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Abstract

This is a study text for the “Quantum information in curved spacetime” course
taught at Charles University in 2023/24. The text builds on similar courses delivered
by Eduardo Martin-Martinez at the Perimeter Institute/University of Waterloo, as well
as stems from a number of recent papers.

Basically, we will be touching on some topics studied by Relativistic Quantum
Information (RQI), which is a new discipline that has emerged around 2010, as an
attempt to merge three fields: general relativity (GR), quantum field theory (QFT),
and quantum information (QI). The main idea is to incorporate the relativistic descrip-
tion into QI processing and to study structure of spacetime and nature of gravity from
QI perspective.

For example, we would like to tackle the following problems:

� Early Universe Cosmology – how much info we can get about early Universe?

� Black hole (BH) information loss – do BHs destroy information?

� QFT vacuum information content about given spacetime. Can we use quantum
fields for spacetime reconstruction, or even to recast classical Einstein equations
in QFT language?

� Thermalization, Unruh effect, . . .

� Spacetime engineering – can we create states violating energy conditions, such as
warp drives, wormhole, . . . ? (On average, QFT can violate energy conditions

� Is gravity really quantized? What is a superposition of spacetimes, and can large
masses be entangled?

� Can we make a direct connection with available experiments?
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Chapter 1: Measuring quantum
fields: Particle detectors

1.1 Motivation

� Projective measurements (at a given instant of time) are not a satisfactory de-
scription, as can be seen from the following picture:

It also treats the detector at a different level than the quantum system.

� Instead use particle detectors: “couple 1st quantized system to the full 2nd quan-
tized system”:

What is a particle detector? It better be i) localized (in time and space) quantum
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CHAPTER 1. MEASURING QUANTUM FIELDS: PARTICLE DETECTORS 2

system that is ii) coupled to a quantum field, and is iii) easy to measure (to
do projective measurements on), that is, it has a ‘clicking quality’ and is non-
relativistic (1st quantized).

It seems like hydrogen atom could be a good model.

Particle-detector tautology. “A particle is what the particle detector measures; a
particle detector is a device that detects particles.”

� What do people do in Quantum optics? People typically use the Jaynes–Cummings
(J-C) model. This is a ‘2-level atom’ with two energy states |e〉, |g〉;

|ψ〉 = ψe|e〉+ ψg|g〉 =

(
ψe
ψg

)
, (1.1)

separated by energy gap Ω, which couples to a ‘mode’ of the EM field (described
by the harmonic oscillator) via the following interaction Hamiltonian:

ĤI = λ
(
σ+aei(Ω−ω)t + σ−a+e−i(Ω−ω)t

)
, (1.2)

where σ± are the SU(2) ladder operators obeying1

σ+|g〉 = |e〉 , σ−|e〉 = |g〉 , (1.7)

that is, σ+ = |e〉〈g|, σ− = |g〉〈e|, and ω is the photon’s frequency. Such a model
has the following intuitive meaning: “annihilation of a photon excites the detector,
whereas creation of a photon de-excites it”. We would also typically expect Ω ≈ ω
(“conservation of energy”).

� The light matter interaction from first principles. Consider a hydrogen atom with
an electron

Ĥ0 =
~̂p2

2m
+ eV (x̂) , (1.8)

where m is the effective electron’s mass, and the electron can couple to an elec-
tromagnetic field. To this purpose we can perform the multipole expansion and

1In terms of the standard Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (1.3)

which obey
[σi, σj ] = 2iεijkσk , {σi, σj} = 2δij1 (1.4)

we have

σ+ =
1

2
(σx + iσy) , σ− =

1

2
(σx − iσy) . (1.5)

This also implies that
[σ+, σ−] = σz , [σz, σ±] = ±2σ± . (1.6)
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restrict to the dipole approximation. In this approximation the interaction Hamil-
tonian reads

ĤI = e~̂x · ~E(~̂x) . (1.9)

Here, field is not yet quantized. Let us see what do we get from this ‘definition’.

� Expanding in matrix elements (energy states of the unperturbed Hamiltonian),
we have

ĤI = e~̂x · ~E(~̂x) = e
∑
i,j

〈j|~̂x · ~E(~̂x)|i〉eiΩijt|j〉〈i| . (1.10)

Here, eiΩijt, where Ωij = Ωj−Ωi is the energy between states i and j, comes from
the interaction picture.2 We now insert the identity

∫
dx|x〉〈x| and employ the

standard hydrogen atom wave functions ψi(x) = 〈x|i〉. Thus we find

ĤI = e

∫
d3xd3x′

∑
i,j

〈j|x〉〈x|~̂x · ~E(~̂x)|x′〉〈x′|i〉eiΩijt|j〉〈i|

= e
∑
i,j

∫
d3xψ∗j (x)~xψi(x) · ~E(~x)eiΩijt|j〉〈i| . (1.14)

Of course, many of the matrix elements are (to the lowest order in perturbation
theory) zero, using for example selection rules. In what follows we concentrate on
a 2 level model, with ground state |g〉 and excited state |e〉, separated by energy
gap Ω. Let’s also denote the ladder operators

σ+ = |e〉〈g| , σ− = |g〉〈e| , (1.15)

and ~F (~x) = ψ∗e(~x)~xψg(~x) the corresponding ‘smearing function’. With this we
have

ĤI =

∫
d3xe

(
~F (~x)eiΩtσ+ + ~F ∗(~x)e−iΩtσ−

)
· ~E(~x) ≡

∫
d3x~̂d(~x) · ~E(~x) , (1.16)

where ~̂d is the dipole operator. We can now proceed and canonically quantize

the EM field ~E → ~̂E. However, if we are not interested in exchange of angular
momentum, we can consider a simplified scalar model. This is known as:

