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INTRODUCTION

This is a short study text accompanying my lectures given as part of the subject Black

hole thermodynamics. If you find anything in these notes unclear, chances are it is an error

(factual or pedagogical) on my side. In that case please do not hesitate to contact me. The

same applies if you want to hear more about any topic discussed (or even just hinted at) in

this text.

Let me also include a brief note in regards to the exams. While we discuss both the

covariant phase space formalism and the Euclidean grand-canonical ensemble construction

in some detail because of their usefulness, we appreciate that the related mathematics takes

some time to get used to. We will certainly not require that you reproduce the calculations

presented in this text during the exam. Instead, we will ask general question aimed at

understanding the logic behind the calculations, e.g. “What steps do you need to take to

obtain a covariant prescription for the symplectic form for the given Lagrangian?”

I. COVARIANT PHASE SPACE FORMALISM

Reputedly, the entire field of black hole thermodynamics began with the question “What

happens when you pour a cup of tea into a black hole?”. In 1972, John Wheeler asked this

his student Jacob Bekenstein, wondering about the entropy of the hot tea that apparently

just disappears. This of course violates the second law of thermodynamics, thus posing a

very serious problem for the plausibility of black holes as physical objects. Of course, there
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FIG. 1. A Penrose diagram of the stationary black hole spacetime we analyse. H denotes the

horizon, I+ and I− are the future and past null infinity, and I0 the spatial infinity. We draw the

Cauchy surface C for the exterior region as the oblique line extended from H to I+. The grey

region represents the interior of the black hole, whose structure we do not specify.

is a way out and Bekenstein succeeded in finding it. In the following, we will take a rather

long (but hopefully rewarding) road to this answer, first treating the pouring of tea inside a

black hole as a perturbation problem within the context of classical general relativity.

Our starting point is a stationary, asymptotically flat spacetime with a single black hole,

whose Penrose diagram is shown in figure 1. As a consequence of stationarity, the spacetime

possesses a Killing vector that is timelike outside the black hole horizon H and spacelike

inside it. Hence, H is a Killing horizon. We are interested in the exterior region of the

spacetime accessible to external observers, whose inner boundary is H and outer boundary

the future null infinity I+. We do not care about the precise nature of the black hole’s

interior, e.g. whether there is a collapsing star inside and if there exists an inner horizon.

We simply consider this part of the spacetime inaccessible. The exterior region can be fully

described by giving initial data on a spacelike surface C which intersects the horizon and the

spatial infinity I0 and then evolving them according to Einstein equations1. In other words,

C is a Cauchy surface for the exterior region.

Now we pour the tea into the black hole (or perform any other small perturbation). We

assume that the black hole settles down after a while, and again becomes stationary, albeit

with slightly different properties (e.g., mass, angular momentum, etc.) than before. We are

interested in mathematically describing this change of properties. While we might choose a

1 This is no longer true when one introduces the Hawking radiation, since the exterior region is then also

affected by its flux across H. However, we remain fully in the realm of classical physics and treat H as

intraversable from inside out.
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specific black hole metric (e.g. Kerr-Newman) and perform its small perturbation, we can

treat the problem more generally. For any stationary system in theoretical mechanics, we

could find an expression for its Hamiltonian. Then, we recall that Hamiltonian of a station-

ary system is conserved. Hence, its perturbation vanishes, δH = 0, and this constrains the

behaviour of the perturbations of quantities on which the Hamiltonian depends, giving us

the information we wanted. This is the usual way to obtain the first law of thermodynamics

for a mechanical system. It turns out that the same works for black holes. Specifically, for

a stationary black hole, we can obtain a covariant expression for the perturbation of the

Hamiltonian defined on the spacelike Cauchy surface. We will see that equating this expres-

sion to zero directly yields the first law of black hole mechanics. Moreover, the procedure

easily generalises beyond general relativity to a wide class of alternative theories of gravity,

as well as to other spacetimes with different global symmetries, making it a very useful and

flexible computational tool.

A. Motivation from theoretical mechanics

Before going to black holes, let us practice on something simpler. We will just try to get

the Hamiltonian for one nonrelativistic point particle of mass m in external potential V (x).

Our starting point is the action

S(1) =

∫ t2

t1

L(1)dt =

∫ t2

t1

[
1

2
mẋiẋ

i − V (x)

]
dt, (1)

where L(1) is the Lagrangian, overdot denotes a time derivative, and i goes from 1 toD, being

the dimension of space. To get Hamiltonian, we can just define the canonical momentum

as pi = ∂L(1)/∂ẋ
i = mẋi and use the Legendre transform, H(1) = piẋ

i − L(1) = pip
i/ (2m) +

V (x). We could even do that in general relativity (I refer you to chapter 21 of the eternal

classic [1], where the ADM formalism is explained), but there it relies on fixing the direction

of time first. We would rather have something covariant. A way to get it is by obtaining

the symplectic structure of the theory in question. For a free particle, we can start by

performing a small variation of Sfree

δS(1) =

∫ t2

t1

[
mẋi

d

dt

(
δxi
)
− V,iδx

i

]
dt = −

∫ t2

t1

(mẍi − V,i) δx
idt+

∫ t2

t1

d

dt

(
mẋiδx

i
)
dt. (2)

The first term is proportional to the equations of motion of the particle mẍi = V,i. The

second one is clearly a boundary term and one usually discards it. However, let us take a
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look at the expression inside the derivative, θ(1) [δ] = mẋiδx
i = piδx

i, where we identified

the canonical momentum. For reasons that will become apparent soon, we call θ(1) [δ] the

symplectic potential.

Now suppose that we consider two independent variations δ1 and δ2 and compute δ1θ(1) [δ2]

We easily obtain

δ1θ(1) [δ2] = δ1piδ2x
i + piδ1δ2x

i. (3)

A difference between δ1θ(1) [δ2] and the expression with the order of variations flipped,

δ2θ(1) [δ1], reads

δ1θ(1) [δ2]− δ1θ(1) [δ2] = δ1piδ2x
i + piδ1δ2x

i − δ2piδ1x
i − piδ2δ1x

i = δ1piδ2x
i − δ2piδ1x

i, (4)

where we used that the independent variations commute, i.e., piδ1δ2x
i = piδ2δ1x

i. Let us

introduce a joint notation for coordinates and momenta, zi so that z1 − zD correspond to

x1 − xD and zD+1 − z2D to p1 − pD. Then, we can rewrite expression (4)

δ1θ(1) [δ2]− δ2θ(1) [δ1] = Ω(1),ijδ1z
iδ2z

j, (5)

where Ω(1),ij are components of a matrix with the following structure (for simplicity, we

show it for D = 3)

Ω(1) =



0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


. (6)

This matrix is clearly antisymmetric and nondegenerate (determinant is (−1)D, i.e., nonzero).

