right)=-i \int_{\Sigma} d \Sigma^{\mu} \sqrt{-g_{\Sigma}} \phi_{1} \overleftrightarrow{\partial_{\mu}} \phi_{2}^{*} \tag{18}
\end{equation*}
$$

and noting that there exists a complete set of mode solutions v_{k} satisfying

$$
\begin{equation*}
\left(v_{k}, v_{k^{\prime}}\right)=\delta_{k k^{\prime}}, \quad\left(v_{k}^{*}, v_{k^{\prime}}^{*}\right)=-\delta_{k k^{\prime}}, \quad\left(v_{k}, v_{k^{\prime}}^{*}\right)=0 . \tag{19}
\end{equation*}
$$

Substitution of (17) into (13) allows us to write down the mode decomposition

$$
\begin{equation*}
\hat{\phi}(x)=\frac{1}{\sqrt{2}} \int \frac{d^{3} \vec{k}}{(2 \pi)^{3 / 2}}\left(\hat{a}_{\vec{k}}^{-} v_{k}^{*} e^{i \vec{k} \cdot \vec{x}}+\hat{a}_{\vec{k}}^{+} v_{k} e^{-i \vec{k} \cdot \vec{x}}\right), \tag{20}
\end{equation*}
$$

where the constants $a^{ \pm}$have been elevated to creation and annihilation operators satisfying the usual commutation relations

$$
\begin{equation*}
\left[\hat{a}_{\mathbf{k}}^{-}, \hat{a}_{\mathbf{k}^{\prime}}^{+}\right]=\delta_{\mathbf{k} \mathbf{k}^{\prime}}, \quad\left[\hat{a}_{\mathbf{k}}^{-}, \hat{a}_{\mathbf{k}^{\prime}}^{-}\right]=\left[\hat{a}_{\mathbf{k}}^{+}, \hat{a}_{\mathbf{k}^{\prime}}^{+}\right]=0 \tag{21}
\end{equation*}
$$

following canonical quantization, Refs. [Birell, Mukhanov].
Quantization of the field $\hat{\phi}$ is achieved by postulating the (1) mode expansion along with the (2) commutation relations and (3) the normalisation condition, while the mode functions v_{k} are specific to the theory. As $v_{k} \equiv v_{k}(\eta)$ form a basis of solutions to field equations, we can find explicit expressions for these by solving the differential equation

$$
\begin{equation*}
v_{k}^{\prime \prime}+k^{2} v_{k}=0 \quad \text { to find } \quad v_{k}=\frac{e^{i|k| \eta}}{\sqrt{|k|}} \tag{22}
\end{equation*}
$$

Exercise: From the differential equation $v_{k}^{\prime \prime}+k^{2} v_{k}=0$, it is clear that $v_{k}=n_{k} e^{i|k| \eta}$ for some unknown constant n_{k} is a solution. Take this solution and insert it into the inner product (18) to arrive at the appropriate form for the normalisation constant n_{k}.

Difficult Exercise: Try and solve the differential equation $\left(-\partial_{\eta}^{2}+\Delta\right) \phi(\eta, x)=0$ by the 'separation of variables method', i.e. separate the variables according to the Ansatz $\phi(\eta, x)=\varphi_{k}(\eta) u(r) v(\theta) w(\phi)$ and substitute into the differential equation.

Hint: consider the expression $\phi^{-1}(\eta, x)\left(-\partial_{\eta}^{2}+\Delta\right) \phi(\eta, x)=0$ and isolate functions of the same variable.

Further hint: begin by focusing on the angular coordinates and note that $\frac{w^{\prime \prime}}{w}$ must be equal to a constant. Choose $w^{\prime \prime} / w=-l^{2}$, solve and then follow the same methodology focusing on the θ-dependent terms.

