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Institute of Theoretical Physics

November 28, 2024



i

Abstract

This is a study text for the “Selected topics in AdS/CFT correspondence” course
taught at Charles University in 2024/25. The text is based on a number of sources
stated below, as well as builds on similar courses delivered by Andrei Starinets, Veronika
Hubeny, and myself in previous years. I would like to thank Petr Lukeš for useful com-
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Chapter 1: Prelude: Lessons from
black hole thermodynamics

1.1 Black hole thermodynamics

Characteristics of a BH

Let us study some properties of the Schwarzschild black hole:

ds2 = −fdt2 +
dr2

f
+ r2dΩ2 , f = 1− 2m

r
, dΩ2 = dθ2 + sin2θdϕ2 . (1.1)

� Asymptotic mass. It corresponds to a conserved energy associated with the
asymptotic time translation symmetry, encoded in the following Killing vector
field:

k = ∂t . (1.2)

In asymptotically flat space, the “Gaussian type integral” for the mass is given
by the Komar integral:

M = − 1

8π

∫
S2
∞

∗dk = m. (1.3)

� Surface gravity. The black hole horizon is located at

f(r+) = 0 ⇒ r = r+ = 2M . (1.4)

It is the so called Killing horizon: a null surface generated by Killing field k = ∂t.

It can be shown that κ reads

κ =
f ′(r+)

2
=

1

2

2M

r2
+

=
1

4M
=

1

2r+

. (1.5)

1
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Note that this ‘coincides’ with Newtonian acceleration evaluated on the black hole
horizon:

κ =
M

r2
+

=
M

(2M)2
=

1

4M
. (1.6)

� Horizon area. Taking dt = 0 = dr, the induced spatial metric ‘on the horizon’ is
dγ2 = r2

+dΩ2. The horizon area then reads

A =

∫ √
det γdθdϕ =

∫
r2

+ sin θdθdϕ = 4πr2
+ . (1.7)

� Observation: Calculating the following differentials:

dM =
dr+

2
, dA = 8πr+dr+ , (1.8)

we find that

dM =
κ

2π

dA

4
. (1.9)

Laws of Black Hole Mechanics

Bardeen, Carter and Hawking (1973) proved the following 4 laws of black hole mechanics.
For a stationary, charged, and rotating black hole with mass M , angular momentum
J , and charge Q, we have:

� Zeroth law: The surface gravity κ is constant on the black hole horizon.

� First law:

dM =
κ

2π

dA

4
+ ΩdJ + ΦdQ︸ ︷︷ ︸

work terms

. (1.10)

Here, Ω is the angular velocity of the hole, and Φ is its ‘electrostatic potential’.

� Second law: Classically, the area of the horizon never decreases (provided the
null energy condition holds).

dA ≥ 0 . (1.11)

� Third law: It is impossible to reduce κ to zero in a finite number of steps.

We would like to compare these to the laws of thermodynamics. In particular, the
first law to

dE = TdS + work terms . (1.12)

However, there is a problem: Classical black holes act as ultimate sponges: no heat can
flow out, they are at absolute zero temperature. So we cannot have κ ∝ T .
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Black hole thermodynamics

� Wheeler’s cup of tea: “If you throw a cup of tea to the black hole, where did its
entropy go?” Based on analyzing this question Bekenstein proposed

S ∝ A . (1.13)

� Hawking 1974. When quantum effects are taken into account, black holes radiate
away as black body with (upon restoring the fundamental units)

T =
κ

2π

~c3

kB
⇒ S =

A

4

c3kB
~GN

, (1.14)

where the formula for entropy simply follows from the 1st law.

Hawking’s derivation was based on using the QFT in curved space (approximation
of fixed background metric). Hawking basically showed “stimulated emission”.
The problem with his derivation is that due to the bluehift near the horizon, the
test field approximation breaks down and we cannot really trust the result. How-
ever, since then the same result has been reproduced by many other approaches,
e.g: Euclidean path integral, tunneling, string theory, LQG.

Euclidean Trick

The simplest derivation of the black hole temperature is via the Euclidean trick. Let
us repeat it here. It employs the fact that thermal Green functions have periodicity in
imaginary Euclidean time τ = it :

G(τ) = G(τ + β) , β = 1/T . (1.15)

Conversely, periodicity of G defines a thermal state. (It can be shown that a thermome-
ter will register such temperature when interacting with the given field for a long time.)
Green functions of quantum fields in the vicinity of black holes have this property (as
seen by static observers).

What about gravitational field itself? Let us again focus on the Schwarzschild black
hole. First, consider the Euclideanized Schwarzschild (τ = it):

ds2 = fdτ 2 +
dr2

f
+ r2dΩ2 . (1.16)

Near the horizon we may expand

f = f(r+)︸ ︷︷ ︸
0

+ (r − r+)︸ ︷︷ ︸
∆r

f ′(r+)︸ ︷︷ ︸
2κ

+ · · · = 2κ∆r . (1.17)



CHAPTER 1. PRELUDE: LESSONS FROM BLACK HOLE THERMODYNAMICS4

Therefore, the near horizon limit of the ‘Euclidean Schwarzschild solution’ takes the
following form:

ds2 = 2κ∆rdτ 2 +
dr2

2κ∆r
+ r2

+dΩ2 . (1.18)

We can now introduce a new coordinate ρ by

dρ2 =
dr2

2κ∆r
⇔ dρ =

dr√
2κ∆r

⇔ ∆r =
κ

2
ρ2 , (1.19)

getting
ds2 = κ2ρ2dτ 2 + dρ2 + r2

+dΩ2 = ρ2dϕ2 + dρ2 + . . . . (1.20)

upon introducing a new angle coordinate, ϕ = κτ . This looks like a flat space written
in polar coordinates, provided the angle ϕ has a period 2π, otherwise there is a conical
singularity at ρ = 0, which corresponds to the original black hole horizon. The reasoning
now goes as follows: since the black hole horizon was originally non-singular, we expect
it to be non-singular again (otherwise we no longer solve vacuum Einstein equations
there). This is achieved by setting (we want to avoid conical singularity)

ϕ ∼ ϕ+ 2π ⇔ τ ∼ τ + 2π/κ︸ ︷︷ ︸
β

⇔ T =
κ

2π
, (1.21)

which is the Hawking temperature. In particular,

T =
1

8πM
(1.22)

for the Schwarzschild solution.

Rindler space

As you will see in your tutorial, accelerated observers see a thermal bath at a temper-
ature proportional to their acceleration,

T =
a

2π
, (1.23)

which is the famous Unruh temperature. If you accelerate really fast, you can cook a
chicken. Using the Euclidean action, one can also calculate the entropy of the associated
Rindler horizon, yielding the Bekenstein result for this case as well.

Hawking evaporation

� The Hawking temperature for a Schwarzschild black hole reads

T =
~c3

8πkBGM
∝ 1

M
, (1.24)
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smaller the black hole is the hotter it is. For a stellar mass black hole we get
about 6× 10−8K, which is much smaller than the CMB temperature – the effect
is not important for astrophysics.

We would need a black hole smaller than 4.5× 1022kg (size of the Moon) to reach
at least the CMB temperature T ≈ 2.7K.

Obviously, the evaporation accelerates and towards the end we can observe ‘black
hole explosions’ (CERN?)

The black hole looses mass according to the ‘effective’ Stefan–Boltzmann law

dM

dt
∝ −σT 4A ∝ − 1

M2
, (1.25)

so that it would completely evaporate in (MS denoting the mass of the Sun)

tevap ≈
(
M

M�

)3

× 1071 s . (1.26)

� Since T ∝ 1/M , the Schwarzschild black hole has a negative specific heat:

C = T
∂S

∂T
= − 1

8πT 2
. (1.27)

(It gets colder when mass is absorbed by a black hole and vice versa.)

This is very strange for ordinary matter, but it is quite typical for self-gravitating
systems. For example, a satellite as it falls it increases its kinetic energy; a
gravothermal catastrophe described by Lynden Bell.

It also means that the canonical ensemble is not well defined for Schwarschild
black hole (as no stable thermal equilibrium exists). One way to ‘stabilize the
black hole system’ is to place the black hole in a confining box. A natural such
box is provided by the AdS space.

� Hawking radiation is a kinematic effect. (One needs equivalence principle, vac-
uum fluctuations, but the Einstein equations are not required.) This opens a
possibility for observing this effect in ‘analogue systems’, e.g. surface water waves
(see Unruh’s talk about fishes with ears).

1.2 Black hole information paradox

� Information loss. Classically, black holes absorb interesting stuff (for example an
elephant, a star, and so on) but in response only get bigger – the only parameter
that changes is the black hole mass – information disappears inside the black hole.
(Only finite amount of information is radiated away during the in-fall.) Even
quantum mechanically, if Hawking radiation is perfectly thermal, information
must be lost inside a black hole.
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� More precisely, following Hawking, let us draw the Penrose diagram of a completely
evaporating black hole:

In this picture, Hawking radiation can be understood as originating from quantum
pair creation of particles. These are entangled and together form a pure state.
One of these remains trapped behind the horizon while the other one escapes to
infinity as Hawking radiation. From outside, we only see one of them and thence
a mixed (thermal) state, see [?] for recent advances on this picture:

Thus, as the black hole has evaporated we evolved from a pure state on Σi to a
mixed one on Σf , violating unitarity of quantum mechanics. This is the famous
black hole information paradox (Hawking 76).

� Various proposals as to what might happen as black hole evaporates were in-
vented: black hole remnants, firewalls, final bursts, black holes do not exist,
‘leaking horizons’, fuzzballs,. . . Some of these are in favour of information loss (e.g.
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black hole remnants) some are in favour of restoring unitarity, e.g. AdS/CFT cor-
respondence (black hole evaporation is dual to the evolution of the CFT on the
boundary which is manifestly unitary).

If the unitarity is to be restored – information has to start coming out of the BH
in order to purify Hawking’s radiation. This has to happen quite early – around
the Page time. We shall return to this problem in later chapters.

1.3 Black hole entropy

� Formula for black hole entropy combines all of modern physics:

� It can also be written as

S =
kB
4

A

l2P
, lP =

√
G~
c3

, (1.28)

that is, it is given by measuring the area of the black hole horizon in Planck units
– a huge entropy:

� It is holographic, hinting on a holographic duality with a lower-dimensional quan-
tum theory.
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� It motivated the Bekenstein ’s universal bound on the amount of information con-
tained in a given spatial region with a boundary of area A:

S ≤ A

4
, (1.29)

as measured in Planck units (see tutorial for a simple derivation of the existence
of this bound).

� Generalized second law. During the black hole evaporation, the black hole entropy
(area) decreases – Hawking radiation violates the null energy condition. However,
the total entropy of the black hole and of the outside Universe should never
decrease:

STOT = SBH + Soutside ≥ 0 . (1.30)

This is the content of the generalized second law of thermodynamics.

� Partition function. One can calculate the gravitational partition function at tem-
perature T in the WKB (semiclassical) approximation as

Z =

∫
Dge−SE [g] ≈ e−SE(gc) , (1.31)

where gc stands for the metric(s) describing the classical solution(s), and the inte-
gral is over all metrics periodic in imaginary time with period β = 1/T . Note that
the Euclidean action SE consists of three kinds of terms: the Einstein–Hilbert action,
the York–Gibbons–Hawking term, and counter terms:

SE =

∫
Ω

d4x
√
gR

16πG
+

∫
∂Ω

d3xε
√
hK

8πG
+ counter terms , (1.32)

where ε = −1 for spacelike and ε = 1 for timelike boundary. The second (York–
Gibbons–Hawking) term is needed to ensure well-posed variational principle with
Dirichlet boundary conditions (it kills the unwanted boundary terms in the case
of a compact manifold), while the third one is used to ‘tune the value’ of the action
to make it finite and vanishing for the flat space. Here K stands for the extrinsic
curvature and the second and third integrals are boundary integrals (with hab a
boundary metric). Once the partition function is determined for a given solution,
we can calculate the corresponding free energy

F = − 1

β
logZ ≈ SE

β
, (1.33)

which knows everything about thermodynamics. In particular, the entropy is
given by

S = −∂F
∂T

. (1.34)

One can check that for black holes in Einstein gravity this confirms the area law.
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1.4 AdS black holes and their thermodynamics

� Let us now turn to the asymptotically AdS black holes, solutions of the Einstein
equations with negative cosmological constant:

Gµν + Λgµν = 8πGTµν , Λ = − 3

`2
, (1.35)

where ` is called the AdS radius.