If we see Ω(1),ij as a differential 2-form Ω(1) = Ω(1),ijdz
i ∧ dzj, it is clearly closed, dΩ(1) = 0.

Nondegeneracy and closedness are the defining properties of a symplectic form. Hence,

Ω(1) is a symplectic form on the phase space of our theory. Defining similarly a symplectic

potential 1-form θ(1) = pidx
i, we have dθ(1) = Ω(1).

It is easy to check that we can write the Hamilton equations of motion in terms of the

symplectic structure2, i.e.,
∂H(1)

∂zi
= Ω(1),ij ż

j. (7)

2 For more details on the symplectic formalism in theoretical mechanics, see [2]
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For a small variation of the Hamiltonian, we can then write (assuming the equations of

motion are satisfied)

δH(1) =
∂H(1)

∂zi
δzj = Ω(1),ij ż

iδzj. (8)

In this way, we can compute a small variation of the Hamiltonian (and, in typical situations,

guess the full structure of the Hamiltonian) once we are given the symplectic structure.

B. Covariant phase space formalism for general relativity

We have seen how to obtain a symplectic structure from a one particle Lagrangian. We

now simply try to do the same thing for general relativity and assume it will work (you can

actually show it will, but it is painful [3]). We take the Lagrangian density for the vacuum

general relativity, without a cosmological constant3,

L =
1

16π
R
√
−g, (9)

and vary it with respect to gµν . We get

δL =
1

16π

√
−g
(
Rµν −

1

2
Rgµν

)
δgµν +

1

16π

√
−ggµνδRµν . (10)

The first term is of course proportional to the vacuum Einstein equations and vanishes if

they are satisfied. The second term can be written as a total derivative

1

16π

√
−ggµνδRµν = ∇µ

[
1

16π

(
gµλgνρ − δµν δ

λ
ρ

)
∇λδg

νρ

]
. (11)

According to the analogy with theoretical mechanics, we identify this as the divergence of

the symplectic potential corresponding to variation δ

θµ [δ] =

√
−g

16π

(
gµλgνρ − δµν δ

λ
ρ

)
∇λδg

νρ. (12)

In other words, we can write the variation of the Lagrangian (9) as

δL =
1

16π

√
−g
(
Rµν −

1

2
Rgµν

)
δgµν +∇µθ

µ [δ] . (13)

3 Rather than working with tensor densities, the entire formalism is more often presented in terms of

differential forms. In that case, we simply start with the Lagrangian 4-form, L = Rε/ (16π), with ε being

the spacetime volume 4-form (i.e., the Levi-Civita tensor), and otherwise proceed in the same way as in

these notes. Here, I do not follow this road as I find the differential form language a little less familiar

than tensor densities.
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Following the analogy, we then obtain the symplectic current corresponding to two indepen-

dent variations δ1, δ2 as4

Ωµ [δ1, δ2] = δ1θ
µ [δ2]− δ2θ

µ [δ1] . (14)

There is an extra step compared to the case of one particle Lagrangian, in which the previous

equation already yields the symplectic form. However, in any field theory we have to deal

with the fact that our starting point is a Lagrangian density rather than a Lagrangian.

Then, to get the symplectic form, we must carry out one additional integration over a

suitably defined spacelike surface. In particular, we need this surface to be Cauchy. For

our stationary black hole, we have the surface C in figure 1 (thanks to stationarity, you can

show that the result does not depend on the particular choice of the Cauchy surface). So,

integral of the symplectic current Ωµ [δ1, δ2] over C gives us the symplectic form

Ω [δ1, δ2] =

∫
C
Ωµ [δ1, δ2] dCµ. (15)

Since the symplectic form yields the perturbation of the Hamiltonian by virtue of the Hamil-

ton equation of motion, it might seem that we are done. However, in the cases (like ours)

when the spacetime possesses symmetries we can do even more. The Noether theorem

teaches us that to symmetries correspond conserved currents and charges. As we will see,

we can express the perturbation of the Hamiltonian (and the Hamiltonian itself) entirely in

terms of such charges.

To see this, we start by looking at the local symmetries of general relativity. It is well

known that it is invariant under arbitrary diffeomorphisms. Since we work with small per-

turbations, we are interested in infinitesimal diffeomorphisms, which can always be written

as being generated by some vector field ξµ. The transformation of the metric is then given

by a Lie derivative along this vector field, i.e.,

δξgµν = £ξgµν = ∇µξν +∇νξµ. (16)

The Noether current corresponding to an infinitesimal diffeomorphism is in general defined

as

jµξ = θµ [£ξ]− Lξµ. (17)

4 The explicit expression is somewhat lengthy and can be found, e.g. in [4].
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To be a proper Noether current, the divergence of jµξ must vanish. We have, using equa-

tion (13) to express ∇µθ
µ [£ξ],

∇µj
µ
ξ = ∇µθ

µ [£ξ]−∇µ (Lξ
µ) = £ξL− 1

16π

√
−g
(
Rµν −

1

2
Rgµν

)
£ξg

µν − ξµ∇µL−L∇µξ
µ.

(18)

Now, we need to evaluate Lie derivative of the Lagrangian

£ξL =
1

16π

√
−g£ξR +

1

16π
R£ξ

√
−g, (19)

where we used the Leibniz rule. Lie derivative of the scalar curvature yields simply

£ξR = ξµ∇µR. However,
√
−g is not a tensor but rather a tensor density of weight w = 1.

For its Lie derivative, we find

£ξ

√
−g = − 1

2
√
−g

£ξg =
1

2
√
−g

(−g) gµν£ξgµν =

√
−g
2

gµν (∇µξν +∇νξµ) =
√
−g∇µξ

µ.