2 Wightman two point function

Next, we turn our attention to the two-point Wightman function

$$
\begin{equation*}
W\left(x ; x^{\prime}\right) \equiv\langle 0| \Phi(x) \Phi\left(x^{\prime}\right)|0\rangle, \tag{23}
\end{equation*}
$$

which will be instrumental in understanding the interaction of the detector with the quantum field. Substitution of the mode decomposition, while noting that we have defined the field $\hat{\Phi}$ in terms of the auxiliary field $\hat{\phi}$ like so $\hat{\Phi} \equiv a^{-1} \hat{\phi}$, gives

$$
\begin{align*}
W\left(x ; x^{\prime}\right) & =\langle 0| \Phi(x) \Phi\left(x^{\prime}\right)|0\rangle \\
& =\langle 0| \frac{\hat{\phi}(x) \hat{\phi}\left(x^{\prime}\right)}{a(\eta) a\left(\eta^{\prime}\right)}|0\rangle \\
& =\langle 0| \frac{1}{a(\eta) a\left(\eta^{\prime}\right)} \frac{1}{\sqrt{2}} \int \frac{d^{3} \vec{k}}{(2 \pi)^{3 / 2}}\left(\hat{a}_{\vec{k}}^{-} v_{\vec{k}}^{*} e^{i \vec{k} \cdot \vec{x}}+\hat{a}_{\vec{k}}^{+} v_{k} e^{-i \vec{k} \cdot \vec{x}}\right) \\
& \times \frac{1}{\sqrt{2}} \int \frac{d^{3} \overrightarrow{k^{\prime}}}{(2 \pi)^{3 / 2}}\left(\hat{a}_{\overrightarrow{k^{\prime}}}^{-} v_{k^{\prime}}^{*} e^{i \vec{k}^{\prime} \cdot \vec{x}^{\prime}}+\hat{a}_{\overrightarrow{k^{\prime}}}^{+} v_{k^{\prime}} e^{-i \vec{k}^{\prime} \cdot \vec{x}^{\prime}}\right)|0\rangle \\
& =\langle 0| \frac{1}{a(\eta) a\left(\eta^{\prime}\right)} \frac{1}{2} \int \frac{d^{3} \vec{k}}{(2 \pi)^{3 / 2}} \int \frac{d^{3} \overrightarrow{k^{\prime}}}{(2 \pi)^{3 / 2}}\left(\left[\hat{a}_{\vec{k}}^{-}, \hat{a}_{\vec{k}^{\prime}}^{+} v_{k}^{*} v_{k^{\prime}} e^{i\left(\vec{k} \cdot \vec{x}-\overrightarrow{k^{\prime}} \cdot \overrightarrow{x^{\prime}}\right)}\right)|0\rangle\right. \\
& =\langle 0| \frac{1}{a(\eta) a\left(\eta^{\prime}\right)} \frac{1}{2(2 \pi)^{3}} \int d^{3} \vec{k} \int d^{3} \overrightarrow{k^{\prime}} \delta\left(k-k^{\prime}\right) v_{k}^{*} v_{k^{\prime}}^{i\left(\vec{k} \cdot \vec{x}-\overrightarrow{k^{\prime}} \cdot \vec{x}^{\prime}\right)}|0\rangle \\
& =\int \frac{d^{3} \vec{k}}{2(2 \pi)^{3} \frac{v_{k}^{*}(\eta) v_{k}\left(\eta^{\prime}\right)}{a(\eta) a\left(\eta^{\prime}\right)} e^{i \vec{k} \cdot\left(\vec{x}-\vec{x}^{\prime}\right)}} . \tag{24}
\end{align*}
$$

where $\langle 0| a^{+}=0$ and $a^{-}|0\rangle=0$ and $\int_{-\infty}^{\infty} f(x) \delta\left(x-x^{\prime}\right) d x=f\left(x^{\prime}\right)$. Now, $v_{k}=\frac{e^{i|k| \eta}}{\sqrt{|k|}}$ so that

$$
\begin{equation*}
W\left(x, x^{\prime}\right)=\int \frac{d^{3} \vec{k}}{2(2 \pi)^{3}} \frac{1}{|k|} \frac{e^{-i|k|\left(\eta-\eta^{\prime}-i \epsilon\right)+i \vec{k} \cdot\left(\vec{x}-\vec{x}^{\prime}\right)}}{a(\eta) a\left(\eta^{\prime}\right)}, \tag{25}
\end{equation*}
$$

where we have inserted the small parameter $\epsilon>0$ to ensure that the expression is a distribution.

