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Quantum Field Theory in Curved Spacetime (QFTCS)
Introduction

▶ QFTCS is a framework to understand how quantum fields
behave as they propagate through a classical spacetime.

▶ In this sense, QFTCS is an approximation of a quantum
theory of gravity where the quantum nature of fields and
the effects of gravitation are important but the quantum
nature of gravity itself is assumed to be negligible.
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Quantum Field Theory in Curved Spacetime (QFTCS)

QFTCS has enjoyed particular success in analysing quantum
phenomena such as

1. Cosmological particle creation
▶ The expansion of the Universe can result in the evolution of

a vacuum and the creation of particles.

2. Hawking radiation
▶ Tiny fluctuations on the event horizon of a black hole lead

to low-energy radiation and the evaporation of the black
hole.

3. Unruh effect
▶ This is the radiation experienced by uniformly accelerated

observers.
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(a) No natural choice which corresponds to the physical
absence of ‘particles’

(b) This is true even in flat space were the vacuum is chosen
not because it is uniquely defined but because it agrees with
all measuring devices passing along an inertial trajectory.

(c) While a ‘particle’ may be observed by a detector tuned to
one vacuum, it may not be observed by a detector tuned to
another vacuum.



Quantum Field Theory in Curved Spacetime (QFTCS)
Three Concepts

1. No unique vacuum

(a) No natural choice which corresponds to the physical
absence of ‘particles’

(b) This is true even in flat space were the vacuum is chosen
not because it is uniquely defined but because it agrees with
all measuring devices passing along an inertial trajectory.

(c) While a ‘particle’ may be observed by a detector tuned to
one vacuum, it may not be observed by a detector tuned to
another vacuum.



Quantum Field Theory in Curved Spacetime (QFTCS)
Three Concepts

1. No unique vacuum

(a) No natural choice which corresponds to the physical
absence of ‘particles’

(b) This is true even in flat space were the vacuum is chosen
not because it is uniquely defined but because it agrees with
all measuring devices passing along an inertial trajectory.

(c) While a ‘particle’ may be observed by a detector tuned to
one vacuum, it may not be observed by a detector tuned to
another vacuum.



Quantum Field Theory in Curved Spacetime (QFTCS)
Three Concepts

1. No unique vacuum

2. No well-defined notion of a particle

3. The Unruh-DeWitt detector model gives an operational
meaning to the notion of a particle



Quantum Field Theory in Curved Spacetime (QFTCS)
Three Concepts

2. No well-defined notion of a particle1

(a) The canonical path of QFT is to treat fields rather than
particles as the fundamental object of interest

(b) However, we needn’t entirely dispense with the particle
concept as...

1This is a consequence of the lack of global symmetries in curved space. In particular, one
cannot identify a global time function to distinguish between positive frequency and negative
frequency modes leading to an ambiguity in the particle concept
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What is the Unruh-DeWitt particle detector model?

▶ Picture a simple, idealised quantum mechanical measuring
device travelling through spacetime on a given
trajectory.

▶ Think of this measuring device as a 2-level atom where
interaction between this atom and the quantum field
governs the transition from ground state to excited state
and vice versa.

▶ We interpret this transition as the device registering a
‘particle’ and as such call the device a particle detector. We
may then say that

a particle is what a particle detector detects!
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What is the Unruh-DeWitt particle detector model?

▶ Just as an electron moves from its ground to its excited
state through the absorption of a photon...

▶ The absorption of field quanta by the atom can promote
the atom from ground state to excited state .

▶ We interpret this atomic excitation as a detector
registering a particle.

▶ Conversely, the detector can de-excite by emitting quanta.
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Particle Detector Theory & Response

Suppose that the particle detector travels along a world line
xµ(τ). Interaction between the detector and the quantum field
φ̂(x) is governed by the Hamiltonian2

Hint = cχ(τ)µ̂(τ)φ̂(x).

Interaction is turned on and off via the switching function χ(τ).
The probability that the detector will transition from ground
state to excited state is described by

P (ω) = c2|⟨E|µ(0)|E0⟩|2F(ω),

where the response function is defined via

F(ω) = 2 lim
ϵ→0+

ℜ
∫ ∞

−∞
duχ(u)

∫ ∞

0
dsχ(u− s)e−i ω sWϵ(u, u− s).

2c is a coupling constant and µ̂(τ) the detector’s monopole moment operator.
J. Louko, A. Satz, Classical and Quantum Gravity 25 055012 (2018).



Sharp-switching limit
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F(ω) = 2 lim
ϵ→0+

ℜ
∫ ∞

−∞
duχ(u)

∫ ∞

0
dsχ(u− s)e−i ω sWϵ(u, u− s).