(20)

where we used a well-known relation for a small variation of the metric determinant

δg = ggµνδgµν for δ = £ξ. Plugging the expression for £ξL to equation (18) and using

that ∇µg = 05 yields

∇µj
µ
ξ =L∇µξ

µ + ξµ∇µL− 1

16π

√
−g
(
Rµν −

1

2
Rgµν

)
£ξg

µν − ξµ∇µL− L∇µξ
µ

=
1

8π

√
−g
(
Rµν −

1

2
Rgµν

)
∇µξν . (21)

If the vacuum equations of motion are satisfied, we indeed have ∇µj
µ
ξ = 0 as required of a

Noether current6. It follows that the Noether current can be written as a term proportional

to the equations of motion plus some term whose divergence vanishes identically. The

most general such term is a divergence of some rank two antisymmetric tensor density

Qνµ
ξ = −Qµν

ξ , i.e.,

jµξ =
1

8π

√
−g
(
R µ

ν − 1

2
Rδµν

)
ξν +∇νQ

νµ
ξ . (22)

That jµξ must take this form is hopefully intuitively clear, but if one desires, it can be derived

fully rigorously [5]. Notice that, when the equations of motion are satisfied, an integral of

5 To see this, we can express the determinant as g = [αβγδ] gαγgβδ, where [αβγδ] is the antisymmetrisation

symbol, [0123] = 1 and fully antisymmetric. Since∇µ is a Levi-Civita covariant derivative, i.e., torsion-free

and metric compatible, we have ∇µgαγ = 0 and ∇µ [αβγδ] = 0. Therefore, ∇µg = 0.
6 We can even define Noether current that is divergence-free identically, even when the equations of motion

are not satisfied. Using the contracted Bianchi identities, we can easily prove that the Einstein tensor is

divergence-free, i.e., ∇µ (Rµν −Rgµν/2) = 0. Then, we have ∇µj
µ
ξ = ∇µ [

√
−g (R µ

ν −Rδµν /2) ξ
ν/ (8π)]

and a new Noether current Jµ
ξ = jµξ −

√
−g (R µ

ν −Rδµν /2) ξ
ν/ (8π) satisfies ∇µJ

µ
ξ = 0 identically.
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jµξ over a Cauchy surface C may be rewritten using the Stokes’ theorem∫
C
jµξ dCµ =

∫
C
∇νQ

νµ
ξ dCµ =

∫
∂C
Qνµ

ξ dCµν , (23)

to an integral of the antisymmetric tensor Qνµ
ξ over its boundary ∂C. In other words, Qνµ

ξ

plays the role of the Noether charge corresponding to the Noether current jµξ .

We can find the explicit form of the Noether charge Qνµ
ξ by splitting the Noether current

defined by equation (17) into a part proportional to the vacuum equations of motion and

some remainder, which must have the form ∇νQ
νµ
ξ . By plugging in the expressions for the

symplectic potential θµ [£ξ] (12) (using expression (16) for the Lie derivative of the metric)

and for the Lagrangian L (9), we obtain

jµξ =

√
−g

16π

(
gµλgνρ − δµν δ

λ
ρ

)
∇λ (∇νξρ +∇ρξν)−

√
−g

16π
Rξµ

=

√
−g

16π
(∇ν∇νξµ +∇ν∇µξν − 2∇µ∇νξ

ν −Rξµ) . (24)

To get the vacuum Einstein equations, we need some Ricci tensors. For this, we use the

definition of the Riemann tensor

Rσµνρξ
σ = ∇ρ∇νξµ −∇ν∇ρξµ, (25)

which in particular implies7

∇ν∇µξν −∇µ∇νξ
ν = R µ

ν ξ
ν , (26)

−∇µ∇νξ
ν = −∇ν∇µξν +R µ

ν ξ
ν . (27)

Using these identities, we obtain for the Noether current

jµξ =

√
−g

16π
(2R µ

ν ξ
ν −Rξµ +∇ν∇νξµ −∇ν∇µξν) . (28)

As it must be, the first two terms inside the bracket correspond to twice the vacuum Einstein

equations contracted with ξµ, while the other two are a divergence of an antisymmetric

tensor, ∇νξµ −∇µξν . Hence, we can identify the second part with the Noether charge

Qνµ
ξ =

√
−g

16π
(∇νξµ −∇µξν) . (29)

7 A cautionary remark: there exist stronger versions of these statements for Killing vectors. However, we

cannot use them, since ξµ is, at this stage, an arbitrary vector field.
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We now wish to relate the symplectic form with the Noether current. The road to this

result is rather indirect but nevertheless interesting. Consider any metric that solves the

vacuum Einstein equation and introduce its small perturbation. We want the perturbed

spacetime to again be a solution of the Einstein equations (in other words, the perturbation

must solve the linearised Einstein equations). This perturbation leads to a change in the

Noether current corresponding to some vector field ξµ (this vector field is by definition

unaffected by the perturbation). On the one side, starting from definition (17), we find

δjµξ = δθµ [£ξ]− ξµδL = δθµ [£ξ]− ξµ∇νθ
ν [δ] . (30)

We used that, since the equations of motion are satisfied, the perturbation of the Lagrangian

simplifies to δL = ∇νθ
ν [δ].

On the other side, we know that the Noether current can be written as a term proportional

to equations of motion (which we can disregard, since they are satisfied by both the original

and the perturbed spacetime) and divergence of the Noether charge. Therefore, it holds

δjµξ = ∇νδQ
νµ
ξ

8, and equation (30) becomes

∇νδQ
νµ
ξ = δθµ [£ξ]− ξµ∇νθ

ν [δ] . (31)

The first term on the right hand side is already one half of the symplectic current Ωµ [δ,£ξ]

given by equation (14). Let us look at the second half

−£ξθ
µ [δ] = −ξν∇νθ

µ [δ] + θν [δ]∇νξ
µ + θµ [δ]∇νξ

ν , (32)

where we used the standard expression for the Lie derivative of a vector field and the previ-

ously computed Lie derivative of the metric determinant (20). Then, adding and subtracting

from equation (31) expression −£ξθ
µ [δ], once expanded as in equation (32), yields

∇νδQ
νµ
ξ = δθµ [£ξ]−£ξθ

µ [δ] + 2∇ν

(
ξ[νθµ]

)
= Ωµ [δ,£ξ] + 2∇ν

(
ξ[νθµ] [δ]

)
. (33)

At this point, we are done. Integrating the previous equation with respect to some Cauchy

surface C gives us the symplectic form

Ω [δ,£ξ] =

∫
C
Ωµ [δ,£ξ] dCµ =

∫
C
∇ν

(
δQνµ

ξ − 2ξ[νθµ] [δ]
)
dCµ =

∫
∂C

(
δQνµ

ξ − 2ξ[νθµ] [δ]
)
dCµν ,

(34)

8 A small trick occurs here: you can check that ∇νQ
νµ
ξ = ∂νQ

νµ
ξ (This follows from Qνµ

ξ being an antisym-

metric tensor density). Then, we have δ∇νQ
νµ
ξ = δ∂νQ

νµ
ξ = ∂νδQ

νµ
ξ = ∇νδQ

νµ
ξ , since the perturbation

commutes with a partial derivative.
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where we used the Stokes theorem to change integral of a divergence into a boundary integral.

