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Tutorial 3: Solutions

1 Flat space: conformal transformations

A conformal field theory in flat space is invariant under a transformation of coordi-
nates xµ → x′µ(x) so that

ηµν → Ω2(x)ηµν . (1)

Let us derive which transformations this includes.

a) Consider infinitesimal coordinate transformation

xµ → x′µ = xµ − ξµ , (2)

or equivalently
xµ = x′µ + ξµ . (3)

Let us also write Ω = 1 + ω. The metric then transforms as

Ω2ηµν = (1 + 2ω +O(ω2))ηµν = g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ

= (δαµ + ξα,µ)(δβν + ξβ,ν)ηαβ

= ηµν + ξµ,ν + ξν,µ +O(ξ2) . (4)

Thus we found a conformal Killing vector equation:

∂µξν + ∂νξµ = 2ωηµν . (5)

1



Note that, we can contract this equation to get

2∂ · ξ = 2ωδµµ = 2dω ⇒ ω =
1

d
∂ · ξ (6)

in d number of spacetime dimensions.

b) The most general solution to the above equation can be written as

ξµ = aµ︸︷︷︸
translations

+ωµνx
ν︸ ︷︷ ︸

LT

+ λxµ︸︷︷︸
scaling t

+ bµx2 − 2xµb · x︸ ︷︷ ︸
special CT

, (7)

where ωαβ = −ωβα are the parameters of the Lorentz transformation. Ob-
viously, the first two leave the Minkowski metric invariant and thence solve
Eq. (5). The most interesting are the scaling transformations, for which

∂µξν = ληµν , ∂ · ξ = dλ , (8)

and so (5) is also satisfied. I leave up to you to show that the special trans-
formations also solve (5).

c) So how many generators do we have in d dimensions? We have the following
parameters:

aµ , ωµν , λ , b
µ . (9)

This gives

d+

(
d

2

)
+ 1 + d =

(d+ 2)(d+ 1)

2
=

(
d+ 2

2

)
, (10)

which is the same as the number of parameters of the SO(d, 2) symmetry.

2 Curved space: Weyl invariance

a) In GR we define the energy momentum tensor by varying the matter La-
grangian w.r.t. the (curved) metric:

δSm[φ, gµν ] ≡ −1

2

∫
ddx
√
−gTµνδgµν +

∫
ddx
√
−g δSm

δφ
δφ . (11)

Such tensor is automatically symmetric. Moreover, the prescription can be
also used in flat space, upon promoting the metric to a curved one, calculating
Tµν , and plugging back the Minkowski metric.
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For a diffeomorphism invariant matter action we have

δSm = 0 . (12)

Moreover, in that case
δgµν = 2∇(µξν) . (13)

At the same time there is some δφ. When the equations of motion for the
matter are satisfied, the second term vanishes. Thus, integrating by parts, we
have

0 = δSm ∝
∫
ddx
√
−gTµν∇(µξν) =

∫
ddx
√
−gTµν∇µξν

= −
∫
ddx
√
−g∇µTµνξν , (14)

for any diffeomorphism ξ that vanishes on the boundary (so that the corre-
sponding boundary term vanishes) or for Tµν ’s of compact support. In other
words, we have to have

∇µTµν = 0 or ∂µT
µν = 0 , (15)

with the latter valid in flat space.

Let us stress that this is truly true only when the equations of motion for
the matter are satisfied! (Diffeomorphism induces some variations of the fields
as well and in order the corresponding terms vanish we must ensure that
the equations of the motion for the matter are satisfied. For his reason the
conservation of Tµν is more or less equivalent to the equations of motion for
the matter!)

b) Similarly, for the Weyl invariant theory, we have the following symmetry:

gµν → Ω2(x)gµν ⇒ δgµν = ω(x)gµν . (16)

Thus we have

0 = δSm ∝
∫
ddx
√
−gTµν2ωgµν = 2

∫
ddx
√
−gωTµµ . (17)

Since this must be true for any ω, we must have

Tµµ = 0 (18)

for energy-momentum tensors of Weyl invariant theories.
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3 Massless scalar: Weyl vs. conformal

Consider the following (non-minimally coupled) scalar field action:

S = −1

2

∫
ddx
√
−g
(
gab(∇aφ)(∇bφ) + ηRφ2

)
. (19)

a) Varying w.r.t φ we recover the following EOM:

(∇2 − ηR)φ = 0 . (20)

In particular, when we have an Einstein space, we have

R ∝ Λ = const. ≡ 1

η
m2 , (21)

we recover the massive Klein–Gordon equation with mass given by the cosmo-
logical constant.

b) To calculate the energy momentum tensor, we use the formula (11), that is we
have to vary the above Lagrangian w.r.t. the metric. For this we will employ
the following 2 identities:

δ
√
−g = −1

2

√
−ggabδgab ,

δ(
√
−gR) =

√
−g(Gabδg

ab +∇ava) , va = gcd∇aδgcd −∇bδgab , (22)

Obviously, employing the first identity to the first term in Lagrangian, we
recover the first two terms in Tab. More interesting is the η term, for which
we use the second identity. Namely, we have

δ(
√
−gR)φ2 =

√
−g(Gabδg

ab +∇ava)φ2 (23)

We now concentrate on the second term and integrate it by parts, shifting the
derivatives onto φ2:
√
−g∇avaφ2 = −

√
−gva∇aφ2 = −

√
−g(gcd∇aδgcd −∇bδgab)∇aφ2

=
√
−g(gab∇2φ2 −∇b∇aφ2)δgab . (24)

Combining all terms together, we just recover the following expression for the
energy momentum tensor:

Tab = ∇aφ∇bφ−
1

2
gab(∇φ)2 + η

(
Gab + gab∇2 −∇a∇b

)
φ2 . (25)
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c) Let us now calculate the trace of the above expression. In particular, we have
Gaa = R− 1

2Rd = (2− d)/2R. Thus we have

T aa =
2− d

2
(∇φ)2 + η

(2− d
2

R+ (d− 1)∇2
)
φ2

=
(2− d

2
+ 2η(d− 1)

)
(∇φ)2 + 2(d− 1)ηφ

(
∇2φ+

2− d
4(d− 1)

Rφ
)
. (26)

Vanishing of the first term requires

η =
d− 2

4(d− 1)
. (27)

The second term then vanishes on behalf of EOM for φ, Thence, the above
scalar field enjoys conformal symmetry in curved space for this choice of η. In
particular, when d = 2, the standard massless theory is Weyl invariant.

d) Let us now consider the flat space limit of the above. First, we recover the
standard massless scalar theory in flat space. This is known to have conformal
symmetry (check scalings if you are not convinced). One can easily check that
the corresponding canonical energy-momentum is not traceless. Conformal
symmetry, however, guarantees that one can find an improved energy momen-
tum tensor that will be traceless. One such choice is given by the flat space
limit of the above energy-momentum of the Weyl invariant scalar:

Tab = ∂aφ∂bφ−
1

2
ηab(∂φ)2 + η

(
ηab∂

2 − ∂a∂b
)
φ2 . (28)

In general, Weyl symmetry is very strong and leads to traceless energy-momentum
tensor. In the flat space limit, it yields the conformal symmetry. Since in the
former only the metric changes, whereas the latter included the change of
coordinates, the fields have different ‘conformal weights’ in the two cases.
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