How do we compute this integral? Consider

$$
\begin{equation*}
\mathcal{I}=\int \frac{d^{3} \vec{k}}{|k|} e^{-i|k| \eta+i \vec{k} \cdot \vec{x}} \tag{26}
\end{equation*}
$$

Uusing dimensionsal regularisation, we find

$$
\begin{align*}
d^{3} \vec{k} & =\int d \Omega \int d k k^{2} \\
& =\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta \int d k k^{2} \\
& =4 \pi \int d k k^{2} \tag{27}
\end{align*}
$$

We also note that we can rewrite the expression $e^{i \vec{k} \cdot \vec{x}}$ without vectors like so

$$
\begin{equation*}
e^{i \vec{k} \cdot \vec{x}}=\int_{-1}^{1} d u e^{i|k| u x} \tag{28}
\end{equation*}
$$

Putting this together and we find

$$
\begin{align*}
\mathcal{I} & =4 \pi \int_{0}^{\infty} d k|k| e^{-i|k| \eta} \frac{\sin (|k| x)}{|k| x} \\
& =4 \pi \int_{0}^{\infty} d k e^{-i k \eta} \frac{\sin (k x)}{x} \\
& =\frac{4 \pi}{-|\eta|^{2}+|x|^{2}} \tag{29}
\end{align*}
$$

which we have computed using contour integration or the theorem of residues. That is,

$$
\begin{equation*}
W_{\epsilon}\left(x ; x^{\prime}\right)=\frac{1}{(2 \pi)^{2}} \frac{1}{a(\eta) a\left(\eta^{\prime}\right)} \frac{1}{-\left|\eta-\eta^{\prime}-i \epsilon\right|^{2}+\left|\vec{x}-\vec{x}^{\prime}\right|^{2}} . \tag{30}
\end{equation*}
$$

We can express these in terms of proper time like so

$$
\begin{equation*}
W_{\epsilon}(\tau ; s)=\frac{1}{(2 \pi)^{2}} \frac{1}{a(\tau) a(\tau-s)} \frac{1}{-|\eta(\tau)-\eta(\tau-s)-i \epsilon|^{2}+|\vec{x}(\tau)-\vec{x}(\tau-s)|^{2}}, \tag{31}
\end{equation*}
$$

where now the coordinates have been elevated to trajectories, i.e. functions of proper time. This two point function allows us to encode the history and trajectory of a detector as it propagates through a classical spacetime. In the next lecture we will try and understand conceptually what this means in terms of quantum phenomena and particle detection.

A Transition rate in de Sitter space (additional notes for Lecture 3)

Consider the transition rate

$$
\begin{equation*}
\dot{\mathcal{F}}_{\tau}(\omega)=2 \int_{0}^{\Delta \tau} d s\left(\cos \omega s W_{\epsilon}(\tau, s)+\frac{1}{4 \pi^{2} s^{2}}\right)+\frac{1}{2 \pi^{2} \Delta \tau}-\frac{\omega}{4 \pi} . \tag{32}
\end{equation*}
$$

We interpret this as the rate of particle detection for the detector per unit τ. The counter term is added to ensure regularity. $\Delta \tau=\tau-\tau_{0}$ is the detection time and $\omega=E-E_{0}$ is the energy gap. Let's consider a comoving detector, i.e. $t=\tau$ and $x=x^{\prime}$. Express like so

$$
\begin{align*}
\dot{\mathcal{F}}_{\tau}(\omega) & =2 \int_{0}^{\infty} d s\left(\cos \omega s W_{\epsilon}(\tau, s)+\frac{1}{4 \pi^{2} s^{2}}\right) \\
& -2 \int_{\Delta \tau}^{\infty} d s\left(\cos \omega s W_{\epsilon}(\tau, s)+\frac{1}{4 \pi^{2} s^{2}}\right)+\frac{1}{2 \pi^{2} \Delta \tau}-\frac{\omega}{4 \pi} \tag{33}\\
& =2 \int_{0}^{\infty} d s\left(\cos \omega s W_{\epsilon}(\tau, s)+\frac{1}{4 \pi^{2} s^{2}}\right)-J_{\tau}+\underbrace{\left[-2 \int_{\Delta \tau}^{\infty} \frac{d s}{4 \pi^{2} s^{2}}+\frac{1}{2 \pi^{2} \Delta \tau}\right]}_{\text {cancel }}-\frac{\omega}{4 \pi}
\end{align*}
$$

for fluctuating tail

$$
\begin{equation*}
J_{\tau} \equiv 2 \int_{\Delta \tau}^{\infty} d s\left(\cos \omega s W_{\epsilon}(\tau, s)\right) \tag{34}
\end{equation*}
$$