Now, if the Hamiltonian corresponding to evolution along the vector field ξµ exists, its

perturbation is given by the Hamilton equations of motion as being equal to the symplectic

form, i.e.,

δHξ = Ω [δ,£ξ] =

∫
∂C

(
δQνµ

ξ − 2ξ[νθµ] [δ]
)
dCµν . (35)

For the Hamiltonian itself, we then have

Hξ =

∫
∂C

(
Qνµ

ξ − 2ξ[νBµ]
)
dCµν , (36)

where Bµ is such that θµ [δ] = δBµ (Bµ need not be covariant). This establishes an important

result: if the Hamiltonian exists, it can always be given as a boundary integral. One can

even specify the necessary and sufficient condition under which the Hamiltonian does exist,

which we state for an interested reader without a proof (it can be found in [6])∫
∂C

Ωµ [δ,£ξ] ξ
νdCµν = 0, (37)

for an arbitrary (equations of motion satisfying) perturbation δ.

Notice that nothing in our construction of the Hamiltonian really relied on the fact that

we work in vacuum general relativity. In fact, equation (35) holds in any diffeomorphism

invariant theory, although things get a little complicated when one includes derivatives of

the Riemann tensor in the Lagrangian [7–9]. This is the main power of the formalism we

have developed. It allows to identify conserved quantities such as mass, angular momentum

or entropy in any diffeomorphism invariant theory of gravity (and even in some more general

cases). Given the rate at which new proposals for modified theories of gravity appear, a

systematic way to check the conserved quantities for them proves very useful. We will now

demonstrate this approach on the example of black holes in general relativity.

C. First law of black hole mechanics

All we need to do is to apply equation (35) to our example of vacuum, stationary ax-

isymmetric black hole spacetime in general relativity. We choose the vector field ξµ as the

Killing vector field timelike everywhere in the exterior region (see figure 1), i.e.,

ξµ = tµ + ΩHφ
µ. (38)
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Here, tµ and φµ are the time translational and rotational Killing vector fields, respectively,

and ΩH denotes the constant angular velocity of the horizon (the constancy of ΩH guarantee

the rigidity theorems). Since ξµ is a Killing vector, we have £ξgµν = 0 (by definition). We

choose the Cauchy surface C orthogonal to ξµ. Then, it is easy to prove that Ωµ [δ,£ξ] = 0

and, consequently, δHξ = 0. From equation (35) we have∫
∂C

(
δQνµ

ξ − 2ξ[νθµ] [δ]
)
dCµν = 0. (39)

The boundary ∂C consists of two components, the intersection of C with the spatial null

infinity I0, C ∩ I0, and its intersection with the Killing horizon H, C ∩ H. We first look at

the contribution of C ∩ I0, which we split into the time translational∫
C∩I0

(
δQνµ

t − 2t[νθµ] [δ]
)
dCµν , (40)

and the rotational part

ΩH

∫
C∩I0

(
δQνµ

φ − 2φ[νθµ] [δ]
)
dCµν = ΩH

∫
C∩I+

δQνµ
φ dCµν , (41)

where we use that φµ is tangent to the surface C ∩ I0. The charges at infinity related with

the time translations and rotations are usually interpreted as total mass and total angular

momentum of the spacetime, respectively. In particular, we have

δM =

∫
C∩I+

(
δQνµ

t − 2t[νθµ] [δ]
)
dCµν , (42)

for the perturbation of the total mass, and

δJ = −
∫
C∩I+

δQνµ
φ dCµν , (43)

for the perturbation of the total angular momentum. One can show that these reduce to the

Arnowitt-Deser-Misner (ADM) prescriptions for mass and angular momentum, whenever

both definitions are applicable [8]. And this is just about all the justification you can get

for any expression for mass and angular momentum in general relativity. It all comes down

to the fact that they relate to the already known expressions, make sense for the Kerr black

hole and in some appropriate (post)-Newtonian limit.

Let us move on to the contribution of the internal boundary C∩H (the minus sign follows

from the choice of the oriented area element dCµν which is explained below),

−
∫
C∩H

(
δQνµ

ξ − 2ξ[νθµ] [δ]
)
dCµν . (44)
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We can write dCµν = ϵµνd
2A, where d2A is the coordinate area element and ϵµν is the

2-dimensional antisymmetrisation symbol defined so that ϵ01 = 1. Since ξµ is tangent to

the horizon (and also normal to it, as it is a null surface), it can be shown that any term

containing the Killing vector ξµ vanishes (in particular, the second term in the integrand (44),

−2ξ[νθµ] [δ] does not contribute). Moreover, the covariant derivative of ξµ on the horizon

obeys
√
−g∇νξµ = κ

√
hϵνµ, where h is the determinant of the induced 2-metric on the

spacelike surface C ∩ H (as an example, for a Kerr-Newman black hole in Boyer-Lindquist

coordinates it holds
√
h = r2 sin θ). Then, we have for δQνµ

ξ

−δQνµ
ξ =

1

16π
δ
(√

−g∇[νξµ]
)
= − 1

16π
δ
(
κ
√
h
)
ϵνµ. (45)

We impose δκ = 0 (this is not necessarily the case for a generic perturbation, but one runs

into problems without this assumption). Now, we finally obtain

−
∫
C∩H

(
δQνµ

ξ − 2ξ[νθµ] [δ]
)
dCµν = −

∫
C∩H

δQνµ
ξ ϵµνd

2A = − 1

16π

∫
C∩H

κϵνµϵµνδ
√
hd2A.

(46)

We can use that κ is constant on the horizon (the zeroth law of black hole mechanics) and

that ϵνµϵµν = −2 (very easy to show). We have

−
∫
C∩H

(
δQνµ

ξ − 2ξ[νθµ] [δ]
)
dCµν = − κ

8π
δA. (47)

Putting together the contributions from the total mass perturbation (40), the angular

momentum perturbation (41) and the horizon term (47) to equation (39), we get

δM− ΩHδJ − κ

8π
δA = 0. (48)

This is the first law of black hole mechanics in vacuum. It relates infinitesimal changes in

mass and angular momentum to the corresponding change of horizon area. We will discuss

the physical content of this law in the following.

II. BEKENSTEIN ENTROPY

At last, we return to the question we began with: “What happens when you pour a cup

of tea into a black hole?”. To answer it, we first need a physical description of the tea.