2Splitting the total Hamiltonian, into the ‘basic’ and ‘interaction’ parts:

H = H0 +HI , (1.11)

the interaction picture operators and states are related to Schrodinger picture operators and states as
follows (setting ~ = 1):

AI = eiH0tASe
−iH0t , |ψI〉 = eiH0t|ψS〉 . (1.12)

Such operators and states evolve as follows:

i
dAI

dt
= [AI , H0] , i

dψI

dt
= HIψI . (1.13)

Of course, we also have 〈AI〉 = 〈AS〉 = Tr(ρIAI) .
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1.2 Unruh De Witt (UdW) detector

� Unruh-De Witt (UdW) detector (Unruh 1976 [1], De Witt 1979 [2]). This is a
‘scalar version’ of the above, namely

HI = λχ(t)

∫
d3xµ̂(t, ~x)φ̂(t, ~x) , (1.17)

where µ̂ is the monopole operator (with smearing function F (~x)):

µ̂(t, ~x) = F (~x)
(
σ+eiΩt + σ−e−iΩt

)︸ ︷︷ ︸
m̂(t)

, (1.18)

and we have also included the switching function χ(t) for the detector, governing
the duration for which the detector is switched on.

Here, the massless scalar field φ (in d = (n+ 1) dimensions) is quantized:

φ̂(t, ~x) =

∫
dnk√

2(2π)n|~k|

(
a+
~k
e−ik·x + a~ke

ik·x
)
. (1.19)

� Note that there are extra terms in the UdW detector when compared to the J-C
detector. Namely, we schematically have

J-C : σ+a+ σ−a+ ,

UdW : (σ+ + σ−)︸ ︷︷ ︸
σx

(a+ a+)︸ ︷︷ ︸
x̂

∼ σ+a+ σ−a+ + σ+a+ + σ−a︸ ︷︷ ︸
counter-rotating terms

.(1.20)

The difference is thus the presence of the “counter-rotating terms”. Some say
that such terms ‘do not conserve energy’:
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However, that is not true for two reasons. First, the interaction Hamiltonian is
accompanied by Hamiltonians of detector and field:

Hd = Ωσ+σ−︸ ︷︷ ︸
∼σz

, Hfield = ω a+a︸︷︷︸
n̂

. (1.21)

However, since σz and σx, and n̂ and x̂ do not commute, eigenstates of the free
Hamiltonian are not the eigenvalues of the total Hamiltonian; so assigning energy
to this is false! Second, we do not perform a measurement and the state is that
of superposition of all possibilities.

� Vacuum excitation probability of a UdW detector. Let us now calculate the vac-
uum excitation probability:

Once we have calculated that, the opposite process, probability of de-excitation
is calculated as:

P
|0〉
|e〉→|g〉(Ω) = P

|0〉
|g〉→|e〉(−Ω) . (1.22)

We have

P
|0〉
|g〉→|e〉(Ω) =

∑
out

|〈out, e|U |g, 0〉|2 =
∑
out

〈0, g|U+|e, out〉〈out, e|U |g, 0〉 , (1.23)

where we have summed over all final states of the field |out〉, and the evolution
operator U is given by the time ordered exponential:

U = T exp
(
−i
∫ ∞
−∞

dtHI(t)
)
, (1.24)

where, w.l.o.g., we can take the limits to be (−∞,+∞), as the interaction Hamil-
tonian HI already contains the finite switching function χ. To calculate U , we
use the perturbation theory, namely Dyson’s expansion:

U = 1 + U (1) + U (2) +O(λ3) , U (1) = −i
∫ ∞
−∞

dtHI(t) . (1.25)
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Let us calculate the probability to the linear in λ order. Obviously, the first term
does not contribute, and we have

P
|0〉
|e〉→|g〉(Ω) = 〈0, g|U (1)+|e〉

∑
out

|out〉〈out|︸ ︷︷ ︸
1

〈e|U (1)|g, 0〉 (1.26)

= λ2

∫
dtdt′χ(t)χ(t′)

∫
dnxdnx′F (~x)F (~x′) 〈g|m̂(t)|e〉〈e|m̂(t′)|g〉︸ ︷︷ ︸

exp
(
iΩ(t′−t)

) W (t, ~x, t′, ~x′)

where we for example used that 〈g|m̂(t)|e〉 = 〈g|(σ+eiΩt + σ−e−iΩt)|e〉 = e−iΩt,
and defined the Wightman function (2pt. function):

W (t, ~x, t′, ~x′) = 〈0|φ̂(t, ~x)φ̂(t′, ~x′)|0〉 . (1.27)

That is, we have found that

P
|0〉
|e〉→|g〉(Ω) = λ2

∫
dtdt′χ(t)χ(t′)

∫
dnxdnx′F (~x)F (~x′)W (t, ~x, t′, ~x′)eiΩ(t′−t) .

(1.28)

� To proceed further, let us use the flat space Wightman function:

W (t, ~x, t′, ~x′) =
i

(2π)n+1

∫
dn+1k

eik·(x−x
′)

k2
=

∫
dnk

2(2π)n|~k|
e−i
(
|~k|(t−t′)−~k·(~x−~x′)

)
.

