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Tutorial 1: Solutions

1 Unruh radiation

a) Let us consider a spacetime associated with a uniformly accelerated observer,

characterized by the proper acceleration a = 4/|aya”|, whose coordinates
(T, X,y, z) are related to the Minkowski coordinates (t,z,y, z) by

1 1
t= (a + X) sinh(aT), x= (a + X) cosh(aT). (1)
Starting from the Minkowski metric
ds? = —dt* + da® + dy* + d2? (2)
we calculate
dt = sinh(aT)dX + (% + X)acosh(aT)dT, (3)
dz = cosh(aT)dX + (% n X)asinh(aT)dT (4)
Thus,
A+ di? = —(sinh(aT)dX + (% + X ) acosh(aT)dT)?

1
+(cosh(aT)dX + (= + X )asinh(aT)dT)?
a
= —(14aX)%dT* +dX?, (5)



upon using cosh?() — sinh?() = 1. Thus we recovered the Rindler spacetime:

ds? = —(1 4+ aX)2dT? + dX? + dy* + d2*. (6)

Let us now Wick rotate, introducing the Euclidean time, 7 = ¢I". Then we
have the following Euclidean metric:

ds3 = (1 4+ aX)?dr* + dX? + dy* + d=*. (7)
To simplify this, let us introduce a new coordinate p, by

_ 1+aX
N a

p dp =dX, (8)
so that

ds% = a?p*dp? + dp? + - -- = p2de® + dp? (9)
upon introducing a new angle coordinate, ¢ = ar. This looks like a flat space
written in polar coordinates, provided the angle ¢ has a period 27, otherwise
there is a conical singularity at p = 0, which corresponds to the original
Rindler horizon. The reasoning now goes as follows: since the Rindler horizon
was originally non-singular, we expect it to be non-singular again. This is
achieved by setting (we want to avoid conical singularity)

p~p+2r & T~TH2T/a & |T=—, (10)
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which is the famous Unruh temperature. That is, an accelerated observer sees
a thermal bath at a temperature proportional to his acceleration. If you ac-
celerate really fast, you can cook a chicken.

Let us next calculate the partition function and derive the entropy of the
Rindler horizon. To this purpose we have to calculate the classical action,

d* R 3
SE:/W?+/ PaeV/hK (11)
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(where e = —1 for spacelike and ¢ = 1 for timelike boundary), evaluated for
the Rindler Euclidean metric (7).



Of course, since the metric is flat we have R = 0 and the first term vanishes.
It is the second term that determines the value of the action. This is done as
follows. We introduce a boundary at X = Xy =const., calculate the contribu-
tion of the second term and then let Xg — co. The boundary has a normal

n* = (0,1,0,0) and the corresponding extrinsic curvature is
K:Vun“:i(\/gn“)u a
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where we used that g = (14 aX)2. At the same time the boundary metric has
the following determinant: vA = 1 + aXo. We thus have (e = —1)

drdyvhK af aBA
= — = — = — 1
5B /dT/ G G dydz 8rG’ (13)
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where A is the (regularized) ‘perpendicular Rindler horizon area’.

d) We thus have (setting G = 1)

p=-£t__="°-_ 7= 14
B 27 4 4’ (14)
and so
or A
= ar -1 15)
which is the Bekenstein result. Note also that
I(BF)
EFE=—>=0 16
=0, (16)

and that F'= M — TS = —T'S as the energy of the spacetime is zero.

2 Bekenstein’s universal bound

Bekenstein bound provides an upper limit on the thermodynamic entropy of classical
and quantum systems:

2 E
5 < THBRE, (17)

where FE is the total energy of the system, and R is the radius of a sphere enclosing
it.



a)

Let us qualitatively outline proof of this statement for small . To this pur-
pose, we consider a system with (small) energy E and (arbitrary) entropy S,
contained in a box of radius R. We then consider a black hole with (large)
mass M and the same radius R. Its entropy is Sy oc M?2. Let’s next lower
the system to the black hole, obtaining a black hole of mass M + E. Since
the total entropy cannot decrease by the generalized second law, we must have
(omitting all the pre-factors)

S+ M?<(M+E)?~M?+2ME + O(E?). (18)
Hence we have,
S <2MFE ~ RF, (19)
using the fact that the original black hole had a size R oc M.
Note that the above bound is saturated for Schwarzschild black hole entropy,

A
S = Spy =7t =21y M = T (20)
We can thus understand this as a a universal bound on the amount of infor-

mation in a given spatial region with a boundary of area A:

A

< =
5_4,

(21)

as measured in Planck units. This means that the upper bound is bounded
holographically — by the area of the region instead of its volume.
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