� AdS action. In the AdS case one has a well defined local Euclidean action with
unique counter terms (c.f. vague background subtraction of Gibbons and Hawk-
ing). Namely, we have the following action:

SE =
1

16πG

∫
M

d4x
√
g
(
R +

6

`2

)
+

1

8πG

∫
∂M

d3x
√
h

[
K − 2

`
− `

2
R (h)

]
, (1.36)

where K and R (h) are respectively the extrinsic curvature and Ricci scalar of
the boundary. In this expression we have included, apart from the Einstein–
Hilbert and York–Gibbons–Hawking pieces, also the standard AdS counter-terms
– constructed from the invariants on the boundary [?].

Varying this action yields the above Einstein equations, together with the follow-
ing boundary term:

δSE = −1

2

∫
∂Ω

d3x
√
−hτabδhab , (1.37)

where

8πτab = Khab −Kab + `Gab(h)− 2

`
hab (1.38)

is (up to trivial infinite scaling) the holographic stress energy tensor. This gives
the expectation value for the energy momentum tensor of the dual CFT3. Here,
the first two terms come from varying the York–Gibbons–Hawking term and you
may recognize them as left hand side of the Israel junction conditions. The latter
two terms are innate to AdS and come from the corresponding counter-terms.

Obviously, when δhab vanishes, δSE = 0, and we have a well defined Dirichlet
principle (fixed boundary metric).1

1 Alternatively, instead of considering SE , (1.36), we may consider

S̃E = SE +
1

2

∫
∂Ω

d3x
√
−hhabτab . (1.39)

This then yields a ‘Neumann-type’ variational principle [?], where δ(
√
−hτab) is to be held fixed on the

boundary, instead of δhab. However, as we shall see later, the holographic stress tensor is necessarily
traceless, and so really SE = S̃E . (In flat space, on the other hand, we return back to the Einstein–
Hilbert action – please check!)



CHAPTER 1. PRELUDE: LESSONS FROM BLACK HOLE THERMODYNAMICS10

� Hawking–Page transition. As shown first by Hawking and Page in 1983, [?], ther-
modynamics of black holes in AdS space is not only (contrary to that of their
asymptotically flat cousins) well defined (can have positive specific heat) but it
is also rather interesting – for example it features a number of rather intriguing
phase transitions. Such phase transitions then correspond to the associated phase
transitions of the dual CFT.

Let us show this explicitly for the Schwarzschild-AdS metric (please see Homework
1 for more details):

ds2 = −fdt2 +
dr2

f
+ r2dΩ2 , f = 1− 2M

r
+
r2

`2
. (1.40)

Using the Euclidan trick, one finds the following black hole temperature and free
energy

T =
1

β
=
`2 + 3r2

+

4π`2r+

, (1.41)

G = − 1

β
logZ ≈ SE

β
=
r+(`2 − r2

+)

4`2
. (1.42)

Plotting this parametrically and comparing to the free energy of thermal AdS
GAdS (AdS filled with thermal radiation), we get the pictured displayed in Fig. 1.1.
The global minimum corresponds to the stable phase. Since GAdS ≈ 0, when G
becomes negative, the black hole phase dominates the thermal AdS. This approx-
imately happens at

T = THP =
1

π`
, (1.43)

the so called Hawking–Page temperature. At this temperature there is a first-order
phase transition from thermal AdS (which is stable for T < THP) to large black
hole phase (which dominates above THP), as displayed in figure 1.1:

Via the AdS/CFT correspondence, this phase transition has an interpretation of
the confinement/deconfinement phase transition of the dual quark–gluon plasma
[?]. Even more interesting phase transitions occur upon adding rotation and
charges to the black hole, see e.g. [?].
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G

HPTminT T
RADIATION

LARGE BH

SMALL BH

–0.2

0

0.2

0.4

0.6

0.075

Figure 1.1: Hawking–Page phase transition. We display the free energy G = G(T ).
There is no black hole configuration possible for T < Tmin =

√
3/(2π`), while two

possible branches of black holes are possible for T > Tmin. The upper branch corre-
sponds to unstable small AdS black holes (with negative heat capacity), whereas the
lower branch denotes large thermodynamically preferred black holes (with positive heat
capacity). Such black holes become globally stable when G becomes negative, i.e., for
T > THP . Hence there is a thermal radiation/black hole transition in the system, called
the Hawking–Page transition. [Units were chosen such that GN = 1 and ` = 1.]



Chapter 2: Motivating AdS/CFT

The best understood example of the holographic duality is the AdS5 × S5/CFT4 cor-
respondence. In this chapter we will see how this ‘emerges’ from the results of string
theory.

2.1 String theory cartoons

String theory is a quantum theory of interacting relativistic strings and higher-
dimensional objects.

Classical p-branes

� Let us start with a motion of a free particle. It is governed by the following action:

S[xµ] = −m0

∫
dτ = −m0

∫ √
−ηµν

dxµ

dλ

dxν

dλ
dλ =

∫ √
− det(γλλ)dλ , (2.1)

where γλλ = ηµν
dxµ

dλ
dxν

dλ
is the ‘induced metric’ on the worldline, m0 is particle’s

rest mass, and τ is its proper time. Upon varying w.r.t. δxµ, this yields the (flat
space) geodesic equation.

� Motion of p-branes. A higher-dimensional object which sweeps a (p+1)-dimensional
trajectory in the spacetime is called a p-brane. An example is a string, which is a
1-brane and sweeps a 2-dimensional worldsheet (or more generally p-dimensional
worldvolume), see Cartoon 1:

12
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A world-volume of a p-brane is described by

xµ = xµ(ξA), A = 0, 1, . . . , p , (2.2)

where ξA are the internal coordinates. One can easily write down the action
for a free p-brane. It comes from the following observation. The above standard
particle action (2.1) has a very intuitive meaning: “the motion of a particle is such
that it extremizes its proper time”. It is then natural to expect that the motion of
a free p-brane is such that it maximizes the p-brane’s worldvolume. Actions like
this are called Nambu–Goto-type actions, generally they are of the form

SNG[xµ] = −Tp
∫ √

− det
(
γAB(η)

)
dp+1ξ . (2.3)

Here, γAB(η) is the so called induced metric (metric on the worldvolume induced
from the metric of the Minkowski space):

γAB(η) =
∂xµ

∂ξA
∂xν

∂ξB
ηµν , (2.4)

and Tp is the p-brane tension. (Note that (2.3) reduces to (2.1) for p = 0.)

� Polyakov action. Looking again at the action (2.1), we find that it is pretty com-
plicated: it contains square root (and thence is difficult to quantize) and it does
not work for massless particles. To avoid the square root and to make it work
even for massless particles, let us consider instead a Polyakov-type action:

S[xµ, h] =
1

2

∫
(
1

h
ηµν

dxµ

dλ

dxν

dλ
−m2

0h)dλ . (2.5)

Here h = h(λ) is an ‘extra field’ (or more precisely a Lagrange multiplier). Vari-
ation w.r.t. h yields

h =
1

m0

√
−ηµν

dxµ

dλ

dxν

dλ
. (2.6)

(Which is a constant provided we identify λ = τ .) Plugging this back, we recover
the previous Nambu–Goto action – classically, and for m0 6= 0, the actions are
equivalent. At the same time we can take the limit m0 → 0 and recover the action
for a massless point particle (definning dλ̃ = hdλ).

Polyakov-type actions can also be written for p-branes. In particular, for a
massless string we have (see tutorial)

S[xµ, hAB] = − 1

4πα′

∫
d2ξ
√
−hhABγAB , (2.7)
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where α′ is related to the string tension T and the fundamental string length ls
(the only dimensionful parameter of string theory) as follows:

T =
1

2πα′
, α′ = l2s . (2.8)

Again, γAB is the induced metric (2.4) and hAB is an auxiliary worldsheet metric
(an analogue of h above).

Comparing this to the action of the massless scalar field ϕ coupled to gravitational
field hAB : L =

√
−hhAB∇Aϕ∇Bϕ, we see that the Polyakov action is nothing else

than massless scalar field theory (with several scalars xµ) living in 2-dimensions.
This has (in 2-dimensions only) Weyl symmetry which is the cornerstone of string
theory.

Quantum superstrings

By quantizing the above string action (2.7) (supported by fermionic degrees of freedom
in a supersymmetric way) one finds:

� Depending on BC, 5 self-consistent theories (type IIA, IIB, type I, and 2 heterotic
ones). These are related by a web of various dualities.

� By requiring the fields with massless polarizations to have vanishing mass, fixes
the number of spacetime dimensions to

d = 10 . (2.9)

� Finite number of massless modes (including graviton for closed strings) and in-
finite tower of massive modes with m ∝ 1/ls. This means that string theory is
a theory of quantum gravity:

Note the decomposition of a rank-2 tensor into its symmetric traceless part gµν
with d(d+ 1)/2− 1 dof, antisymmetric Bµν with d(d− 1)/2 dof, and the trace φ
with 1 dof.
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� The fundamental strings can be coupled to non-trivial background of the massless
closed string excitations (such as graviton gµν , dilaton φ, Kalb–Ramond 2-form
Bµν , . . . ):

This is done by replacing in Eq. (2.7):1

hABγAB(ηµν) → hABγAB(gµν) + εABγAB(Bµν) + α′Rhφ+ . . . . (2.10)

Moreover, by requiring the conformal symmetry to hold at the quantum level,
the corresponding β-functions have to vanish (e.g. βgµν ∝ µ∂gµν(x,µ)

∂µ
= 0 at 1-

loop). Consequently, the background fields have to satisfy a generalization of
Einstein equations. This is how Einstein equations emerge in string theory (in
the leading order of small α′).

For example, for type IIB (theory of closed strings), the vanishing of the β
functions can be (secondarily) derived from the following Lagrangian (for fields
gµν , φ, A0, Bµν , Aµν , Aµνκλ):

L = ∗
(
e−2φ

[
R + 4(∂µφ)2 − 1

2
H2

3

]
− 1

2
F 2

1 −
1

2
F 2

3 −
1

4
F 2

5

)
− 1

2
A4 ∧H3 ∧ F3 ,

(2.11)
plus fermions. This is the action of the type IIB, D = 10, N = 2 SUGRA.

� String interactions are controlled by gs, related to the 10-dimensional gravita-
tional constant as:

16πG10 = (2π)7g2
s l

8
s ∝ l8P , (2.12)

see the following Cartoon 4:

1Please see D. Tong’s lectures, Chapter 7, for the explanation as to how the quantum modes of
individual strings give rise to the ‘classical background’ fields.
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By quantizing the above string action one finds:

gs is not really a free parameter, but rather an expectation value of the dilatonic
massless mode, gs = eφ. However, effectively, string theory has 2 parameters:

ls , gs . (2.13)

D-branes

� Dp-branes are ‘topological defects’ (non-perturbative in gs) with (p+1)-dimensional
world-volume on which open strings can end (and move freely along the world
volume).

Fluctuations of a Dp-brane are determined by the quantum spectrum of open
strings attached to it. At low energy, only the massless modes are of interest. For
a single Dp-brane we have a (p + 1)-dimensional U(1) gauge field Aµ(x) living
on the world-volume of the brane (in the Neumann BC directions), and φi(x)
scalars (corresponding to transverse directions to the brane – corresponding to
the Dirichlet BC):
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Aµ(x) : µ = 0, . . . , p , φi(x) : i = 1, . . . , 9− p . (2.14)

These are goldstone modes associated with the spontaneous symmetry breaking
by the branes.