(1.29)
Then we can easily perform the integrals over t, t′, ~x, ~x′ – they simply yield the
Fourier transform, e.g.3

χ̃(Ω + |~k|) =

∫
dtχ(t)e−i

(
Ω+|~k|

)
t . (1.31)

We thus recover

P
|0〉
|g〉→|e〉(Ω) = λ2

∫
dnk

2(2π)n|~k|

∣∣χ̃(Ω + |~k|)
∣∣2∣∣F̃ (~k)

∣∣2 . (1.32)

� Consider now ‘long switching’ (the detector is switched on forever). Then we have

χ(t) = const. ⇒ χ̃(ω) ∝ δ(ω) . (1.33)

3Here we adopt the following convention for the Fourier transform:

f̃(ω) =

∫
f(x)e−iωxdx , f(x) =

1

2π

∫
f̃(ω)eiωxdω . (1.30)
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Since Ω + |~k| 6= 0, we then find P (Ω) = 0. This makes sense, while for small
enough times we can get excitations (‘borrowing energy from vacuum’), when the
detector is switched on forever, the detector will not get excited. On the other
hand, if our detector is localized in space and time, it will click!

Note also that the non-trivial contribution to P comes from the counter-rotating
terms, namely σ+a+ and σ−a. If we adopted the co-rotating wave approximation
(RWA) we would not see any excitations.

� Similarly, if we started with the excited detector, the probability of its de-excitation
would be P (−Ω), which gives the condition

Ω = |~k| , (1.34)

that is, only 1 mode, with |~k| = Ω, contributes. For long enough times, we can
thus adopt a single mode approximation (SMA). Note also that in this case, the

non-trivial contributions come from the co-rotating waves σ+a and σ−a+.

� When we compare UdW to the quantum optics J-C model, we thus see that the
latter adopts i) SMA approximation and ii) RWA approximation. Consequently,
J-C will not get excited but will have spontaneous emission via single mode. These
approximations are good for long enough times.

More precisely, let T be the support of χ(t). Then the following approximations
are ‘valid’:

SMA : T � 1

Ω− |~k|
,

RWA : T � 1

Ω + |~k|
. (1.35)

We see that if SMA holds, so does RWA.

Often, it happens that T � Ω−1. Then both RWA and SMA are OK. While this
is the case for optical cavities, for which the J-C model is sufficient, it may not
be the case for the effects we shall study in this course – for this reason we are
going to use the UdW detector.

1.3 Which frame?

� Which frame? Let us now write down the total Hamiltonian for our system. When
doing so, we have two natural frames to use: lab (inertial) frame (t, ~x), or the

proper detector’s frame (τ, ~ξ) (for example associated with the center of mass of
the atom).
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The detector’s free Hamiltonian is most easily written in detector’s frame:

τH0,d = Ωσ+σ− , (1.36)

where τ is the proper time of the detector, and gap Ω is measured in detector’s
frame.

Field free Hamiltonian, is most easily written in the Lab frame:

tH0,φ =

∫
dnk|~k|a+

~k
a~k , (1.37)

where t is the (lab frame) ‘quantization time’.

However, the interaction Hamiltonian contains both sets of observables: (detector)×
(field). It is the detector which prescribes the interaction with the field. It is thus
natural to write this in the detector’s frame:

τHI = λχ(τ)

∫
dnξF (~ξ)

(
σ+eiΩτ + σ−e−iΩτ

)
︸ ︷︷ ︸

m̂(τ)

φ̂
(
t(τ, ~ξ), ~x(τ, ~ξ)

)
. (1.38)

Note that when we write F (~ξ), we assume ‘rigid atom’ along the trajectory – the
so called Fermi–Walker rigidity (in the center of mass frame). In other words,
our F is not a function of τ (wave functions of the atom are not deformed by
motion of the atom – ‘atom drags the electrons”). This is okay, for accelerations
a < 1017g. (A bullet hitting a target has a ∼ 1010−11g, so it modifies molecules
but not atoms.)

However, we can write this in the lab frame as well! To warm up let us start with
time reparametrization.

� Time reparametrization. Let tĤ(t) be the Hamiltonian of a quantum system gen-

erating translations w.r.t. time t. What is τĤ(τ) generating translations w.r.t. τ?
Under reparametrization t→ t(τ), we have d

dt
= dτ

dt
d
dτ

. Employing the Schrodinger
equation, we thus have:

i
d

dt
|ψ〉 = tĤ(t)|ψ〉 = i

dτ

dt

d

dτ
|ψ〉 ⇒ i

d

dτ
|ψ〉 =

dt

dτ
tĤ(t)︸ ︷︷ ︸

τ Ĥ(τ)

|ψ〉 , (1.39)

that is, we also pick up the ‘redshift factor’ dt
dτ

:

τĤ(τ) =
dt

dτ
tĤ(t(τ)) . (1.40)
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� The same can be seen, for example, from the fact that the time evolution oper-
ator must be invariant under time reparametrization, as seen from the following
picture:

Thus we have

U = T exp
(
−i
∫
dttH(t)

)
= T exp

(
−i
∫
dτ τH(τ)

)
. (1.41)

Using Fubini’s theorem we recover (1.40).

� More generally, the evolution operator is invariant under general change of coor-
dinates. We thus have

U = T exp
(
−i
∫ ∞
−∞

dτ τHI(τ)
)

= T exp
(
−i
∫ ∞
−∞

dτd~ξτhI(τ)
)

= T exp
(
−i
∫ ∞
−∞

dtd~xthI(t, ~x)
)
, (1.42)

where

τhI = λχ(τ)F (~ξ)m̂(τ)φ̂
(
t(τ, ~ξ), ~x(τ, ~ξ)

)
,

thI = λχ
(
τ(t, ~x)

)
F
(
~ξ(t, ~x)

)
m̂
(
τ(t, ~x)

)
φ̂(t, ~x)

∣∣∣∣∣∂(τ, ~ξ)

∂(t, ~x)

∣∣∣∣∣ . (1.43)

Note that one cannot really distinguish switching from smearing! Note also that
tHI =

∫
dn~xthI is pretty non-trivial!

