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5 Fields of accelerated sources: Born in de Sitter

III. MANY FACES OF DE SITTER

The fields due to various types of uniformly acceler-
ated sources in de Sitter spacetime found in [24], as well
as those described briefly in Ref. [25], were constructed
by employing the conformal relation between Minkowski
and de Sitter spacetimes. When analyzing the world-
lines of the sources in de Sitter spacetime and their rela-
tion to the corresponding worldlines in Minkowski space-
time we need to introduce appropriate coordinate sys-
tems. Suitable coordinates will later be used to exhibit
various properties of the fields. An extensive literature
exists on various types of coordinates in de Sitter space
(e.g. [41, 42]), but we want to survey some of them in
this section. In particular, we relate them to the corre-
sponding coordinates on conformally related Minkowski
spaces since this does not appear to be given elsewhere.
In the next section, after identifying the worldlines of
uniformly accelerated particles in de Sitter space, we
shall construct new coordinate systems tied to such par-
ticles, such as Rindler-type “accelerated” coordinates, or
Robinson-Trautman-type coordinates in which the null
cones emanating from the particles have especially sim-
ple forms. These coordinate systems will turn out to be
very useful in analyzing the fields. Here, in the main text,
however, only a brief description of relevant coordinates
will be given. More details, including both formulas and
illustrations, are relegated to the Appendix.

As it is well-known from textbooks on general relativ-
ity (for a recent pedagogical exposition, see [43]), de Sit-
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Figure 2: The spherical cosmological coordinates and a pair
of uniformly accelerated particles wg and wg in de Sitter
universe: the conformal diagram (above) and projection on
the spacelike cut 7 = constant in the standard cosmological
spherical coordinates (angle o suppressed). The whole de Sit-
ter spacetime could be represented by just the “right half”
of the conformal diagram. For convenience, we admit nega-
tive values of radial coordinates and identify # = x = —m and
7 = x = 7 (see the text below Eq. (3.12) and the Appendix).

ter spacetime, which is the solution of Einstein vacuum
equations with a cosmological term A > 0, is best visu-
alized as the 4-dimensional hyperboloid imbedded in flat
5-dimensional Minkowski space. It is the homogeneous
space of constant curvature equal to 4A. Hereafter, we
use the quantity

E

- (3.1)

(with the dimension of length) to parametrize the radius
of the curvature.

The entire de Sitter spacetime can be covered by a
single coordinate system—which we call standard coor-
dinates—71 € R, x € (0,7), 9 € (0,7), ¢ € (—m,7) in
which the metric reads

gas = —dr? + 3 cosh® = (dx” +sin”x dw”) | (32)

A
dw? = d9? + sin? 9 dp? . (3.3)
Clearly, we can imagine the spacetime as the time evolu-
tion of a 3-sphere which shrinks from infinite extension
at 7 — —oo to a radius £,, and then expands again in a


krtous
Obdélník


6 J. Bitak and P. Krtou$

f=o0

III INY%

N
+

Y
Il
8
S
Il
=)

. =
= N I 5 w S —
% &,
We We
v 11T
Hflat
F=—-00 f=—00
South i North South

Figure 3: The flat cosmological coordinates and particles wg,
wg in de Sitter space and in conformally related Minkowski
space. The flat cosmological coordinates cover shaded region.
Its boundary, 7 = o0, represents the horizon for observers
at rest in these coordinates.

time-symmetric way. Hence, we also call 7, x the spher-
ical cosmological coordinates. The coordinate lines are
shown in the conformal diagram, Fig. 2.

In cosmology the most popular “flat” de Sitter universe
is obtained by considering only a half of de Sitter hy-
perboloid foliated by flat 3-dimensional spacelike hyper-
surfaces labeled by timelike coordinate 7 € R, cf. Fig. 3.
Together with appropriate radial coordinate 7 € RT, the
new coordinates, which we call flat cosmological coordi-
nates, are given in terms of 7, x by

7 =1/{,log (sinh T + cosh T cos X) ,
ly Ly
. (3.4)
iy sin x
*cosx + tanh(r/£,) ’
implying the well-known “inflationary” metric
2 2T (o 21 2
gas = —dF —l—expé— dr® 4+ 7 dw” ) . (3.5)
A

These coordinates cover only “one-half” of de Sitter space
as indicated by shading in Fig. 3.

de Sitter introduced his model in what we call hyper-
bolic cosmological coordinatesn € R, p € R (see Fig. 4)
related to 7, x by

cosh /- cosh ZL cosx ,

A A
(3.6)
tanh 2 = coth — sinx .
Ly Ly

The metric

Goe = —di + sinh2€i (dp2 e sinh2£ﬁ dw2) (3.7)

A A
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Figure 4: The hyperbolic cosmological coordinates. They

cover only the shaded region and, therefore, only a part of
the worldline wg. The horizon H.,, arises for the observers
who are at rest in the hyperbolic cosmological coordinates.

shows that the time slices n = constant have the geome-
try of constant negative curvature, i.e., as the standard
time slices in an open FRW universe.

The last commonly used coordinates in de Sitter space-
time are static coordinates T € R, R € (0,4,):

ly cos x + tanh(7/¢,)
T=—1o )

2 cos x — tanh(7/4,) (3.8)
R = éAcoshKL siny ,

covering also only a part of the universe. The metric in
these coordinates reads

2 2.

os = —(1—R—) ar? + (1—R—) AR+ R2de?, (3.9)
2 2

revealing that 0/9T is a timelike Killing vector in the

region 0 < R < {,.

Among the coordinates introduced until now only the
standard coordinates T, x, 9, ¢ cover the whole de Sitter
spacetime globally. One can easily extend flat cosmo-
logical coordinates to cover (though not smoothly) the
whole de Sitter hyperboloid, which will be useful in dis-
cussion of the conformally related Minkowski spacetime,
cf. Eq. (3.13). We shall also use extensions of the static
coordinates into the whole spacetime, using definitions
(3.8), but allowing R € R*. In regions where R > /,
coordinates T' and R interchange their character, 0/0T
becomes a spacelike Killing vector (analogously to 0/0t
inside a Schwarzschild black hole). However, the static
coordinates T, R are not globally smooth and uniquely
valued. Namely, T — oco at the cosmological horizons
R = {,. The static coordinates, extended to the whole
de Sitter space, are illustrated in Fig. 5. Here we also
indicate the regions in which 9/9T is spacelike by bold F
(“future”) and P (“past”), whereas the regions in which
it is timelike are denoted by N (containing the “north
pole” x = 0) and S (containing the “south pole” y = 7).
Hereafter, this notation will be used repeatedly.