The motion of a single brane is governed by the Dirac–Born–Infeld action (a
generalization of the Nambu–Goto action):

SDBI = −TDp
∫
dp+1ξe−φ

√
− det(γAB(g) + γAB(B) + 2πα′FAB) , (2.15)

where the D-brane tension is TDp = 1

(2π)plp+1
s

. For weak EM fields in flat space,

setting B = 0 and eφ = gs, we can then approximate (using det(1 + A) = 1 −
1
2
Tr(A2) + . . . )

SDBI ≈ −(2πα′)2TDp
4gs

∫
dp+1ξFABF

AB +O(F 4) . (2.16)

Thence we can read off the Yang–Mills coupling constant as

g2
YM =

gs
TDp(2πα′)2

= (2π)p−2gsl
p−3
s . (2.17)

� Multiple branes give rise to Cartoon 6:

By quantizing the above string action one finds:

In the coalescence limit, r → 0, non-Abelian gauge theory arises, (Aµ)ab . (Naively,
we have added another internal (geometrical) index indicating where the string
ends), see Zweibach [?] and Witten [?].

� Nc coalescent D3-branes in type IIB then give rise to the N = 4 U(Nc) SYM in

d = 4, with the following field content: Aµ and φi (i = 1, . . . , 6) and 4 Weyl
fermions in adjoint representation of U(Nc), governed by the following action:

L = − 1

g2
YM

Tr
(1

4
F µνFµν +

1

2
Dµφ

iDµφi + [φi, φj]2
)

+ fermions , g2
YM = 2πgs .

(2.18)
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� Alternatively we may view D-branes as BPS (extremal) massive solitons of d = 10
type IIB SUGRA. Let all fields except gµν , F5, and φ =const be zero. This is a
self-consistent truncation of the EOMs derived from (2.11), which now become:

Rµν =
1

96
FµαβγδFν

αβγδ , F5 = ∗F5 . (2.19)

(Note that d ∗ F5 = 0 is satisfied as a consequence of Bianchi identity, dF5 = 0
and self duality condition.)

In particular, we find the following near-extremal black brane solution:

ds2
10 = H−1/2

[
−fdt2 + dx2 + dy2 + dz2

]
+H1/2

(dr2

f
+ r2dΩ2

5

)
,

F5 = − 4`2

H2r5

√
r4

0 + `4(1 + ∗)dt ∧ dx ∧ dy ∧ dz ∧ dr ,

H = 1 +
`4

r4
, f = 1− r4

0

r4
. (2.20)

Here f is the so called blackening factor, and r = r0 is the horizon. Setting

f = 1 , (2.21)

we recover the BPS solution describing the D3-brane. The length ` can be de-
termined from the flux of the F5 (which is quantized and ‘counts’ number of
D3-branes):

Q =
1

2G10

∫
S5

∗F5 = Ncµ3 ∝M , (2.22)

as we have Nc branes and µ3 = TD3/gs, yielding

`4

l4s
= 4πgsNc = 2g2

YMNc = 2λ , λ = g2
YMNc , (2.23)

the latter know as the ‘t Hooft coupling.2 Obviously, it is this effective coupling
which ‘decides’ about the strength of gravitational interaction – whether gravity
(closed strings) are important or not. We thus have two opposite limits: that of
opens strings (for λ� 1) and that of closed strings (for λ� 1).

2That λ is the coupling to consider can easily be seen by looking at the strength of gravitational
potential, which for a p-brane goes like (check Schw for d = 4 and p = 0):

φ ∼ G10MTot

rd−p−3
∼ G10Ncµ3

r4
∼ gsNc

l4s
r4
∼ λ l

4
s

r4
∼ `4

r4
, (2.24)

with the last two valid for the stack of Nc D3 branes. Here we have used that G10 ∼ g2
s l

8
s , µ3 ∼ 1/(gsl

4
s).
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2.2 AdS/CFT conjecture

Two D-brane pictures

Let us consider a stack of Nc D3-branes. We can look at them from two perspectives:
the ‘open string picture’ (reliable for λ� 1) and the ‘closed string picture’ (for λ� 1),
as displayed in the following picture (assuming low energy):

� open string picture. In this picture the strings are treated as perturbations – we
have λ� 1. For low energies E � 1/ls only the massless excitations are relevant
– this is how we recover the N = 4 SYM on the brane (plus decoupled SUGRA
modes in d = 10 Minkowski space). The two parameters describing SYM are:

Nc , λ = g2
YMNc . (2.25)

� closed string picture. This picture is valid for strong coupling λ� 1, the D-branes
are very massive and described by the SUGRA solution (2.20), (2.21) above:

ds2
10 = H−1/2ηµνdx

µdxν +H1/2
(
dr2 + r2dΩ2

5

)
,

H = 1 +
`4

r4
,

`4

l4s
= 2λ . (2.26)

We have two different low energy modes: SUGRA modes propagating in 10d
Minkowski background (r � `) and full stringy modes propagating deep in the
throat of the D-brane r � ` (whose energy is infinitely red-shifted as seen by
the asymptotic observer) – these two kinds of modes are completely decoupled.
Concentrating on the near horizon region

r � ` (2.27)
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we recover the AdS5 × S5 near horizon geometry:

ds2 =
r2

`2
ηµνdx

µdxν +
`2

r2
dr2︸ ︷︷ ︸

AdS5 of size `

+ `2dΩ2
5︸ ︷︷ ︸

S5 of size `

, (2.28)

or, upon setting z = `2/r:

ds2 =
`2

z2

(
ηµνdx

µdxν + dz2
)︸ ︷︷ ︸

AdS5 of size `

+ `2dΩ2
5︸ ︷︷ ︸

S5 of size `

. (2.29)

Note that the radius of both AdS5 and S5 is `; the metric is supported by the F5

flux through both. Sometimes we can ‘smear out’ over the S5 and consider only
the geometry of AdS5. On this side we have two dimensionless parameters:

gs, `/ls , (2.30)

related to the two parameters in the open string picture as

2πgs = g2
YM =

λ

Nc

,
`4

l4s
= 4πgsNc = 2λ . (2.31)

AdS/CFT conjecture

In principle the two descriptions are valid for all values of λ and Nc but we do not really
know how to extend there:

We have a conjecture that I and II describe the same object in different languages:

Conjecture (Maldacena 1997). Type IIB superstring theory on AdS5 × S5 is
dual to N = 4 SU(Nc) SYM in d = (3 + 1) dimensions.

A few remarks:

1. Duality means exact equivalence at the full quantum level (Hilbert spaces and
the dynamics of the two theories agree). For many dualities one can find a ‘change
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of variables’ in the partition function which directly maps dof of one theory to
the dof of the dual theory. Such a map is currently not known for the AdS/CFT.

Remarkably, this duality relates a theory of quantum gravity to a quantum field
theory in flat space.

Moreover, this duality is holographic: relates the dof of gravitational theory in
AdS to dof of QFT on its conformal boundary ∂AdS.

2. Classical SUGRA is valid when

a) Stringy corrections are suppressed (strings are almost point like, classical
geometry valid):

`� ls ⇒ λ� 1 . (2.32)

b) Quantum gravity corrections (loops) are suppressed

1� gs ∼
λ

Nc

. (2.33)

Combining the two, we thus get

1� λ� Nc , (2.34)

for validity of classical gravity in the bulk. (For finite λ and Nc we can do
perturbations in 1/N and 1/λ).

Note also that Nc governs the ratio of `/lP . Namely, since G10 ∼ g2
s l

8
s and L8

P =
G10~/c3, we have

`4

l4P
∼ λl4s

G
1/2
10

∼ gsNcl
4
s

gsl4s
∼ Nc . (2.35)

Thus, requiring `� lP requires Nc � 1.

3. Strong-weak duality. Taking into account the above, we see that AdS/CFT is an
example of strong-weak coupling duality: if the field theory is strongly coupled,
the dual gravity theory is classical and weak. This provides a tool for studying
strongly coupled QFTs.

The conjecture is supported by case by case evidence and as Veronika says: “it is
non-trivial and still holds water”.

4. We have SU(Nc) rather than U(Nc) = SU(Nc) × U(1) SYM. U(1) can be de-
coupled – describes the motion of the center of mass of the system of Nc branes,
which corresponds to singleton fields in the gravity theory (only located on the
boundary and cannot propagate into the bulk of AdS5)

5. Symmetries match. On the AdS5 × S5 we have SO(4, 2) and SO(6). This corre-
sponds to the conformal group in d = 4: SO(4, 2) (with generators Pµ, Lµν , D,Kµ)
and additional R-symmetry SO(6)R.

We also have SL(2,Z) duality on both sides (gYM → 4π
gYM

).
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6. Various versions. For example strong version restricts to classical string theory:
gs � 1 and `/ls =const., which implies λ finite and Nc → ∞, known as ‘t Hooft
limit (planar limit of the gauge theory). 1/Nc ∼ gs expansion then corresponds
to genus expansion in string theory.

The above weak form is then obtained by taking λ → ∞ and point-like strings
(ls � `).

More generally, we have gauge/gravity duality. Can go to AdSd+1/CFTd, go be-
yond CFT, or even go beyond asymptotically AdS.

2.3 Short CFT propaganda

� Conformal field theory is a field theory with additional spacetime symmetries. In
fact, we have the following theorem: Conformal (superconformal) symmetry is
the largest admissible symmetry of a non-trivial QFT.

CFT in d dimensions is invariant under conformal transformations SO(2, d):

xµ → x′µ(x) : ηµν → Ω2(x)ηµν . (2.36)

These include the Poincare group, the ‘special conformal transformations’, and
the scaling transformation3

t→ λt , ~x→ λ~x , (2.37)

under which the field transforms as

φ(x) → φ′(x′) = λ−∆φ(x) , (2.38)

where ∆ is the scaling dimension (eigenvalue of the dilatation operator).

� We have the following CFTs in flat space:

3 More generally, one can consider t→ λzt where z is called the dynamical critical exponent: z = 1
for relativistic theories; z = 2 for non-relativistic, e.g. Schrodinger eq. i∂tψ = − 1

2∇
2ψ (or E ∼ p2).
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Scale invariant theories have no dimensionful parameter. Usually theories that
are scale invariant are also conformal invariant. Conformal field theories have
traceless (upgraded) energy momentum tensor:

T µµ = 0 . (2.39)

� In QFT there are no coupling constants; they depend on energy scale, e.g. g =
g(E): we may define the corresponding β function:

β(g) =
dg

d logE
. (2.40)

If the conformal symmetry is preserved even quantum mechanically we must have

β(g) = 0 . (2.41)

This is the case for the d = 4 N = 4 SYM.

� In the space of QFT we have RG flow: βI(g
J) = dgI/d logE; fixed points are

described by interacting CFTs:

It is useful to think about QFT as a deformation of CFT (think of Higgs):

S = SCFT +

∫
λOddx . (2.42)

Moreover, CFTs induce an ordering in the space of QFTs by assigning a ‘height’
function c to CFTs:
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� Conformal symmetry restricts significantly the form of correlation functions. For
example, for a scalar conformal primary operator O of dimension ∆ we have4

〈O(x)O(y)〉 ∝ 1

(x− y)2∆
. (2.43)

� Role of CFTs in nature:

– Describe critical phenomena (2nd-order PTs) in statistical physics (driven by
thermal fluctuations; critical exponents correspond to operator dimensions
of fields in CFT: {α, β, . . . } ↔ {∆})

– Quantum critical phenomena (driven by quantum fluctuations at T = 0;
gapless phase described by CFT)

We also have applications to String theory: described by 2d CFT (determines
Einstein equations, YM equations, . . . ) and AdS/CFT.

� A curved space “generalization” of the conformal symmetry is the Weyl symmetry.
Contrary to the conformal symmetry, this is an infinite dimensional symmetry. In
the flat space limit, the Weyl invariance implies conformal invariance (though not
necessarily with the same conformal weight). See tutorial for more information
on these two symmetries.

