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Tutorial 2: Solutions

1 Nambu—Goto vs. Polyakov

In the lecture we have seen the Polyakov action for massless relativistic strings is
given by:

Sp = — ! /d%/—hr, I =h'Pyp. (1)
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Let us now integrate out the auxiliary metric hap. This is done as follows. First,
we want to write down the EOM for h4% obtained by varying the action. Using an
amazing formula (derived in GR courses)

1
o/—g = —5\/—ggw5g”” , (2)

valid for any metric, we have

Ara!6Sp = / d265(V—hh*B)y a5 = / d2§(—%\/—hhABahABr+ \/—hfyAB(ShAB>

1
_ /d2§\/—h<—2hABl“ n ’YAB) SHAB .
The corresponding equations of motion are thus:

1
TaB =B — §hABF =0. (4)

3)



Taking the determinant of this equation, and using the fact that we are in two
dimensions, we get
1 2/—
'y:ZIQh = V- :T’Y (5)
Plugging this back in the Polyakov action, we thus recovered the Nambu-Goto

action: .
Sve = — / e/~ detlag) . (6)
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The two actions are thus (at least classically) equivalent.

2 Extremal black holes & near horizon limit

There exists an interesting class of black hole solutions of the Einstein—-Maxwell
theory, given by the so called Majumdar—Papapetrou solution:

1 o 1
ds® = —mdtZ + H?dz'dx",  A,da* = —Edt, (7)
where H obeys AH = 0, with A being the 3-dimensional Laplace operator in the

flat space spanned by z?, i.e., H is any harmonic function.

a) Obviously, by introducing spherical coordinates on the flat space, dx'dz’ =
dr? + r2d9Q?, we can have the following monopole solution:

1 1 M
ds® = —ﬁdtQ + H2(dr? +r2dQ?%), A,dr* = —gpdt, H=1+-". (8)

(Recall that the potential 1/r solves the Laplace equation in flat space.)

Upon redefining R = r + M, we recover the following metric:

dR? M2
2 _ g2 GO0 2 7092 _(1_ M
ds® = —fdt* + + R*dQ~, f—<1 ) , (9)

which is the extremal Reissner—Nordstrom black hole with M = Q.

The horizon is located at f = 0, that is
R=M < r=0, (10)

or H — co. The asymptotic region then corresponds to r — oo or R — oc.



More generally, and restricting to asymptotically flat solutions (H — 1 as
r — 00), we have

H(r)=1+3 \f’]\—%ﬂ _ (11)

This corresponds to a stable configuration of charged black holes for which the
gravitational pull is balanced by electrostatic repulsion.

b) Consider now a near horizon limit of (8), characterized by
r<< M, (12)

for which H ~ M /r. Here we are deeply in an (infinite) throat of the extremal
black hole, and the metric reads

2 M2
ds? = _%d# + gdr? M0 (13)

Introducing a new coordinate z = M?/r, this then yields (up to an overall
scale M?) the direct product of AdSs x Sa:

ds? 1
AdS> &

This is precisely how the AdSs5 x S5 emerges in the AdS/CFT correspondence,
upon replacing the ‘point-like’ extremal Reissner—Nordstrom solution by an
extended (extremal) D3-brane.

3 Feelings for D-branes

In this problem we study transverse vibrations of classical strings, governed by the
following action:

to

to a i 1 . 1
S = Ldt = / dt/ dzL(, ), e, t,z), L= §W2 - §T¢§, (15)
t1 0

t1

where p is the mass density of the string, and T is its tension. We also denoted by

Yp = O /O and p = /ot
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Denoting by

oL oL
b="2 pf=—, 16
S S A (16)

we have the following variation of the action:

5S = /:dt/ 751# wawx \sz}daﬁ

p” 0
to a : to a
- — / dt / da:[pt+axpf]5zp+ / [p'oy] 2 da + / [p"6¢] dt (17)
t1 0 0 t1

where we have integrated by parts (over ¢ in the first term and over z in the

second one), using the fact that the variation ¢ commutes with the partial

derivatives:

Stp = ﬁ&p Sthy = Q&p (18)
ot "’ 0

In order to impose the action principle, 45 = 0, the three terms that we got

must vanish independently!

The first (bulk) term describes the motion of the string for z € (0,a) and
t € (t1,t2). Since explicitly we have

oL oL
t ) Y= =-T x 19
P00 =wh, p 90, 0 (19)
this gives
) . 1 .
pt“‘axp =0 <« wﬂcm_ﬁ@D:O? U:VT/Ma (20)

which is the wave equation with the corresponding speed of propagation v.

The second (time boundary) term is determined by the the string configuration
at t1 and ¢ and corresponds to initial data. It is natural to set

6¢(t1,l’) = Oa 5¢(t2,$) = 07 (2]‘)

fixing the ‘shape of the string’ at ¢; and ts, upon which this term vanishes.
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The last term is related to the evolution of endpoints ¢ (¢,0) and (¢, a) and
represents the boundary conditions. Two types of boundary conditions are
often prescribed:

i) Dirichlet boundary conditions describe fized endpoints:

pla=0=0%lo & |[Plo=0=1],. (22)

ii) Neumann boundary conditions describe free to move endpoints (no friction).
This means that 0¢|p and 01|, are unconstrained but

Pla=0=p"% & |tulo=0=1ula. (23)

Let us finally calculate the momentum /energy carried by the string:

P:/Oaptdx:/oawdx. (24)

For Neumann boundary conditions P is conserved, since

. a a g
P /0 pibdz = po? /0 i = [l = 0. (25)

On the other hand, with Dirichlet conditions momentum can exchange with
the ‘wall” holding the fixed endpoints.

In string theory, the endpoints of open strings may be attached to D-branes
that can exchange momentum with the string, see the following picture:
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and [1] for more details.
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