The conformal structure of Minkowski and de Sitter
spacetimes, their conformal relation, and their confor-
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Figure 5: The static coordinates and the wordlines of par-
ticles wg and wg. These coordinates can be defined in the
whole spacetime, however several coordinate patches, in dia-
gram indicated by shaded and nonshaded regions, have to be
used (cf. Appendix A 5 and A 6). These regions are separated
by the cosmological horizons at R = £, where T = +oc0. The
vector 0/0T is a Killing vector of de Sitter spacetime. It is
timelike in the domains N and S (shaded regions) and space-
like in the domains F and P. The histories of both particles
we and wg belong to the domains N and S.

mal relation to various regions of the Einstein static uni-
verse have been discussed extensively in literature (see,
e.g., [44-47]). The complete compactified picture of these
spacetimes, in particular the 3-dimensional diagram of
the compactified Minkowski and de Sitter spaces M#
as parts of the Einstein universe represented by a solid
cylinder can be found in [24]. We refer the reader espe-
cially to Section IIT of [24] where we explain and illustrate
the compactification in detail. In the present paper we
shall confine ourselves to the 2-dimensional Penrose dia-
grams.

The basic standard rescaled coordinates covering glob-
ally de Sitter spacetime including the conformal infinity
are simply related to the standard coordinates as follows:

t
tanizexp%, r=x, (3.10)
t € (0,7), 7 € (0,7). The metric (3.2) becomes
gas = €2 sin™%f (—d#® + dF? +sin’ Fdw?®) ,  (3.11)

demonstrating explicitly the conformal relations of
de Sitter spacetime to the Einstein universe:

ge = Q2 gas, Qs =sint . (3.12)
Therefore, we also call coordinates t, 7 the conformally
Einstein coordinates. The conformal diagram of de Sitter
spacetime is illustrated in Fig. 2. The past and future
infinities, £ = 0 and # = 7 are spacelike, the worldlines
of the north and south poles (given by the choice of the
origin of the coordinates) are described by # = x = 0 and
r=x=Tm.

The whole de Sitter spacetime could be represented by
just the “right half” of Fig. 2. Indeed, it is customary to
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draw this half only and to consider any point in the figure
as a 2-sphere, except for the poles 7 = 0,7. As we shall
see, the formulas relating coordinates on the conformally
related de Sitter and Minkowski spacetimes have simpler
forms if we admit negative values of the radial coordinate
7 € (—m,0) covering the left half of the diagram. We shall
thus consider the 2-dimensional diagrams as in Fig. 2
to represent the cuts of de Sitter spacetime along the
axis going through the origins (through north and south
poles—analogously to the cuts along the z axis in E?).
The axis, i.e., the main circle of the spatial spherical sec-
tion of de Sitter spacetime, is typically chosen as ¢ = 0, 7.
Thus, in the diagram the point with 7 = —7, < 0, 9 = ¥,
© = (o is identical to that with 7 = 7y, 9 = 7 —1J,, and
© =@, +m. We use the same convention also for other
radial coordinates appearing later, as explicitly stated
in the Appendix (cf. also Appendix in [24]). We admit
negative radial coordinates only when describing various
relations between the coordinate systems. In the expres-
sions for the fields in the following sections only positive
radial coordinates are considered.

As mentioned above, in [24] we constructed fields
on de Sitter spacetime by conformally transforming
the fields from Minkowski spacetime. Now “different
Minkowski spaces” can be used in the conformal rela-
tion to de Sitter space, depending on which region of a
Minkowski space is mapped onto which region of de Sit-
ter space. Consider, for example, Minkowski space with
metric gy, given in spherical coordinates £, 7, 9, ¢. Iden-
tify it with de Sitter space by relations

0, sint £, sin 7

527 f:

= -, (3.13)
cost — cosT

~ Rl
COST — cost

the inverse relation (A1l) is given in the Appendix. In
the coordinates £, #, 9, ¢ the de Sitter metric (3.11) be-
comes

Zi 2 ~2 ~2 2
Gus = % (—dt + dre + 7 dw ) , (3.14)
so that

gds = QI%/IgM , QM = (315)

ﬁ-<| ?

The coordinates £, #, ¥, ¢ can, of course, be used in both
de Sitter and Minkowski spaces. Fig. 3 illustrates the
coordinate lines. It also shows how four regions I, IT, III,
and IV of Minkowski space are mapped onto four regions
of de Sitter space by relations (3.13). We call £, 7 rescaled
flat cosmological coordinates since their radial coordinate
7 coincides with that of the flat cosmological coordinates
(3.4) and the time coordinate is simply related to 7 as
t=—Ll, exp(—7/l,) . (3.16)
The caron or the check (still better “hdcek”) “v” formed
by cosmological horizon at f = 400 in de Sitter space
(cf. Fig. 3) inspired our notation of these coordinates. It
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Figure 6: The conformally Minkowski coordinates. They
cover the whole conformally related Minkowski space but only
a part of corresponding de Sitter space. This Minkowski space
is related to that in Fig. 3 by a shift “downwards” by 7/2 in
the direction of the conformally Einstein coordinate £.

is possible to introduce analogously the coordinates ¢, #
given in the Appendix, Eqgs. (A39), (A40), that cover
nicely the past conformal infinity but are not smooth at
the cosmological horizon ¢ = o0; in this case they form
the hat “A” in the conformal diagram (see Fig. 16 in the
Appendix).

From relations (3.13) it is explicitly seen why, when
writing down mappings between de Sitter and Minkowski
spaces and drawing the corresponding 2-dimensional
conformal diagrams, it is advantageous to admit neg-
ative radial coordinates. If we would restrict all ra-
dial coordinates to be non-negative, we would have to
consider the second relation in Eq. (3.13) with differ-
ent signs for regions III and II in de Sitter space: in
I # = ¢, sin7/(cos ¥ — cost), but in IIT we would have
# = —{, sin7/(cosF — cost).