� Often-times one uses the ‘point-particle’ detector, setting

F (~ξ) = δ(~ξ) . (1.44)

This is the standard approximation that is used in many situations. On the other
hand, when one uses the extended detector, problems with general covariance
and time ordering ambiguity arise, e.g. [3, 4]. Often-times we shall also use the
(smooth) Gaussian switching χ, treating it as ‘compact support’.



Chapter 2: Unruh Effect

2.1 Standard derivation

� Key idea: field quantization depends on the observer.

� Let us consider a massless scalar field, obeying

∇2φ = 0 , (2.1)

as ‘perceived’ by two different observers (both of whom have a copy of Pe-
skin and Schroeder): inertial Alice who is using Minkowski coordinates (t, x)),
and uniformly accelerated Bob – using Rindler coordinates (τ, ξ), related to the
Minkowski coordinates by

t = ξ sinh aτ , x = ξ cosh aτ , (2.2)

as displayed in the following figure:

� Note that φIω are not a complete basis of solutions for QFT in the whole spacetime,
only in the wedge I. To have a complete set, we also need to consider Anti-Bob
in the region II:

t = −ξ′ sinh aτ ′ , = −ξ′ cosh aτ ′ . (2.3)

10
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� {φI , φII} then form a basis at a given τ , which is a Cauchy surface. So at this
Cauchy surface we can expand

φ =
∑
i

(
aMω̂iφ

M
ω̂i

+ aM+
ω̂i

φM∗ω̂i

)
=

∑
i

(
aIωiφ

I
ωi

+ aI+ωi φ
I∗
ωi

+ aIIωiφ
II
ωi

+ aII+ωi
φII∗ωi

)
(2.4)

These are not unitary equivalent (have different vacua) – aM ’s mix with aI ’s and
aI+’s (aII ’s and aII+’s).

� Considering the Minkowski vacuum: |0〉M , it can be written as

|0〉M =
∏
ω

1

cosh rω

∞∑
n=0

tanhnrω|n〉I |n〉II , (2.5)

where
tanh rω = exp

(
−πω
a

)
. (2.6)

This is a 2-mode squeeze state (entangled) (mixes excitations in I and II regions).

� Bob has only access to region I. Thus uses the following density matrix:

ρBω = TrII
(
|0〉M〈0|M

)
=

1

cosh2rω

∑
n

tanh2nrω|n〉I〈n|I . (2.7)

Using this to calculate the expectation of the number operator, we arrive at a
thermal state

〈Nω,B〉 =
1

e
2πω
a − 1

, (2.8)

which is the Bose–Einstein distribution with the Unruh temperature

TU =
~a

2πkB
. (2.9)

So we arrived at a conclusion that Alice’s field vacuum corresponds to a thermal
bath for Bob at TU ∝ a.

� Two physical questions arise: 1) Does Bob need to accelerate forever – what
happens for finite time acceleration? 2) Is the calculation above really enough to
talk about thermality?
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2.2 What is a thermal state?

� Gibbs: a state that maximizes entropy at constant energy.
However, this is ill defined (diverges) for QFT.

� Instead: Let’s compute a 2-pt correlator of an observable A of a quantum system
in a thermal state (Gibbs). Note that thermal states are stationary (fixed points
of time evolution. Since

Â(t) = e−iHtA(0)eiHt , (2.10)

using stationarity we have to have

C(t, t′) = Tr
(
ρβA(t)A(t′)

)
= Tr

(
ρβA(∆t)A(0)

)
= C(∆t) . (2.11)

Moreover, using the cyclic property of the trace we have

C(∆t) =
1

Z
Tr
(
e−βHe−iH∆tA(0)eiH∆tA(0)

)
=

1

Z
Tr
(
e−iH(∆t−iβ)A(0)eiH∆tA(0)

)
.

(2.12)
At the same time, shifting time, we get

C(∆t+ iβ) =
1

Z
Tr
(
e−iH∆tA(0)eiH(∆t+iβ)A(0)

)
=

1

Z
Tr
(
eiH(∆t+iβ)A(0)e−iH∆tA(0)

)
= C(−∆t) , (2.13)

that is ‘complex anti-periodicity’. Thus, all Gibbs states obey Kubo, Martin,
Schwinger (KMS) condition

C(−∆t) = C(∆t+ iβ) . (2.14)

Think about how this is related to the Euclidean trick showing that black holes
have a temperature!

� We have just shown that all Gibbs states are KMS. The converse is not true but
‘almost true’ :).

One can also show that KMS states are passive – one cannot extract work from
them:

〈E〉extracted = 0 . (2.15)

Moreover, KMS condition is applicable to QFT, and provides a ‘good definition’
of thermality for QFTs. We will associate KMS condition with a given observer.

In particular, since the Wightman function

Wρ(τ, τ
′) = Tr

(
ρφ̂(τ)φ̂(τ ′)

)
(2.16)
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is a 2-pt function (that knows everything there is to know about the QFT), we
can use it to define thermality of the state ρ. Here, and in what follows, we have
abbreviated

φ̂(τ) ≡ φ̂(t(τ), ~x(τ)) . (2.17)

Namely, we have the following definition:

� KMS states in QFT (better definition of thermality):

Definition. Let us have a timelike vector ∂τ , a Hamiltonian τH, and a field
state ρ̂. Then ρ̂ is a KMS state of KMS temperature

TKMS =
1

β
, (2.18)

with respect to ∂τ if and only if i) it is stationary, that is Wρ(τ, τ
′) = Wρ(∆τ)

and ii) satisfies KMS condition, that is Wρ(∆τ + iβ) = Wρ(−∆τ).

