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Abstract

This is a study text for the “Quantum information in curved spacetime” course
taught at Charles University in 2023/24. The text builds on similar courses delivered
by Eduardo Martin-Martinez at the Perimeter Institute/University of Waterloo, as well
as stems from a number of recent papers.

Basically, we will be touching on some topics studied by Relativistic Quantum
Information (RQI), which is a new discipline that has emerged around 2010, as an
attempt to merge three fields: general relativity (GR), quantum field theory (QFT),
and quantum information (QI). The main idea is to incorporate the relativistic descrip-
tion into QI processing and to study structure of spacetime and nature of gravity from
QI perspective.

For example, we would like to tackle the following problems:

� Early Universe Cosmology – how much info we can get about early Universe?

� Black hole (BH) information loss – do BHs destroy information?

� QFT vacuum information content about given spacetime. Can we use quantum
fields for spacetime reconstruction, or even to recast classical Einstein equations
in QFT language?

� Thermalization, Unruh effect, . . .

� Quantum communication and energy teleportation.

� Spacetime engineering – can we create states violating energy conditions, such as
warp drives, wormhole, . . . ? (On average, QFT can violate energy conditions.)

� Is gravity really quantized? What is a superposition of spacetimes, and can large
masses be entangled?

� Can we make a direct connection with available experiments?
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Chapter 1: Measuring quantum
fields: Particle detectors

1.1 Motivation

� Projective measurements (at a given instant of time) are not a satisfactory de-
scription, as can be seen from the following picture:

It also treats the detector at a different level than the quantum system.

� Instead use particle detectors: “couple 1st quantized system to the full 2nd quan-
tized system”:

What is a particle detector? It better be i) localized (in time and space) quantum
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CHAPTER 1. MEASURING QUANTUM FIELDS: PARTICLE DETECTORS 2

system that is ii) coupled to a quantum field, and is iii) easy to measure (to
do projective measurements on), that is, it has a ‘clicking quality’ and is non-
relativistic (1st quantized).

It seems like hydrogen atom could be a good model.

Particle-detector tautology. “A particle is what the particle detector measures; a
particle detector is a device that detects particles.”

� What do people do in Quantum optics? People typically use the Jaynes–Cummings
(J-C) model. This is a ‘2-level atom’ with two energy states |e〉, |g〉;

|ψ〉 = ψe|e〉+ ψg|g〉 =

(
ψe
ψg

)
, (1.1)

separated by energy gap Ω, which couples to a ‘mode’ of the EM field (described
by the harmonic oscillator) via the following interaction Hamiltonian:

ĤI = λ
(
σ+aei(Ω−ω)t + σ−a+e−i(Ω−ω)t

)
, (1.2)

where σ± are the SU(2) ladder operators obeying1

σ+|g〉 = |e〉 , σ−|e〉 = |g〉 , (1.7)

that is, σ+ = |e〉〈g|, σ− = |g〉〈e|, and ω is the photon’s frequency. Such a model
has the following intuitive meaning: “annihilation of a photon excites the detector,
whereas creation of a photon de-excites it”. We would also typically expect Ω ≈ ω
(“conservation of energy”).

� The light matter interaction from first principles. Consider a hydrogen atom with
an electron

Ĥ0 =
~̂p2

2m
+ eV (x̂) , (1.8)

where m is the effective electron’s mass, and the electron can couple to an elec-
tromagnetic field. To this purpose we can perform the multipole expansion and

1In terms of the standard Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (1.3)

which obey
[σi, σj ] = 2iεijkσk , {σi, σj} = 2δij1 (1.4)

we have

σ+ =
1

2
(σx + iσy) , σ− =

1

2
(σx − iσy) . (1.5)

This also implies that
[σ+, σ−] = σz , [σz, σ±] = ±2σ± . (1.6)
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restrict to the dipole approximation. In this approximation the interaction Hamil-
tonian reads

ĤI = e~̂x · ~E(~̂x) . (1.9)

Here, field is not yet quantized. Let us see what do we get from this ‘definition’.

� Expanding in matrix elements (energy states of the unperturbed Hamiltonian),
we have

ĤI = e~̂x · ~E(~̂x) = e
∑
i,j

〈j|~̂x · ~E(~̂x)|i〉eiΩijt|j〉〈i| . (1.10)

Here, eiΩijt, where Ωij = Ωj−Ωi is the energy between states i and j, comes from
the interaction picture.2 We now insert the identity

∫
dx|x〉〈x| and employ the

standard hydrogen atom wave functions ψi(x) = 〈x|i〉. Thus we find

ĤI = e

∫
d3xd3x′

∑
i,j

〈j|x〉〈x|~̂x · ~E(~̂x)|x′〉〈x′|i〉eiΩijt|j〉〈i|

= e
∑
i,j

∫
d3xψ∗j (x)~xψi(x) · ~E(~x)eiΩijt|j〉〈i| . (1.14)

Of course, many of the matrix elements are (to the lowest order in perturbation
theory) zero, using for example selection rules. In what follows we concentrate on
a 2 level model, with ground state |g〉 and excited state |e〉, separated by energy
gap Ω. Let’s also denote the ladder operators

σ+ = |e〉〈g| , σ− = |g〉〈e| , (1.15)

and ~F (~x) = ψ∗e(~x)~xψg(~x) the corresponding ‘smearing function’. With this we
have

ĤI =

∫
d3xe

(
~F (~x)eiΩtσ+ + ~F ∗(~x)e−iΩtσ−

)
· ~E(~x) ≡

∫
d3x~̂d(~x) · ~E(~x) , (1.16)

where ~̂d is the dipole operator. We can now proceed and canonically quantize

the EM field ~E → ~̂E. However, if we are not interested in exchange of angular
momentum, we can consider a simplified scalar model. This is known as:

2Splitting the total Hamiltonian, into the ‘basic’ and ‘interaction’ parts:

H = H0 +HI , (1.11)

the interaction picture operators and states are related to Schrodinger picture operators and states as
follows (setting ~ = 1):

AI = eiH0tASe
−iH0t , |ψI〉 = eiH0t|ψS〉 . (1.12)

Such operators and states evolve as follows:

i
dAI

dt
= [AI , H0] , i

dψI

dt
= HIψI . (1.13)

Of course, we also have 〈AI〉 = 〈AS〉 = Tr(ρIAI) .
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1.2 Unruh De Witt (UdW) detector

� Unruh-De Witt (UdW) detector (Unruh 1976 [1], De Witt 1979 [2]). This is a
‘scalar version’ of the above, namely

HI = λχ(t)

∫
d3xµ̂(t, ~x)φ̂(t, ~x) , (1.17)

where µ̂ is the monopole operator (with smearing function F (~x)):

µ̂(t, ~x) = F (~x)
(
σ+eiΩt + σ−e−iΩt

)︸ ︷︷ ︸
m̂(t)

, (1.18)

and we have also included the switching function χ(t) for the detector, governing
the duration for which the detector is switched on.

Here, the massless scalar field φ (in d = (n+ 1) dimensions) is quantized:

φ̂(t, ~x) =

∫
dnk√

2(2π)n|~k|

(
a+
~k
e−ik·x + a~ke

ik·x
)
. (1.19)

� Note that there are extra terms in the UdW detector when compared to the J-C
detector. Namely, we schematically have

J-C : σ+a+ σ−a+ ,

UdW : (σ+ + σ−)︸ ︷︷ ︸
σx

(a+ a+)︸ ︷︷ ︸
x̂

∼ σ+a+ σ−a+ + σ+a+ + σ−a︸ ︷︷ ︸
counter-rotating terms

.(1.20)

The difference is thus the presence of the “counter-rotating terms”. Some say
that such terms ‘do not conserve energy’:
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However, that is not true for two reasons. First, the interaction Hamiltonian is
accompanied by Hamiltonians of detector and field:

Hd = Ωσ+σ−︸ ︷︷ ︸
∼σz

, Hfield = ω a+a︸︷︷︸
n̂

. (1.21)

However, since σz and σx, and n̂ and x̂ do not commute, eigenstates of the free
Hamiltonian are not the eigenvalues of the total Hamiltonian; so assigning energy
to this is false! Second, we do not perform a measurement and the state is that
of superposition of all possibilities.