Another mapping of Minkowski on de Sitter space will
be used to advantage in the explicit manifestation that
the generalized Born solution in de Sitter space goes over
to the classical solution (2.13). Instead of the mapping
(3.13), consider the relations

£, cost l,sin 7

t=— (3.17)

~ . T r: ~ . g
cosr +sint cosT 4+ sint

(see Eq. (A17) for the inverse mapping), which turn the
metric (3.11) into

202

Gas = (m)2 (—dt2 +dr? + 12 dw2) . (3.18)

We again obtain the de Sitter metric in the form explic-
itly conformal to the Minkowski metric with, however, a
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different conformal factor from that in Eq. (3.15):

202

Q= h
MTR R

Gas = 02 gur (3.19)

(For the use of the de Sitter metric in “atypical” form
(3.18) in the work on the domain wall spacetimes, see
[48].) The relation of Minkowski space to de Sitter space
based on the mapping (3.17) is illustrated in Fig. 6.
Clearly, the Minkowski space in this figure is shifted
“downwards” by 7/2 in # coordinate, as compared with
Minkowski space in Fig. 3 (Eq. (3.13)). Indeed, replac-
ing ¢t by t+ Z in Eq. (3.13), we get { =t, 7 =r with
t, r given by Eq. (3.17). Since coordinates t, r, ¥, @ are
not connected directly with any cosmological model and
correspond to Minkowski space “centered” on de Sitter
space (Fig. 6), we just call them conformally Minkowski
coordinates.

In Ref. [24] still another Minkowski space is related to
de Sitter space—one which is shifted “downward” in # co-
ordinate by another 7/2. As mentioned below Eq. (3.16),
the cosmological horizon forms hat “A” in this case and
the corresponding coordinates are accordingly denoted
as £, 7. They are given explicitly in Appendix A3 and
Fig. 16.

The three sets of coordinates f, 7, t, r, and #, # (with
the same ¥, ) relating naturally “three” Minkowski
spaces to de Sitter space are suitable for different pur-
poses. The third set describes conveniently the past in-
finity of de Sitter space—that is why it was used exten-
sively in [24] where we were interested in how the sources
enter (are “born in”) de Sitter universe. The second set
will be needed in Section VII for exhibiting the flat-space
limit of the generalized Born solution. The first set de-
scribes nicely the future infinity and will be employed
when analyzing radiative properties of the fields.

With all the coordinates discussed above, correspond-
ing double null coordinates can be associated; some of
them will also be used in the following. Their more
detailed description and illustration is presented in sec-
tion A 10 of the Appendix.

Before concluding this section let us notice that the ob-
servers which are at rest in cosmological coordinate sys-
tems 7, x, T, 7, and 1, p move along the geodesics with
proper time 7, 7, and 1 respectively. These geodesics
are also the orbits of the conformal Killing vectors. In-
deed, the symmetries of Minkowski spacetime and of the
Einstein universe become conformal symmetries in con-
formally related de Sitter spacetime. In particular, we
shall employ the fact that since 8/0f and 9/0t are time-
like Killing vectors in Minkowski spacetime and 0/0% is a
timelike Killing vector in the Einstein universe, the vec-
tors

9 9 a2
ot ot’ ot
are timelike conformal Killing vectors in de Sitter space-

time. As mentioned below Eq. (3.9), /0T is a Killing
vector which is timelike for |R| < ¢,.

(3.20)
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Appendix A: THE PALETTE OF COORDINATE
SYSTEMS IN DE SITTER SPACETIME

Nine families of coordinate systems are here intro-
duced, described analytically and illustrated graphically.
The corresponding forms of de Sitter metric, orthonormal
tetrads and interrelations between the systems are given.
All these systems are suitable for exhibiting various fea-
tures of de Sitter space; two families are directly asso-
ciated with uniformly accelerated particles. Although
the majority (though not all) of these coordinate sys-
tems undoubtedly appeared in literature in some form
already, they are scattered and, as far as we know, not
summarized as comprehensively as in the following. In
the main text we refer frequently to this Appendix, but
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the Appendix can be read independently. We hope it can
serve as a catalogue useful for analyzing various aspects
of physics in de Sitter universe.

By a family of coordinate systems we mean the systems
with the same coordinate lines; e.g., {z*} and {y"} where
!t =zt (yt), 22 = 2%(y?), etc. Seven of our families have
the same spherical angular coordinates ¥, ¢, accelerated
and Robinson-Trautman coordinates mix three coordi-
nates, only azimuthal coordinate ¢ remains unchanged.

The homogeneous normalized metric on two-spheres
(the metric “in angular direction”) is denoted by

dw? = d¥? +sin® 9 dp? . (A1)

The radial coordinates label directions pointing out
from the pole and acquire only positive values. However,
transformations among coordinates take simpler forms if
we allow radial coordinates to take on negative values as
well. This causes no problems if, denoting by ¢ and r the
prototypes of time and radial coordinates, we adopt the
convention that the following two values of coordinates
describe the same point:

{t7 r, 197 30} < {ta -r, T = 197 2 + 7T} . (A2)

Hence, intuitively we may consider a point with —r < 0
and ¥, ¢ fixed to lie on diametrically opposite side of the
pole » = 0 with respect to the point r» > 0, 9, ¢.

The orthonormal tetrad e, e,, ey, e, associated with
a coordinate system is tangent to the coordinate lines
and oriented (with few exceptions) in the directions of
growing coordinates. It is chosen in such a way that the
external product e Ae” A e’ Ae? of 1-forms of the dual
tetrad has always the same orientation. Since all forms
of the metric contain the term (A1) the only component
(e,)? of the tetrad vector e, in coordinate frame {B‘z—ﬂ}
is related to the ¥-component of e, as

1

Y — 9 A
(0,)7 = — (eq)” (43)
and we thus omit e, henceforth.
In the standard Newman-Penrose null complex

tetrad k, 1, m, m with only nonvanishing inner products
k-1= -1, m-m = 1, the electromagnetic field F is rep-
resented by three complex components:

By =Fopk®m?, &, =F,3m17,

A4
$; = 1 Fu5 (k*1° —m*m”) . (Ad)
The null tetrad can be specified directly (as it will be
done in the case of Robinson-Trautman coordinates in
Eq. (A114)), or it can be associated with any orthonor-
mal tetrad, say t, q, r, s, by relations

_ 1 =1
m:\%(r—is), m:%(r-{-is).

Here, t and q are timelike and spacelike unit vectors re-
spectively, typically in a direction of “time” and “radial”
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coordinate, and r, s are spacelike unit vectors in angular
directions, r = e, s = e,,.