Note that different observers can have different KMS temperatures. Namely in
the Unruh case, TKMS = TA = 0 with respect to ∂t and TKMS

= TB = TU w.r.t.
∂τ .

Note also, that one can have non-stationary states with complex anti-periodicity.
This is of course not enough to have thermality!

� Detailed balance. Let us have a KMS state, then we have∫ ∞
−∞

d∆τW (∆τ + iβ)eiω∆τ =

∫ ∞
−∞

d∆τW (−∆τ)eiω∆τ

=

∫ −∞
∞

d(−∆τ)W (∆τ)e−iω∆τ

=

∫ ∞
−∞

d∆τW (∆τ)e−iω∆τ = W̃ (−ω) . (2.19)

Now, let us change the variables, ∆τ ′ = ∆τ + iβ. Then we have

W̃ (ω) =

∫
γ

d∆τ ′W (∆τ ′)eiω(∆τ ′−iβ) = eβω
∫
γ

d∆τ ′W (∆τ ′)eiω∆τ ′ = eβωW̃ (ω) ,

(2.20)
where we have effectively done the following:
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Thus we have derived ‘detailed balance’ condition:

eβωW̃ (ω) = W̃ (−ω) . (2.21)

2.3 Thermalization of the detector

� As an experimentalist I carry a thermometer and accelerate – do I see the Unruh
temperature T = a/(2π)? Thermality expectation: detector state evolves to

ρ = 1
Z
e−βHd , which implies

Pex(Ω)

Pdeex(Ω)
= e−βΩ . (2.22)

Let us show that this is true. We shall do this in several steps.

� ‘Experimental setup’. In what follows we shall consider a switching function χ
that is strongly supported in a timescale σ (for which the detector is on, with
χ(±1) being the boundary of the support), such that its L2 norm is equal to one,
that is

||χ(τ/σ)||L2 ≡
∫ ∞
−∞

dτ |χ(τ/σ)|2 = 1 . (2.23)

For such switching we have

χ(τ/σ) =
1

2π

∫ ∞
−∞

dωχ̃(ω)e−iωτ/σ =
1

2π

∫ ∞
−∞

dωχ̃∗(ω)eiωτ/σ = χ∗(τ/σ) , (2.24)

as it is real. Moreover, also we have∫ ∞
−∞

dω|χ̃(ω)|2 =

∫ ∞
−∞

dτdτ ′dωχ(τ/σ)χ∗(τ ′/σ)eiω(τ−τ ′)

= 2π

∫
dτdτ ′χ(τ/σ)χ∗(τ ′/σ)δ(τ − τ ′)

= 2π

∫ ∞
−∞

dτ |χ(τ/σ)|2 = 2π , (2.25)
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(a Percival equality).

Moreover, if χ(τ/σ) strongly supported on sacle σ, χ̃(ω) is strongly supported on
a scale 1/σ.

We shall also consider a point-like detector, for which F (~ξ) = δ(~ξ), and the UdW
interaction Hamiltonian reads

HI = λχ(τ)m̂(τ)φ̂(τ) , (2.26)

and the transition probability (1.28) simplifies.

� Long response. Considering the pointlike detector with finite switching function
above, the response function, as per (1.28), reads

F(Ω, σ) ≡ 1

λ2σ
P (Ω) =

1

σ

∫
dτdτ ′χ(τ/σ)χ(τ ′/σ)eiΩ(τ−τ ′)W (τ, τ ′)

=
1

4π2σ

∫
dτdτ ′dωdω′χ̃∗(ω)χ̃(ω′)ei(ωτ/σ−ω

′τ ′/σ)eiΩ(τ−τ ′)W (τ, τ ′) .(2.27)

If the field is stationary w.r.t. ∂τ , W (τ, τ ′) = W (τ − τ ′), it is natural to change
variables as

u = τ − τ ′ , v = τ + τ ′ ⇔ τ =
u+ v

2
, τ ′ =

v − u
2

, (2.28)

with the corresponding Jacobian equal to 1/2. We then find

F(Ω, σ) =
1

8π2σ

∫
dωdω′

∫
dve

i
2σ

(ω−ω′)v︸ ︷︷ ︸
2πδ
(

1
2σ

(ω−ω′)
)

=4πσδ(ω−ω′)

∫
duχ̃∗(ω)χ(ω′)e

i
2σ

(ω+ω′)uW (u)eiΩu

=
1

2π

∫
dudω|χ̃(ω)|2W (u)ei(Ω+ω/σ)u

=
1

2π

∫
dω|χ̃(ω)|2W̃ (Ω + ω/σ) . (2.29)

Here, in the first line we have used a magic formula for δ functions:

δ(f(x)) =
∑
i

δ(x− xi)
|f ′(xi)|

, (2.30)

where xi are the roots of f(x).

Waiting for a long time corresponds to large σ. More precisely, if χ̃(ω) decays fast
enough (‘measure’ χ̃(ω) strongly supported on a s scale 1/σ; we need ‘adiabatic’
(smooth enough switching – not nervous experimentalists)) then we find

lim
σ→∞, adiab

F(Ω, σ) =
1

2π

∫
dω|χ̃(ω)|2W̃ (Ω) =

W̃ (Ω)

2π

∫
dω|χ̃(ω)|2 = W̃ (Ω) .