� Vacuum excitation probability of a UdW detector. Let us now calculate the vac-
uum excitation probability:

Once we have calculated that, the opposite process, probability of de-excitation
is calculated as:

P
|0〉
|e〉→|g〉(Ω) = P

|0〉
|g〉→|e〉(−Ω) . (1.22)

We have

P
|0〉
|g〉→|e〉(Ω) =

∑
out

|〈out, e|U |g, 0〉|2 =
∑
out

〈0, g|U+|e, out〉〈out, e|U |g, 0〉 , (1.23)

where we have summed over all final states of the field |out〉, and the evolution
operator U is given by the time ordered exponential:

U = T exp
(
−i
∫ ∞
−∞

dtHI(t)
)
, (1.24)

where, w.l.o.g., we can take the limits to be (−∞,+∞), as the interaction Hamil-
tonian HI already contains the finite switching function χ. To calculate U , we
use the perturbation theory, namely Dyson’s expansion:

U = 1 + U (1) + U (2) +O(λ3) , U (1) = −i
∫ ∞
−∞

dtHI(t) . (1.25)
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Let us calculate the probability to the linear in λ order. Obviously, the first term
does not contribute, and we have

P
|0〉
|e〉→|g〉(Ω) = 〈0, g|U (1)+|e〉

∑
out

|out〉〈out|︸ ︷︷ ︸
1

〈e|U (1)|g, 0〉 (1.26)

= λ2

∫
dtdt′χ(t)χ(t′)

∫
dnxdnx′F (~x)F (~x′) 〈g|m̂(t)|e〉〈e|m̂(t′)|g〉︸ ︷︷ ︸

exp
(
iΩ(t′−t)

) W (t, ~x, t′, ~x′)

where we for example used that 〈g|m̂(t)|e〉 = 〈g|(σ+eiΩt + σ−e−iΩt)|e〉 = e−iΩt,
and defined the Wightman function (2pt. function):

W (t, ~x, t′, ~x′) = 〈0|φ̂(t, ~x)φ̂(t′, ~x′)|0〉 . (1.27)

That is, we have found that

P
|0〉
|e〉→|g〉(Ω) = λ2

∫
dtdt′χ(t)χ(t′)

∫
dnxdnx′F (~x)F (~x′)W (t, ~x, t′, ~x′)eiΩ(t′−t) .

(1.28)

� To proceed further, let us use the flat space Wightman function:

W (t, ~x, t′, ~x′) =
i

(2π)n+1

∫
dn+1k

eik·(x−x
′)

k2
=

∫
dnk

2(2π)n|~k|
e−i
(
|~k|(t−t′)−~k·(~x−~x′)

)
.

(1.29)
Then we can easily perform the integrals over t, t′, ~x, ~x′ – they simply yield the
Fourier transform, e.g.3

χ̃(Ω + |~k|) =

∫
dtχ(t)e−i

(
Ω+|~k|

)
t . (1.31)

We thus recover

P
|0〉
|g〉→|e〉(Ω) = λ2

∫
dnk

2(2π)n|~k|

∣∣χ̃(Ω + |~k|)
∣∣2∣∣F̃ (~k)

∣∣2 . (1.32)

� Consider now ‘long switching’ (the detector is switched on forever). Then we have

χ(t) = const. ⇒ χ̃(ω) ∝ δ(ω) . (1.33)

3Here we adopt the following convention for the Fourier transform:

f̃(ω) =

∫
f(x)e−iωxdx , f(x) =

1

2π

∫
f̃(ω)eiωxdω . (1.30)
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Since Ω + |~k| 6= 0, we then find P (Ω) = 0. This makes sense, while for small
enough times we can get excitations (‘borrowing energy from vacuum’), when the
detector is switched on forever, the detector will not get excited. On the other
hand, if our detector is localized in space and time, it will click!

Note also that the non-trivial contribution to P comes from the counter-rotating
terms, namely σ+a+ and σ−a. If we adopted the co-rotating wave approximation
(RWA) we would not see any excitations.

� Similarly, if we started with the excited detector, the probability of its de-excitation
would be P (−Ω), which gives the condition

Ω = |~k| , (1.34)

that is, only 1 mode, with |~k| = Ω, contributes. For long enough times, we can
thus adopt a single mode approximation (SMA). Note also that in this case, the

non-trivial contributions come from the co-rotating waves σ+a and σ−a+.

� When we compare UdW to the quantum optics J-C model, we thus see that the
latter adopts i) SMA approximation and ii) RWA approximation. Consequently,
J-C will not get excited but will have spontaneous emission via single mode. These
approximations are good for long enough times.

More precisely, let T be the support of χ(t). Then the following approximations
are ‘valid’:

SMA : T � 1

Ω− |~k|
,

RWA : T � 1

Ω + |~k|
. (1.35)

We see that if SMA holds, so does RWA.

Often, it happens that T � Ω−1. Then both RWA and SMA are OK. While this
is the case for optical cavities, for which the J-C model is sufficient, it may not
be the case for the effects we shall study in this course – for this reason we are
going to use the UdW detector.

1.3 Which frame?

� Which frame? Let us now write down the total Hamiltonian for our system. When
doing so, we have two natural frames to use: lab (inertial) frame (t, ~x), or the

proper detector’s frame (τ, ~ξ) (for example associated with the center of mass of
the atom).
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The detector’s free Hamiltonian is most easily written in detector’s frame:

τH0,d = Ωσ+σ− , (1.36)

where τ is the proper time of the detector, and gap Ω is measured in detector’s
frame.

Field free Hamiltonian, is most easily written in the Lab frame:

tH0,φ =

∫
dnk|~k|a+

~k
a~k , (1.37)

where t is the (lab frame) ‘quantization time’.

However, the interaction Hamiltonian contains both sets of observables: (detector)×
(field). It is the detector which prescribes the interaction with the field. It is thus
natural to write this in the detector’s frame:

τHI = λχ(τ)

∫
dnξF (~ξ)

(
σ+eiΩτ + σ−e−iΩτ

)
︸ ︷︷ ︸

m̂(τ)

φ̂
(
t(τ, ~ξ), ~x(τ, ~ξ)

)
. (1.38)

Note that when we write F (~ξ), we assume ‘rigid atom’ along the trajectory – the
so called Fermi–Walker rigidity (in the center of mass frame). In other words,
our F is not a function of τ (wave functions of the atom are not deformed by
motion of the atom – ‘atom drags the electrons”). This is okay, for accelerations
a < 1017g. (A bullet hitting a target has a ∼ 1010−11g, so it modifies molecules
but not atoms.)

However, we can write this in the lab frame as well! To warm up let us start with
time reparametrization.

� Time reparametrization. Let tĤ(t) be the Hamiltonian of a quantum system gen-

erating translations w.r.t. time t. What is τĤ(τ) generating translations w.r.t. τ?
Under reparametrization t→ t(τ), we have d

dt
= dτ

dt
d
dτ

. Employing the Schrodinger
equation, we thus have:

i
d

dt
|ψ〉 = tĤ(t)|ψ〉 = i

dτ

dt

d

dτ
|ψ〉 ⇒ i

d

dτ
|ψ〉 =

dt

dτ
tĤ(t)︸ ︷︷ ︸

τ Ĥ(τ)

|ψ〉 , (1.39)

that is, we also pick up the ‘redshift factor’ dt
dτ

:

τĤ(τ) =
dt

dτ
tĤ(t(τ)) . (1.40)
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� The same can be seen, for example, from the fact that the time evolution oper-
ator must be invariant under time reparametrization, as seen from the following
picture:

Thus we have

U = T exp
(
−i
∫
dttH(t)

)
= T exp

(
−i
∫
dτ τH(τ)

)
. (1.41)

Using Fubini’s theorem we recover (1.40).

� More generally, the evolution operator is invariant under general change of coor-
dinates. We thus have

U = T exp
(
−i
∫ ∞
−∞

dτ τHI(τ)
)

= T exp
(
−i
∫ ∞
−∞

dτd~ξτhI(τ)
)

= T exp
(
−i
∫ ∞
−∞

dtd~xthI(t, ~x)
)
, (1.42)

where

τhI = λχ(τ)F (~ξ)m̂(τ)φ̂
(
t(τ, ~ξ), ~x(τ, ~ξ)

)
,

thI = λχ
(
τ(t, ~x)

)
F
(
~ξ(t, ~x)

)
m̂
(
τ(t, ~x)

)
φ̂(t, ~x)

∣∣∣∣∣∂(τ, ~ξ)

∂(t, ~x)

∣∣∣∣∣ . (1.43)

Note that one cannot really distinguish switching from smearing! Note also that
tHI =

∫
dn~xthI is pretty non-trivial!

� Often-times one uses the ‘point-particle’ detector, setting

F (~ξ) = δ(~ξ) . (1.44)

This is the standard approximation that is used in many situations. On the other
hand, when one uses the extended detector, problems with general covariance
and time ordering ambiguity arise, e.g. [3, 4]. Often-times we shall also use the
(smooth) Gaussian switching χ, treating it as ‘compact support’.



Chapter 2: Unruh Effect

2.1 Standard derivation

� Key idea: field quantization depends on the observer.