For each coordinate family we give the diagram illus-
trating section @, ¢ = constant with the radial coordi-
nate taking on both positive and negative values. The
diagrams thus represent the history of the entire main
circle of the spatial spherical section of de Sitter uni-
verse. The left and right edges of the diagrams represent
the south pole and should be considered as identified;
the central vertical line describes the history of the north
pole. Recalling the meaning of the negative radial co-
ordinate we could eliminate the left half of each of the
diagrams by transforming it into the right one by re-
placements {9, p} — {7 — 9, ¢ + 7}. However, it is in-
structive to keep both halves for better understanding
of the spatial topology of the sections. All diagrams are
compactified—they are adapted to the standard rescaled
coordinates #, 7 (see below). The past and future confor-
mal infinities are drawn as double lines. The ranges of
time and radial coordinates are shown, the orientation of
coordinate labels indicates the directions of the growth
of corresponding coordinates.

We will also introduce several sign factors. The val-
ues of these factors in different domains of spacetime are
indicated in Fig. 13.

Sx=+1 Sx=—
= sz=+1 =
sup=—1 sns—=+1 sns=11
sz=—1 < >
szfl SX:+1
< §:|71 > §=—1 §=—1
§=+1 §=+1 < s=1 -
| su=—1 > Sp=—1
Su=-+1 sy=-=+1
Sy=—1 < sp=—1 =

Figure 13: The values of the factors sz, sws, sx, §, §, sy and
Sy in various regions of de Sitter space. The factors are de-
fined in Eqs. (A73), (A61), (A74), (A21), (A36) and (A128),
respectively. The factor sy is used only in the expressions
for static coordinates in the region where the Killing vector
is spacelike. Therefore, we indicated the values of sx only in
those regions, although Eq. (A74) defines sx everywhere. The
factors sx, s4, and s, are defined only for any given section
¥ = constant, but not as unique functions on the whole space-
time (they are not symmetric with respect to the pole). This
is related to our convention using negative radial coordinates,
cf. the text below Eq. (Al).
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1. The spherical cosmological family
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Figure 14: The spherical cosmological family of coordinates.

The first family consists of the standard or spherical
cosmological coordinates T, x, ¥, ¢, and of the standard
rescaled or conformally Einstein coordinates t, 7, ¥, ¢
(where 7 = x). These coordinates cover de Sitter space-
time globally. They are associated with cosmological
observers with homogeneous spatial sections of positive
spatial curvature. The coordinates are adjusted to the
spherical symmetry of the spatial sections: y, 9, and ¢
are standard angular coordinates. The coordinate 7 is a
proper time along the worldlines of the cosmological ob-
servers given by x, ¥, ¢ = constant. The vector 9/07 is
a conformal Killing vector which is everywhere timelike.
The rescaled coordinates £, 7, ¥, ¢ can also be viewed
as the standard coordinates of the conformally related
Einstein universe; they cover smoothly both conformal
infinities 7+ of de Sitter spacetime.

Metric and relation between coordinates

= —d7? + 2 cosh’(r/¢,) (dx® + sin®y de) ,  (A6)
g =03 sin *f (=dt? + di? + sin®F dw?) | (A7)
t T - T
tan - =exp—, cott= —sinh—,
2 £y ly (A8a)
sinf = cosh™! = , cost= —tanh z )
N s
F=x. (A8D)
The ranges of coordinates are
TER, € (—m,m),
X € (=m,7) (A9)
€ (0,7), 7€ (—mm,

with negative values of radial coordinates y, 7 interpreted
in accordance with Eq. (A2).

Orthonormal tetrad
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]. -1 T a ~
=_—cosh ' — =— = —sinf — , A10
e, A cos ox L sint o (A10)
1 1 d  1sint 0
e g = = — — — |
V7 4, cosh(r/ly)siny 9 ~ €, sinF Y
Relation to flat cosmological family
- 20, 20,1
tant: 2_52_‘_,,22:[2_{2_‘_7.*’2 R
A . (A11)
_ 20,7 20,7
tanr = = e N U N
02 +2—p2 B4 -7F

Relation to hyperbolic cosmological coordinates

cott = —sinh Ki cosh 14 ,
% [’; (A12)
tan” = tanh 7 sinh 7

A A

Relation to static family in timelike domains N, S

tant = — \/7 sinh™ 1
(A13)
tans = Syg ——— \/7 cosh_
- cosh = 7o sinh L 7o
tant = —sys ———= , tanf = sy =, (Al4)
sinh 7~ coshﬁ
where sys = +1 (—1) in domain N (S), cf. Eq. (A61)

Relation to static family in spacelike domains F, P

tant = \/7 sh_
(A15)
tan 7 = slnh_1
_ g2
. sinh - R cosh -
tant = sy =, tanf=-sc —>, (Al6)
cosh 7- sinh 7~
A A
where s; = —sign cost and sy = —s; sign?, cf. Egs.

(A73) and (A74).

Relation to conformally Minkowski coordinates

20, _

cott ta 265
= nfr =
222 2

e (D
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2. The flat cosmological family, type “V”

T=500

F=-00 _i;o ‘ F=—00| =0

T

Figure 15: The flat cosmological family, type “V”.

The first flat cosmological coordinate family consists
of the flat cosmological coordinates 7, ©, ¥, ¢ and of the
rescaled flat cosmological coordinates t, #, ¥, . Hyper-
surfaces 7 = constant are homogeneous flat spaces and
coordinate lines 7, ¥, (¢ = constant are worldlines of cos-
mological observers orthogonal to these hypersurfaces.
They are geodesic with proper time 7, the vector 0 /97 is
a conformal Killing vector. The coordinates cover de Sit-
ter spacetime smoothly, except for the past cosmologi-
cal horizon, 7 = ¢, of the north pole where 7, f — +o0.
The coordinates thus split into two coordinate patches—
“above” and “below” the horizon. The domain above the
horizon has a cosmological interpretation of an exponen-
tially expanding flat three-space. The rescaled coordi-
nates can be viewed as inertial coordinates in the confor-
mally related Minkowski space M, cf. Fig. 3; the domain
above the horizon corresponds to the “lower half”, £ < 0,
of M, the domain below corresponds to the “upper half”,
t>0.

Metric and relation between coordinates

_& —di? + &/ + 72 dw? (A18)
9= tv2 r r w y
g=—d7* +exp(-527/L,) (d7® + 7> dw?) .  (A19)
. T
f=30,exp EZ) , (A20)
§ =signt . (A21)
The ranges of coordinates are
7eR, t€R, #e€R above the horizon,
. (A22)
7eR, teR", 7#eR below the horizon,

with negative values of radial coordinate 7 interpreted as
described in Eq. (A2).