2.4 AdS primer

AdSd geometry is a maximally symmetric solution of Einstein equations with negative
cosmological constant. It has an O(d− 1, 2) symmetry.

Embedding perspective: AdS as a maximally symmetric space

� One way to understand the AdSd space is as a (maximally symmetric) hyper-
surface in higher-dimensional space. Namely, consider the following (d + 1)-
dimensional metric in R2,d−1 and a d-dimensional hyperboloid in it:

ds2 = −dY 2
−1 − dY 2

0 + dY 2
1 + dY 2

2 + · · ·+ dY 2
d−1 ≡ η2,d−1

AB dY AdY B ,

−`2 = −Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 + · · ·+ Y 2
d−1 = η2,d−1

AB Y AY B . (2.44)

Solving the constraint for Y−1 and plugging back to the metric, we obtain a
geometry of the AdS space in these coordinates (a, b = 0, . . . , d− 1):

gab = η1,d−1
ab − YaYb

`2 + Y aYa
. (2.45)

4 In a given ‘class’, primary operator is the one with the lowest scaling dimension. Conformal
descendants of this operator are obtained by taking its derivatives.
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� Note that the constraint equations (2.44) are invariant under

x̃A = ΛA
Bx

B where η2,d−1
AB = η2,d−1

CD ΛC
AΛD

B . (2.46)

Group matrices ΛA
B form a representation of O

(
d−1, 2

)
. Infinitesimally, we write

ΛA
B = δAB + λAB ⇒ λAB = η1,d−1

AC λCB = −λBA . . .
(
d+ 1

2

)
generators .

Since this is the maximum number of symmetries one can have in d number of
dimensions, the spacetime is maximally symmetric.

� One can show that

Rabcd = − 1

`2
(gacgbd − gadgbc) . (2.47)

Thence we solve the Einstein equations Gab + Λgab = 8πTab with Tab = 0 and

Λ = −(d− 1)(d− 2)

2`2
. (2.48)

� Embedding picture. In this description the AdSd can be understood as a hyper-
boloid embedded in a spacetime with two perpendicular timelike directions. For
example, for AdS2 we have the following picture:

Global coordinates

� Let us now parametrize (solving automatically the constraint)

Y−1 = ` cosh ρ̃ cos t̃ , Y0 = ` cosh ρ̃ sin t̃ , Yi = ` sinh ρ̃Ωi , (2.49)

where Ωi are angular coordinates that parametrize the Sd−2 sphere: Ω2
i = 1

(constraint). We then have the AdS in global coordinates:

ds2 = `2
(
− cosh2ρ̃dt̃2 + dρ̃2 + sinh2ρ̃dΩ2

d−2

)
. (2.50)

If we do identify t̃ ∼ t̃ + 2π and instead take t̃ ∈ (−∞,∞), we have covered the
hyperboloid infinitely many times – obtaining so universal covering of AdS. This
is well motivated as we do not want to have closed timelike curves.
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� We may further compactify tan θ = sinh ρ̃, upon which we recover

ds2 =
`2

cos2θ

(
−dt̃2 + dθ2 + sin2θdΩ2

d−2

)
, (2.51)

where θ ∈ [0, π/2). Stripping of the conformal factor, we get a (non-Euclidean)
cylinder.

� Conformal boundary of the above cylinder is located at θ = π/2 – it is identical

to the Einstein static universe R× Sd−2:

ds2|∂Ω = −dt̃2 + dΩ2
d−2 . (2.52)

This is where the field theory lives. The isometries of AdS act on the boundary:
send points on the boundary to points on the boundary. This action is simply
that of the conformal group in (d − 1) dimensions: SO(2, d − 1). Thus the field
theory is CFT. In particular, the rescaling symmetry (2.57) translates into a
dilatation on the boundary. The boundary theory is thus scale invariant and has
no dimensionful parameter.

� Setting finally
ρ = ` sinh ρ̃ , τ = `t̃ , (2.53)

we recover AdSd in the ‘usual’ global coordinates

ds2 = −fdτ 2 +
dρ2

f
+ ρ2dΩ2

d−2 , f = 1 +
ρ2

`2
. (2.54)

This is manifestly static and spherically symmetric, boundary is located at ρ →
∞:

Poincare AdS

� Defining instead

Y−1 =
1 + z2 + ηµνx

µxν

2z
, Yµ =

xµ
z
, Yd−1 =

1− z2 − ηµνxµxν

2z
, (2.55)
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we recover the Poincare coordinates for AdSd:

ds2 =
`2

z2

(
−dt2 + d~x2︸ ︷︷ ︸
ηµνdxµdxν

+dz2
)
. (2.56)

The boundary is now located at z = 0. Since z > 0, we only cover half of the
original hyperboloid. Obviously, the slices of constant z have Poincare symmetry:
Poincare AdS = volume filling slices of Minkowski:

Moreover, we clearly see an isometry

(t, ~x, z) → λ(t, ~x, z) . (2.57)

In order to continue the metric to the boundary we have to ensure finiteness by
multiplying (2.56) by Ω2(z, xµ). For example, we may choose

Ω2 =
z2

`2
ω2(xµ) ⇒ ds2|∂AdS = ω2(xµ)ηµνdx

µdxν , (2.58)

which is a class of boundary metrics that are related by conformal transforma-
tions. This is why we say that the boundary is conformal.

Poincare coordinates are in many respects similar to Rindler coordinates, with ∂t
playing the role of the boost vector. In particular, we have a Poincare horizon
located at z →∞ (where t→ ±∞):
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Sometimes it is useful to consider Poincare disc obtained by setting τ=const. To-
gether with the relation between global and Poincare coordinates this is displayed
in the following figure:

Two more coordinate systems

� The following coordinate system is used in brane world scenarios:

ds2 = dr2 + `2e2r/`ηµνdx
µdxν , (2.59)

which is obtained from Poincare by z = exp(−r/`). Here the conformal boundary
is at r →∞ and the horizon at r → −∞.

� Fefferman–Graham metric is obtained by setting z2 = ρ, to get

ds2 = `2
(dρ2

4ρ2
+

1

ρ
ηµνdx

µdxν
)
. (2.60)

This will play a role for the holographic renormalization, and calculation of the
holographic stress tensor.

Geodesics

Due to the gravitational pull of AdS towards its origin, the timelike geodesics oscillate
with period τ = 2π around the origin, as displayed in the following figure:
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Note that despite p and q being timelike separated, no geodesic connects them (one has
to accelerate to get to q).

Scale/radius duality: UV/IR correspondence

As obvious from the following picture: UV CFT (with huge energies able to probe small
distances on the boundary) corresponds to IR gravity (large distances from the origin
in AdS):

In other words UV cutoff in CFT corresponds to IR (large distance) cutoff in AdS: UV
CFT behavior is not sensitive to the interior of the bulk.



Chapter 3: Basics of the AdS/CFT
correspondence

In the previous chapter we have conjectured the AdS/CFT correspondence:

ZN=4SYM in d=3+1[J ] = ZType IIB ST onAdS5×S5 [J ] . (3.1)

This is a very strong statement – includes all quantum dof.
For practical calculations we want to weaken the statement and approximate the

r.h.s. with the WKB approximation (classical Type IIB SUGRA on AdS5 × S5). As
discussed previously, this implies λ→∞, Nc →∞. So we have:

Zλ→∞,Nc→∞
N=4SU(Nc) SYM in d=3+1[J ] ≈ exp

(
−SType IIB SUGRA onAdS×S5 [J ]

)
+O

( 1

λ3/2
,

1

N2
c

)
.

(3.2)
However, what plays the role of the source on the gravity side? As we shall try to argue
in the following, it is the boundary value of a bulk field.

3.1 State–operator correspondence

� Let us start building dictionary between the two theories: AdSd+1 and CFTd.
This is done by ‘matching’ the symmetries between the field theory operators and
string states.

� On the CFT side: operators are characterized by spin and scaling dimension ∆.
Remind

x→ λx : O∆ → λ−∆O∆ . (3.3)

Specifically, primary scalar operator has

〈O∆(x)O∆(y)〉 ∝ 1

|x− y|2∆
. (3.4)

To find what this corresponds to on AdS side, we “match symmetries”.
Example: For a scalar field operator O∆, the corresponding bulk field is a massive
scalar field φ obeying:

�AdSφ = m2φ , (3.5)

with the specific mass:1

m2`2 = ∆(∆− d) . (3.6)
1In case of AdS5/CFT4 this mass (eigenvalue of �Ads) originates from a KK reduction of the scalar

modes of the 5-form and metric perturbations on S5, see [?].

30
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Similarly, we map Tµν operator in CFT to AdS metric fluctuations, and so on.
This is summarized in the following table:

operator (CFT) field (AdS) m vs. ∆
scalar O∆ φ m2`2 = ∆(∆− d)

Tµν hµν m2`2 = 0 ∆ = d
Jµ Aµ m2`2 = (∆− 1)(∆ + 1− d)

� More concretely, consider AdS in Poincare coordinates (2.56), upon which we
have the following action for the scalar φ:

S = −C
2

∫
dzddx

√
−g(gab∂aφ∂bφ+m2φ2) , (3.7)

where m2`2 = ∆(∆ − d) and C ∝ N2
c .2 This yields the following Klein–Gordon

equation (c.f. Tutorial):

(�−m2)φ = 0 , � =
1

`2

(
z2∂2

z − (d− 1)z∂z + z2ηµν∂µ∂ν

)
. (3.8)

Considering a plane wave ansatz φ(z, x) = φk(z) exp(ikµx
µ), this yields

z2∂2
zφk − (d− 1)z∂zφk − (m2`2 + k2z2)φk = 0 . (3.9)

Close to the boundary, z → 0, we have two independent solutions

φk ∼

{
z∆+ normalizable ,

z∆− non-normalizable ,
(3.10)

where

∆± =
d

2
±
√
d2

4
+m2`2 (3.11)

are the roots of (3.6). Thus, near boundary we have

φ ∼ φ0(x)z∆− + φ+(x)z∆+ + . . . . (3.12)

We have
∆− = d−∆+ . (3.13)

Typically, we associate ∆+ with the dimension of the CFT operator:

∆ = ∆+ . (3.14)

Normalizable mode φ+ is then an expectation value for the dual scalar field op-
erator O∆+ : 〈O∆+〉 = φ+, and non-normalizable mode φ0 is a source for this
operator. That is for an operator with dimension ∆ we have the corresponding
source:

φ0 = lim
z→0

φ(z, x)z∆−d . (3.15)

2We have G10 ∼ g2
s`

8l8s/`
8 ∼ g2

s`
8/(N2

c g
2
s) ∼ `8/N2

c . From here G5 ∼ G10/Vol(S5) ∼ `3/N2
c .
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� Breitenlohner–Freedman (BF) bound. In flat space, fields with negative m2 have

an upside down potential and are unstable. In AdS, however, small negative m2

is not a problem. Namely, when

m2 ≥ m2
BF = − d2

4`2
(3.16)

the field is still stable. To prove this, let us consider the action (3.7) for φ = φ(z),
upon which we recover

S ∼
∫
dzddx

1

zd+1

(
z2∂zφ∂zφ+m2`2φ2

)
. (3.17)

(For normalizable modes this action is finite near z = 0.) Let’s now set φ = zd/2ϕ,
and y = log z, upon which we have

S ∝
∫
dyddx

(
∂yϕ∂yϕ+ [m2`2 + d2/4]︸ ︷︷ ︸

m2
eff

ϕ2
)
, (3.18)

which looks like a scalar field in flat space with the above effective mass – yielding
m2

eff ≥ 0 for stability.

� Remark: In the following range:

−d
2

4
< m2`2 ≤ −d

2

4
+ 1 , (3.19)

the identification of the source and expectation value can be interchanged.

3.2 Correlation functions

� We have already established that there is a 1-1 correspondence between the CFT
operator O and gravity field φ. Within this correspondence, the boundary value
φ0 plays the role of the source of O. Namely, on the CFT side we can calculate
the (Euclidean) generating function as3

Z[φ0] =

∫
Dφe−SE+

∫
ddxφ0(x)O(x) = 〈e

∫
φ0O〉 ≡ e−W [φ0] , (3.20)

and the connected correlation functions are then obtained by (think of W as a
free energy!)