(2.31)
That is, a detector acquires information about the Wightman function, after
interacting for a long time.
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� Response of the detector. Putting things together, the excitation/de-excitation
ratio reads

R(Ω, σ) =
Pex(Ω, σ)

Pdeex(Ω, σ)
=

Pex(Ω, σ)

Pex(−Ω, σ)
=
F(Ω, σ)

F(−Ω, σ)
. (2.32)

We thus have, using the detailed balance condition (2.21)

lim
σ→∞, adiab

R(Ω, σ) =
W̃ (Ω)

W̃ (−Ω)
= e−βΩ . (2.33)

Thus, a detector that interacts with a KMS state (w.r.t. its proper time) of tem-
perature TKMS = 1/β, as long as it is switched on carefully, thermalizes (catches
Boltzmannian population) after intercating with the field for a long time! More-
over, the detector acquires the same temperature as the field – this is the experi-
mental definition of thermality

TKMS = T . (2.34)

(C.f. zero law of TDs.)

� Intermezzo: Some properties of Wightman functions. First, we may write:

Wρ(τ, τ
′) = Tr

(
ρφ̂(τ)φ̂(τ ′)

)
=

1

2
Tr
(
ρ(φ̂(τ)φ̂(τ ′)− φ̂(τ ′)φ̂(τ))

)
+

1

2
Tr
(
ρ(φ̂(τ)φ̂(τ ′) + φ̂(τ ′)φ̂(τ))

)
=

1

2
〈[φ(τ), φ(τ ′]〉ρ︸ ︷︷ ︸
iIm(Wρ(τ,τ ′))

+
1

2
〈{φ(τ), φ(τ ′}〉ρ︸ ︷︷ ︸

Re(Wρ(τ,τ ′))

. (2.35)

Since [φ(τ), φ(τ ′] ∝ z1, the first term, giving iIm
(
W (τ, τ ′)

)
is state independent;

it is the second term that depends on ρ.

Second, we have

W ∗
ρ (τ, τ ′) =

(
Tr(ρφ(τ)φ(τ ′)

)∗
= Tr(φ(τ ′)φ(τ)ρ) = Tr(ρφ(τ ′)φ(τ)) = Wρ(τ

′, τ) .

(2.36)

� Consider now the commutator C(τ, τ ′):

C(τ, τ ′) = 〈[φ(τ), φ(τ ′)]〉 = 2iImW (τ, τ ′) . (2.37)

If W stationary, so is the commutator: C(τ, τ ′) = C(∆τ) (real and imaginary
parts do not talk to each other). Moreover,

C̃(ω) =

∫ ∞
−∞

d∆τC(∆τ)eiω∆τ =

∫ ∞
−∞

d∆τ
(
W (∆τ)−W ∗(∆τ)︸ ︷︷ ︸

W (−∆τ)

)
eiω∆τ

= W̃ (ω)− W̃ (−ω) . (2.38)
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Thus, if the state is KMS, we can use the ‘detailed balance’ (2.21), to obtain

C̃(ω) = W̃ (ω)− eβωW̃ (ω) , (2.39)

or by re-arranging:

W̃ (ω, β) = −C̃(ω, β)P (ω, β) , P (ω, β) =
1

eβω − 1
. (2.40)

Here, P (ω, β) is the Planck’s factor. This in particular means that, if the state
is KMS, the FT of the Wightman is completely determined by the commutator
(commutator contains both real and imaginary parts).

Note that C̃(ω, β) depends on the pull back to detectors trajectory; this introduces
the dependence on β! (Trajectory depends on acceleration, and thence on β!)

2.4 Is Unruh KMS?

� If we can show that |0〉M is KMS w.r.t. ∂τ of accelerated detector, Unruh effect
is as physical as QFT! Let us prove that!

� Wightman function. The trajectory of constant acceleration is given by

t(τ) =
1

a
sinh(aτ) , x1(τ) =

1

a

(
cosh(aτ)− 1

)
, x2 = x3 = · · · = xd = 0 .

(2.41)
The Wightman function for the vacuum state in Minkowski is given by

W (τ, τ ′) = 〈0|Mφ(τ)φ(τ ′)|0〉M

=

∫
ddke−ε|

~k|

2(2π)d|~k|
e
−i
(
|~k|
(
t(τ)−t(τ ′)

)
−~k·
(
~x(τ)−~x(τ ′)

))

=

∫
dd+1k

2(2π)d
Θ(k0)δ(k2)eik·(x−x

′) . (2.42)

where in the second line we included the regularization ε (we shall omit it from
now on), and in the third line we have written the covariant expression.

Since the trajectory of the detector is timelike, having (x−x′)2 < 0, we can define
∆ =

√
−(x− x′)2 . Then

k · (x− x′) = k0

(
t(τ)− t(τ ′)

)
+ k1

(
x1(τ)− x1(τ ′)

)
= k̄0∆sgn

(
t(τ)− t(τ ′)

)
, (2.43)

where

k̄0 = ∆−1
(
k0
(
t(τ)− t(τ ′)

)
+ k1

(
x1(τ)− x1(τ ′)

))
sgn(t− t′) ,

k̄1 = ∆−1
(
k1
(
t(τ)− t(τ ′)

)
− k0

(
x1(τ)− x1(τ ′)

))
sgn(t− t′) ,

k̄2 = k2 . . . . (2.44)
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This is a ‘change of coordinates’ that corresponds to a Lorentz transformation
that aligns k and x. Here, the sgn(t− t′) is important for preserving the volume
under ortochronous Lorentz transformations.