Orthonormal tetrad

A T N T p£A8f_£A6f’(A23)
~ ~ 1v
eﬁ——jeXpigz——ii_
0.00 0,700
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Relation to spherical cosmological family

—{, cosh™ (7 /t,) {, cosh™ (7 /t,)

i =

cos x + tanh(r/4,) ’ "= cos x + tanh(r/€,)
(A24)
fzz’jsihﬁ’ f:ﬂ. (A25)
cost — cosT cosT — cost

Relation to flat cosmological family, type “A”

. te? 3 702

t:_t2—f2’ Ul (A26)
tr+tr=0, ti+rr=—02,

(=8 +7%) (-8 +7*)= 1}, (A27)

Relation to static family in timelike domains N, S

P A T
nmemeln)
i R T
LA LY
‘. NGCE ‘.
= —snl LY cosh
= —S8ys Aexp(—Z) cos 7 (429)
ty\ . r
= Sysla exp(—Z) smh% ,

where sys = +1 (—1) in domain N (S), cf. Eq. (A61).

Relation to static family in spacelike domains F, P

. (A30)
6= n)
. t F
t = sy l, exp(—g—) smhe— ,
"~ A A31
ot
7 = —8xl, exp 7 cos 0

where s, = sign# sign cost, cf. Eqs. (A73) and (A74).

Relation to conformally Minkowski coordinates

20,r
= 7(&\ e (A32)

P2t
0 (Gt t2—1r2’ 1,
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3. The flat cosmological family, type “A”

Figure 16: The flat cosmological family, type “A”.

The second flat cosmological coordinate family consists
of the flat cosmological coordinates 7, 7, 9, ¢ and of the
rescaled flat cosmological coordinates t, #, 9, ¢. They
can be built analogously to the flat coordinates intro-
duced above, with north and south poles interchanged
only. They thus have similar properties: Hypersurfaces
t = constant are homogeneous flat three-spaces, coordi-
nate lines 7, 9, ¢ = constant are geodesics with proper
time 7, and /907 is a conformal Killing vector. The coor-
dinates cover de Sitter spacetime everywhere except the
future cosmological horizon, # = m — £, of the north pole
(i.e., the past horizon of the south pole), and the rescaled
coordinates can be viewed as inertial coordinates in the
conformally related Minkowski space M.

Metric and relation between coordinates

_4 (—df 2 4 di? 4 72 dw2) (A33)
9= tA2 9
g=—d?* +exp(—527/L,) (d7® +7#* dw?), (A34)
A N
t=35/4, exp(sz) , (A35)
where
5 =signt (A36)
The ranges of coordinates are
7e€R, teR™, 7#€R above the horizon ,
. (A37)
7eR, teR", #€R below the horizon,

with negative values of radial coordinate 7 interpreted as
described in Eq. (A2).

Orthonormal tetrad
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Relation to spherical cosmological family

(, cosh™'(7/t,) {, cosh™ (7 /t,)

t= S :
cos x — tanh(r/4,) ’ cos x — tanh(r/4,)
(A39)
R lysint £y sin
cost + cosr CcoST + cost
Relation to flat cosmological family, type “N”
. te? . ¥ 02
t:—m, T:m, (A41)
tr+tr=0, ti4+rr=—0*,
(= + ) (=8 +7°)= (], (A42)

Relation to static family in timelike domains N, S

Lo VE-r UL
R (A43)
T R
o e P
t= sNSéAepoi cosh KL ,
A A (A44)
= Sys LA €X * sinh —
r Sns €a péA ZA )
where sys = +1 (—1) in domain N (S), cf. Eq. (A61).

Relation to static family in spacelike domains F, P

i_s ly epT
NG ) * R
Lo VSR (A45)
L L S
o X Ur-e Y
f:sXZAexpeisinhKL,

A A (A46)
f:sXZAexpE coshE,

where s, = sign7 signcost, cf. Eqs. (A73) and (A74).

Relation to conformally Minkowski coordinates

20,1
= 7(&\ e (A47)



29 Fields of accelerated sources: Born in de Sitter

4. The conformally Minkowski family

Figure 17: The conformally Minkowski family of coordinates.

The conformally Minkowski coordinates t, r, 9, ¢ can
be understood as spherical coordinates in the conformally
related Minkowski space M. The coordinates do not
cover de Sitter spacetime globally—they cover only a re-
gion around north pole, see Fig. 17. The boundary of this
region is given by the conformal infinity of the Minkowski
spacetime. These coordinates are useful for studying the
limit A — 0.

The metric

263 2 2 2, .29 2
the ranges of coordinates
teR, reR, suchthat t*—7r> <>, (A49)

with negative values of radial coordinate r interpreted as
described in Eq. (A2).

Orthonormal tetrad

2 —2+72 0
e = ————— —
t 202 ot’
22429
== — A50
©r 202 or’ (450)
224210
=TT e rat
A
Relation to spherical cosmological family
. £, cost
~ cosF4sint A51
f,sinf ( )
r =

cosT +sint
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Relation to flat cosmological family

b G-+ G-+
- N2 a2 _ N2 _ 520
N (€A+t)A 72 (b — 1) =7 (A52)
ro_ 20,7 B 20,7
R (U +1)2 =2 (6, —1)2 =72

Relation to hyperbolic cosmological coordinates

t = tanhl coshé ,

£y 20, ly (A53)
- tanhl sinhﬁ .

£y 20, £y

Relation to static family in timelike domains N, S

t sinh %
£y cosh % + sys cosh 7= (A54)
r sinh %
¢y cosh % + Sys cosh % ’
t V2 — R? sinh%
Cy syly + /2 — R2 cosh % ’ (A55)
ro R
Cy Uy + s/ 02 — R? cosh% ’

where sys = +1 (—1) in domain N (S), cf. Eq. (A61).

Relation to static family in spacelike domains F, P

t cosh%
€y~ sinh L — s sinh Z
* b (A56)
r coshﬁ
by sinh% — Sy cosh% ’
t VR? 102 cosh%
by —syly+/R2 -2 sinh% ’ (AB7)
ro_ R
by Uy — s /R =12 sinh% ’

with s, = sign signcost, cf. Eqs. (A73) and (A74).
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5. The static family in timelike domains N and S

Figure 18: The static family of coordinates, timelike domains.