� Let us consider a massless scalar field, obeying

∇2φ = 0 , (2.1)

as ‘perceived’ by two different observers (both of whom have a copy of Pe-
skin and Schroeder): inertial Alice who is using Minkowski coordinates (t, x)),
and uniformly accelerated Bob – using Rindler coordinates (τ, ξ), related to the
Minkowski coordinates by

t = ξ sinh aτ , x = ξ cosh aτ , (2.2)

as displayed in the following figure:

� Note that φIω are not a complete basis of solutions for QFT in the whole spacetime,
only in the wedge I. To have a complete set, we also need to consider Anti-Bob
in the region II:

t = −ξ′ sinh aτ ′ , = −ξ′ cosh aτ ′ . (2.3)

10
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� {φI , φII} then form a basis at a given τ , which is a Cauchy surface. So at this
Cauchy surface we can expand

φ =
∑
i

(
aMω̂iφ

M
ω̂i

+ aM+
ω̂i

φM∗ω̂i

)
=

∑
i

(
aIωiφ

I
ωi

+ aI+ωi φ
I∗
ωi

+ aIIωiφ
II
ωi

+ aII+ωi
φII∗ωi

)
(2.4)

These are not unitary equivalent (have different vacua) – aM ’s mix with aI ’s and
aI+’s (aII ’s and aII+’s).

� Considering the Minkowski vacuum: |0〉M , it can be written as

|0〉M =
∏
ω

1

cosh rω

∞∑
n=0

tanhnrω|n〉I |n〉II , (2.5)

where
tanh rω = exp

(
−πω
a

)
. (2.6)

This is a 2-mode squeeze state (entangled) (mixes excitations in I and II regions).

� Bob has only access to region I. Thus uses the following density matrix:

ρBω = TrII
(
|0〉M〈0|M

)
=

1

cosh2rω

∑
n

tanh2nrω|n〉I〈n|I . (2.7)

Using this to calculate the expectation of the number operator, we arrive at a
thermal state

〈Nω,B〉 =
1

e
2πω
a − 1

, (2.8)

which is the Bose–Einstein distribution with the Unruh temperature

TU =
~a

2πkB
. (2.9)

So we arrived at a conclusion that Alice’s field vacuum corresponds to a thermal
bath for Bob at TU ∝ a.

� Two physical questions arise: 1) Does Bob need to accelerate forever – what
happens for finite time acceleration? 2) Is the calculation above really enough to
talk about thermality?
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2.2 What is a thermal state?

� Gibbs: a state that maximizes entropy at constant energy.
However, this is ill defined (diverges) for QFT.

� Instead: Let’s compute a 2-pt correlator of an observable A of a quantum system
in a thermal state (Gibbs). Note that thermal states are stationary (fixed points
of time evolution. Since

Â(t) = e−iHtA(0)eiHt , (2.10)

using stationarity we have to have

C(t, t′) = Tr
(
ρβA(t)A(t′)

)
= Tr

(
ρβA(∆t)A(0)

)
= C(∆t) . (2.11)

Moreover, using the cyclic property of the trace we have

C(∆t) =
1

Z
Tr
(
e−βHe−iH∆tA(0)eiH∆tA(0)

)
=

1

Z
Tr
(
e−iH(∆t−iβ)A(0)eiH∆tA(0)

)
.

(2.12)
At the same time, shifting time, we get

C(∆t+ iβ) =
1

Z
Tr
(
e−iH∆tA(0)eiH(∆t+iβ)A(0)

)
=

1

Z
Tr
(
eiH(∆t+iβ)A(0)e−iH∆tA(0)

)
= C(−∆t) , (2.13)

that is ‘complex anti-periodicity’. Thus, all Gibbs states obey Kubo, Martin,
Schwinger (KMS) condition

C(−∆t) = C(∆t+ iβ) . (2.14)

Think about how this is related to the Euclidean trick showing that black holes
have a temperature!

� We have just shown that all Gibbs states are KMS. The converse is not true but
‘almost true’ :).

One can also show that KMS states are passive – one cannot extract work from
them:

〈E〉extracted = 0 . (2.15)

Moreover, KMS condition is applicable to QFT, and provides a ‘good definition’
of thermality for QFTs. We will associate KMS condition with a given observer.

In particular, since the Wightman function

Wρ(τ, τ
′) = Tr

(
ρφ̂(τ)φ̂(τ ′)

)
(2.16)
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is a 2-pt function (that knows everything there is to know about the QFT), we
can use it to define thermality of the state ρ. Here, and in what follows, we have
abbreviated

φ̂(τ) ≡ φ̂(t(τ), ~x(τ)) . (2.17)

Namely, we have the following definition:

� KMS states in QFT (better definition of thermality):

Definition. Let us have a timelike vector ∂τ , a Hamiltonian τH, and a field
state ρ̂. Then ρ̂ is a KMS state of KMS temperature

TKMS =
1

β
, (2.18)

with respect to ∂τ if and only if i) it is stationary, that is Wρ(τ, τ
′) = Wρ(∆τ)

and ii) satisfies KMS condition, that is Wρ(∆τ + iβ) = Wρ(−∆τ).

Note that different observers can have different KMS temperatures. Namely in
the Unruh case, TKMS = TA = 0 with respect to ∂t and TKMS

= TB = TU w.r.t.
∂τ .

Note also, that one can have non-stationary states with complex anti-periodicity.
This is of course not enough to have thermality!

� Detailed balance. Let us have a KMS state, then we have∫ ∞
−∞

d∆τW (∆τ + iβ)eiω∆τ =

∫ ∞
−∞

d∆τW (−∆τ)eiω∆τ

=

∫ −∞
∞

d(−∆τ)W (∆τ)e−iω∆τ

=

∫ ∞
−∞

d∆τW (∆τ)e−iω∆τ = W̃ (−ω) . (2.19)

Now, let us change the variables, ∆τ ′ = ∆τ + iβ. Then we have

W̃ (ω) =

∫
γ

d∆τ ′W (∆τ ′)eiω(∆τ ′−iβ) = eβω
∫
γ

d∆τ ′W (∆τ ′)eiω∆τ ′ = eβωW̃ (ω) ,

(2.20)
where we have effectively done the following:



CHAPTER 2. UNRUH EFFECT 14

Thus we have derived ‘detailed balance’ condition:

eβωW̃ (ω) = W̃ (−ω) . (2.21)

2.3 Thermalization of the detector

� As an experimentalist I carry a thermometer and accelerate – do I see the Unruh
temperature T = a/(2π)? Thermality expectation: detector state evolves to

ρ = 1
Z
e−βHd , which implies

Pex(Ω)

Pdeex(Ω)
= e−βΩ . (2.22)

Let us show that this is true. We shall do this in several steps.

� ‘Experimental setup’. In what follows we shall consider a switching function χ
that is strongly supported in a timescale σ (for which the detector is on, with
χ(±1) being the boundary of the support), such that its L2 norm is equal to one,
that is

||χ(τ/σ)||L2 ≡
∫ ∞
−∞

dτ |χ(τ/σ)|2 = 1 . (2.23)

For such switching we have

χ(τ/σ) =
1

2π

∫ ∞
−∞

dωχ̃(ω)e−iωτ/σ =
1

2π

∫ ∞
−∞

dωχ̃∗(ω)eiωτ/σ = χ∗(τ/σ) , (2.24)

as it is real. Moreover, also we have∫ ∞
−∞

dω|χ̃(ω)|2 =

∫ ∞
−∞

dτdτ ′dωχ(τ/σ)χ∗(τ ′/σ)eiω(τ−τ ′)

= 2π

∫
dτdτ ′χ(τ/σ)χ∗(τ ′/σ)δ(τ − τ ′)

= 2π

∫ ∞
−∞

dτ |χ(τ/σ)|2 = 2π , (2.25)
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(a Percival equality).

Moreover, if χ(τ/σ) strongly supported on sacle σ, χ̃(ω) is strongly supported on
a scale 1/σ.

We shall also consider a point-like detector, for which F (~ξ) = δ(~ξ), and the UdW
interaction Hamiltonian reads

HI = λχ(τ)m̂(τ)φ̂(τ) , (2.26)

and the transition probability (1.28) simplifies.

� Long response. Considering the pointlike detector with finite switching function
above, the response function, as per (1.28), reads

F(Ω, σ) ≡ 1

λ2σ
P (Ω) =

1

σ

∫
dτdτ ′χ(τ/σ)χ(τ ′/σ)eiΩ(τ−τ ′)W (τ, τ ′)

=
1

4π2σ

∫
dτdτ ′dωdω′χ̃∗(ω)χ̃(ω′)ei(ωτ/σ−ω

′τ ′/σ)eiΩ(τ−τ ′)W (τ, τ ′) .(2.27)

If the field is stationary w.r.t. ∂τ , W (τ, τ ′) = W (τ − τ ′), it is natural to change
variables as

u = τ − τ ′ , v = τ + τ ′ ⇔ τ =
u+ v

2
, τ ′ =

v − u
2

, (2.28)

with the corresponding Jacobian equal to 1/2. We then find

F(Ω, σ) =
1

8π2σ

∫
dωdω′

∫
dve

i
2σ

(ω−ω′)v︸ ︷︷ ︸
2πδ
(

1
2σ

(ω−ω′)
)

=4πσδ(ω−ω′)

∫
duχ̃∗(ω)χ(ω′)e

i
2σ

(ω+ω′)uW (u)eiΩu

=
1

2π

∫
dudω|χ̃(ω)|2W (u)ei(Ω+ω/σ)u

=
1

2π

∫
dω|χ̃(ω)|2W̃ (Ω + ω/σ) . (2.29)

Here, in the first line we have used a magic formula for δ functions:

δ(f(x)) =
∑
i

δ(x− xi)
|f ′(xi)|

, (2.30)

where xi are the roots of f(x).