▶ We must initially assume that the switching function χ is
smooth (and of compact support) so that the response
function is regular

▶ We also assume that W (x;x′) follows the Hadamard
singularity structure, i.e. singular behaviour at x = x′

which require the iϵ−regularisation.
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du
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(
cosωs
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1

s2

)
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1

2π2
ln

(
∆τ

δ

)
− ω

4π
∆τ + C1 +O

(
δ

∆τ

)
,

▶ The limit of sharp-switching (δ → 0) helps ‘distil’ transient
effects associated with turning on the detector.

▶ However, the response function blows up at this limit.
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Ḟτ (ω) = 2

∫ ∆τ

0
ds

(
cosωs W (τ, τ − s) +

1

4π2s2

)
− ω

4π
+

1

2π2∆τ
.

▶ Nevertheless, the derivative of the response function or
transition rate is regular at this limit.

▶ This will be our main object of interest and we interpret it
as the rate of particle detection of quantum particles that
are ‘produced’ as a result of interaction with the quantum
field.

▶ We can use this to understand quantum phenomena
associated with the curvature of the spacetime (Hawking
effect) or the acceleration of the detector itself (Unruh
effect)
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How do we model the temperature of the
detector?



A comoving detector in de Sitter space
Analytic example

Consider a transition rate of the form

Ḟτ (ω) =
1

2π2

∫ ∆τ

0
ds

(
cosωs

σ2(τ, s)
+

1

s2

)
+

1

2π2∆τ
− ω

4π
,

where we have defined σ2(τ, s) ≡ a(τ)a(τ − s)(∆x)2 s.t.
(∆x)2 ≡ ηµν∆xµ∆xν . Equivalently, we may write

Ḟτ (ω) =
1

2π2

∫ ∞

0
ds

(
cosωs

σ2(τ, s)
+

1

s2

)
+ Jτ −

ω

4π
,

where we define the ‘fluctuating tail’

Jτ ≡ − 1

2π2

∫ ∞

∆τ

cosωs

σ2(τ, s)
ds,

which vanishes at the limit ∆τ → ∞.



A comoving detector in de Sitter space
Analytic example

Next, by adding and subtracting a cos(ωs)/s2 term in the
integrand, we can re-write this like so

Ḟτ (ω) =
1

2π2

∫ ∞

0
ds cosωs

(
1

σ2(τ, s)
+

1

s2

)
+ Jτ +

|ω| − ω

4π
,

The final term is of precisely the same form as an inertial
detector coupled to a field in the Minkowski vacuum.

De Sitter space in FLRW coordinates is characterised by the
scale factor a(t) = eHt, where H is now the Hubble constant.

This ensures that the ‘world function’ is independent of proper
time, i.e. σ2(τ, s) = σ2(s), a simplification which is present also
in the case of stationary (and static) black hole spacetimes.
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A comoving detector in de Sitter space
Analytic result

For a comoving detector t = τ , we have

η(τ) =

∫
dτ

a(τ)
= −H−1e−Hτ , σ2(s) = −4H−2 sinh2

(
Hs

2

)
,

and r(τ) = r0. After redefining the variable of integration s, we
can write

Ḟcorr
τ (ω) ≡ H

8π2

∫ ∞

−∞
ds e−2iωs/H

(
− 1

sinh2 s
+

1

s2

)
+ Jτ ,

which, evaluated at ∆τ → ∞, gives

Ḟ∞(ω) =
ω

2π

(
1

eω/TdS − 1

)
, TdS = H/2π,

where TdS is the de Sitter temperature, i.e. the temperature an
inertial observer in de Sitter space will read on their
thermometer.
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A comoving detector in de Sitter space
Analytic result

Ḟ∞(ω) =
ω

2π

(
1

eω/TdS − 1

)
, TdS = H/2π,

The detector registers an exactly Planckian distribution for a
blackbody in thermal equilibrium in the limit of large detec-
tion time.

This mirrors the behaviour of a static detector (coupled to a
field in the Hartle-Hawking state) in a black hole spacetime.

We have also made some connection between the detector and
temperature.

Next Question: How do we model the temperature of the
detector for finite times?
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A Kodama detector in de Sitter space
Analytic result

For a Kodama detector, we have a less simple relation beween
cosmic time t and proper time τ , i.e. τ =

√
VdSt where

VdS ≡ 1−H2K2. We then have

a(τ) = e
Hτ√
VdS , η(τ) = − 1

H
e
− Hτ√

VdS , r(τ) =

√
1− VdS

H
e
− Hτ√

VdS ,

from which we find

Ḟτ (ω) ≡
ω

2π

[
1

eω/T
loc
dS − 1

]
, T loc

dS ≡ H

2π
√
VdS

,

as ∆τ → ∞.

