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Tutorial 1: Solutions

1 Unruh radiation

a) Let us consider a spacetime associated with a uniformly accelerated observer,

characterized by the proper acceleration a =
√
|aµaµ|, whose coordinates

(T,X, y, z) are related to the Minkowski coordinates (t, x, y, z) by

t =
(1

a
+X

)
sinh(aT ) , x =

(1

a
+X

)
cosh(aT ) . (1)

Starting from the Minkowski metric

ds2 = −dt2 + dx2 + dy2 + dz2 , (2)

we calculate

dt = sinh(aT )dX +
(1

a
+X

)
a cosh(aT )dT , (3)

dx = cosh(aT )dX +
(1

a
+X

)
a sinh(aT )dT (4)

Thus,

−dt2 + dx2 = −(sinh(aT )dX +
(1

a
+X

)
a cosh(aT )dT )2

+(cosh(aT )dX +
(1

a
+X

)
a sinh(aT )dT )2

= −(1 + aX)2dT 2 + dX2 , (5)
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upon using cosh2( )− sinh2( ) = 1. Thus we recovered the Rindler spacetime:

ds2 = −(1 + aX)2dT 2 + dX2 + dy2 + dz2 . (6)

b) Let us now Wick rotate, introducing the Euclidean time, τ = iT . Then we
have the following Euclidean metric:

ds2
E = (1 + aX)2dτ2 + dX2 + dy2 + dz2 . (7)

To simplify this, let us introduce a new coordinate ρ, by

ρ =
1 + aX

a
⇒ dρ = dX , (8)

so that
ds2
E = a2ρ2dψ2 + dρ2 + · · · = ρ2dϕ2 + dρ2 , (9)

upon introducing a new angle coordinate, ϕ = aτ . This looks like a flat space
written in polar coordinates, provided the angle ϕ has a period 2π, otherwise
there is a conical singularity at ρ = 0, which corresponds to the original
Rindler horizon. The reasoning now goes as follows: since the Rindler horizon
was originally non-singular, we expect it to be non-singular again. This is
achieved by setting (we want to avoid conical singularity)

ϕ ∼ ϕ+ 2π ⇔ τ ∼ τ + 2π/a︸ ︷︷ ︸
β

⇔ T =
a

2π
, (10)

which is the famous Unruh temperature. That is, an accelerated observer sees
a thermal bath at a temperature proportional to his acceleration. If you ac-
celerate really fast, you can cook a chicken.

c) Let us next calculate the partition function and derive the entropy of the
Rindler horizon. To this purpose we have to calculate the classical action,

SE =

∫
Ω

d4x
√
gR

16πG
+

∫
∂Ω

d3xε
√
hK

8πG
, (11)

(where ε = −1 for spacelike and ε = 1 for timelike boundary), evaluated for
the Rindler Euclidean metric (7).
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Of course, since the metric is flat we have R = 0 and the first term vanishes.
It is the second term that determines the value of the action. This is done as
follows. We introduce a boundary at X = X0 =const., calculate the contribu-
tion of the second term and then let X0 → ∞. The boundary has a normal
nµ = (0, 1, 0, 0) and the corresponding extrinsic curvature is

K = ∇µnµ =
1
√
g

(
√
gnµ),µ =

a

1 + aX0
, (12)

where we used that g = (1+aX)2. At the same time the boundary metric has
the following determinant:

√
h = 1 + aX0. We thus have (ε = −1)

SE = −
∫
dτ︸ ︷︷ ︸
β

∫
dxdy

√
hK

8πG
= − aβ

8πG

∫
dydz︸ ︷︷ ︸
A

= −aβA
8πG

, (13)

where A is the (regularized) ‘perpendicular Rindler horizon area’.

d) We thus have (setting G = 1)

F =
SE
β

= − a

2π

A

4
= −T A

4
, (14)

and so

S = −∂F
∂T

=
A

4
, (15)

which is the Bekenstein result. Note also that

E =
∂(βF )

∂β
= 0 , (16)

and that F = M − TS = −TS as the energy of the spacetime is zero.

2 Bekenstein’s universal bound

Bekenstein bound provides an upper limit on the thermodynamic entropy of classical
and quantum systems:

S ≤ 2πkBRE

~c
, (17)

where E is the total energy of the system, and R is the radius of a sphere enclosing
it.
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a) Let us qualitatively outline proof of this statement for small E. To this pur-
pose, we consider a system with (small) energy E and (arbitrary) entropy S,
contained in a box of radius R. We then consider a black hole with (large)
mass M and the same radius R. Its entropy is SBH ∝ M2. Let’s next lower
the system to the black hole, obtaining a black hole of mass M + E. Since
the total entropy cannot decrease by the generalized second law, we must have
(omitting all the pre-factors)

S +M2 ≤ (M + E)2 ≈M2 + 2ME +O(E2) . (18)

Hence we have,
S ≤ 2ME ≈ RE , (19)

using the fact that the original black hole had a size R ∝M .

b) Note that the above bound is saturated for Schwarzschild black hole entropy,

S = SBH = πr2
+ = 2πr+M =

A

4
. (20)

We can thus understand this as a a universal bound on the amount of infor-
mation in a given spatial region with a boundary of area A:

S ≤ A

4
, (21)

as measured in Planck units. This means that the upper bound is bounded
holographically – by the area of the region instead of its volume.
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