〈O(x1) . . . O(xn)〉 = − δnW

δφ0(x1) . . . δφ0(xn)

∣∣∣
φ0=0

. (3.21)

3Note that 1-pt expectation values may be non-trivial in the presence of the corresponding source,
or in thermal state.
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The AdS/CFT dictionary then prescribes:

W [φ0] = SSUGRA[φ]
∣∣∣
limz→0 φ(z,x)z∆−d=φ0(x)

. (3.22)

� Thus we have the following recipe: To calculate the correlation functions for
operator O with dimension ∆ we:

1. Determine bulk φ dual to O

2. Solve (KK reduced) SUGRA EOM for φ subject to boundary conditions
φ(z, x) ∼ zd−∆φ0(x) for z → 0.

3. Plug this back to the action (obtain the Hamilton’s function), whose deriva-
tives w.r.t. φ0 yield the correlation function via (3.21).

� To evaluate (3.22), one needs to calculate tree level diagrams on the gravity side
– known as Witten diagrams:

� Example: 2-point function. We want to calculate the 2-point function 〈O(x)O(y)〉
of a scalar operator O of dimension ∆.
Step 1: We identify the corresponding bulk field with the test scalar field described
by the action (3.7).
Step 2: We need to solve the corresponding EOM (3.9). This is a Bessel equation
and has the following solution:

φ(z, k) = Akz
d/2Kν(z|k|) +Bkz

d/2Iν(z|k|) , ν = ∆− d/2 =
√
d2/4 +m2`2 .

(3.23)
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Schematically, they behave as follows:

Regularity on the Poincare horizon (z → ∞) implies Bk = 0 and so φ(z, k) → 0
in the interior boundary. At the same time, Kν(z) ∼ z−ν for z → 0 and thence

as z → 0 : φ(z, k) ∼ zd−∆Ak . (3.24)

Thence Ak is related to φ0. Thus we have the following normalized solution:

φ(z, x) =

∫
ddk

(2π)d
eik·xφ(z, k) , φ(z, k) =

zd/2Kν(z|k|)
εd/2Kν(ε|k|)

φ0(k)εd−∆ . (3.25)

Step 3. Let us plug the obtained solution back to the action (3.7). On shell, this
action reduces to

S = −C
2

∫
ddx
√
ggzz︸ ︷︷ ︸

(`/z)d−1

φ(z, x)∂zφ(z, x)
∣∣∣z=∞
z=ε

, (3.26)

where we have integrated by parts, and thrown away the boundary terms for large
x, assuming the field vanishes sufficiently quickly at ‘spatial infinity’. Moreover,
Kν vanishes at z → ∞, and we ma also drop the upper limit. Thus, the action
(3.26) now reads

S[φ0] = −C`
d−1

2εd−1

∫
ddk

(2π)d
ddp

(2π)d
(2π)dδ(p+ k)φ(z, k)∂zφ(z, p)

∣∣∣
z=ε

. (3.27)

Using finally that
∫
ddxO(x)φ0(x) =

∫
d2k

(2π)d
O(k)φ0(−k), we have

〈O(k)O(p)〉ε = −(2π)2d δ2S[φ0]

δφ0(−k)δφ0(−p)
= . . .

= −(2π)dδd(k + p)C`d−1

ε2∆−d

(d
2

+
ε|k|K ′ν(ε|k|)
Kν(ε|k|)

)
. (3.28)

In order to do the expansion of Kν for small ε (which depends on ν) we consider
the case when ν is a positive integer, in which case

〈O(k)O(p)〉ε ∝ δ(k + p)
[ #

ε2∆−d +
#

ε2∆−d−2
+ · · ·+ # log ε

+#|k|2ν log(|k|) +O(ε2)
]
. (3.29)
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The divergent terms in the first line are scheme dependent and will be removed
by holographic renormalization; only the first term in the second line contributes.
Going back to the position space, one can recover that (if you do not believe it
try!)

〈O(x)O(y)〉 ∝ 1

|x− y|2∆
, (3.30)

which agrees with (3.4).

3.3 Holographic renormalization

This is a systematic method for dealing with near boundary divergences – you will
study this in detail in your homework.

Scalar field

� As a toy example, we start with a scalar field, employing the (Euclidean) Fefferman–
Graham coordinates (with boundary located at ρ = 0):

ds2 = gabdx
adxb = `2

(dρ2

4ρ2
+

1

ρ
δµνdx

µdxν
)
. (3.31)

We are interested in the scalar field action and EOM:

S0 =
C

2

∫
dρddx

√
g
(
gab∂aφ∂bφ+m2φ2

)
, (3.32)

(�−m2)φ = 0 , �φ =
1
√
g
∂a(
√
ggab∂bφ) . (3.33)

� To solve the EOM, we expand φ around the boundary:

φ(ρ, x) = ρ(d−∆)/2
(
φ0(x) + ρφ2(x) + ρ2φ4(x) + . . .︸ ︷︷ ︸

ϕ(ρ,x)

)
. (3.34)

EOM then yields (see tutorial)

[∆(∆− d)−m2`2]ϕ+ ρ�0ϕ+ 2(d− 2∆ + 2)ρ∂ρϕ+ 4ρ2∂2
ρϕ = 0 , (3.35)

where �0 = δµν∂µ∂ν . We now solve order by order in ρ to recover:

m2`2 = ∆(∆− d) , φ(2n) =
1

2n(2∆− d− 2n)
�0φ(2n−2) . (3.36)

Note: This breaks when the denominator becomes zero, in which case we need to
add at that order a logarithmic term: ρk log(ρ)χ2k, in which case we find

χ2k = − 1

22kΓ(k)Γ(k + 1)
(�0)kφ0 , (3.37)

while φ2k is no longer determined by EOM.
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� The on-shell action needs to be regularized by introducing the cut-off at ρ = ε:

Sr = −C
2

∫
ddx
√
ggρρφ∂ρφ

∣∣∣
ρ=ε

. (3.38)

(We have integrated by parts, using the fact that φ vanishes both at x→∞ and
ρ→∞, together with EOM.) This then gives

Sr = CLd−1

∫
ddx
(
ε−∆+ d

2a0 + ε−∆+ d
2

+1a2 + · · · − log εa2∆−d

)
, (3.39)

where

a0 = −1

2
(d−∆)φ2

0 , a2 = − d−∆ + 1

2(2∆− d− 2)
φ0�0φ0 ,

a2∆−d = − d

22k+1Γ(k)Γ(k + 1)
φ0(�0)kφ0 . (3.40)

� Since ∆ > d/2, Sr diverges. To subtract these divergences we introduce counterterms.
These counterterms better be covariantly expressed on the boundary – constructed
from the induced metric on the boundary:

γµν =
`2

ε
δµν , �γ = γµν∂µ∂ν , (3.41)

from the boundary field φ(ε, x), and its derivatives: �γφ(ε, x) , . . . . For this we
need to invert (3.34), that is to write φ2n in terms of φ(ε, x). To second order in
ε this inversion reads

φ0 = ε−(d−∆)/2
(
φ(ε, x)− 1

2(2∆− d− 2)
�γφ(ε, x)

)
,

φ2 = ε−(d−∆)/2−1 1

2(2∆− d− 2)
�γφ(ε, x) . (3.42)

Plugging this back to (3.39), we can express the divergences in terms of the
boundary field φb(x) = φ(ε, x). In order to cancel these divergences, we introduce
the following counterterms:

Sct =
C

`

∫
ddx
√
γ
(d−∆

2
φ2
b(x) +

1

2(2∆− d− 2)
φb(x)�γφb(x) + . . .

)
. (3.43)

As these are covariantly written on the boundary, they can be evaluated in any
coordinates! The total action with these counterterms,

S = S0 + Sct (3.44)

is then finite.
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� Since it is the φ0 which is the source of the operator O, the expectation value of
O is then given by

〈O(x)〉 = − δS

δφ0(x)
= lim

ε→0

( `d

ε∆/2
1
√
γ

δS

δφ(ε, x)

)
. (3.45)

Other correlation functions can also be straightforwardly calculated. For example

〈O(x)O(y) = − δ2S

δφ0(x)δφ0(y)
(3.46)

immediately yields the result (3.30).

Gravity

� Similar to scalar field we start from the Einstein–Hilbert action (supplemented
by the York–Gibbons–Hawking term):

S0 = − 1

16πG

∫
dd+1x

√
g
(
R +

d(d− 1)

`2

)
− 1

8πG

∫
ddx
√
γK , (3.47)

and perform the Fefferman–Graham expansion of the metric near the boundary:

ds2 = `2
(dρ2

4ρ2
+

1

ρ

[
g0µν(x) + ρg2µν(x) + ρ2g4µν(x) . . .︸ ︷︷ ︸

gµν(ρ,x)

]
dxµdxν

)
, (3.48)

considering the asymptotically AdS manifolds. (If the boundary is even-dimensional,
additional logarithmic term appears: ρd/2 log ρhdµν .)

� Inserting this ansatz into Einstein equations then determines gd in terms of g0.
For example, we have

g2µν =
`2

d− 2

(
Rµν −

1

2(d− 1)
Rg0µν

)
. (3.49)

� We next plug these back to the Einstein–Hilbert action and identify the divergent
terms,

Sreg = − 1

16πG

∫
ddx
√

det g0(ε−d/2a0 + εd/2+1a2 + · · · − log εad) + finite , (3.50)

where a’s are expressed in terms of g0.
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� Writing these in terms of the boundary metric γµν = `2

ρ
g0µν (and boundary cur-

vature invariants R,RµνRµν , . . . ), and choosing the counterterms to cancel these
divergencies, we find

Sct =
1

8πGd+1

∫
ddx
√
γ
(d− 1

`︸ ︷︷ ︸
1st

+
`

2(d− 2)
R︸ ︷︷ ︸

2nd

+
`3

2(d− 2)2

(
RµνRµν − 1

d− 1
R2
)

︸ ︷︷ ︸
3rd

+ . . .
)
,

(3.51)
where the 3rd counter cancels the logarithmic divergence present in d = 4 dimen-
sions; we have seen the 1st and 2nd conterterms before for d = 3. The total action
S = S0 + Sct is then finite.

� Since g0µν is the source for the quantum operator Tµν(x), we have

〈Tµν(x)〉 = − 2√
det g0

δS

δgµν0 (x)
. (3.52)

However, since

γµν(x) = lim
ε→0

l2

ε
g0µν , (3.53)

we have

〈Tµν(x)〉 = lim
ε→0

( `d−2

εd/2−1
τµν

)
, (3.54)

where τµν is the boundary stress tensor discussed previously:

τµν = − 2
√
γ

δS

δγµν
=

1

8π

(
Khµν −Kµν + `Gµν −

2

`
γµν

)
. (3.55)

It is the 〈Tµν(x)〉 that is finite and can be used to calculate properties of the
CFT/bulk spacetime.

3.4 Conformal anomaly*

� In field theory we have

〈Tµν(x)〉 = − 2
√
g0

δW

δgµν0 (x)
, (3.56)

where gµν0 is a classical (fixed) background field – a source for Tµν .

� Conformal anomaly arises when energy momentum tensor does not remain trace-
less under quantum corrections:

〈T µµ 〉 6= 0 . (3.57)
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For example in 2d, we have

〈T µµ(x)〉 =
c

24π
R0 , (3.58)

where c is the central charge. Note that
∫
d2x
√
gR0 = 2πχ is an Euler character-

istic (R0 is a topological density in d = 2).

� Similarly, in 4d, we have

〈T µµ(x)〉 =
c

16π2
Cabcd

0 C0
abcd −

a

16π2
G0 , (3.59)

where G0 is the Gauss–Bonnet topological density.