This is a very similar expression to the comoving case but
where the temperature has been red-shifted away from the de
Sitter temperature so that it is now the locally-measured KMS
temperature.
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Sitter temperature so that it is now the locally-measured KMS
temperature.



A Kodama detector in de Sitter space
Analytic result

Ḟτ (ω) ≡
ω

2π

[
1

eω/T
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]
, T loc

dS ≡ H

2π
√
VdS

,

This corresponds to the local temperature of the field at the
location of the detector and is red-shifted away from the de
Sitter temperature.

From here, we reason that we can estimate the temperature of
the detector using

TEDR = − ω

lnR
, R = Ḟτ (ω)/Ḟτ (−ω)

where TEDR must be independent of ω.

In the Kodama (or comoving) case, we find TEDR = Tloc

meaning

the detector has thermalised to the local field temperature Tloc.
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Some results



Black hole vs. Cosmological spacetimes
Some things to bear in mind

Black hole

– In general, the propagator
is not known in closed form
and requires significant
numerical work.

+ In stationary black hole
spacetimes, the existence of
a Killing vector allows us
to define physical
quantities such as surface
gravity and temperature
on the event horizon.

Cosmology

+ FRW spacetime is
conformally-flat and so we
can use the conformal
mode decomposition,
easing numerical burden.

– Due to the dynamical
nature of the cosmological
apparent horizon, surface
gravity and temperature
become ambiguous.



Static vs. Comoving detector
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▶ Here, we plot the transition rate as a function of the energy gap.

▶ Recall that the energy gap ω = E −E0 is the difference in energy
between the ground state and excited state.

▶ Here we see that in both cases, we have the expected behaviour
of a detector being generically more likely to emit quanta
(ω < 0) than it is to absorb (ω > 0).

▶ In the comoving case (right), the detector more closely resembles
the static case when the scale factor approaches flat space
(yellow).



Static vs. Comoving detector

-4 -2 2 4
ω

0.1

0.2

0.3

0.4

0.5

0.6

ℱ


-4 -2 2 4
ω

0.1

0.2

0.3

0.4

0.5

0.6

ℱ


▶ Here, we plot the transition rate as a function of the energy gap.

▶ Recall that the energy gap ω = E −E0 is the difference in energy
between the ground state and excited state.

▶ Here we see that in both cases, we have the expected behaviour
of a detector being generically more likely to emit quanta
(ω < 0) than it is to absorb (ω > 0).

▶ In the comoving case (right), the detector more closely resembles
the static case when the scale factor approaches flat space
(yellow).



Static vs. Comoving detector

-4 -2 2 4
ω

0.1

0.2

0.3

0.4

0.5

0.6

ℱ


-4 -2 2 4
ω

0.1

0.2

0.3

0.4

0.5

0.6

ℱ


▶ Here, we plot the transition rate as a function of the energy gap.

▶ Recall that the energy gap ω = E −E0 is the difference in energy
between the ground state and excited state.

▶ Here we see that in both cases, we have the expected behaviour
of a detector being generically more likely to emit quanta
(ω < 0) than it is to absorb (ω > 0).

▶ In the comoving case (right), the detector more closely resembles
the static case when the scale factor approaches flat space
(yellow).



Static vs. Comoving detector

-4 -2 2 4
ω

0.1

0.2

0.3

0.4

0.5

0.6

ℱ


-4 -2 2 4
ω

0.1

0.2

0.3

0.4

0.5

0.6

ℱ


▶ Here, we plot the transition rate as a function of the energy gap.

▶ Recall that the energy gap ω = E −E0 is the difference in energy
between the ground state and excited state.

▶ Here we see that in both cases, we have the expected behaviour
of a detector being generically more likely to emit quanta
(ω < 0) than it is to absorb (ω > 0).

▶ In the comoving case (right), the detector more closely resembles
the static case when the scale factor approaches flat space
(yellow).



Static vs. Comoving detector
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▶ Here, we plot the temperature of the detector over time.

▶ In the static case (left), we observe that the once transient effects
associated with turning on the detector are distilled by a
suitably long detection time, the temperature of the detector
thermalises to Tloc

▶ Similarly, in the case of a comoving detector coupled to a field in
the de Sitter Universe, the detector thermalises to the de Sitter
temperature TdS .

▶ This is the temperature an inertial observer in de Sitter space
will read on their thermometer.
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Thermalisation of the detector
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▶ In Phys.Rev.D 105 (2022) 12, 123513 arXiv:2204.00359, we show
that for a broader class of asymptotically-de Sitter spacetimes,
that the temperature of the detector thermalises to the
Hayward-Kodama temperature, discussed in Lecture 1.
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