Waiting for a long time corresponds to large σ. More precisely, if χ̃(ω) decays fast
enough (‘measure’ χ̃(ω) strongly supported on a s scale 1/σ; we need ‘adiabatic’
(smooth enough switching – not nervous experimentalists)) then we find

lim
σ→∞, adiab

F(Ω, σ) =
1

2π

∫
dω|χ̃(ω)|2W̃ (Ω) =

W̃ (Ω)

2π

∫
dω|χ̃(ω)|2 = W̃ (Ω) .

(2.31)
That is, a detector acquires information about the Wightman function, after
interacting for a long time.
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� Response of the detector. Putting things together, the excitation/de-excitation
ratio reads

R(Ω, σ) =
Pex(Ω, σ)

Pdeex(Ω, σ)
=

Pex(Ω, σ)

Pex(−Ω, σ)
=
F(Ω, σ)

F(−Ω, σ)
. (2.32)

We thus have, using the detailed balance condition (2.21)

lim
σ→∞, adiab

R(Ω, σ) =
W̃ (Ω)

W̃ (−Ω)
= e−βΩ . (2.33)

Thus, a detector that interacts with a KMS state (w.r.t. its proper time) of tem-
perature TKMS = 1/β, as long as it is switched on carefully, thermalizes (catches
Boltzmannian population) after intercating with the field for a long time! More-
over, the detector acquires the same temperature as the field – this is the experi-
mental definition of thermality

TKMS = T . (2.34)

(C.f. zero law of TDs.)

� Intermezzo: Some properties of Wightman functions. First, we may write:

Wρ(τ, τ
′) = Tr

(
ρφ̂(τ)φ̂(τ ′)

)
=

1

2
Tr
(
ρ(φ̂(τ)φ̂(τ ′)− φ̂(τ ′)φ̂(τ))

)
+

1

2
Tr
(
ρ(φ̂(τ)φ̂(τ ′) + φ̂(τ ′)φ̂(τ))

)
=

1

2
〈[φ(τ), φ(τ ′]〉ρ︸ ︷︷ ︸
iIm(Wρ(τ,τ ′))

+
1

2
〈{φ(τ), φ(τ ′}〉ρ︸ ︷︷ ︸

Re(Wρ(τ,τ ′))

. (2.35)

Since [φ(τ), φ(τ ′] ∝ z1, the first term, giving iIm
(
W (τ, τ ′)

)
is state independent;

it is the second term that depends on ρ.

Second, we have

W ∗
ρ (τ, τ ′) =

(
Tr(ρφ(τ)φ(τ ′)

)∗
= Tr(φ(τ ′)φ(τ)ρ) = Tr(ρφ(τ ′)φ(τ)) = Wρ(τ

′, τ) .

(2.36)

� Consider now the commutator C(τ, τ ′):

C(τ, τ ′) = 〈[φ(τ), φ(τ ′)]〉 = 2iImW (τ, τ ′) . (2.37)

If W stationary, so is the commutator: C(τ, τ ′) = C(∆τ) (real and imaginary
parts do not talk to each other). Moreover,

C̃(ω) =

∫ ∞
−∞

d∆τC(∆τ)eiω∆τ =

∫ ∞
−∞

d∆τ
(
W (∆τ)−W ∗(∆τ)︸ ︷︷ ︸

W (−∆τ)

)
eiω∆τ

= W̃ (ω)− W̃ (−ω) . (2.38)
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Thus, if the state is KMS, we can use the ‘detailed balance’ (2.21), to obtain

C̃(ω) = W̃ (ω)− eβωW̃ (ω) , (2.39)

or by re-arranging:

W̃ (ω, β) = −C̃(ω, β)P (ω, β) , P (ω, β) =
1

eβω − 1
. (2.40)

Here, P (ω, β) is the Planck’s factor. This in particular means that, if the state
is KMS, the FT of the Wightman is completely determined by the commutator
(commutator contains both real and imaginary parts).

Note that C̃(ω, β) depends on the pull back to detectors trajectory; this introduces
the dependence on β! (Trajectory depends on acceleration, and thence on β!)

2.4 Is Unruh KMS?

� If we can show that |0〉M is KMS w.r.t. ∂τ of accelerated detector, Unruh effect
is as physical as QFT! Let us prove that!

� Wightman function. The trajectory of constant acceleration is given by

t(τ) =
1

a
sinh(aτ) , x1(τ) =

1

a

(
cosh(aτ)− 1

)
, x2 = x3 = · · · = xd = 0 .

(2.41)
The Wightman function for the vacuum state in Minkowski is given by

W (τ, τ ′) = 〈0|Mφ(τ)φ(τ ′)|0〉M

=

∫
ddke−ε|

~k|

2(2π)d|~k|
e
−i
(
|~k|
(
t(τ)−t(τ ′)

)
−~k·
(
~x(τ)−~x(τ ′)

))

=

∫
dd+1k

2(2π)d
Θ(k0)δ(k2)eik·(x−x

′) . (2.42)

where in the second line we included the regularization ε (we shall omit it from
now on), and in the third line we have written the covariant expression.

Since the trajectory of the detector is timelike, having (x−x′)2 < 0, we can define
∆ =

√
−(x− x′)2 . Then

k · (x− x′) = k0

(
t(τ)− t(τ ′)

)
+ k1

(
x1(τ)− x1(τ ′)

)
= k̄0∆sgn

(
t(τ)− t(τ ′)

)
, (2.43)

where

k̄0 = ∆−1
(
k0
(
t(τ)− t(τ ′)

)
+ k1

(
x1(τ)− x1(τ ′)

))
sgn(t− t′) ,

k̄1 = ∆−1
(
k1
(
t(τ)− t(τ ′)

)
− k0

(
x1(τ)− x1(τ ′)

))
sgn(t− t′) ,

k̄2 = k2 . . . . (2.44)
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This is a ‘change of coordinates’ that corresponds to a Lorentz transformation
that aligns k and x. Here, the sgn(t− t′) is important for preserving the volume
under ortochronous Lorentz transformations.

We then have (Jacobian is equal to one)

dd+1k̄Θ(k̄0)δ(k̄2) = dd+1kΘ(k0)δ(k2) . (2.45)

Thus,

W (τ, τ ′) =

∫
dd+1k̄

2(2π)d
Θ(k̄0)δ(k̄2)e−ik̄

0∆sgn
(
t(τ−t(τ ′)

)
=

(4π)−d/2

Γ(d/2)

∫ ∞
0

d|~k||~k|d−2e−i|
~k|∆sgn(t(τ)−t(τ ′))

=
Γ
(
d−1

2

)
4π(d+1)/2

(
∆sgn

(
t(τ)− t(τ ′)

))1−d
. (2.46)

Here, in the second line we have integrated over k̄0 and over the angles; the volume
of an n-dimensional sphere is given by

ωn =
2π

n+1
2

Γ
(
n+1

2

) , (2.47)

and the results is valid for any d > 1. Moreover, since for our accelerated trajec-
tory we have

∆sgn
(
t(τ)− t(τ ′)

)
=

2

a
sinh

(a
2

(τ − τ ′)
)
, (2.48)

upon using the trigonometric identities:

sinhx−sinh y = 2 cosh
x+ y

2
sinh

x− y
2

, coshx−cosh y = 2 sinh
x+ y

2
sinh

x− y
2

.

(2.49)
So our Wightman function is

W (∆τ) =
Γ
(
d−1

2

)
4π(d+1)/2

[2

a
sinh

(a
2

(τ − τ ′)
)]1−d

. (2.50)

Obviously, this is stationary. Moreover, using that sinh(x + iπ) = − sinhx =
sinh(−x), we find

W (∆τ + i
2π

a︸︷︷︸
β

) = −W (∆τ) = W (−∆τ) . (2.51)

So indeed, this Wightman corresponds to a KMS state with T = a/(2π).
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� Conclusion. A constantly accelerated detector coupled to the vacuum thermalizes
to a temperature T = a/(2π).

� Remark. Thermal state for inertial observer will not be a thermal state for an
accelerated observer! (Initial state will disappear – seen only as a bump transient.
This will decay and we will eventually see the normal Unruh temperature, see [].