We will actually consider a somewhat simpler situation of a perfect fluid rotating around

a black hole. We assume the resulting spacetime is again stationary and asymptotically
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flat. To derive the first law of black hole mechanics in the Noether charge formalism in this

case, we need to compute the symplectic potential, Noether current and Noether charge

corresponding to the perfect fluid Lagrangian. As we have remarked, the formalism works

for any diffeomorphism invariant theory, so there are no conceptual issues. However, the

practical calculations are cumbersome (see [10] for the first law and [11] for Lagrangian

description of relativistic perfect fluids). We only present the final result, i.e., the first law

of black hole mechanics in the presence of a perfect fluid

δM− ΩHδJH − 1

8π
κδA−

∫
C
µδNµdCµ −

∫
C
T δSµdCµ −

∫
C
ΩδJµdCµ = 0. (49)

Here, M is as before the total mass of the spacetime, JH angular momentum of the black

hole, µ the chemical potential of the fluid (as measured at infinity), Nµ the particle flux, T

the fluid temperature (measured at infinity), Sµ the entropy flux, Ω fluid’s angular velocity

(measured at infinity), and Jµ the angular momentum of the fluid.

It is important to appreciate the physical content of equation (49). We have the particles

of the fluid falling into the black hole. That is no problem, number of particles needs not

be conserved and the mass of the black hole increases correspondingly to the loss of mass in

the exterior. Likewise, we have the transfer of angular momentum between the fluid and the

black hole (in both directions). Since the black hole has a well defined angular momentum

that also changes, there is no issue here. However, we have entropy of the perfect fluid

disappearing inside the black hole. And there is no corresponding black hole entropy that

can increase. Then, the total entropy of the spacetime seemingly decreases. Here, we see a

very explicit violation of the second law of thermodynamics.

Let us look for a way out. There is still one term in the first law which we have not

interpreted in any way,

− 1

8π
κδA. (50)

First, since κ is the surface gravity of the horizon and A the horizon area, this contribution

really comes from the presence of the horizon rather than from the fluid. Second, we know

from curved spacetime quantum field theory that TH = κ/ (2π) is the famous Hawking

temperature, at which black holes radiate9. Then, we can write

− 1

8π
κδA = −TH

δA
4
. (51)

9 We are slightly cheating by bringing a quantum result into an otherwise fully classical formulation of the

first law. The sad truth is that there is no known way to completely eliminate this shortcoming.



14

It is very tempting to interpret this term as the heat flux −TδS, i.e., identify the black hole

entropy as

SB =
A
4
, (52)

or, restoring all the constants for a moment,

SB = kB
A
4l2P

, (53)

with lP being the Planck constant. This is the famous Bekenstein entropy of a black hole10.

To compute it, one just needs to take a spacelike 2-dimensional cross-section of the Killing

horizon orthogonal to the Killing vector field (in adapted coordinates a 2-surface defined by

any constant t and r equal to the horizon radius) and divide by four. If the black hole does

not posses a Killing horizon, we take a different notion of the horizon (typically an apparent

horizon) and do the same thing (but then entropy depends on how we choose our spacelike

slice and everything becomes messy). With this identification of entropy the first law of

black hole mechanics becomes a genuine first law of thermodynamics

δM− ΩHδJH − THδSB −
∫
C
µδNµdCµ −

∫
C
T δSµdCµ −

∫
C
ΩδJµdCµ = 0. (54)

Looking at the first law of black hole thermodynamics with a perfect fluid (54) and tak-

ing into account the existence of Hawking temperature (which is completely independent of

gravitational dynamics), it should not be too hard to accept that black hole entropy is given

by the Bekenstein prescription (52). Nevertheless, this definition of entropy has some pecu-

liarities. Most notably, the heat capacity of the simplest black hole solution, a Schwarzschild

black hole is negative

C = T
∂S

∂T
= −8πM2 < 0. (55)

In other words, by swallowing matter, the black hole simultaneously cools down and increases

its entropy. Therefore, it cannot achieve a thermodynamic equilibrium with an external

heat bath (unless one introduces some artificial way to make the heat capacity positive,

10 A quick note on terminology and history: the often used name Bekenstein-Hawking entropy feels unfair,

since Bekenstein was the one to propose the concept of entropy proportional to horizon area [12] (albeit

partially inspired by Hawking’s area increase theorem). Hawking was originally quite sceptical of the

notion of black hole entropy, which is apparent in his paper discussing the four laws of black hole mechan-

ics [13] (ostensibly not thermodynamics). His main contribution lies in the realisation that black holes

radiate, which is reflected by naming the black hole temperature after him [14].

To further complicate things, the result of the calculation which we just carried out can be called Wald

entropy. However, this name usually refers to entropy derived by the Noether charge approach in theories

generalising general relativity.
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e.g. a negative cosmological constant). Since the standard Clausius entropy is well defined

only in the thermodynamic equilibrium, we need a different way to interpret Bekenstein

entropy. As already noticed by Bekenstein, a natural option are definitions of entropy

related to information, i.e., classical Shannon entropy and quantum von Neumann entropy.

These entropies are defined without any reference to thermodynamic equilibrium. Moreover,

since the black hole horizon hides information contained inside it from external observers,

assigning to it entropy related to this lack of information is very natural.

To be a good definition of entropy, Bekenstein entropy must also satisfy the second law of

thermodynamics. In other words, we require that the sum of Bekenstein entropy of the black

hole and the total entropy of its exterior never decreases. This is known as the generalised

second law of thermodynamics. This law has been shown to hold in very general settings [15].

Here, we will limit ourselves to showing the validity of the generalised second law in two

interesting situations, already analysed in the Bekenstein’s original paper [12].

First, consider a merger of two Schwarzschild black holes with masses M1 and M2. For

simplicity, we assume that no gravitational waves are emitted and the final black hole has

mass M3 = M1 +M2. Since the horizon area of a Schwarzschild black hole of mass M is

A = 4πr2S = 16πM2, we have

SB1 + SB2 = 4π
(
M2

1 +M2
2

)
< SB3 = 4π

(
M2

1 +M2
2 + 2M1M2

)
. (56)

Hence, the final entropy is greater than the initial one and the generalised second law holds.

Amazingly, the validity of the generalised second law in real life mergers has been even

experimentally confirmed by gravitational waves observations [16].

Second, we let a quantum harmonic oscillator fall inside a Kerr-Newman black hole

(because a free particle has no entropy and this is the next simplest thing we can do). We

model the oscillator as two particles of massm/2, joined by a spring with a spring constant k.

