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Tutorial 2: Solutions

1 Nambu–Goto vs. Polyakov

In the lecture we have seen the Polyakov action for massless relativistic strings is
given by:

SP = − 1

4πα′

∫
d2ξ
√
−hΓ , Γ = hABγAB . (1)

Let us now integrate out the auxiliary metric hAB. This is done as follows. First,
we want to write down the EOM for hAB obtained by varying the action. Using an
amazing formula (derived in GR courses)

δ
√
−g = −1

2

√
−ggµνδgµν , (2)

valid for any metric, we have

−4πα′δSP =

∫
d2ξδ(

√
−hhAB)γAB =

∫
d2ξ
(
−1

2

√
−hhABδhABΓ +

√
−hγABδhAB

)
=

∫
d2ξ
√
−h
(
−1

2
hABΓ + γAB

)
δhAB . (3)

The corresponding equations of motion are thus:

TAB ≡ γAB −
1

2
hABΓ = 0 . (4)
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Taking the determinant of this equation, and using the fact that we are in two
dimensions, we get

γ =
1

4
Γ2h ⇒

√
−h =

2
√
−γ

Γ
. (5)

Plugging this back in the Polyakov action, we thus recovered the Nambu–Goto
action:

SNG = − 1

2πα′

∫
d2ξ
√
−det(γAB) . (6)

The two actions are thus (at least classically) equivalent.

2 Extremal black holes & near horizon limit

There exists an interesting class of black hole solutions of the Einstein–Maxwell
theory, given by the so called Majumdar–Papapetrou solution:

ds2 = − 1

H2
dt2 +H2dxidxi , Aµdx

µ = − 1

H
dt , (7)

where H obeys ∆H = 0, with ∆ being the 3-dimensional Laplace operator in the
flat space spanned by xi, i.e., H is any harmonic function.

a) Obviously, by introducing spherical coordinates on the flat space, dxidxi =
dr2 + r2dΩ2, we can have the following monopole solution:

ds2 = − 1

H2
dt2 +H2(dr2 + r2dΩ2) , Aµdx

µ = − 1

H
dt , H = 1 +

M

r
. (8)

(Recall that the potential 1/r solves the Laplace equation in flat space.)

Upon redefining R = r +M , we recover the following metric:

ds2 = −fdt2 +
dR2

f
+R2dΩ2 , f =

(
1− M

R

)2
, (9)

which is the extremal Reissner–Nordström black hole with M = Q.

The horizon is located at f = 0, that is

R = M ⇔ r = 0 , (10)

or H →∞. The asymptotic region then corresponds to r →∞ or R→∞.
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More generally, and restricting to asymptotically flat solutions (H → 1 as
r →∞), we have

H(r) = 1 +
∑
i

Mi

|~r − ~ri|
. (11)

This corresponds to a stable configuration of charged black holes for which the
gravitational pull is balanced by electrostatic repulsion.

b) Consider now a near horizon limit of (8), characterized by

r �M , (12)

for which H ≈M/r. Here we are deeply in an (infinite) throat of the extremal
black hole, and the metric reads

ds2 = − r2

M2
dt2 +

M2

r2
dr2 +M2dΩ2 . (13)

Introducing a new coordinate z = M2/r, this then yields (up to an overall
scale M2) the direct product of AdS2 × S2:

ds2

M2
=

1

z2

(
−dt2 + dz2)︸ ︷︷ ︸
AdS2

+ dΩ2︸︷︷︸
S2

. (14)

This is precisely how the AdS5×S5 emerges in the AdS/CFT correspondence,
upon replacing the ‘point-like’ extremal Reissner–Nordstrom solution by an
extended (extremal) D3-brane.

3 Feelings for D-branes

In this problem we study transverse vibrations of classical strings, governed by the
following action:

S =

∫ t2

t1

Ldt =

∫ t2

t1

dt

∫ a

0
dxL(ψ, ψ̇, , ψx, t, x) , L =

1

2
µψ̇2 − 1

2
Tψ2

x , (15)

where µ is the mass density of the string, and T is its tension. We also denoted by
ψx = ∂ψ/∂x and ψ̇ = ∂ψ/∂t.
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a) Denoting by

pt =
∂L
∂ψ̇

, px =
∂L
∂ψx

, (16)

we have the following variation of the action:

δS =

∫ t2

t1

dt

∫ a

0

[ ∂L
∂ψ̇︸︷︷︸
pt

δψ̇ +
∂L
∂ψx︸︷︷︸
px

δψx +
∂L
∂ψ︸︷︷︸
0

δψ
]
dx

= −
∫ t2

t1

dt

∫ a

0
dx
[
ṗt + ∂xp

x
]
δψ +

∫ a

0

[
ptδψ

]t2
t1
dx+

∫ t2

t1

[
pxδψ

]a
0
dt ,(17)

where we have integrated by parts (over t in the first term and over x in the
second one), using the fact that the variation δ commutes with the partial
derivatives:

δψ̇ =
∂

∂t
δψ , δψx =

∂

∂x
δψ . (18)

In order to impose the action principle, δS = 0, the three terms that we got
must vanish independently!

b) The first (bulk) term describes the motion of the string for x ∈ (0, a) and
t ∈ (t1, t2). Since explicitly we have

pt =
∂L
∂ψ̇

= µψ̇ , px =
∂L
∂ψx

= −Tψx , (19)

this gives

ṗt + ∂xp
x = 0 ⇔ ψxx −

1

v2
ψ̈ = 0 , v =

√
T/µ , (20)

which is the wave equation with the corresponding speed of propagation v.

c) The second (time boundary) term is determined by the the string configuration
at t1 and t2 and corresponds to initial data. It is natural to set

δψ(t1, x) = 0 , δψ(t2, x) = 0 , (21)

fixing the ‘shape of the string’ at t1 and t2, upon which this term vanishes.
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d) The last term is related to the evolution of endpoints ψ(t, 0) and ψ(t, a) and
represents the boundary conditions. Two types of boundary conditions are
often prescribed:
i) Dirichlet boundary conditions describe fixed endpoints:

δψ|a = 0 = δψ|0 ⇔ ψ̇|0 = 0 = ψ̇|a . (22)

ii) Neumann boundary conditions describe free to move endpoints (no friction).
This means that δψ|0 and δψ|a are unconstrained but

px|a = 0 = px|0 ⇔ ψx|0 = 0 = ψx|a . (23)

e) Let us finally calculate the momentum/energy carried by the string:

P =

∫ a

0
ptdx =

∫ a

0
µψ̇dx . (24)

For Neumann boundary conditions P is conserved, since

Ṗ =

∫ a

0
µψ̈dx = µv2

∫ a

0

d

dx
ψxdx = µv2[ψx]a0 = 0 . (25)

On the other hand, with Dirichlet conditions momentum can exchange with
the ‘wall” holding the fixed endpoints.

In string theory, the endpoints of open strings may be attached to D-branes
that can exchange momentum with the string, see the following picture:

and [1] for more details.
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