We then have (Jacobian is equal to one)

dd+1k̄Θ(k̄0)δ(k̄2) = dd+1kΘ(k0)δ(k2) . (2.45)

Thus,

W (τ, τ ′) =

∫
dd+1k̄

2(2π)d
Θ(k̄0)δ(k̄2)e−ik̄

0∆sgn
(
t(τ−t(τ ′)

)
=

(4π)−d/2

Γ(d/2)

∫ ∞
0

d|~k||~k|d−2e−i|
~k|∆sgn(t(τ)−t(τ ′))

=
Γ
(
d−1

2

)
4π(d+1)/2

(
∆sgn

(
t(τ)− t(τ ′)

))1−d
. (2.46)

Here, in the second line we have integrated over k̄0 and over the angles; the volume
of an n-dimensional sphere is given by

ωn =
2π

n+1
2

Γ
(
n+1

2

) , (2.47)

and the results is valid for any d > 1. Moreover, since for our accelerated trajec-
tory we have

∆sgn
(
t(τ)− t(τ ′)

)
=

2

a
sinh

(a
2

(τ − τ ′)
)
, (2.48)

upon using the trigonometric identities:

sinhx−sinh y = 2 cosh
x+ y

2
sinh

x− y
2

, coshx−cosh y = 2 sinh
x+ y

2
sinh

x− y
2

.

(2.49)
So our Wightman function is

W (∆τ) =
Γ
(
d−1

2

)
4π(d+1)/2

[2

a
sinh

(a
2

(τ − τ ′)
)]1−d

. (2.50)

Obviously, this is stationary. Moreover, using that sinh(x + iπ) = − sinhx =
sinh(−x), we find

W (∆τ + i
2π

a︸︷︷︸
β

) = −W (∆τ) = W (−∆τ) . (2.51)

So indeed, this Wightman corresponds to a KMS state with T = a/(2π).
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� Conclusion. A constantly accelerated detector coupled to the vacuum thermalizes
to a temperature T = a/(2π).

� Remark. Thermal state for inertial observer will not be a thermal state for an
accelerated observer! (Initial state will disappear – seen only as a bump transient.
This will decay and we will eventually see the normal Unruh temperature, see [].

2.5 Circular Unruh effect

– Circular setup. Following [5] let us now ask what would happen if instead of
‘linear Unruh effect’ we considered a circular motion, modelling Unruh with
uniform centrifugal acceleration. As we shall see the corresponding response
is not exactly thermal but may be more experimentally viable.

The question is: how does the Minkowski vacuum |0〉M look like to an ob-
server in circular trajectory:

x(τ) =
(
γτ,R cos(γOτ), R sin(γOτ), 0, . . .

)
, (2.52)

where R is the radius of the orbit, O = v/R its angular velocity and v is
the orbital speed – both with respect to the Minkowksi time t, and γ =
1/
√

1− v2 si the Lorentz factor. The motion is characterized by the proper
acceleration

a =
√
ẍµẍµ = RO2γ2 =

v2

1− v2

1

R
=
v2γ2

R
; (2.53)

we shall adopt R and v as a pair of independent parameters specifying the
trajectory.

The experimental advantage is obvious: i) the system remains within a
finite-size laboratory for an arbitrary long time and ii) the Lorentz γ-factor
remains constant over the worldline.

Note: if we simply used the (linear) Unruh temperature formula, we would
get the following temperature:

Tlin =
a

2π
=
v2γ2

2πR
. (2.54)

As we shall see, the situation is not so simple.

– Both, the state and the motion are stationary, i.e. we have W (τ, τ ′) =
W (∆τ). This means that after interacting with the state for a long time,
the detector’s response is still given by

lim
σ→∞,adiab

F(Ω, σ) = W̃ (Ω) . (2.55)

(Go through your notes to see that to derive this all we need is stationarity.)
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– Let us now define a phenomenological (operational) temperature as

R =
W̃ (Ω)

W̃ (−Ω)
= e−βΩ . (2.56)

For a conventional thermal (KMS) state such Tcirc = 1/β is independent
of Ω (reflecting the detailed balance of KMS states). However, in the case
of the circular trajectory, we find a dependence on Ω, that is, the effect
depends on the energy scale we probe it – different detectors will see different
temperatures. (Apart from acceleration, Tcirc also depends on v and Ω.)

– As shown in the previous section in the specific case, the pullback of the
Wightman function in a (d+ 1)-dimensional Minkowski space to an arbitary
trajectory is given by

W (τ, τ ′) =
Γ
(
d−1

2

)
4π(d+1)/2

1

[(x(τ)− x(τ ′))2](d−1)/2
. (2.57)

Interestingly, this is not KMS for circular motion.

– In fact, one can show that in (3 + 1) dimensions, one has

W̃ (Ω) = − Ω

2π
Θ(−Ω)︸ ︷︷ ︸

W̃ in(Ω)

+
1

4π2γvR

∫ ∞
0

dz cos
(2ΩRz

γv

)(γ2v2

z2
− 1

z2/v2 − sin2z

)
,

(2.58)
where W̃ in(Ω) is the inertial motion response function. (Note that just for
inertial motion R = 0 which corresponds to β →∞ and thence T = 0.)