Specifically, for N = 4 SU(Nc) SYM one has

c = a =
1

4
(N2

c − 1) , (3.60)

and the conformal anomaly reads

〈T µµ 〉 =
c

8π2

(
R0
µνR

µν
0 −

1

3
R2

0

)
→ N2

c

32π2

(
R0
µνR

µν
0 −

1

3
R2

0

)
, (3.61)

in the large Nc limit. One can show that this is independent of λ to all orders in
perturbation theory.

� Weyl transformation on the boundary gives the trace of energy momentum tensor.
We want to find a diffeomorphism that acts on the following metric

ds2 = `2
(dρ2

ρ2
+

1

ρ
gµν(ρ, x)dxµdxν

)
, lim

ρ→0
gµν(ρ, x) = g0µν(x) , (3.62)

and reduces to Weyl on the boundary. This is known as PBH transformation:

ρ = ρ′(1− 2σ(x′)) , xµ = x′µ + aµ(x′, ρ′) . (3.63)

Requiring g′ρρ = gρρ , g
′
ρµ = gρµ = 0 imposes ∂ρa

µ = `2

2
gµν∂νσ. Under PBH, we

have
gµν → gµν + 2σ(1− ρ∂ρ)gµν +∇µaν +∇νaµ , (3.64)

which reduces to Weyl on the boundary provided aµ → 0 there.

� We now apply this diffeo to the total action S:

δ(S0 + Sct) = 2

∫
ddxσ(x)

(
ε
δ

δε
− g0µν δ

δg0µν

)
(S0 + Sct) . (3.65)
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The counterterms ensure the finiteness of the AdS action. However, the presence
of the − log ε term in even dimensions spoils the invariance under PBH transfor-
mation. Namely, focusing on d = 4, we have:

δSct = 2

∫
ddxσ

(
ε
δ

δε
− g0µν δ

δg0µν

)
Sct = 2

∫
ddxσε

δ

δε
Sct

= − `3

64πG5

∫
d4x
√
g0

(
R0
µνR

µν
0 −

1

3
R2

0

)
. (3.66)

Note that, while in the previous section, we wanted to express the counterterms
in terms of the (divergent) boundary metric γ. (That is why the counterterms
can cancel the divergencies of the action.) Here, instead, everything is calculated
with the help of the (finite) CFT metric g0. Thus we schematically have

δ(S0 + Sct) =
( δ
δε
− δ

δg0

)
(S0 + Sct) =

( δ
δε
− δ

δg0

)
S0︸ ︷︷ ︸

0 by diffeo invariance

+
( δ
δε
− δ

δg0

)
Sct︸ ︷︷ ︸

-anomaly

=
δ

δε
(S0 + Sct)︸ ︷︷ ︸

0 by construction

− δ

δg0
(S + Sct)︸ ︷︷ ︸
−〈Tµµ 〉

. (3.67)

Thus we found:

〈T µµ 〉 =
`3

64πG5

(
R0
µνR

µν
0 −

1

3
R2

0

)
=

N2
c

32π2

(
R0
µνR

µν
0 −

1

3
R2

0

)
, (3.68)

using that

G5 =
G10

Vol(S5)
=

π`3

2N2
c

. (3.69)

3.5 Wilson loops

Let us now add probes (quarks) to the system.

� Wilson loops are non-local gauge invariant operators that describe the parallel
transport of a quark along the closed path C. The corresponding (infinitely heavy
test) quark field ψ picks up a phase: ψ(x+C) = W (C)ψ(x). Wilson loop operator
is given by

W(C) =
1

Nc

TrW (C) =
1

Nc

Tr
(
P exp(i

∮
C
dxµAµ)

)
. (3.70)

Here, everything is in the fundamental representation of the SU(Nc) group.

The expectation value 〈W(C)〉 along certain paths, such as the one displayed in the
following picture, provides an order parameter for the confinement/deconfinement
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phase transition:

It corresponds to ‘creating a quark-antiquark pair, pulling them R distance apart,
letting them interact, and annihilating them much later. We thus have

〈W(C)〉 ∝ exp
(
−TV (R)

)
, (3.71)

and thus 〈W(C)〉 ≈ Z[J ]/Z[0] ∼ 〈f |e−HT |i〉 ∼ e−E0T yields the (static) quark-
antiquark potential V (R). In the confined phase we expect V ∼ R; in this case
the Wilson loop follows the ‘area law’: 〈W(C)〉 ∼ exp(−Area(C)) . On the other
hand, in the unconfined phase V ∼ 1/R (Coulomb law).

� Fundamental representation. In the above we arrived, through the D3-brane con-
struction at SYM (where all the fields are massless and in the adjoint representa-
tion of the SU(Nc)). Intuitively, we have N2

c possibilities how to stretch strings
between a stack of Nc D3-branes, giving rise to the adjoint representation of
the SU(Nc). To construct the fundamental representation with infinitely heavy
quarks, we instead consider a situation described in the following figure:

Namely, we have (Nc + 1) D3-branes, where one of them is separated far away
from the stack of the remaining Nc branes. The quark is now described by a
classical long string that stretches between the separated brane and the remain-
ing stack; the large distance gives rise to the large mass of the quark. Moreover,
we have now Nc possibilities where to end the string – corresponding to the Nc

‘components’ of the fundamental representation of SU(Nc).

� Gravitational dual. In order to model the Wilson loop, we want the above heavy
particles (described by the long strings stretching from the separated brane to the
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stack) to move around the closed path C. The stack of Nc D3-branes is replaced by
AdS5×S5, and the single D3 brane is located on the boundary of AdS5 (at z = ε).
Expectation value of the Wilson loop is then given by the semi-classical partition
function of the macroscopic string in AdS5 × S5 (all possible embeddings) whose
worldsheet Σ ends on the path of the Wilson loop at the boundary, see figure:

At large Nc and large λ, this is given by the saddle point approximation:

〈W(C)〉 = e−SNG,min , SNG =
1

2πα′

∫
Σ

d2σ
√

det γAB . (3.72)

By comparing to (3.71) we thus have the following formula for the quark-antiquark
potential:

V (R) =
1

T
SNG(R) . (3.73)

The divergence of the latter corresponds to the self energy of the pointlike charge,
and can be removed by the due counterterm (e.g. to parallel strings stretching
from the boundary).

� Qualitative results. Let us now discuss the following interesting cases (you will
calculate the exact unconfined potential in a tutorial).

– Unconfined phase. To minimize the NG action in the pure AdS space, let us
make the following rectangular approximation, described in the picture:
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Here, the vertical parts of the string contribute to the quark’s mass, while
it is the horizontal part which determines the quark potential. The induces
metric for this part of the string is:

γ =
`2

z2
(dτ 2 + dx2) ⇒ det

√
γAB =

`2

z2
. (3.74)

Intuitively, for separation R of the quarks, the horizontal string is at

z0 ∝ R (3.75)

distance. We thus have

SNG ∼
1

α′
`2

z2
0

∫
dτdx =

`2

l2s

TR

z2
0

= T

√
2λ

R
= TV (R) . (3.76)

So we derived the unconfined (Coulomb) potential

V =

√
2λ

R
. (3.77)

Note that perturbatively, one would expect V ∝ λ/R; the
√
λ is the strong

coupling effect.

– Confined phase does not exist for SYM (which is scale invariant). So we need
to perturb AdS, and introduce a scale, that would correspond to transition
(low) energy scale Λ at which the confinement happens. So we consider the
AdS with cutoff zc, as displayed in the following figure:
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In this case, for sufficiently large separation R, we reach the cutoff and can-
not go any further (CFT low energy modes ‘go’ deeply in the bulk, and see
this cutoff). In that case, the action reads

SNG ∼
1

α′
`2

z2
c

∫
dτdx =

`2

l2s

TR

z2
c

= T

√
2λR

z2
c

⇒ V ∝ R , (3.78)

which is the confining potential.

– The plasma phase (or SYM at finite temperature) corresponds to the AdS
black hole case, with the metric

ds2 =
`2

z2

(
−fdt2 +

dz2

f
+ δijdx

idxj
)
, f = 1− z4

z4
+

. (3.79)

So in this case, when the separation is large enough, the string reaches all
the way to the horizon, where f = 0, and we have

det γAB =
√
f
`2

z2
+

→ 0 . (3.80)

So in this case the potential vanishes, V → 0, which corresponds to Debye
screening.

– To study the plasma/confinement phase transition (at finite temperature),
we can either study the soliton/planar BH phase transition, where one of
the directions parallel to the horizon are compactified (introducing the scale
zc by hand). An alternative is the standard Hawking–Page phase transition
(you studied in your homework) present for spherical black holes (where the
extra scale corresponds to the ‘radius’ of the spherical horizon).

– Jet quenching. As the produced hadron jets propagate through the plasma
medium, they loose energy and are eventually absorbed by the plasma. This
corresponds to the following AdS dual:
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Chapter 4: Advanced Topics

4.1 AdS/CFT at finite temperature

� To discuss the finite temperature SYM, we return back to the non-extremal black
D3-brane (2.20) and take its near-horizon limit r � `. In order to remain outside
of the horizon we have to have r > r0 – so we take r0 < r � ` and f remains
fixed. We thus have (setting z = `2/r):

ds2 =
`2

z2

(
−fdt2 +

dz2

f
+ δijdx

idxj
)

︸ ︷︷ ︸
Schwarzschild−AdS5

+ `2dΩ2
5︸ ︷︷ ︸

S5

, f = 1−
( z
z0

)4

, (4.1)

where the black hole has a planar horizon. This provides the gravity dual of the
strongly coupled SYM at finite temperature

T =
|f ′(z0)|

4π
=

1

πz0

. (4.2)

� Note that the metric is invariant under

xµ → λxµ , z → λz , z0 → λz0 . (4.3)

So one can always scale the horizon radius – this means that all temperatures
are equivalent and the physics is the same (except at zero temperature). Thence
there is no characteristic temperature, nor phase transitions (the original SYM is
a CFT and the only scale is that of T ). This is no longer true in the spherical case,
where we observe the Hawking–Page transition as discussed in the introduction.

� In your tutorial, you shall translate the properties of the Schwarzschild–AdS5 to
those of the SYM at strong coupling, and compare them to the weak coupling
results.

� Note also, that the finite temperature gauge theory corresponds to stationary
black hole solutions in the bulk. This corresponds to equilibrium. In order to
departure from equilibrium, we will have to perturb this background.

4.2 Shear viscosity of QGP

Physics of quark gluon plasma

� Quark-Gluon Plasma (QGP) describe the state of matter in the early Universe
(T ≈ 1013K, t ≈ 10−6s):

46
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� Strongly coupled (not a CFT!)

� Was recreated in RHIC and LHC accelerators – well described by the hydro regime.
In particular, it features a measurable shear viscosity:

� The experimental results show that QGP has the following shear viscosity to
entropy density ratio:

η

s
=

1

4π
× (1, 2.5) . (4.4)

Only some cold atomic gases have a similarly small value, while other liquids
(such as water or liquid helium) have this ratio much (103 times) higher. Note
also that, since the temperature of QGP is large, η itself is huge (it is an energy
momentum transfer).

� Remark. Considering φ4 theory at weak coupling, one has:

lmfp ∼
1

g2T
, η ∼ ρlmfp ∼

T 3

g2
, s ∼ T 3 ⇒ η

s
∼ 1

g2
. (4.5)

That is, for small g, the ratio is large. (Of course, this result does not make sense
for g → 0 as in that case lmfp →∞ and the hydro description breaks down. Using
naively the same formula in strong coupling regime, g →∞, yield η/s ≈ 0. As we
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shall see, this does not happen – there is a saturation of η/s for strong coupling.
(Moreover, already for g ∼ 1, for which η/s ∼ 1, the perturbative expansion
breaks down!)