This family consists of the static coordinates T', R, 1,
¢ and the “tortoidal” static coordinates t, ¥, ¥, p. The
metric does not depend on time coordinate T = t—the
coordinates are associated with a Killing vector. Since
the Killing vector changes its character, the coordinates
do not cover the spacetime smoothly. We first describe
the static coordinates in domains N and S, where the
Killing vector is timelike. In domain N the orbits of
the Killing vector (corresponding to the worldlines of
static observers) start and end at the north pole, in
domain S—at the south pole. They are orthogonal to
slices T' = constant, each of which consists of two hemi-
spheres (one in domain N, the other in S) with homoge-
neous spherical 3-metric. The distances between static
observers (measured within these slices) do not change.
Since the static observers must overcome first the cosmo-
logical contraction and then the expansion, they move
with a (uniform) acceleration.

Metric and relation between coordinates

g = cosh™ Z (—d)f2 + d7? + £2 sinh? ZL de) , (A58)

R’ 2 RPN, 2 72
g _—(1— E) dr? + (1— E) dR? + R? dw?, (A59)
T=t, (A60a)
expj— bt R sinhf— il
6w Ve -R’ 6, Je_-R’
Ao VA r VBB 6o
tanh — = Ll cosh — = 2
TN /2 —-R?’
+1 in domain N |
e = 1n domain (A61)
—1 in domain S .
The ranges of coordinates are
TeR, Re(—L,1L,),
( ) (A62)

teR, FeR,
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with negative values of radial coordinate R and 7 inter-
preted as described in Eq. (A2).

Orthonormal tetrad

R>\-1/2 9 F 0
eT—(l—E) B—T—COShZa—E,
R2\1/2 9 47 0
=(1-2= _ = S A63
°r (1 7 ) oR =N g (A8
e 1 i = —coth r i
" RO, €y, 09
Relation to spherical cosmological family
0, cost — cost sin 7
T = — — =, = K =, A64
2 °8 cosT + cost " sinf ( )
_ L, t+F t—7
t= 5 log(tan 5 tan 5 ) , (A65a)

t cos¥ —cost . .t —Sys COS T
exp— =4{/————, sinh— = ——— |
N cosT + cost b \fcos2 i — cos? i

tanh i = __cosf , cosh — = _SwsCOST cosT -,
€x cosr b \Jeos? 7 — cos? i
= b lo (tan£+f cot E_F) (A65b)
— 2 8 2 2 )
7 sint + sin 7 . 7 sinr
exp — =/ —=———, sinh—— = ————,
ly sint —sin 7 £y sin?f — sin? 7
tanh r = si‘nf , cosh r = —si~nt~ .
A sint A y/sin?f —sin? 7
Relation to flat cosmological family
; EAI 2 — 72 ZAI 2 — 2
=—1lo =——lo
2 BT 2 BT
2 o (A66)
_ ZAI t+7 éAl t—7
F=—log= = —log ~
2 BT T 2 iy
Ot Y
— = —lo =—-1lo ,
6, 2% e 2 BT (467)
R _r 7
7

Relation to conformally Minkowski coordinates

T 20t R 20,r
tanh— = —————— = A
wh = e e T T areop U6
_ 4, by +t)2 =12 4, (ly +7)%—12
F=Dlog AT T g a T T
2 Bl —t2—r2 T2 B 2P
(A69)
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6. The static family in spacelike domains F and P

i
3 8

Figure 19: The static family of coordinates, spacelike domains.

Here we describe the static coordinates T, R, 9, ¢ and
the “tortoidal” static coordinates t, 7, 19, ¢ from the pre-
ceding section in domains F and S where the Killing vec-
tor is spacelike. These “non-static” domains extend up
to infinity, namely, domain F up to ZT, domain P up to
Z~. The orbits of the Killing vector start at the south
pole and end at the north pole in F, and they point in
opposite direction in P. The motion along them could
thus be characterized as a “translation” from one pole to
the other. The Lorentzian hypersurfaces 7" = constant
are homogeneous spaces with positive curvature, i.e., 3-
dimensional de Sitter spacetimes.

Metric and relation between coordinates

g =sinh 2= (—de +dP + €2 cosh? dw2) . (A70)
A ZA
R? 2 4 R\, 23, 2
g= (I—Z)dT (1_5_2) dR? + R? du?, (AT1)
T=t (AT2a)
exp r R+0, sinh r
Xp — = —
L R—1t,’ 14 JRZ-2
* * * & (A72D)
tanh T K—A cosh i |R|
/y R’ ZA /R2 -2
The signature factors s; and sx are defined as
+1 in domain F ,
s, = m malmn (A73)
—1 in domain P,
and
Sx = —Sz signt . (AT74)
The coordinates ranges are
TeR, |R|€ (ly,0),
_ AT75
teR, FeR, (A75)

with negative values of radial coordinate R and 7 inter-
preted as described in Eq. (A2).
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Orthonormal tetrad

_ (32 1)*1/2 o . h rl o
o= e2 ar — |"™ 0| ot
2.9 | 0
= — = —|sinh '—| = A76
eR ( ) R sin EA af I ( )
10 1 h | 0
€y = —=— = — |[tanh —| — .
" RO, ly| 09
Relation to spherical cosmological family
T N cost — cosF R—¢ sin 7 (ATT)
=5 og——, = )
2 gcost+cosf *sint
N t+7 t—7
t=— log(—tan tan ) , (A78a)
2 2
t cost — cost . t S COST
exp— =¢{/———, sinh— = — |
Ly cost + cosT r fcos2f — cos? 7
fanh - = 65T cosh £ = __—Szeost
t cost €y \fcos? i — cos? 7
1 t t—F
F=—= log(— tan co r) , (A78b)
2 2
7 sin? + sint . 7 sint
exp— =/ ————, |sinh — _—
Ly v sin# — sint ly sin?7 —sin2 7
tanhiz s‘inf, coshizﬂ.
N s N sin? 7 — sin® #
Relation to flat cosmological family
N e by, —2+72
t=—-log—p—=—7log—Fp—,
2 2 2 2 (AT9)
by P+t s F—t
r=-— == 5 T
2 Br i T 2 Brad
r_1, 2 472 1 2 + 72
— =—lo =—=1lo ,
. 2% e 2 BT (A80)
I N
byt
Relation to conformally Minkowski coordinates
T 20t R 20,1
oth = ErE— 2 I, Ere—pg A8
L Oy +1)2 =12
t:—log(—(A+)2 TQ )
- o ( (ZA—H")Q—tQ)
r=—= —
B\ l—nr -/
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7. The hyperbolic cosmological family

Figure 20: The hyperbolic cosmological family of coordinates.

