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Tutorial 4: Solutions

1 Wilson loops: quark-antiquark potential

Let us consider the above quark-antiquark contour, where we have chosen the sep-
aration R in the x-direction, and parametrized z = z(x) in AdS5 (while fixing the
string in S5).

a) Since the string is fixed on S5 and so is the direction y in AdS5, and we choose
the coordinates σA = (τ, x) to parametrize the strings, that is z = z(x), we
have the following induced metric on the string worldsheet:

γ =
`2

z2

(
dτ2 + (1 + z′2)dx2

)
, (1)

1



where z′ = dz/dx. The corresponding determinant is thus

√
det γAB =

`2

z2

√
1 + z′2 . (2)

Hence, the Nambu–Goto action reads:

SNG =
1

2πα′

∫
Σ
d2σ
√

det γAB =
T`2

2πα′

∫
dx

√
1 + z′2

z2
, (3)

where we integrated over τ to yield T .

b) One can think about the above action as a mechanical problem, with the
following Lagrangian:

L =

√
1 + z′2

z2
, (4)

where x plays the role of time. Since L is independent of x, there is a corre-
sponding conserved ‘energy’:

E =
∂L

∂z′
z′ − L = − 1

z2
√

1 + z′2
. (5)

We can invert this, and consider instead the following conserved quantity:

z2
∗ = z2

√
1 + z′2 = const. (6)

Of course, z∗ has a physical meaning of the ‘largest z’ the string can reach in
the bulk (where z′ = 0).

c) The expression for z∗ yields

dz

dx
= ±

√
(z∗/z)4 − 1 , (7)

or ∫
dx = ±

∫
dz√

(z∗/z)4 − 1
, (8)

where ± corresponds to two branches of the string. Using the fact that

z(R/2) = z(−R/2) = 0 , z(0) = z∗ , (9)
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we have for example ∫ R/2

0
dx = −

∫ 0

z∗

dz√
(z∗/z)4 − 1

. (10)

Finally, introducing the dimensionless quantity q = z/z∗, we recover

z∗ = kR , k =
(

2

∫ 1

0

q2dq√
1− q4

)−1
≈ 0.83. (11)

d) Let us now plug back the first integral to the action. We have

SNG =
T`2z2

∗
2πα′

∫
dx

1

z4
=

2T`2z2
∗

2πα′

∫ z∗

dz
1

z4
√

(z∗/z)4 − 1
, (12)

Choosing again z/z∗ = q, we thus have

SNG =
2

z∗

T`2

2πα′
kε , k̃ε ∼

∫ 1

ε

dq

q2
√

1− q4
≈ 1

ε
−k0 +O(ε) , k0 ≈ 0.599 . (13)

e) Obviously, the previous result is infinite (contains infinite self-energy of the
quarks) and has to be renormalized. This is, for example, done by subtract-
ing S0

NG of two parallel strings hanging between z = εz∗ and z = ∞. The
corresponding action is given by

S0
NG =

2T`2

2πα′z∗

∫ ∞
ε

dq

q2
=

2T`2

2πα′z∗ε
. (14)

Thus we have

SNG − S0
NG = − 2

z∗

T`2

2πα′
k0 , (15)

which, when compared to TV (R), yields:

V = − `
2

α′
k0

kπ

1

R
≈ −0.23

√
2λ

R
. (16)

So we arrived at the Coulomb law :)
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2 CFT at finite temperature: dimensional analysis

a) Consider a d-dimensional CFT at finite temperature T . Since T is the only
dimensionfull parameter, and we have [T ] = 1/length, we must have

s =
S

Vd−1
= g(λ)T d−1 (17)

for the entropy density s, where g(λ) is some function of the ‘t Hooft coupling
λ.

b) To calculate the internal energy, we can use the dε = Tds. Namely, we have

dε

dT
= T

ds

dT
= g(d− 1)T d−1 ⇒ ε =

d− 1

d
gT d . (18)

c) In the rest frame we have 〈Tµν〉 = diag(ε, P, P, P ). Since this must be traceless
for any CFT, we have

〈Tµµ〉 = −ε+ (d− 1)P = 0 ⇒ P =
1

d− 1
ε =

1

d
gT d (19)

for the CFT pressure P . Similarly, we have the following prediction for the
speed of sound:

v2
s =

∂P

∂ε
=

1

d− 1
. (20)

d) Finally, we can calculate the free energy density f from the standard relation
f = ε− Ts:

f = ε− Ts =
d− 1

d
gT d − gT d = −1

d
gT d = −P , (21)

which is the standard Euler relation:

ε = Ts− P . (22)
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