Next

$$
\begin{align*}
\dot{\mathcal{F}}_{\tau}(\omega) & =2 \int_{0}^{\infty} d s\left(\cos \omega s W_{\epsilon}(\tau, s)+\frac{\cos \omega s}{4 \pi^{2} s^{2}}\right)-J_{\tau}+\frac{1}{2 \pi^{2}} \int_{0}^{\infty} d s\left(\frac{1-\cos \omega s}{s^{2}}\right)-\frac{\omega}{4 \pi} \\
& =2 \int_{0}^{\infty} d s\left(\cos \omega s W_{\epsilon}(\tau, s)+\frac{\cos \omega s}{4 \pi^{2} s^{2}}\right)-J_{\tau}+\frac{|\omega|-\omega}{4 \pi} \tag{35}
\end{align*}
$$

Recall that our conformal time trajectory was defined via

$$
\begin{equation*}
d \eta=a^{-2} d t \quad \Longrightarrow \quad \eta(\tau)=\int \frac{d \tau}{a(\tau)} \tag{36}
\end{equation*}
$$

For de Sitter space, we have $a(\tau)=e^{H \tau}$ where H is the (constant Hubble parameter) and

$$
\begin{equation*}
\eta(\tau)=-H^{-1} e^{-H \tau} \tag{37}
\end{equation*}
$$

while

$$
\begin{align*}
W_{0}(\tau ; s) & =-\frac{1}{(2 \pi)^{2}} \frac{1}{a(\tau) a(\tau-s)} \frac{1}{|\eta(\tau)-\eta(\tau-s)|^{2}} \\
& =-\frac{1}{(2 \pi)^{2}} \frac{1}{e^{H \tau} e^{H(\tau-s)}} \frac{1}{\left|H^{-1} e^{-H \tau}\left(-1+e^{+H s}\right)\right|^{2}} \\
& =-\frac{1}{(2 \pi)^{2}} \frac{H^{2}}{e^{-H s}\left(-1+e^{+H s}\right)^{2}} \\
& =-\frac{1}{(2 \pi)^{2}} \frac{H^{2}}{2+e^{-H s}+e^{H s}} \\
& =-\frac{1}{(2 \pi)^{2}} \frac{H^{2}}{2[-1+\cosh (H s)]} \\
& =-\frac{1}{(2 \pi)^{2}} \frac{H^{2}}{4 \sinh ^{2}(H s / 2)} \tag{38}
\end{align*}
$$

as $2 \sinh ^{2} x=\cosh (2 x)-1$. Thus

$$
\begin{equation*}
\dot{\mathcal{F}}_{\tau}(\omega)=\frac{1}{4 \pi^{2}} \int_{0}^{\infty} d s \cos \omega s\left(-\frac{H^{2}}{4 \sinh ^{2}(H s / 2)}+\frac{1}{s^{2}}\right)-J_{\tau}+\frac{|\omega|-\omega}{4 \pi} \tag{39}
\end{equation*}
$$

Define $S \equiv H s / 2$ then

$$
\begin{equation*}
\dot{\mathcal{F}}_{\tau}(\omega)=\frac{H^{2}}{8 \pi^{2}} \int_{-\infty}^{\infty} d S e^{-2 i \omega S / H}\left(-\frac{1}{\sinh ^{2} S}+\frac{1}{S^{2}}\right)-J_{\tau}+\frac{|\omega|-\omega}{4 \pi} . \tag{40}
\end{equation*}
$$

Evaluating at $\tau \rightarrow \infty$ gives

$$
\begin{equation*}
\dot{\mathcal{F}}_{\tau}(\omega)=\frac{\omega}{2 \pi}\left(\frac{1}{e^{\omega / T_{d S}}-1}\right), \quad T_{d S}=2 \pi \tag{41}
\end{equation*}
$$

where $T_{d S}$ is the de Sitter temperature, i.e. the temperature a thermalised observer in de Sitter space will read on their thermometer.