We place this oscillator inside a box kept at temperature T such that T ≪ m, so the thermal

effects on the oscillator can be described nonrelativistically. The vibrational frequency of

the oscillator is ω = 2
√
k/m. The probability that the oscillator is in the quantum state

with frequency nω, with n being any natural number, is given by the Maxwell-Boltzmann

distribution

pn =
e−nx

1− e−x
, (57)
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where we denote x = ω/T . For the expectation value of the oscillator’s energy we then have

⟨E⟩ = [1/ (ex − 1) + 1/2]ω and for its entropy So = − ln (1− e−x) + x/ (ex − 1).

Now we lower the oscillator inside the black hole. If it were a point-like particle, the

analysis of the geodesic motion in Kerr-Newman spacetime show that it could be absorbed

by the black hole without increasing its horizon area, provided that the radial velocity of

the particle in the moment of crossing the horizon is zero. Then, Bekenstein entropy of the

black hole would not decrease and since the entropy of the oscillator vanished beyond the

horizon, the generalised second law would be violated. However, and this is important, our

oscillator cannot be a point-like particle, because thermal fluctuations lead to motion of the

balls forming the oscillator. Hence, we have nonzero oscillations in the distance y of the

balls ∆y = y−⟨y⟩, with ⟨y⟩ being the mean distance. Clearly, radius b of the box containing

the harmonic oscillator must be sufficient to accommodate these oscillations, i.e., b ≥ ∆y/2

(otherwise the balls will keep hitting the walls of the box, completely changing the dynamics

of the system). The virial theorem then implies that the potential energy due to thermal

oscillations mω2∆y2/8 is equal to ⟨E⟩/2. From this we have b ≥ ∆y =
√

⟨E⟩/m/ω.

It is natural to ask whether we can eliminate thermal fluctuations. However, this would

require to cool the oscillator to zero temperature. Then, the third law of thermodynamics

implies zero entropy. So, if the oscillator carries nonzero entropy, it must fluctuate and,

hence, has finite size. This observation is absolutely crucial for dealing with entropy in the

context of gravitational physics. We will return to this point later.

If we lower an object of radius b and mass-energy µ into a Kerr-Newman black hole, Beken-

stein showed that the minimal corresponding increase of the horizon area is δA = 8πbµ [12]

(the argument is fairly technical and involves concepts such as the Carter constant, so we

do not reproduce it here). This implies the change in Bekenstein entropy δSB = 2πbµ,

where b ≥
√

⟨E⟩/m/ω and µ ≥ m + ⟨E⟩. Recalling that entropy of the oscillator equals

So = − ln (1− e−x)+x/ (ex − 1), the total change of entropy due to its fall into a black hole

reads

δStotal = δSB − So ≥ (2π/ω) (m+ ⟨E⟩)
√

⟨E⟩/m+ ln
(
1− e−x

)
− x/ (ex − 1) . (58)

The right hand side has a global minimum with respect to x given implicitly by

xmin = (2π/ω) (m/⟨E⟩+ 1)
√

⟨E⟩/m (59)
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(keep in mind that ⟨E⟩ depends on x). At x = xmin, the change of entropy obeys

δStotal ≥ xmin/2 + ln
(
1− e−xmin

)
, (60)

or, restoring xmin = (ω/T )min,

δStotal ≥ (ω/T )min /2 + ln
(
1− e−(ω/T )min

)
. (61)

The first term is always positive (we have ω ≥ 0, T ≥ 0). For a nonrelativistic oscillator

it must hold ⟨E⟩ ≪ m, and it follows that also T ≪ ω. Hence, e−(ω/T )min ≪ 1 and we can

Taylor-expand the logarithm to the leading order

δStotal ≥ (ω/T )min /2− e−(ω/T )min , (62)

which is clearly positive. Hence, the generalised second law is obeyed in this case, lending

further support to Bekenstein expression for black hole entropy. Of course, the vast litera-

ture on the subject contains many further arguments in favour of Bekenstein entropy (and

negligibly few against it), but we hope that the low-tech discussion we provided suffices to

convince you.

To conclude, we return to our brief discussion of the size of any system with entropy. In

fact, the generalised second law is only valid if the amount of entropy that can be contained

in a small spacetime region is finite. In particular, we need S ≤ 2πRE, where R is the

radius of the system and E its total energy. This is known as the Bekenstein entropy

bound. It is saturated for a Schwarzschild black hole (R = 2M , E = M), which can

then be conjectured to be the maximally entropic state of the matter. In the context

of flat spacetime quantum field theory, we even have an explicit proof of the Bekenstein

bound [17]. However, the Bekenstein bound does not make much sense beyond weak gravity

regime (because then we cannot even properly define E and R). Nevertheless, the covariant

entropy bound later proposed by Bousso still applies and is sufficient to ensure the validity

of the generalised second law of thermodynamics [18]. The Bousso bound is formulated in

the following way. Consider any closed, spacelike 2-dimensional surface B of area A in a

general curved spacetime. Four congruences of null geodesics cross B, two to its past and

two to its future. The area of the spatial cross-section of a null geodesic congruence is in

general not constant, but either decreases or increases along them. It can be shown (e.g. by

using the Raychaudhuri equation) that at least one of the null geodesic congruences pointing
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to the future of 2-surface B has a decreasing (or constant, in flat spacetime) area of spatial

cross-section. The total entropy S contained in this contracting null geodesic congruence is

then bounded by S ≤ A/4, i.e., by the Bekenstein entropy corresponding to the 2-surface

B. Under some reasonable assumptions such as the validity of the (quantum) null energy

condition, there are no known counterexamples to the covariant entropy bound.

III. BLACK HOLE EUCLIDEAN GRAND-CANONICAL ENSEMBLE

The covariant phase space perspective on black hole thermodynamics, while elegant, suf-

fers from serious drawbacks. Most notably, it fails to identify the black hole temperature,

which must be heuristically fixed to the known Hawking value. The same issue actually

occurs in regards to all the intensive thermodynamic potentials, such as the angular velocity

or the electrostatic potential. When exploring more complicated black hole spacetimes (e.g.,

C-metric, Taub-NUT, solutions in scalar-tensor theories), the covariant phase space formal-

ism quickly loses the power to provide a correct and unique thermodynamic interpretation

of the first law.

To unambiguously define the intensive potentials, we need to construct a black hole grand-

canonical ensemble. Then, the values of the intensive potentials describe the equilibrium

configuration and we can obtain a full, unambiguous thermodynamic description (as we

show in the following).