The third type of cosmological coordinates are the hy-
perbolic cosmological coordinates 1, p, ¥, . The hyper-
surfaces n = constant are homogeneous spaces with neg-
ative curvature, coordinate lines p,, p = constant cor-
respond to the worldlines of cosmological observers or-
thogonal to these slices, and the vector 9/9n is a timelike
conformal Killing vector. The coordinates cover space-
time only partially—they can be introduced in two dis-
connected domains near the north pole, namely, in the
past of the event t = /2, # = 0 (where n < 0), and in
the future of this event (where 1 > 0).

The metric

(A83)
The ranges of coordinates and the signature factor s; are
nerR",
ner",

g=—dn®+ sinhQﬁ (dp® + ZisinhQﬁ dw2) ,

peR, in the future patch ,

pER,

s =+1
sz = —1 in the past patch ,

(A84)
with negative values of radial coordinate p interpreted as
described in Eq. (A2).

Orthonormal tetrad

0 .._1n O
e,=5-, €,=sinh = —,

on b (;9” (A85)
€y = Sinh_lﬁ sinh_lﬁ 8_p .

Relation to spherical cosmological family

cos? — sint sin 7
tanhi:sI _— tanhﬁz— = .
20, cosT +sint N cost

(A86)
Relation to conformally Minkowski coordinates
7 12 —r2 p T
tanh — = s;—— tanh — = — . AR7
anh 5 = s;=———, tanh = = (A87)
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8. The accelerated coordinate family

Figure 21: The accelerated family of coordinates.

This family consists of the accelerated coordinates
T', R', ¥, ¢, and the C-metric-like coordinates T, v, £, ¢
(r being different from 7 of the standard coordinates).
Contrary to the previous cases the accelerated coor-
dinates are centered on uniformly accelerate origins:
R' =0 corresponds to two worldlines with acceleration
|ao|. The transformation relations to the systems intro-
duced above mix these three coordinates in general.

The accelerated coordinates are closely related to the
static system. Their time coordinates coincide, T'=T,
and coordinate lines R',v’', ¢ = constant are the same as
those with R,¥, ¢ = constant. Both coordinate systems
are identical for a, = 0. Sections T',T', ¢ = constant with
R, R’ < {, have geometry of 2-sphere with parallels and
meridians given by the coordinate lines of the static co-
ordinates R, 9. The lines of coordinates R', 1’ are the
deformed version of static ones, their poles are shifted
along meridian ¥ = 0 towards each other, cf. Fig. 11.

Two conformal diagrams of sections ', p = constant
(¥ < w/2 on the right, ¥ > 7/2 on the left), adapted
to the accelerated coordinates, are depicted in Fig. 21.
The shape of the diagram varies with different values
of ¥'; indeed, the position of infinity is given by R’ =
—02 /R, cos 1. See also Fig. 10 for sections ¢ = 0, 7.

The C-metric-like coordinates rescale only the values
of the accelerated coordinates and regularize the coordi-
nate singularity R’ = foo. de Sitter metric in these co-
ordinates is a zero-mass limit of the C-metric (the metric
describing accelerated black holes; see, e.g., [28, 29]).

Finally, we use four parameters a,, ao, Ry, by tO
parametrize the acceleration.They are related as follows:

. R, bg — 612\
who = e T 2t
2, g2
cosha, = \/62&\—7]%2 = b;;bé" =+/1+a2l?,
AR ’ b2 . ;2 14 (A59)
tanh o = i — (2> g — o Gofa
0, b2 + 2 1+ a2

:m—aof,\.

e _ [OFEe _ b
P =N TR T 1L
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Metric and relation between coordinates

9= [ (I—IZ—:) dT" + (1—?—;)1@'2 +R"? dw2'],

(A89)

g=r2[ a4 A1) g
where (A90)
dw? = (d¥'? + sin® ¥’ dp?) (A91)

1— 2 /p2
g VI-RJ/G __x _rv (A92)

+ (R'R,/2)cos?' ~ R~ 0,

15 15
= A :Q I:Q—A A
¢ v cosh a, — £ sinh R v (A93)
T’ N ,
T ZA V=5 ¢ cos?' | (A94)

Orthonormal tetrad

_ R?\-1/2 9 1 0
1 e
er =19 (1_ 6_2) oT" ~ w2 -1 6T’ ’
1 R2\1/2 0
ew =197 (1- %) g SR
1 0 10
QR T "t o (A95)
Relation to static coordinates
T=T
R’ cos? + R,
J =
ReosV =32 3R, [ cos 07
R'sind'\/1 - %
Rsind =
14 (R'Ro /%) cos9'"’ (A96)
R (=) - R/
’? (1+ (R'R,/€2) cos 9"’
R'sind'(/1 — R—;’
tand = |
R'cos¥ + R,

The inverse relations have the same form with T, R, ¢
and 7', R', ¥ interchanged only and a, replaced by —ay.

0__ VI-RE

+ (R'Ro /%) cos 9’

1= (RR,/£2) cos¥

V1-RZ/2 7

(A97)
R'R, RR, R2
(1+Tcosz9') (1— e cos 19) _1_6_2 , (A98)
1—-R?/ 1—R%/
[ /G (a09)

+ (R'Ro/2)cos®¥ 1 —(RR,/¢?)cos?
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Relation to Robinson-Trautman coordinates

T = ucosh o Ly log £,— (sinh a, cos ¥'+ cosh ay)
- RS

)

2 £,—t (sinh o, cos ¥ — cosh a,)
t cosha
R = ° A100
1 — (v/t,)sinh a, cos ¥’ ( )
!
u .
tan 5 = exp (¢ — E sinh ao) ,

£,—t (sinh a, cos ¥+ cosh a,)

1
T = il cosha0—§ log

N £,—t (sinh a,, cos ¥ — cosh )
L
v=——— —tanha, cos?’ , (A101)
rcosh a,
u
=tanh(¢ — —sinhay | ,
¢ (v~ 7 sinbia,)
where cos¥’ = —¢ is given in terms of the Robinson-

Trautman coordinates by the last equation.