Hydrodynamics

� Hydrodynamics= effective field theory describing the long-range (~k → 0), low-
energy (ω → 0) fluctuations around equilibrium. Roughly, we require

λfluctuations � lmfp , (4.6)

if the ‘mean free path’ lmfp can be defined. That is, the system is locally in equi-
librium:

� The macroscopic dynamics is governed by conservation laws, such as

∇µT
µν = 0 . (4.7)

Here, T µν is a function of d variables T (x) and uµ(x), supplemented by constitutive
relations expressing T µν in terms of these variables. These relations introduce the
transport coefficients and are constructed in such a way to satisfy the second law
of thermodynamics:

T µν = T µν(T, uµ) = T µν
(
ρ(T (x)), P (T (x)), η, ζ, . . .︸ ︷︷ ︸

transp. coeffs.

)
. (4.8)

Such transport coefficients (coefficients of the EFT expansion), depend on de-
tails of the miscroscopic theory and cannot be determined in the framework of
hydrodynamics.

� Example. To give an example as to how constitutive relations are constrained by
second law, let us consider the heat diffusion (with heat flow qi):

∂tρ+ ∂iq
i = 0 , dρ = Tds . (4.9)
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Combining these, we get

0 = ∂ts+
1

T
∂iq

i = ∂ts+ ∂i

(qi
T

)
+
∂iTq

i

T 2
. (4.10)

Integrating these, we thus get

∂tS =

∫
d3x∂ts = −

∫
d3x

∂iTq
i

T 2
= κ

∫
d3x
(∂iT
T

)2

≥ 0 , (4.11)

upon choosing the constitutive relation qi = −κ∂iT , κ ≥ 0.

� To describe the fluid in local thermal equilibrium, we expand T µν using the
derivative expansion:

T µν =
(
P + ρ

)
uµuν + Pγµν︸ ︷︷ ︸

0th-order: perfect fluid

+ τµν︸︷︷︸
1st-order

+ . . . , (4.12)

where γµν is the ‘background metric’ where the fluid lives, and we expanded to
the nth-order in derivatives of the fluid dynamical fields, corresponding to the
convergent series in (lmfp/λfluctuations)

n.

In particular, at the first derivative order in the Landau’s frame (where T µνu
ν =

−ρuµ, that is, there is no energy flow in the rest frame), we have1

τµν = −2ησµν − 2ζθP µν . (4.13)

Here, we have introduced two transport coefficients: η the shear viscosity, and ζ
the bulk viscosity; P µν = uµuν + γµν , and

σαβ = PαγP βδ
(
∇(γuδ) −

1

d− 1
Pγδθ

)
, θ = ∇γu

γ . (4.14)

The positivity of the entropy current sµ = suµ (∇µs
µ ≥ 0) requires that

η ≥ 0 , ζ ≥ 0 . (4.15)

As you will prove in your tutorial, for CFTs we also have

ζ = 0 . (4.16)

1Keeping only the first order is physically problematic. For example, we have unphysical instabil-
ities or the frame dependence, see however, recent [?].
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Linear response theory

� The (macroscopic) transport coefficients are an input in hydrodynamics. They can
be calculated from microscopic physics with the help of linear response theory.
Namely, they are related to Green’s functions via the Green–Kubo relations.

� Linear response theory. Consider a system in equilibrium, described by the density
matrix ρ0, which is at some point perturbed by an external source φ0:

δS =

∫
ddxφ0(t, x)O(x) . (4.17)

Then, it can be shown that to linear order in φ0, we have

δ〈O(t, x)〉 = −
∫
dt′dd−1x′GOO

R (t− t′, x− x′)φ0(t′, x′) , (4.18)

where the retarded Green’s function GOO
R is defined as

GOO
R (t− t′, x− x′) = −iθ(t− t′)〈[O(t, x), O(t′, x′)]〉 , (4.19)

where the average is calculated using the unperturbed equilibrium density matrix
ρ0, and all operators evolve in time according to the interaction picture, that is
according to H0. In the Fourier space we then have

δ〈O(k)〉 = −GOO
R (k)φ0(k) . (4.20)

� Kubo formula. To give an example of a Kubo formula, let us consider Ohm’s law:

δ〈Jx〉 = σE0
x , (4.21)

where σ is the transport coefficient called conductivity. Considering a gauge
where A0

t = 0, we have E0
x = −∂tA0

x, which upon Fourier transforming yields
iωA0

x. So we have

δ〈Jx〉 = iωσA0
x ⇔ δ〈Jx〉 = −Gxx

R A
0
x , (4.22)

where the latter comes from the linear response theory. We thus find

σ(ω) = −G
xx
R (ω, q = 0)

iω
, (4.23)

which is the promised Kubo relation. (In particular, the DC conductivity is
obtained by taking the limit ω → 0 of the previous.)

� Thermal internal force. Sometimes we are not interested in response to external
source φ0, but rather to a thermal internal force. To use the linear response
theory, we ‘model’ the internal force as arising from some external source. For
example, in the case of fluids we imagine that the perturbation of T µν arises from
‘ficticious’ gravitational force – metric perturbation.



CHAPTER 4. ADVANCED TOPICS 51

Calculation of the shear viscosity

� Step 1: macroscopic hydro description. You will show in your tutorial that a fic-
ticious gravitational field h0

xy induces the following perturbation of the 1st-order

energy momentum tensor (4.13) of our fluid (setting ~k = 0):

δτxy(ω) = −iωηh0
xy(ω) . (4.24)

� Step 2: microscopic description. Using the linear response theory formula (4.20),
we have

δ〈τxy(ω)〉 = −Gxy,xy
R (ω)hxy(ω)h0

xy(ω) (4.25)

Comparing to (4.24), we thus derived the following Kubo formula for the viscosity:

η = lim
ω→0

1

iω
Gxy,xy
R (ω) , (4.26)

where

Gxy,xy
R (ω,~0) =

∫
dtd3xe−iωtθ(t)〈[τxy(t, ~x), τxy(0,~0)]〉 . (4.27)

Thus, to calculate the viscosity we need to calculate the 2-point function 〈τxyτxy〉.
We shall do this using the AdS/CFT correspondence.

� Step 3: Employ AdS/CFT to calculate GR(ω), namely to evaluate the correlator
〈τxyτxy〉. To do this, we consider the bulk black brane spacetime, whose gravita-
tional perturbation reduces to the h0

xy on the boundary:

By expanding the York–Einstein–Hilbert–Λ action for gµν + hµν (where hµν =
δx(µδ

y
ν)hxy), we get the following quadratic action for the perturbation hxy:

Sq[hxy] =
N2

8π2`3

∫
d4xdz

√
−g(−1

2
gµν∂µhxy∂νhxy

)
. (4.28)
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This is an action for a massless scalar hxy, which we have to solve on the Schwarzschild-
AdS background. Expressing the solution in terms of the boundary data h0

xy and
plugging back to this action, we find the generating functional Sq[h

0
xy], which then

yields

〈τxyτxy〉 = − δSq[h
0]

δh0
xyδh

0
xy

. (4.29)

This is then used to calculate the Green function. The calculation yields

GR(ω) =
πN2

c T
3

8
iω , (4.30)

giving

η =
π

8
N2
c T

3 . (4.31)

Since you will derive in your tutorial s = π2

2
N2
c T

3, we have the following famous
result:

η

s
=

1

4π
, (4.32)

which is a great victory for the gauge/gravity correspondence.

� Remark. This result is conjectured to provide a universal lower bound on the
real fluid viscosity (irrespective of the presence of other fields, or whether the
conformal symmetry or supersymmetry are broken). It makes strongly coupled
holographic fluids the most perfect fluids (next to ideal fluids).

4.3 Turbulent gravity*

� Fluid/gravity correspondence is a map between two classical systems: viscous
conformal fluids on the AdS boundary and the long-wavelength perturbations of
the AdS black branes in GR. This map can be derived in the derivative expansion
of Einstein equations and is thus independent of the AdS/CFT correspondence.

� On the fluid side, one can define the Reynolds number

R ∼ ρvL

η
, (4.33)

where L is the distance scale, and v the velocity fluctuation. For large enough R,
the flow is no longer laminar, and we observe a turbulent behavior, characterized
by the energy cascade to long wavelengths. We observe a formation of macro-
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scopic, long-lived, vortices, as displayed in the following picture [?]:

� On the gravity side, this corresponds to long-lived hydrodynamic quasi-normal
modes of black branes, as opposed to exponentially decaying quasinormal modes
in the ‘laminar regime’.

In other words, turbulent behavior is present in Einstein’s theory in the dynamical
settings.

� (Un)related remark. It is now well known that AdS is unstable towards forming
black holes – this corresponds to thermalization of the dual CFT. However, it was
shown that certain initial data do not result in black hole formation [?]. These
define dynamical CFT configurations that never equilibrate.

4.4 Holographic superconductors

� Motivation: The standard superconductors are described by the BCS theory. They
correspond to weakly coupled Fermi liquid, cannot have critical temperature above
Tc ∼ 30− 40K, and are the s-wave superconductors.

On the other hand, the high-Tc superconductors are strongly coupled, correspond
to d-wave (l = 2), and have very complicated phase diagrams which cannot be
described by the BCS theory:
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For these reasons, people model these systems with the help of holographic
superconductors [?, ?].

� In order to describe a 2nd-order phase transition to superconducting phase, the
entropy has to remain continuous. Thus, in the bulk side we seek a phase transi-
tion from one black hole phase to another – need to evade BH no hair theorems.
Due to the (2+1) geometry of high-Tc superconductors we focus on 4d planar
black holes.

� On the field theory side, the superconductor is characterized by zero resistivity,
a response to the U(1) current, suggesting we need a gauge field in the bulk. We
also need a scalar order parameter, 〈O〉, corresponding to the “mascroscopic wave
function” in Ginsburg–Landau’s theory – thus we need a charged scalar field in
the bulk. The simplest phenomenological theory in the bulk is thus

S =

∫
d4x
√
−g
(
R− 2Λ− 1

4
F 2
MN − |DMψ|2 − V (ψ)

)
, (4.34)

where
DM = ∇M − ieAM , V (ψ) = m2|ψ|2 . (4.35)

Our aim is now to show that this systems exhibits the following behavior: For
T > Tc, we have “normal” Reissner–Nordstrom (RN) phase, characterized by
ψ = 0. At Tc, the RN phase becomes unstable w.r.t. a scalar field condensation,
and the system undergoes a 2nd-order phase transition to a hairy black hole, with
ψ 6= 0, which is a preferred phase below Tc.

� Probe limit: formally can be achieved by ψ → ψ/e,AM → AM/e and e → ∞.
That is, our gravity background is Schw-AdS4:

ds2 =
(r0

`

)2 1

u2
(−fdt2 + dx2 + dy2) + `2 du

2

fu2
, f = 1− u3 , (4.36)
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which has the following temperature:

T =
3r0

4π`2
(4.37)

The normal T > Tc phase is characterized by

ψ = 0 , A = µ(1− u)dt , (4.38)

At Tc this becomes unstable, as ψ becomes tachyonic. Namely, its effective mass
is

m2
eff = m2 + gMNAMAN = m2 −

(µ
T

)2 9(1− u)u2

16π2`2(1 + u+ u2)
; (4.39)

for large µ/T , that is small enough T , this becomes negative. In what follows we
choose

m2 ≡ − 2

`2
, (4.40)

which is with the BF bound m2 ≥ −(d− 1)2/(4`2) = −9/(4`2).

� In the superconducting phase we assume

ψ = ψ(u) , A = At(u)dt . (4.41)

This then yields the following equations:

A′′t −
2|ψ|2

u2f
At = 0 , (4.42)

u2

f

( f
u2
ψ′
)′

+
( A2

t

τ 2f 2
− `2m2

u2f

)
ψ = 0 , (4.43)

where τ = 4π
3
T .