One standard way to construct a grand-canonical ensemble lies in considering a path

integral of the theory with a Wick-rotated, imaginary time parameter τ = it

Z =

∫
Dψ exp

(
−
∫ τ2

τ1

dτL [ψ]

)
, (63)

where ψ collectively denotes the dynamical fields, Dψ represent a formal integration mea-

sure on the field configuration space and L [ψ] denotes the Lagrangian. If we restrict the

integration to configurations in thermodynamic equilibrium, it can be shown that Z has the

interpretation of the (grand-)canonical partition function.

To understand how the equilibrium configurations behave, consider a generic τ -dependent

observable in equilibrium

Â (τ) = eĤτ Â (0) e−Ĥτ , (64)
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and its thermodynamic average

A (τ) ≡ Tr
(
ρ̂Â (τ)

)
=

1

Z
Tr
(
e−βĤÂ (τ)

)
, (65)

where β is the inverse temperature, Ĥ Hamiltonian operator, ρ̂ = e−βĤ/Z the density

operator and Z = Tre−βĤ denotes the partition function. Let us now look at the value of

the average at time τ + β

A (τ + β) =
1

Z
Tr
(
e−βĤeβĤÂ (τ) e−βĤ

)
=

1

Z
Tr
(
e−βĤÂ (τ)

)
= A (τ) , (66)

where we used that e−βĤeβĤ = Id and the cyclicity of the trace. It follows that A (τ)

is periodic in the Euclidean time with a period equal to the inverse temperature β. This

periodicity is known as the Kubo-Martin-Schwinger (KMS) condition which serves to identify

thermal states in quantum physics.

Therefore, to obtain the partition function, we must restrict the path integral to config-

urations periodic in the imaginary time. To the leading order, its logarithm can then be

approximated by

lnZ ≈ −
∫ τ0+β

τ0

dτL [ψ]

∣∣∣∣
stationary

. (67)

where the inverse temperature β is chosen so that it corresponds to a stationary point of

the action, i.e., ∂ lnZ/∂ψ = 0. The free energy then equals

F = − 1

β
lnZ =

1

β

∫ τ0+β

τ0

dτL [ψ]

∣∣∣∣
stationary

. (68)

Now we simply need to apply this algorithm to a stationary black hole spacetime, following

the off-shell method introduced by Braden, Brown, Whiting and York [19]. We focus on

the class of static, spherically symmetric spacetimes in 4D, which can be described by the

following metric

ds2 = −b2 (r) dt2 + a2 (r) dr2 + r2dΩ2, (69)

where b (r), a (r) are functions of the radial coordinate r and r2dΩ2 denotes the area element

on a 2-sphere. Wick-rotating the time coordinate yields

ds2 = b2 (r) dτ 2 + a2 (r) dy2 + r2dΩ2, (70)

where we choose the Euclidean time coordinate to be real (for consistency with the seminal

paper [19]) and 2π-periodic, i.e., τ ∈ [0, 2π].



20

It can be shown that the Euclidean black hole metric is only real for r > r+ [20] and we

have to limit our path integral to these values of r. Moreover, as we have discussed, the heat

capacity of a black hole is negative, making it impossible to construct a grand-canonical

ensemble for it. To circumvent this issue, one can introduce an artificial timelike boundary

located at some finite radial distance r = rb (known as York boundary). Specifying reflective

(Dirichlet) boundary conditions, i.e., fixed metric at r = rb, allows us to construct a grand-

canonical ensemble consisting of the black hole and the radiation contained between the

horizon and York boundary.

In summary, we restrict our Euclidean metric to r+ ≤ r ≤ rb. It becomes convenient to

introduce a new coordinate y ∈ [0, 1] such that r (y = 0) = r+ and r (y = 1) = rb. We then

work with the following metric

ds2 = b2 (y) dτ 2 + a2 (y) dy2 + r2 (y) dΩ2. (71)

We impose the Dirichlet boundary conditions by fixing r (1) = rb and b (1). Since the black

hole is a thermodynamic system obeying the KMS condition, the Euclidean time period on

the boundary

β =

∫ 2π

0

b (1) dτ = 2πb (1) (72)

gives the inverse temperature measured by an observer who is stationary on York bound-

ary. In this way, the Euclidean grand-canonical approach directly specifies the physical

temperature of the black hole.

We further require that the metric is regular on the horizon, to avoid a conical singularity

whose contribution to the partition function is difficult to analyse. Any hypersurface of

constant r, including the horizon, has topology S1×S2, where S1 corresponds to the periodic

Euclidean time and S2 is the 2-sphere of constant r, τ . At the horizon, the S1 circle

degenerates to a point, implying b (0) = 0. To make this point smooth, the τ − y plane near

y = 0 must be isometric to a flat geometry (otherwise a conical singularity will appear).

Using that b (0) = 0, the metric at this 2-plane reads

b2 (y) dτ 2 + a2 (y) dy2 ≈ b
′2 (0) y2dτ 2 + a2 (y) dy2 = a2 (y)

[(
b′ (0)

a (y)

)2

y2dτ 2 + dy2

]
. (73)

If it holds [b′/a]y=0 = 1 this metric is indeed conformal to a flat disc ds2 = y2dτ 2 + dy2 and

we have a smooth geometry. Lastly, the Euler characteristic of the horizon given by the
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FIG. 2. The black hole geometry we consider. The radial coordinate y is measured along the

horizontal axis, the periodic Euclidean time τ runs along the circles and we suppress the angular

coordinates. The proper length of the circles is 2πb (y), going (smoothly) to 0 at the horizon y = 0

and corresponding to the inverse temperature β at York boundary y = 1.

Chern-Gauss-Bonnet formula must be χ = 2 (as for S2), i.e.,

χ =
1

2π

∫ {
1

r2+

b′ (0)

a (0)

[
1− r

′2 (0)

a2 (0)

]}
r2+dΩ2 = 2, (74)

where the term in the braces is the Gaussian curvature of the horizon. This condition holds

if and only if r′ (0) /a (0) = 0. In total, we need to fix the following regularity conditions on

the horizon

b (0) = 0, (75)

b′

a

∣∣∣∣
y=0

= 1, (76)

r′

a

∣∣∣∣
y=0

= 0. (77)

We sketch the Euclidean black hole geometry we work with in figure 2.

In principle, the grand-canonical ensemble we discuss works for any static, spherically

symmetric and asymptotically flat black hole spacetimes. Nevertheless, for concreteness, we

focus on electrovacuum spacetimes in general relativity (following the seminal paper [19]).

