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1 Wilson loops: quark-antiquark potential

QUARK -ANTIBUARK FPOTENTIAL

Let us consider the above quark-antiquark contour, where we have chosen the sep-
aration R in the z-direction, and parametrized z = z(z) in AdSs (while fixing the
string in S°).
a) Since the string is fixed on S® and so is the direction y in AdS5, and we choose
the coordinates 04 = (7, ) to parametrize the strings, that is z = z(x), we
have the following induced metric on the string worldsheet:
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where 2z’ = dz/dx. The corresponding determinant is thus
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Hence, the Nambu—Goto action reads:
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where we integrated over 7 to yield T.

One can think about the above action as a mechanical problem, with the

following Lagrangian:
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where x plays the role of time. Since L is independent of x, there is a corre-
sponding conserved ‘energy’:
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We can invert this, and consider instead the following conserved quantity:

22 = 22\/1+ 2/2 = const. (6)

Of course, z, has a physical meaning of the ‘largest z’ the string can reach in
the bulk (where 2’ = 0).
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The expression for z, yields
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where + corresponds to two branches of the string. Using the fact that
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we have for example

R/2
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Finally, introducing the dimensionless quantity ¢ = z/z., we recover
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Let us now plug back the first integral to the action. We have
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Choosing again z/z, = ¢, we thus have
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Obviously, the previous result is infinite (contains infinite self-energy of the
quarks) and has to be renormalized. This is, for example, done by subtract-

ing SV, of two parallel strings hanging between z = ez, and z = co. The
corresponding action is given by
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Thus we have 2
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which, when compared to TV (R), yields:
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So we arrived at the Coulomb law :)



2 CFT at finite temperature: dimensional analysis

a) Consider a d-dimensional CFT at finite temperature 7. Since T is the only
dimensionfull parameter, and we have [T] = 1/length, we must have
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for the entropy density s, where g(\) is some function of the ‘t Hooft coupling
A

b) To calculate the internal energy, we can use the de = T'ds. Namely, we have

de T ds

Geor® ga-nrt s =T (18)
¢) In the rest frame we have (T),,,) = diag(e, P, P, P). Since this must be traceless
for any CFT, we have
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(TH,)=—e+(d-1)P=0 = P=

for the CFT pressure P. Similarly, we have the following prediction for the
speed of sound:
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d) Finally, we can calculate the free energy density f from the standard relation

f=e—"Ts:
f=€e—Ts= d%dlgTd—gTd:—égTd:—P, (21)
which is the standard Euler relation:
e=Ts—P. (22)



	Wilson loops: quark-antiquark potential
	CFT at finite temperature: dimensional analysis