� Close to Tc ψ is small and does not backreact on At. We thus have A = µ(1−u)dt
there, satisfying the first equation, and only have to solve the ψ equation. Close
to the boundary this behaves as

u→ 0 : ψ ∼ ψ0u
∆− + ψ+u

∆+ , (4.44)

where, as always,

∆± =
d− 1

2
±
√

(d− 1)2

4
+m2`2 = (1, 2) . (4.45)

Of course, ψ0 has the meaning of teh external source. Since this is a spontaneous
symmetry breaking, we set the source ψ0 = 0. At the same time ψ+ plays the
role of the order parameter

〈O〉 = ψ+ . (4.46)
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Numerical integration then yields the following figure:

It can also be shown that the order-parameter critical exponent β = 1/2:

〈O〉 = (T − Tc)1/2 . (4.47)

� Conductivity is a response to external current. We thus add

Ax = Ax(u)e−iωt , (4.48)

where on the boundary

u→ 0 : Ax ∼ A0
x(1 + A1

xu) , (4.49)

Thus we have

〈Jx〉 = A1
xA

0
x = σE0

x = iωσA0
x ⇒ σ(ω) =

A1
x

iω
, (4.50)

where the latter equality comes from the Ohm’s law. The Ax equation writes as

1

f
(fA′x)

′ +
( ω2

τ 2f 2
− 2ψ2

u2f

)
Ax = 0 . (4.51)

At high T , ψ = 0 and

A1
x = 0 +

iω

2πT
+O(ω2) . (4.52)

Thus R(σ) is finite and Im(σ) has no 1/ω pole. However, below Tc where psi2 is
non-vanishing, we find

A1
x = # +O(ω) +O(ω2) (4.53)

Thus the DC conductivity R(σ(ω → 0))) diverges and Im(σ) has 1/ω pole, as
displayed on the following numerical figures:
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� Response to magnetic field. One cannot see the Meissner effect, as the magnetic
field is fixed on the boundary. However, it is easy to show that the magnetic
field destroys the superconductivity. Namely, the effective mass of the scalar now
becomes

m2
eff = m2 + gttA2

t + giiAi(x)2 . (4.54)

The last terms is positive and prevents the field to become tachyonic.

4.5 Holographic entanglement entropy

Entanglement entropy

� Consider a mechanical system characterized by a density matrix ρ. The von Neumann
entropy is defined as follows:

SvN = −Tr(ρ log ρ) . (4.55)

This vanishes for a pure state, for which ρ = ρ2, and is maximised for diagonal ρ
with equal probabilities.

� Entanglement entropy provides a measure for the entanglement of quantum states.
Let the Hilbert space has the product structure for two subsystems A and B:

H = HA ⊗HB . (4.56)

We define a reduced density matrix for A by

ρA = TrBρ . (4.57)

The entanglement entropy for A is then defined as

SA = −TrA(ρA log ρA) . (4.58)
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� Entanglement entropy has a number of properties. If the global system is a pure
state and A is a complement of B, we have

SA = SB . (4.59)

We also have a strong subaditivity condition:

SA + SB ≥ SA∪B + SA∩B , (4.60)

for any two subsystems A and B, which mean that ‘mutual information is mono-
tonic in region size’.

� In QFT (at fixed time t = t0), one finds for a region A a divergent result

S = c0(RΛ)d−2 + c1(RΛ)d−3 + . . .
[
+cd log(RΛ)

]
, (4.61)

where ci are model dependent, R is the ‘linear size’ of region A, and Λ the UV
cutoff; logarithmic term is present in even dimensions. For the leading term, we
note the ‘area law’:

Area(∂A) ∝ Rd−2 . (4.62)

In particular, for 2d CFT, one finds

S =
c

3
log(ΛR) . (4.63)

Ryu–Takayanagi proposal

� A holographic realization of the entanglement entropy is realized as follows: we
seek a minimal surface in AdSd+1 whose boundary is given by ∂A:

and we have:

SA = min
γ∼A

Area(γ)

4Gd+1

. (4.64)

Here, γ and A are homologous, γ ∼ A, when there exists a region rA such that
∂rA = A∪ γ (in other words, surface γ can be smoothly contracted to surface A).
Moreover, ∂A = ∂γ is the entangling surface.
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� One finds

SA =
`d−1

Gd+1

Area(∂A)

εd−2
+ . . . , (4.65)

where ε is the UV cutoff in the radial direction, ε ∝ 1/Λ, or more generally

SA = b0

(`
ε

)d−2

+ b1

(`
ε

)d−4

+ . . . , (4.66)

which is to be compared to (4.61)

� Strong subaditivity is difficult to prove in QI context. However, in the holographic
context we have the following simple proof, displayed in the figure:

Covariant proposal

� Let us now consider time dependent case. That is, we consider the case of time
varying bulk M and boundary theory that is taken to be in a time-varying state
on a fixed background ∂M . Since the boundary metric is non-dynamical we can
choose a foliation by equal time slices. These, however, cannot be canonically
extended to the bulk. For this reason we can no longer consider minimal surfaces
at an instant of time in the bulk. Rather, we need to consider extremal surfaces.

� Extremal surface is a codimension-2 spacelike surface γ. Such a surface has two
null normals, n and l; we can normalize n · l = −1. Defining the projector to this
surfaces by

γµν = gµν + nµlν + nνlµ , (4.67)

we can get the extrinsic curvature tensors

K1
µν = γγµγ

δ
ν∇γnδ , K2

µν = γγµγ
δ
ν∇γlδ . (4.68)

The extremality means that

K1 = γµνK1
µν = 0 and K2 = γµνK2

µν = 0 . (4.69)
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For such surfaces, we have

δArea(γ) = 0 . (4.70)

� HRT prescription for the entanglement entropy is as follows: Consider extremal
surfaces anchored on ∂A: ∂γA = γA|∂M = ∂A that are homologous to A. Then
we have

SA = min
γA

Area(γA)

4Gd+1

. (4.71)

Note that γA can ‘move in time’, it must, however, lie in the Wheeler de Witt (WdW)

patch of A ∪ Ā:

For the static case, this reduces to the previous definition.

� Bulk reconstruction. The content of the AdS/CFT is that if one knows the full
CFT on the boundary, one can recover the full bulk. Now, what if we only know
part of CFT, say in region A?

The answer is, we are able to recover bulk in the entanglement wedge WA [?].
WA is formed by the spacelike separated points from the corresponding extremal
surface γA towards A:

WA = D(rA) , (4.72)

as displayed in the following figure:
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This is sometimes dubbed as “dual of ρA”.

� Maximin construction due A. Wall [?] provides an equivalent definition for the
covariant entanglement entropy. The construction goes as follows. Consider a
test bulk Cauchy surface Σ, anchored on A∪ Ā. In this surface we find a minimal
surface γΣ:

We then maximize over all such Cauchy surfaces (filling WdW patch):

SA = max
Σ

min
γΣ∼A

Area(γΣ)

4Gd+1

. (4.73)

(That is, we “minimize in the spatial direction and maximize in the time direc-
tion”.) It can be shown that the maximin surface is the extremal surface; there
isn’t a unique Cauchy surface that contains the extremal surface.

4.6 Back to black: information paradox

At the beginning of the course, we have learned about the black hole information
paradox: If the black hole is formed from a pure state and completely evaporates, we
end up in a mixed thermal state of Hawking radiation – the information seems lost in
black hole and we violated the unitarity of time evolution [?].

This conclusion seems to contradict the AdS/CFT picture where the process of the
black hole formation and evaporation is encoded in the boundary CFT evolution, which
is manifestly unitary.

Let us now discuss some recent progress on this issue, following [?].

Two types of entropies

� For understanding the paradox more closely, we need to distinguish two types of
entropies.
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� Fine-grained (quantum or von Neumann) entropy. Given the density matric ρ of
a quantum system, this is calculated as

SN = −Tr(ρ log ρ) . (4.74)

It quantifies our ignorance about precise quantum state of a system (vanishes for
a pure state). It is invariant under time evolution:

i~
∂ρ

∂t
= [H, ρ] . (4.75)

For a 2-part quantum system H = HA ⊗HB in a pure state, we have

S(A) = S(B) , S(A ∪B) = 0 . (4.76)

� Coarse-grained (thermodynamic) entropy. Measuring only a subset of observables
{Ai} (typically energy), we maximize over all possible density matrices that are
consistent with our observations:

STD = max
ρ

(
−Tr(ρ log ρ)

)
, ai = Tr(ρAi) . (4.77)

Such an entropy arises from “sloppiness” – provides a measure of the total num-
ber of dof available to the system. This type of entropy obeys the 2nd law of
thermodynamics (increases under unitary time evolution).

The key obvious result is: Von Neumann entropy cannot be bigger than the
thermodynamic entropy:

SN ≤ STD . (4.78)

(Possible entanglement is bounded by TD entropy.)

For quantum field in a region Σ,

SN(Σ) = SN(ρΣ) (4.79)

is divergent at its boundaries and is in general time dependent (as we move the
slice forward in time).

� The generalized and Bekenstein–Hawking entropies are thermodynamic entropies:

Sgen︸︷︷︸
TD entropy

=
Area of horizon

4G︸ ︷︷ ︸
TD entropy

+ Soutside︸ ︷︷ ︸
quantum entropy

. (4.80)

We thus have
∆Sgen ≥ 0 . (4.81)

(For example, increases rapidly as the black hole horizon forms in a collapse.)
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Page curve

� Hawking 1976: information loss: After BH completely evaporates, we have a mixed
state – huge entropy stored in Hawking radiation:

� Page time. If the total system is in pure state, then for fine-grained entropies we
have

Sblack hole = Srad . (4.82)

However, we have to have

Sblack hole ≤ SBekenstein–Hawking = Scoarse-grained . (4.83)

And thence we have
Srad ≤ SBH-TD , (4.84)

with the two being equal at the Page time.

� If afterwards the bound saturates we recover the Page curve:
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Quantum entropy of gravitating systems

� For a long time people thought that to explain the Page curve it is not enough to
use semiclassical theory and one need to use the theory of quantum gravity.

In past couple of years great progress was achieved, using the semiclassical theory:
we can calculate the quantum entropy of radiation/black hole. The key is to use
formula for fine-grained entropy of gravitational systems.

� The fine-grained entropy of gravitational systems is given by the following for-
mula:

S = min
X

[
extX

(Area(X)

4G
+ Ssemicl(ΣX)︸ ︷︷ ︸

Sgen(X)

)]
. (4.85)

Here X is the quantum extremal surface, a (classical) surface which extremizes
the generalized entropy (including quantum entropy of fields in the QFT in curved
space semiclassical approximation) [?]:

Compare the prescription to covariant calculation of the holographic entanglement
entropy.

Recovery of Page curve: black hole entropy

� Fairy tale. We have the following stages of the black hole evaporation:

1. Immediately after the collapse (no Hawking radiation yet), the only extremal
surface X is of zero size. This yields zero entropy of BH.

2. Once the Hawking radiation goes through ΣX , the entropy starts increasing
(in accord with Hawking’s calculation).

3. However, shortly after Hawking radiation starts escaping BH, another non-
trivial extremal surface, close to the horizon, appears. The corresponding
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entropy is decreasing as the black hole horizon shrinks due to evaporation
(according to Page’s result).

This is displayed on the following picture:

� Composing the two pictures, we just recover the Page curve for the black hole
entropy:

Entropy of radiation

� Entropy of Hawking radiation is given by the Island formula:

Srad = min
X

[
extX

(Area(X)

4G
+ Ssemicl(Σrad ∪ Σisland)

)]
, (4.86)
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as displayed in the following picture:

This recovers
Sblack hole = Srad , (4.87)

and the Page curve for the Hawking radiation.

� We have the corresponding entanglement wedges:

“Complicated operations on radiation should be able to extract info from the BH
interior.” (Is this due to some kind of wormholes?)

� To summarize. The fine-grained (island) entropy formula reproduces Page curve
for the entropy of Hawking radiation. Thus, there is no information loss, and the
unitarity is restored. In late times, part of the interior of the BH is accessible
from outside (due to some kind of wormholes?). If you want to know more, please
read [?] and references therein.

4.7 What we did not have time to talk about

There are many topics which we left behind in this course. To name a few:



CHAPTER 4. ADVANCED TOPICS 67

� Integrability

� Holographic RG flows

� Complexity [?]

� Beyond AdS holography: celestial holography [?], Lifshitz,. . .
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