Thence, we also need to discuss boundary conditions and horizon regularity of the elec-

tromagnetic field. To obtain a grand-canonical ensemble, we need to fix the electrostatic

potential Φ on the boundary11. That can be accomplished by fixing the boundary electro-

magnetic potential to be Aµ (1) = (Aτ (1) , 0, 0, 0), where Aτ (1) is proportional to Φ (we fix

11 Fixing the electric charge on the boundary yields a canonical ensemble.
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the precise relation in the following). On the horizon, we require that the proper orthonor-

mal frame components of the electromagnetic potential are finite, i.e., limy→0Aτ/b < ∞.

Since b (0) = 0, it follows that Aτ (0) = 0.

Our action consists of the Euclidean Einstein-Hilbert action for general relativity and

the action for electromagnetic field. Moreover, we need to add boundary terms fixing the

Dirichlet conditions for gµν and Aµ. The latter requires no boundary terms. The standard

boundary term for the Einstein-Hilbert action reads

1

8π

∮ (
K −K0

)√
γd3x, (78)

where K denotes the extrinsic curvature of the boundary, K0 is the extrinsic curvature of the

corresponding boundary in flat spacetime (in our case K0 = 2/r) and γ the determinant of

the boundary metric. Subtraction of K0 removes the divergent flat spacetime contribution,

ensuring finiteness of the action in the limit rb → ∞. In total, our action reads

I = − 1

16π

∫
(R− FµνF

µν)
√
gd4x+

1

8π

∮ (
K −K0

)√
γd3x. (79)

Evaluating it for the static spherically symmetric metric ansatz (71) yields

I = −
∫ 2π

0

dτ

∫ 1

0

dy

[
−
(
r2b′

2a

)′

− ab

2r′

(
rr′2

a2
− r

)′

+
r2

ab
A

′2
τ

]
+

∫ 2π

0

dτ

(
−(br2)

′

2a
+ br

) ∣∣∣∣∣
y=1

.

(80)

Integrating the first term by parts then leads to

I = −
∫ 2π

0

dτ

∫ 1

0

dy

[
r′

a
rb′ +

1

2
ab

(
r′2

a2
+ 1

)
+
r2

ab
A

′2
τ

]
+

∫ 2π

0

dτbr

∣∣∣∣∣
y=1

−
∫ 2π

0

dτ
(br2)

′

2a

∣∣∣∣∣
y=0

.

(81)

Next, we apply the kinematical constraint equations. These are the Hamiltonian constraint

of general relativity obtained by varying the action with respect to b

a

2r′

(
rr

′2

a2
− r

)′

+
r2

ab2
A

′2
τ = 0, (82)

and the Gauss law found by varying with respect to Aτ(
r2

ab
A′

τ

)′

= 0. (83)

Variations with respect to a and r yield evolution equations, which we do not impose, keeping

our spacetime off-shell.
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Integrating the Gauss law, we obtain

A′
τ = −ab

r2
ie, (84)

where we choose the integration constant e so that it has the interpretation of the electric

charge in flat spacetime, when we fix the relation between Aτ and the electrostatic potential

Φ on York boundary to be

Aτ (1) = −iβΦ
2π

, (85)

where β appears due to the transformation of Aτ to the proper orthonormal frame,

Aτ → Aτ/b.

Next, we plug the result of the Gauss law into the Hamiltonian constraint (82), simplify

and integrate to find

r′

a
=

√
1− r+

r

√
1− e2

rr+
. (86)

Using equations (84) and (86), we can integrate the action, obtaining

I = βrb

(
1−

√
1− r+

rb

√
1− e2

rbr+

)
− βΦe− πr2+. (87)

We now need to find a value of this action corresponding to an equilibrium configuration.

This configuration will correspond to a stationary point of I with respect to r+ and e, i.e.,

∂I

∂r+
= 0, (88)

∂I

∂e
= 0. (89)

These conditions imply for β and Φ

β =
4πr+

1− e2

r2+

√
1− r+

rb

√
1− e2

r+rb
, (90)

Φ =
Q

r+

√√√√ 1− r+
rb

1− e2

r+rb

. (91)

They correspond to the inverse Hawking temperature TH =
(
1− e2/r2+

)
/ (4πr+) and the

electrostatic potential Φ = e/r+ of the Reissner-Nordström black hole blue-shifted to York

boundary at r = rb. In the limit rb → ∞ we recover the standard expressions. That

these expressions are physically determined and even correctly include the blue shift factors
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represents the main advantage of the Euclidean approach over the covariant phase space

formalism.

In the following, unless specified otherwise, we assume that we have removed York bound-

ary by taking the limit rb → ∞. As we discussed, the action in thermodynamic equilibrium

provides a classical approximation for the grand-canonical free energy

F [β,Φ, rb] =
I

β
=
r+
2

+
e2

2r+
− Φe−

πr2+
β

(92)

=
β (1− Φ2)

2

16π
, (93)

where we expressed r+, e in terms of β, Φ which are the thermodynamic potentials fixed in

the grand-canonical ensemble.

The standard analysis of a grand-canonical ensemble now yields expressions for entropy

S = β2

(
∂F

∂β

)
Φ

= πr2+ =
A
4
, (94)

and mean values of charge

⟨Q⟩ = −
(
∂F

∂Φ

)
β

= e, (95)

and of internal energy

⟨E⟩ = F +
S

β
+ Φ⟨Q⟩ = r+

2
+

e2

2r+
=M, (96)

where M denotes the ADM mass of a Reissner-Nordström black hole. In summary, in the

limit rb → ∞ we recover the standard thermodynamic description of a Reissner-Nordström

black hole.

One can also analyse the grand-canonical ensemble for finite rb, i.e., in presence of York

boundary. Then, one obtains [19]

S =
A
4
, (97)

⟨Q⟩ =e, (98)

⟨E⟩ =rb

(
1−

√
1− r+

rb

√
1− e2

rbr+

)
. (99)

In this case, the first law of thermodynamics contains an extra term corresponding to vari-

ations of the area of York boundary, Ab = πr2b and reads

δ⟨E⟩ = 1

β
δS + Φδ⟨Q⟩ − λδAb, (100)
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where λ is the positive surface pressure on the York boundary

λ =
1

8πrb

 1− r+
2rb

(
1 + e2

r2+

)
√

1− r+
rb

√
1− e2

r+rb

− 1

 . (101)

Of course, this extra term in the first law vanishes in the limit rb → ∞. Nevertheless, it

shows that the presence of York boundary does significantly affect thermodynamics of the

system. With the boundary present, we do not really study a Reissner-Nordström black

hole, but rather an equilibrium state of a black hole and its surrounding radiation, whose

effects shows up in the presence of the surface pressure λ.
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