2.5 Circular Unruh effect

– Circular setup. Following [5] let us now ask what would happen if instead of
‘linear Unruh effect’ we considered a circular motion, modelling Unruh with
uniform centrifugal acceleration. As we shall see the corresponding response
is not exactly thermal but may be more experimentally viable.

The question is: how does the Minkowski vacuum |0〉M look like to an ob-
server in circular trajectory:

x(τ) =
(
γτ,R cos(γOτ), R sin(γOτ), 0, . . .

)
, (2.52)

where R is the radius of the orbit, O = v/R its angular velocity and v is
the orbital speed – both with respect to the Minkowksi time t, and γ =
1/
√

1− v2 si the Lorentz factor. The motion is characterized by the proper
acceleration

a =
√
ẍµẍµ = RO2γ2 =

v2

1− v2

1

R
=
v2γ2

R
; (2.53)

we shall adopt R and v as a pair of independent parameters specifying the
trajectory.

The experimental advantage is obvious: i) the system remains within a
finite-size laboratory for an arbitrary long time and ii) the Lorentz γ-factor
remains constant over the worldline.

Note: if we simply used the (linear) Unruh temperature formula, we would
get the following temperature:

Tlin =
a

2π
=
v2γ2

2πR
. (2.54)

As we shall see, the situation is not so simple.

– Both, the state and the motion are stationary, i.e. we have W (τ, τ ′) =
W (∆τ). This means that after interacting with the state for a long time,
the detector’s response is still given by

lim
σ→∞,adiab

F(Ω, σ) = W̃ (Ω) . (2.55)

(Go through your notes to see that to derive this all we need is stationarity.)
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– Let us now define a phenomenological (operational) temperature as

R =
W̃ (Ω)

W̃ (−Ω)
= e−βΩ . (2.56)

For a conventional thermal (KMS) state such Tcirc = 1/β is independent
of Ω (reflecting the detailed balance of KMS states). However, in the case
of the circular trajectory, we find a dependence on Ω, that is, the effect
depends on the energy scale we probe it – different detectors will see different
temperatures. (Apart from acceleration, Tcirc also depends on v and Ω.)

– As shown in the previous section in the specific case, the pullback of the
Wightman function in a (d+ 1)-dimensional Minkowski space to an arbitary
trajectory is given by

W (τ, τ ′) =
Γ
(
d−1

2

)
4π(d+1)/2

1

[(x(τ)− x(τ ′))2](d−1)/2
. (2.57)

Interestingly, this is not KMS for circular motion.

– In fact, one can show that in (3 + 1) dimensions, one has

W̃ (Ω) = − Ω

2π
Θ(−Ω)︸ ︷︷ ︸

W̃ in(Ω)

+
1

4π2γvR

∫ ∞
0

dz cos
(2ΩRz

γv

)(γ2v2

z2
− 1

z2/v2 − sin2z

)
,

(2.58)
where W̃ in(Ω) is the inertial motion response function. (Note that just for
inertial motion R = 0 which corresponds to β →∞ and thence T = 0.)

In particular, in the large gap, Ω → ∞ and ultrarelativistic, v → 1 limits,
one finds that

Tcirc

Tlin

=
π√
3
∼ 1.8 . (2.59)

– Analogue spacetime implementation. Condensed matter systems (Bose–Einstein
condensates or superfluid helium) provide an effective Minkowski geometry,
where the speed of light is replaced by the speed of sound (phonon-type
excitations), giving rise to sonic limit v = 1. Then one has the following
‘dictionary’:

Ω̂ = Ω/γ , T̂ = T/γ , â = a/γ2 , (2.60)

where Ω̂ is the energy gap w.r.t. the laboratory time t (Minkowski time in
the effective Minkowski metric). Then one finds that in the near-sonic limit,
v → 1, one has (in 3+1 dimensions)

T̂circ ≈
γâ

4
√

3
. (2.61)

So the effect is enhanced close to the sonic limit.
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– Other setups may for example include inertial motion in de Sitter spacetime
[6], see e.g. [7] for a proposal for an experimental simulation in an analogue
spacetime. In this case, we have a de Sitter spacetime, which in global
coordinates takes the spherically symmetric form with

f = 1− r2

`2
, (2.62)

where ` is the cosmological radius, related to the cosmological constant as
Λ = 3/`2. The spacetime admits a cosmological horizon, given by f(rc) = 0,
that is rc = `. We then have

TdS =
|f ′(rc)|

4π
=

1

2π`2
. (2.63)

2.6 Hawking effect

– Stellar collapse. Let us now consider a black hole spacetime, formed from
a stellar collapse. After everything settles down, we may describe it by a
(1-sided) Schwarzschild metric, which we write in the Edington–Finkelstein
ingoing coordinates (that cover regions I and II of the Kruskal diagram):

ds2 = −dt2 +
dr2

f
+ r2dΩ2 = −fdv2 + 2dvdr + r2dΩ2 . (2.64)

with f = 1− 2m
r

, and we have defined

u = t− r∗ , v = t+ r∗ , r∗ =

∫
dr

f
= r + 2m log

∣∣∣ r
2m
− 1
∣∣∣ . (2.65)

– Expanding further the scalar wave equation∇2φ = 0 in terms of the spherical
harmonics,

φ =
1

r
ψ(r, t)Ylm(θ, ϕ) , (2.66)

we arrive at
∂2ψ

∂t2
− ∂2ψ

∂r2
∗︸ ︷︷ ︸

∇2
(2)
ψ

+ f
( l(l + 1)

r2
+

2m

r3

)
︸ ︷︷ ︸

Vl(r)

ψ = 0 . (2.67)

Note that Vl(r) vanishes close to the horizon and thus has ‘nothing to do’
with the particle production close to the horizon – it represents a ‘barrier’
through which each mode has to propagate to reach infinity, e.g. we have:
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– Focusing first on the ‘2-dimensional case’ (neglecting for the moment Vl), we
can expand in modes, as follows. On I− we have the natural in modes:

I− : uin
ω ∼

f in
ω

r
∼ 1

4πr
√
ω
e−iωv . (2.68)

The modes with v < v+ will make it to the future null infinity, whereas those
with v > v+ will end up in the black hole.

Consider next the modes that take the standard form on I+:

I+ : uout
ω ∝

1

4π
√
ω
e−iωu . (2.69)

These correspond to outgoing modes close to the horizon. When traced back
to the past null infinity (upon using the geometric optics approximation, see
e.g. [8]) they become:

I− : uout
ω ∼

1

4πr
√
ω

exp
(
−iω

(
v+ − 4m log

|v+ − v|
4m

))
Θ(v+ − v) . (2.70)
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[Note the exponential redshift due to collapse of the star, resulting in the
log term in the exponential.] Similar to the Rindler case, the above modes
do not form a complete set, and we need to complete the basis by including
modes that go through the horizon. When traced back to I− they take the
following form:

uhor
ω ∼

1

4πr
√
ω

exp
(
iω
(
v+ − 4m log

|v+ − v|
4m

))
Θ(v − v+) . (2.71)

Any solution can then be expended either in the basis {uin} or in {uout, uhor}.
Similar to the Rindler case, these are not unitary equivalent. Namely, one
finds

|0〉in =
∏
ω

1

cosh rω

∑
n

(tanh rω)n|nω〉hor|nω〉out , (2.72)

where
tanh rω = exp

(
−πω
κ

)
. (2.73)

Thus, |0〉in is entangled (vacuum in the past evolves into two mode squeezed
state between infalling and outgoing modes in the future).

Here, κ is the surface gravity of the horizon, which is a Killing horizon of
the Killing vector field ξ = ∂t = ∂v, generating the horizon, defined by

ξc∇cξ
a
∣∣∣
r=r+

= κξa
∣∣∣
r=r+

. (2.74)

Using the ingoing coordinates, we easily find

κ =
|f ′(r+)|

2
=

1

4m
. (2.75)

– What do we see if we look at the black hole? We perceive the density matrix

ρout = Trhor

(
|0〉in〈0|in

)
= ⊗ω

1

cosh2rω

∑
n

tanh2nrω|nω〉out〈nω|out (2.76)

We thus see outgoing radiation:

〈n̂ω〉 = Tr(n̂ωρout) =
1

e
~ω

kBTH − 1
, (2.77)

where

TH =
1

8πGNm

~c3

kB
=

κ

2π

~c3

kBGN

(2.78)

is the Hawking temperature at infinity – Hawking 1975 [9].
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– One can show that the UdW detector at infinity is KMS and would thermal-
ize to TH . For other orbits in BH spacetimes (e.g. observers at finite r) the
state is not necessarily KMS!