Relation to flat cosmological family

If we introduce the spherical coordinates &, #', 1, ¢
boosted with respect to the flat cosmological coordi-
nates £, #, 19, ¢ by a boost a, (in the sense of Minkowski
space M), we find that the accelerated coordinates T, R’
are related to #, 7 in exactly the same way as the
static coordinates T, R are related to the coordinates
t, #. The boost £ = fcosha, + Zsinha,, &' = &, §' = 7,
%' = {sinh a, + # cosh ay, rewritten in the spherical coor-

dinates 7 cos = z', 7' sind = \/%'2 + 9’2, reads

t' = fcosha, + 7 cos¥sinh a, ,
# cosd’ = Esinh o, + 7 cos ¥ cosh a, , (A102)

7 sin = #sind |
and relations analogous to Egs. (A67) and (A80) are:

le_f,lQ , ,,,,VI
] R=-ar

Y2

A

T'= ——log

(A103)

Similarly, the formulas relating the accelerated coordi-
nates to the coordinates t, 7, 1 are:

t' = tcosha, — #cos¥sinh ay ,

#' cos¥ = —tsinh a, + 7 cosv coshay , (A104)
7 sin = #sind |

Z t12 A12 Al
T’ = 2 log|—5—|, R = 0o (A105)

2 t

The conformal factor takes the form
ot
Q= I-7° cosha, — Ll sinh o, cosd . (A106)
A
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9. The Robinson-Trautman coordinates
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Figure 22: The Robinson-Trautman coordinates.

In the Robinson-Trautman coordinates u, t, ¥, ¢ (or
in their complex version u, t, ¢, ¢), de Sitter metric takes
the standard Robinson-Trautman form [50]. The coordi-
nate u is null, the “radial” coordinate t is an affine pa-
rameter along coordinate lines u, 1, ¢ = constant. These
lines are null geodesics generating light cones with ver-
tices at the origin v = 0. The coordinates v, ¢ (or ¢, ()
are angular coordinates, however, they are not func-
tions of the accelerated angular coordinates ¥,y only
(cf. Eq. (A112)). Because ¢, have a clearer geomet-
rical meaning, we list some formulas also in the mixed
coordinate system u, t, ¥, .

The origin v=0 of the Robinson-Trautman co-
ordinates is centered on the worldline of the uni-
formly accelerated observer moving with the acceleration
lao| = |€X1 sinh a0|. The coordinates are thus closely re-
lated to the accelerated coordinates.

The coordinates u, t, ¥, ¢ do not cover the whole
spacetime smoothly. They can be introduced smoothly
in the future of the north pole, or in the past of the south
pole. At the boundary of these two domains, u — +o0.

Metric and relation between coordinates

2
g= —HduZ—duvdt-i-t— (d1/12+d<p2) ,

(A107)
g=—Hd —duvdet = d(de, (A108)
2
g = — cosh?a, — (v? —1)du? — du v dr
°pe (A109)

2
+ cosh ay, " ind duv dy’ + 2 (49" + sin®’ dp?) ,

N
He-5 425 dnha tanh(zp— Y Sinha ) +1
23N 0 ‘s 0
© 2" gun 9 +1 All
—p — 27 sinhao cos +1, (A110)
A A
u 1
P = cosh(z/J ~ s1nha0) =g (A111)
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!

P = hd sinh o, + log

tan —| ,
,KA 2 (A112)
n—|=ex _x inh )
ta 5 e p(zp IR sinhay ) ,
(== —ip), b=—=(C+0)
) 12 ‘{5 i (A113)
C=—2(1/J+Z<P), SOZE(C—C)

Null tetrad

Since the Robinson-Trautman coordinates are closely
related to the congruence of null geodesics, it is con-
venient to introduce the null tetrad which is parallelly
transported along these geodesics u, v, o = constant:

10 1 8
k T — T —=A. > 1 T —
= e = A +\f
1 P/o .0
Mgrt = 75 ? (% — 'L%) , (A114)
T2t \oy "op)
Relation to accelerated coordinate family
__RJIRE
1+ (R'Ro/2) cos '’
R? IR R —¢,
1—£7<T’+—1g‘R,+£ > (A115)
R, (T 1 R —¢, !
=—|—+=1lo 1 —
4 £A<£A+ ‘R’ £>+°gtan2’
vcosha, — Esinhag
I'N 1 1-v
u= cosh (T + 3 log T ) , (A116)

1 1-w 1
1/J—tanha0<r+ §log‘l+—v ) +§log

Relation to static family

2 L
t:\/l_glj\%w{(l—lzgo 00519)2—(1—15—%)( —%)] :

(A117)
vsin®’ = Rsind, tcosd = Roosd Ry - (A118)
1— R3[4
Rsind = tsind’
(A119)

Rcosd =rcosd'\/1— R2/(2 + R, .
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10. The null family
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Figure 23: The null family of coordinates

Finally, we return back to the coordinate systems
which employ standard coordinates ¥, . Time and ra-
dial coordinates can be transformed into two null coordi-
nates. Such null coordinates can be associated with most
coordinate families introduced above. Coordinates i, ©
are related to the standard coordinates; @, © and 4, 0 to
the flat cosmological coordinates; u, v to the conformally
Minkowski; and @, ¥ to the static coordinates. Coordi-
nate vectors {0/0u, 0/00v}, {9/du, 0/Iv}, etc., are the
pairs of independent null vectors in the radial 2-slices
9, ¢ = constant. We do not allow the radial coordinate
to be negative in the definitions of null coordinates be-
cause this would interchange the meaning of v and wv.
The null coordinates are thus drawn in the right half of
Fig. 23 only.

Metric and relation to other coordinates

= #@Hﬁ) (—da v do + (1= cos(@ — ) dw?) ,
(A120)

U+U2( 2divdd + (@ - 0) do?) ,  (A121)

== 7} ( 2di v do + (4 — )2dw2) ;o (Al122)
( _2 ) (~2duvdot (u—v) de?) , (A123)

g = (exp K_ + exp ; )_2

( 2exp é
A

The relation of time and radial coordinates %, # to the
corresponding null coordinates i, ¥ is given by usual for-
mulas:

t=l@+a), a=i-#
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F=lb—-0), b=t+F.
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Here {f, #} stands for {Z, 7}, {f, #}, {f, 7}, {t, r}, and
{t, 7} respectively; similarly with {d, 9}.

Relation between null coordinates

The coordinates 4, v, u, v, and 4, ¥ can be viewed as
null coordinates in the conformally related Minkowski
spaces M M, and M; these are shifted with respect
to each other by 3 in the direction of the conformally

Einstein time coordinate t, or associated null coordinates:
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The remaining coordinates @, @ are related to the confor-
mally Einstein null coordinates @, ¢ by the “compactifi-
cation transformation”:

tang = S, €Xp % , tan g = S, €Xp % . (A127)
Here the sign factors s, and s, are given by
Sy = sign tang , Sy = sign tang . (A128)

Relations (A126), (A127) between null coordinates can
also be rewritten as follows:
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The same relations hold for coordinates v.