In particular, in the large gap, Ω → ∞ and ultrarelativistic, v → 1 limits,
one finds that

Tcirc

Tlin

=
π√
3
∼ 1.8 . (2.59)

– Analogue spacetime implementation. Condensed matter systems (Bose–Einstein
condensates or superfluid helium) provide an effective Minkowski geometry,
where the speed of light is replaced by the speed of sound (phonon-type
excitations), giving rise to sonic limit v = 1. Then one has the following
‘dictionary’:

Ω̂ = Ω/γ , T̂ = T/γ , â = a/γ2 , (2.60)

where Ω̂ is the energy gap w.r.t. the laboratory time t (Minkowski time in
the effective Minkowski metric). Then one finds that in the near-sonic limit,
v → 1, one has (in 3+1 dimensions)

T̂circ ≈
γâ

4
√

3
. (2.61)

So the effect is enhanced close to the sonic limit.
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– Other setups may for example include inertial motion in de Sitter spacetime
[6], see e.g. [7] for a proposal for an experimental simulation in an analogue
spacetime. In this case, we have a de Sitter spacetime, which in global
coordinates takes the spherically symmetric form with

f = 1− r2

`2
, (2.62)

where ` is the cosmological radius, related to the cosmological constant as
Λ = 3/`2. The spacetime admits a cosmological horizon, given by f(rc) = 0,
that is rc = `. We then have

TdS =
|f ′(rc)|

4π
=

1

2π`2
. (2.63)

2.6 Hawking effect

– Stellar collapse. Let us now consider a black hole spacetime, formed from
a stellar collapse. After everything settles down, we may describe it by a
(1-sided) Schwarzschild metric, which we write in the Edington–Finkelstein
ingoing coordinates (that cover regions I and II of the Kruskal diagram):

ds2 = −dt2 +
dr2

f
+ r2dΩ2 = −fdv2 + 2dvdr + r2dΩ2 . (2.64)

with f = 1− 2m
r

, and we have defined

u = t− r∗ , v = t+ r∗ , r∗ =

∫
dr

f
= r + 2m log

∣∣∣ r
2m
− 1
∣∣∣ . (2.65)

– Expanding further the scalar wave equation∇2φ = 0 in terms of the spherical
harmonics,

φ =
1

r
ψ(r, t)Ylm(θ, ϕ) , (2.66)

we arrive at
∂2ψ

∂t2
− ∂2ψ

∂r2
∗︸ ︷︷ ︸

∇2
(2)
ψ

+ f
( l(l + 1)

r2
+

2m

r3

)
︸ ︷︷ ︸

Vl(r)

ψ = 0 . (2.67)

Note that Vl(r) vanishes close to the horizon and thus has ‘nothing to do’
with the particle production close to the horizon – it represents a ‘barrier’
through which each mode has to propagate to reach infinity, e.g. we have:
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– Focusing first on the ‘2-dimensional case’ (neglecting for the moment Vl), we
can expand in modes, as follows. On I− we have the natural in modes:

I− : uin
ω ∼

f in
ω

r
∼ 1

4πr
√
ω
e−iωv . (2.68)

The modes with v < v+ will make it to the future null infinity, whereas those
with v > v+ will end up in the black hole.

Consider next the modes that take the standard form on I+:

I+ : uout
ω ∝

1

4π
√
ω
e−iωu . (2.69)

These correspond to outgoing modes close to the horizon. When traced back
to the past null infinity (upon using the geometric optics approximation, see
e.g. [8]) they become:

I− : uout
ω ∼

1

4πr
√
ω

exp
(
−iω

(
v+ − 4m log

|v+ − v|
4m

))
Θ(v+ − v) . (2.70)
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[Note the exponential redshift due to collapse of the star, resulting in the
log term in the exponential.] Similar to the Rindler case, the above modes
do not form a complete set, and we need to complete the basis by including
modes that go through the horizon. When traced back to I− they take the
following form:

uhor
ω ∼

1

4πr
√
ω

exp
(
iω
(
v+ − 4m log

|v+ − v|
4m

))
Θ(v − v+) . (2.71)

Any solution can then be expended either in the basis {uin} or in {uout, uhor}.
Similar to the Rindler case, these are not unitary equivalent. Namely, one
finds

|0〉in =
∏
ω

1

cosh rω

∑
n

(tanh rω)n|nω〉hor|nω〉out , (2.72)

where
tanh rω = exp

(
−πω
κ

)
. (2.73)

Thus, |0〉in is entangled (vacuum in the past evolves into two mode squeezed
state between infalling and outgoing modes in the future).

Here, κ is the surface gravity of the horizon, which is a Killing horizon of
the Killing vector field ξ = ∂t = ∂v, generating the horizon, defined by

ξc∇cξ
a
∣∣∣
r=r+

= κξa
∣∣∣
r=r+

. (2.74)

Using the ingoing coordinates, we easily find

κ =
|f ′(r+)|

2
=

1

4m
. (2.75)

– What do we see if we look at the black hole? We perceive the density matrix

ρout = Trhor

(
|0〉in〈0|in

)
= ⊗ω

1

cosh2rω

∑
n

tanh2nrω|nω〉out〈nω|out (2.76)

We thus see outgoing radiation:

〈n̂ω〉 = Tr(n̂ωρout) =
1

e
~ω

kBTH − 1
, (2.77)

where

TH =
1

8πGNm

~c3

kB
=

κ

2π

~c3

kBGN

(2.78)

is the Hawking temperature at infinity – Hawking 1975 [9].
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– One can show that the UdW detector at infinity is KMS and would thermal-
ize to TH . For other orbits in BH spacetimes (e.g. observers at finite r) the
state is not necessarily KMS!

– Grey body factors. So far we have neglected the potential Vl through which
each mode escaping the black hole has to propagate. This decreases the
intensity of the wave and changes the resulting spectrum by a greybody spec-
trum Γl(ω) < 1. The flux of particles observed at infinity thus reads:

〈nω〉 =
Γl(ω)

eω/TH − 1
. (2.79)

Nevertheless, such a flux remains ‘thermal’ (black body) in the following
sense. It is in thermal equilibrium with the thermal bath at infinity at tem-
perature TH . (The part of thermal radiation originating from thermal bath
that gets reflected by Vl back to infinity equals the part of Hawking radiation
that gets reflected by Vl back to black hole. The ‘surviving’ fluxes from the
two sources therefore cancel and we have equilibrium.):
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