– Grey body factors. So far we have neglected the potential Vl through which
each mode escaping the black hole has to propagate. This decreases the
intensity of the wave and changes the resulting spectrum by a greybody spec-
trum Γl(ω) < 1. The flux of particles observed at infinity thus reads:

〈nω〉 =
Γl(ω)

eω/TH − 1
. (2.79)

Nevertheless, such a flux remains ‘thermal’ (black body) in the following
sense. It is in thermal equilibrium with the thermal bath at infinity at tem-
perature TH . (The part of thermal radiation originating from thermal bath
that gets reflected by Vl back to infinity equals the part of Hawking radiation
that gets reflected by Vl back to black hole. The ‘surviving’ fluxes from the
two sources therefore cancel and we have equilibrium.):



Chapter 3: First look at analogue
systems

3.1 GR black hole primer

� Rotating black hole. The unique asymptotically flat rotating black hole solution
in GR is given by the Kerr solution:

ds2 = −∆

Σ
(dt− a sin2θdϕ)2 +

sin2θ

Σ
(adt− (r2 + a2)dϕ)2 +

Σ

∆
dr2 + Σdθ2 , (3.1)

where
∆ = r2 − 2Mr + a2 , Σ = r2 + a2 cos2θ . (3.2)

Here, M stands for the mass of the hole (its total energy) and J = Ma is its
angular momentum. One of the interesting features associated with rotating
black holes, apart from the existence of horizon, is the presence of ergoregion and
with it associated Penrose process and superradiance. Let us briefly recapitulate
these phenomena.

� Symmetries. In GR, Noether ‘global symmetries’ are described by Killing vectors,
obeying Killing vector equation

∇(µξν) = 0 . (3.3)

By Noether’s theorem these give rise to conserved quantities. In particular, for
geodesic motion uν∇νu

µ = 0 , we get the following conserved quantities:

C = uµξµ . (3.4)

In particular, Kerr black hole admits two Killing vectors

k = ∂t , η = ∂ϕ , (3.5)

and they generate two constants of geodesic motion

E = −k · u = −gttṫ , L = η · u = gϕtṫ+ gϕϕϕ̇ , (3.6)

interpreted as asymptotic energy and angular momentum of the ‘particle’.

25
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� Inertial frame dragging. Consider zero angular momentum observers (ZAMOs),
characterized by L = 0 (released from infinity at rest). As they approach the
black hole they are dragged and will develop a non-trivial angular velocity:

L = 0 ⇒ Ω =
dϕ

dt
=
ϕ̇

ṫ
= − gtϕ

gϕϕ
. (3.7)

� Horizon. Kerr black hole admits a Killing horizon generated by Killing vector
field

ξ = ∂t + Ω+∂ϕ . (3.8)

Thus
ξ2|H = 0 ⇒ ∆(r+) = 0 ⇒ r+ = M +

√
M2 + a2 . (3.9)

� Ergoregion. Static observers have u ∝ k. However, since k is not timelike every-
where outside the horizon, we have a static ‘limit’ known as ergosphere, where

k2|e = gtt = 0 ⇒ re = M +
√
M2 − a2 cos2θ . (3.10)

The region between horizon and ergosphere is known as ergoregion. Inside er-
goregion everything has to co-rotate with the BH (on horizon everything has to
have Ω = Ω+).

� Penrose process. Since inside the ergoregion vector k is spacelike, k2 > 0, the
energy E = −k · u as measured from infinity can become negative. (Obviously,
particles with negative E can never leave the ergosphere. Their locally mea-
sured energy is positive, though they have negative E as measured at infinity.)
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� Laws of BH thermodynamics. Similar to Schwazrschild, Kerr black holes Hawking
radiate as ‘black body’ with temperature TH . In addition they contain rotational
energy. We thus have a generalized first law of black hole thermodynamics:

δM = THδS + Ω+δJ . (3.11)

The black hole entropy S is given by area of the horizon, S = Area/4 (known as
Bekenstein’s law) and obeys the second law:

δS ≥ 0 , (3.12)

provided some energy conditions are satisfied.

� Superradiance. This is a ‘wave analogue’ of Penrose process. First studied by
Zeldovich for rotating cylinders, this effect has a nice mechanical analogue:

Let us now turn to the black hole case. We send a wave

ψ ∝ e−iωt+imϕ . (3.13)

This gets scattered (and partly absorbed) by the black hole. To derive the super-
radiant condition, let us employ the laws of black hole thermodynamics. Namely,
from the first law we have

THδS

δM
= 1− Ω+δJ

δM
= 1− Ω+m

ω
=

(ω − Ωm)ω

ω2
< 0 . (3.14)
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Here, we have TH > 0, ω > 0. By second law, δS > 0 and we want to extract
black hole energy, that is δM < 0. Thus we get a superradiant condition:

ω < ωc = Ω+m =
ma

2Mr+

, (3.15)

for which we get amplification of the waves. This may be used for destructive
purposes, namely to build a black hole bomb:

This effect i) is naturally present in AdS black hole spacetimes, where the grav-
itational pull of AdS (toward the center) provides a natural replacement of the
mirror ii) may play the role in discovering dark matter candidates, such as ul-
tralight bosonic particles, in black hole laboratories, e.g. [10], where the mass
provides a reflective potential acting as a mirror:

Can we simulate some of these effects in analogue black hole spacetimes?

3.2 One analogue system

� Surface waves analogue. Analogues capture curved spacetime. Consider the water
tank as follows:
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Let us have two simplifying assumptions: i) irrotational fluid, that is vorticity
free:

∇× v = 0 ⇒ v = ∇Φ , (3.16)

where Φ is the velocity potential, and ii) shallow water, that is λ� h.

The dynamics governed by the Navier-Stokes equations, which in this simplified
case are equivalent to i) continuity equation for the water height h and ii) the
Bernoulli equation:

∂th+∇ · (hv) = 0 , (3.17)

∂tΦ +
1

2
v2 + gh = const. . (3.18)

We further assume that the background velocity flow is 2-dimensional, v0 = vxêx+
vyêy (there is no vertical component of the velocity).

Now we consider small perturbations of the background flow:

Φ = Φ0 + φ , h = h0 + δh . (3.19)

These obey

(∂t +∇ · v0)δh+∇ · (h0∇φ) = 0 , (3.20)

(∂t + v0 · ∇)φ+ gδh = 0 . (3.21)

Eliminating δh from the latter yields

(∂t +∇ · v0)(∂t + v0 · ∇)φ− g∇ · (h0∇φ) = 0 . (3.22)

Introduce now the speed of (shallow) surface waves

c =
√
gh0 , (3.23)
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the latter has a form of the wave equation in curved space:

∇2φ =
1√
−g

∂a

(√
−ggab∂bφ

)
= 0 , (3.24)

where we have an effective 3d metric

gµν = c2

(
−(c2 − v2

0) −v0i

−v0j δij

)
. (3.25)

Note that such metric is indeed Lorentzian, with signature (−,+,+). Moreover,
since v0 = v0(x, y) and h = h(x, y), the effective spacetime may be curved.

3.3 Draining vortex

� Draining vortex. Let us now specify to the following (infinite water tank) vortex
system (kitchen sink when you pull your plug out):

From the background continuity equation, and since our water tank is infinite,
we must have ∂th0 = 0. Far away from the sink we also have h0 ≈ const. And
thence

∇ · v0 = 0 . (3.26)

We also have ∇× v0 = 0 by our approximation. From here we have

v0 = −D
r
êr +

C

r
êθ . (3.27)

Here, constant D > 0 is related to draining and constant C > 0 (w.l.o.g.) to
circulation (we have chosen a direction of rotation).

What about our effective metric? Since h0 is approximately constant, so will be
the speed of waves c; we set c = 1. We thus find

ds2 = −dt2 +
(
dr +

D

r
dt
)2

+
(
rdθ − C

r
dt
)2

. (3.28)
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This is written in Painlevé–Gullstrand coordinate system.

We can change coordinates (since the wave equation is covariant, we are allowed
to change coordinates – have diffeomorphism invariance):

dt′ = dt+
vrdr

c2 − v2
r

, dθ′ = dθ +
vrvθ

r(c2 − v2
r)
dr , (3.29)

to obtain

ds2 = −fdt′2 +
dr2

f
+

1

r2
(Cdt− r2dθ′)2 , f = 1− D2

r2
. (3.30)

Let us compare this to the (3+1)-dimensional Kerr metric, by restricting it to the
equatorial plane θ = π/2:

ds2
Kerr eq = −fdt′2 +

dr2

f
+

1

r2

(
adt′ − r2dϕ

)2

, f ≡ ∆

r2
, (3.31)

and we introduce new time t′ by dt − adϕ = dt′. Obviously, the above f de-
termines the black hole horizon. By analogy, the analogue system will have an
analogue horizon at

f(rh) = 0 ⇒ rh = D/c . (3.32)

Note that when D = 0 we have an analogue of a ‘naked singularity’.

We also observe an ergoregion. Namely, consider a static observer whose trajec-
tory is described by k = ∂t′ . Calculating its norm we find

k2 = −1 +
C2 +D2

r2
. (3.33)

This becomes zero at

re =

√
C2 +D2

c
, (3.34)

which is known as analogue ergosurface (the boundary where static observers can
exist). Inside re, everything is swept around by the rotation of the vortex (ana-
logue of dragging of inertial frames).
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3.4 Superradiance

� Related to Penrose effect – mining energy from black holes.

Let us decompose the scalar modes into:

φ =
∑
ωm

Rωm(r)eimθ
′−iωt′ , (3.35)

where m is the azimuthal number (integer), and ω the frequency of the wave.
Inserting this into our Klein–Gordon equation in the effective metric, we get the
following radial equation:

f

r
∂r(rf∂rRωm) +

[(
ω − mC

r2

)2

− f m
2

r2

]
Rωm = 0 . (3.36)

By introducing the ‘tortoise coordinate’

dr∗ =
dr

f
⇒ r∗ = r +

D

2
log
∣∣∣r − rh
r + rh

∣∣∣ ∈ (−∞,∞) , (3.37)

where r∗ = −∞ correspond to the horizon and r∗ =∞ to spatial infinity, together
with

Rωm(r) =
ψ(r, ω,m)√

r
, (3.38)

we can recast this in the Schrodinger-like form:

−d
2ψ

dr2
∗

+ V (r)ψ = 0 , V (r) = −
(
ω − mC

r2

)2

+ f
(m2 − 1/4

r2
+

5D2

4r4

)
. (3.39)

Thus we have the following scattering problem:

We want to find the relationship between the amplitude coefficients. Instead of
solving the full equation exactly, we use the following ‘conserved quantity’, known
as the Wronskian:

W = ψ∗∂r∗ψ − ψ∂r∗ψ∗ . (3.40)
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Namely, we have
∂r∗W = ψ∗ ∂2

r∗ψ︸︷︷︸
V ψ

−ψ ∂2
r∗ψ
∗︸ ︷︷ ︸

V ψ∗

+0 = 0 . (3.41)

On the horizon/infinity we have

W (rn) = −2iω̃|Ah|2

= −2iω|Ain|2 + 2iω|Aout|2 , (3.42)

from where it follows that

|Ain|2 = |Aout|2 +
ω̃

ω
|Ah|2 . (3.43)

Introducing the reflection R = Aout/Ain and transition T = Ah/Ain coefficients,
the latter rewrites as

|R|2 +
ω̃

ω
|T |2 = 1 . (3.44)

Interesting if ω̃/ω < 0. Then we have

|R| > 1 , (3.45)

which corresponds to amplification. Since we have ω > 0, for this to happen we
must have ω̃ < 0, that is

ω < mΩh . (3.46)

This is the superradiant condition. Note that in Kerr we have Ωh = a/(r2
+ + a2).

Th energy extraction is due to mining the rotational energy of the vortex/black
hole.

This has been experimentally measured in [11]:
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3.5 Beyond the effective metric approximation

� Real experiments go beyond shallow water approximation:

We now have the following equations:

(∂t + v0 · ∇)φ+ gδh− σ

ρ
∇2δh = 0 ,

(∂t + v0 · ∇)δh− i∇ · tanh(−ih0∇)φ = 0 , (3.47)

where σ is the surface tension. These break the Lorentz invariance.

Let us have the following ansatz:

v0 = 0 , φ = Aeikx−iωt , δh = Beikx−iωt . (3.48)

Then we get the following dispersion relation:

ω2 = (gk +
σ

ρ
k3) tanh(h0k) , (3.49)

which yields relativistic dispersion relation in the limit k → 0. Namely, we have
ω2 ≈ gh0k

2 = c2k2.

Real experiment was performed far from the effective metric regime:

They could still black hole ringdown and superradiance. Provides access to non-
linearities, and perhaps even quantum dof (superfluid He instead of water) – do
they imprint on scattering processes.

� In any case, if analogue systems caught your attention, please see the review [12].



Chapter 4: Quantum vacuum

Quantum vacuum is not empty. Global ground state (eigenstate of global Hamiltonian,
whatever it is) doe snot amount to ‘nothing’ when we start magnifying – detector would
see different stuff when probing vacuum in different scales. Let us explore how we can
use it to allow for classically forbidden processes.

4.1 Entanglement harvesting: why it may work

� Observation. Consider two initially uncorrelated UdW detectors that are spatially
separated, as displayed in the following picture:

Let us switch them on for a short period of time, so that they could not exchange
photons (and thence classically, they do not know about each others existence).
It turns out that they can nevertheless become correlated. (Does this mean that
entanglement is not necessarily a result of direct interaction?)

� 1d toy model. To motivate that this might be possible, consider 1d harmonic
lattice in the ground state:

The harmonic lattice is an interacting system, described by a Hamiltonian of
‘sorts’:

H =
∑
i

p2
i

2m
+

1

2

∑
i 6=j

k(xi − xj)2 . (4.1)

35
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We can imagine two possible mechanism for correlating the two detectors A (Alice)
and B (Bob): i) direct communication via exchanging lattice phonons – limited
by the speed of sound or ii) take advantage of pre-existing entanglement of the
vacuum state.

Let us look at the second possibility more closely. Note that we can have: ‘

‘non-local basis’: normal modes{|0〉, |1〉, |2〉, . . . }
‘local basis’: individual number states{|n1, . . . , ni, . . . , nj, . . . 〉} .(4.2)

In particular, the ground state

|0〉 6= ⊗n|0n〉 (4.3)

due to interaction ([p, x] 6= 0 and thence [H0, HI ] 6= 0). In particular,

ρij = Trn6=i,j|0〉〈0| 6=
∑
k

pkρi ⊗ ρj . (4.4)

It is non-separable state – it is entangled.1 Quantum noise in i and j is corre-
lated. By bilocal interactions A with i and B with j, A and B can pick up this
entanglement and become correlated. This is not limited by the speed of sound!

Note that to reach a ground state – ‘cooling thermalization’ involves everyone
(long distance process)! The above discrete system corresponds to QFT in the
continuum limit.

1A bipartite pure state

|ψ〉 =
∑
i,j

cij |aibj〉 (4.5)

is called separable, if it can be decomposed to a tensor product of the two respective pure states:
|ψ〉 = |ψ1〉|ψ2〉. Otherwise it is entangled. For pure state, the entanglement can be measured by
entanglement entropy, namely

S1 = Tr(ρ1 log ρ1) , ρ1 = Tr2(|ψ〉〈ψ|) . (4.6)

A mixed state ρ is separable if there exists pk ≥ 0, with
∑

k pk = 1, and mixed states of the respective
subsystems {ρk1} and {ρk2} so that

ρ =
∑
k

pkρ
k
1 ⊗ ρk2 . (4.7)

For regions of spacetime, entanglement entropy is not a measure of entanglement if the global state is
not pure! For example, consider a separable state

ρ = ρ1 ⊗ ρ2 , (4.8)

where ρ1 and ρ2 are maximally mixed states. Then the partial trace yields a density matrix and the
entanglement entropy is non-trivial (there was already ignorance in the system to begin with!)
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4.2 Entanglement harvesting formalism

� Following [13], tet’s start with 2 initially uncorrelated particle detectors in the
ground state that are coupled to a scalar field in a vacuum state

ρ0 = ρ0,AB︸ ︷︷ ︸
ρ0,A⊗ρ0,B

⊗ ρ0,φ︸︷︷︸
|0〉〈0|

. (4.9)

Let the detectors are inertial and co-moving (they share the same rest frame).
The interaction Hamiltonian is then

HI =
∑

ν∈(A,B)

λνχν(t)

∫
dnxFν(~x− ~xν)m̂ν(t)φ̂(~x, t) , m̂ν = σ+

ν e
iΩνt = σ−ν e

−iΩνt .

(4.10)
If the coupling is weak, we have

U = T exp
(
−i
∫ ∞
−∞

dtHI(t)
)

= 1 + U (1) + U (2) +O(λ3) , (4.11)

where, using Dyson’s expansion2

U (1) = −i
∫ ∞
−∞

dtHi(t) , U (2) = −
∫ ∞
−∞

dt

∫ t

−∞
dt′HI(t)HI(t

′) . (4.12)

Then
ρT,AB = Trφ(Uρ0U

+) = ρ0,AB + ρ
(1)
T,AB + ρ

(2)
T,AB +O(λ3) . (4.13)

Here, ρ0,AB = Trφ(ρ0),

ρ
(1)
T,AB = Trφρ

(1)
T , ρ

(1)
T = U (1)ρ0 + ρ0U

(1)+ . (4.14)

Since U (1) ∼ a+ a+, we get state for the field like |0〉〈1| or |1〉〈0|, so

ρ
(1)
T,AB ∼ Trφ( ) = 0 . (4.15)

More generally, for any state ρ0,φ diagonal in the Fock basis, the 1-point function

of the field Trφ(ρ0,φφ̂) = 0.

� At second order we get

ρ
(2)
T = U (1)ρ0U

(1)+ + U (2)ρ0 + ρ0U
(2)+ . (4.16)

2Dyson’s expansion preserves probabilities (traces) at every-order of expansion and is given in terms
of powers of the Hamiltonian. However, this is not the only possibility. For example, one alternative,
known as the Magnus expansion is designed to preserve symplectic form (phase space volume), and is
given in terms of the commutators.
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This yields

ρ
(2)
T,AB =

∑
ν,η

λνλη

[∫ ∞
−∞

dt

∫ ∞
−∞

dt′χν(t
′)χη(t)m̂ν(t

′)ρ0,ABm̂η(t)W(~xη, t, ~xν , t
′)

−
∫ ∞
−∞

dt

∫ t

−∞
dt′χν(t)χη(t

′)
(
m̂ν(t)m̂η(t

′)ρ0,ABW(~xν , t, ~xη, t
′)

+ρ0,ABm̂η(t
′)m̂ν(t)W(~xη, t

′, ~xν , t)
)]
, (4.17)

where W is the pullback of the Wightman to smeared trajectory:

W(~xν , t, ~xη, t
′) =

∫
dnxdnx′F (~x− ~xν)F (~x′ − xη) W (t, ~x, t′, ~x′)︸ ︷︷ ︸

Trφ
(
φ(t,~x)φ(t′,~x′)ρφ,0

) . (4.18)

In particular, assuming ρ0,φ = |0〉〈0| and ρ0,AB = |gA〉〈gA| ⊗ |gB〉〈gB|, and consid-
ering the basis:

{|gA〉 ⊗ |gB〉, |eA〉 ⊗ |gB〉, |gA〉 ⊗ |eB〉, |eA〉 ⊗ |eB〉} , (4.19)

we find

ρT,AB =


1− LAA − LBB 0 0 M

0 LAA LAB 0
0 L∗AB LBB 0
M∗ 0 0 0

+O(λ4) . (4.20)

Here, 1 − LAA − LBB is a probability of remaining in the ground state, LAA is
probability of getting A excited, LBB a probability of getting B excited, the rest
are entanglement correlations.

� How do we know the system is entangled? Entanglement entropy will not work
as this is not a pure state. Negativity will work – it corresponds to negative
eigenvalues of the partial-transposed matrix.3

For identical detectors (the same shape of switching, smearing, and the same Ω),
the partial-transposed density matrix ρpTAB has only a (simple) negative eigenvalue.
The negativity of ρT,AB is

N(ρT,AB) = max(0, |M | − LAA) +O(λ4) . (4.23)

This is very intuitive: M − LAA measures competition between correlations (M
– come from U (2) contributions) and local noise (LAA – comes from U (1)U (1)).

3Given the matrix of two systems

ρ = ρij,kl|i〉〈k| ⊗ |j〉〈l| = ρij,kl|i, j〉〈k, l| , (4.21)

the partial-transposed matrix w.r.t. B system is given by

ρpT,B = ρij,kl|i〉〈k| ⊗ |l〉〈j| . (4.22)
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4.3 Structure of spacetime

As we shall see from here we can learn about topology & curvature of the spacetime!
This can be done ‘faster’ than having to wait clasically! (Groundstate of the field had
to ‘thermalize’ with the given spacetime and its topology – we can now read this infor-
mation.) Original references on harvesting are [14, 15]; see e.g. [16, 17] for experimental
proposals.

Harvesting in flat space

Consider two detctors in flat space. Then have the following entanglement harvesting
(negativity) picture [13]:

Here, the switching functions were chosen Gaussian with standard deviations T/
√

2:

χν(t) = e(t−tν)2/T 2

, and ∆ = tA − tB . (4.24)

There is a lightcone interaction for separations d ≤ 8.
As we see the gap Ω protects us from local noise; we can go as far as we want (all the

way to Canada), but the amount of entanglement harvested is exponential decreasing.
Note: mutual information harvesting, that is harvesting of general correlations (en-

tanglement plus classical correlations), is much easier. Namely, using the following
measure:

I(ρAB) = S(ρA) + S(ρB)− S(ρAB)

= L+ logL+ + L− logL− − LAA logLAA − LBB logLBB , (4.25)

where, as usual ρA = TrBρAB, S(ρ) = −Tr(ρ log ρ), and

L+ =
1

2

(
LAA + LBB ±

√
(LAA − LBB)2 + 4|LAB|2

)
. (4.26)
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See the following figure for comparison:

dS conformal vaccum vs. Minkowski thermal state

� Consider dS spacetime:

ds2 = −dt2 + e2κtdx2
i = a2(η)(−dη2 + dx2

i ) . (4.27)

Here t is the ‘co-moving’ time and η the conformal time (in the latter form, the
space is conformal to Minkowski). Consider next the conformally coupled scalar
field

(� +
1

6
R)φ = 0 , (4.28)

where R = 12κ2, in conformal vacuum state.4

As shown by Gibbons and Hawking [6] it is a KMS state w.r.t. ‘comoving
(geodesic) observers’ following ∂t trajectories – detector’s response is thermal,
with

T =
κ

2π
=

1

2π`
, (4.30)

as discussed above. How does this compare to a situation where we have a thermal
bath in Minkowski with the same temperature?

The responses of a single detector are identical. However, as shown by Steeg and
Menucucci (2007) [18], if we switch on another detector, we find:

4For conformally coupled field, if we start in conformal vacuum in the past, we will find no particles
in the future. Note also, that the 2-point function of conformal fields, in Minkowski and conformal
Minkowski: ds2 = Ω2(x)ds2M , are related by

W (x, x′) = Ω(x)
2−d
2 WM (x, x′)Ω(x)

2−d
2 . (4.29)

In particular, this means that the a’s and a+’s in the two cases do not mix and the fields share the
‘same vacuum’.
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Note that this does not support the idea that ‘curvature generates entanglement’.
Note also that to effectively know, the two detectors have to be behind each others
horizon. Such detectors could still send us signals:

� Robb: Are we in an oven of an alien, or in an expanding Universe? In the end we
can’s have everything – either we are eaten for lunch or die of starvation.

Do we live inside a (rotating) shell?

A single UdW detector can determine whether we live in the Minkowski space or inside
a shell; being inertial, are we static or rotating w.r.t. distant stars [19, 20]:5

5This is related to Mach’s principle: “local physical laws are determined by large-scale structure
of our Universe.” For example, interaction with distant stars is the origin of mass inertia. See [21] for
a recent modern formulation.
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Other spacetime features

One can also detect spacetime topology, e.g. identified Minkowksi or Mobius strip topol-
ogy [22] (this is derction-dpendent and so can recognize which direction is idnetified),
or the presence of conical deficits [23].

4.4 Entanglement farming

� What are the limits? Can we repeat the process cyclically? Is the vacuum en-
tanglement in a cavity replenishable? Is there a ‘Carnot-like’ optimal extraction
cycle?

Can we harvest entanglement in a cavity sustainably and reliably? No, with the
swapping mechanism alone: Entanglement resources get exhausted: entropy in-
creases, heating, mixedness, . . . . Yes, by combining swapping and communication
[24]. Need to go beyond perturbative approach (killing people with a spoon).

� Gaussian quantum mechanics (classical mechanics of Gaussian distributions - 2
forms instead of scalars) is a useful tool [25] – it is non-perturbative, finite-
dimensional, uses symplectic form, trivial partial tracing. (Gaussian states -
thermal, coherent, squeezed,. . . ; Gaussianity preserved under quadratic Hamil-
tonians; this is in particular the case of a harmonic oscillator model of UdW
detectors; can have entanglement in this context! See Edu’s discussion on classi-
cal vs. quantum.)

� Entanglement farming. Following [24], let us imagine we have a finite optical
cavity (reservoir).

Problem: The process of ‘entangling’ the atoms is not robust under finite tem-
perature – amount of entanglement extracted exponentially vanishes as the tem-
perature increases – tough luck for experimentalists!
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Protocol. Prepare many pairs of atoms initialized in the ground state and use
them to ‘purify the cavity state’ as follows. Let the initial cavity state by arbi-
trary. Send the first pair and let it interact shortly. Remove the atoms, send a
fresh pair, and iterate the process. In this way, we drive the state of the cavity to a
(metastable) fixed point. From this fixed point we can extract the entanglement:

Note: Fixed point only metastable (after 106 cycles, we go down again – atoms
first extract energy from the cavity, slow build up of high frequency modes; fixed
points exist if we introduce a cut-off – the built up of energy eventually kicks you).
Note also that realistic optical cavities leak out high energy modes – naturally
implement UV cutoff – so we can grow entanglement. This is not really a process
of cooling down (atoms do not spend enough time to thermalize with the system)
– instead, we are sort of purifying the system.6

4.5 Spacetime from quantum fields

� So far, we recovered some spacetime features by performing a local measurement
with a quantum probe. Full geometry of spacetime can be reconstructed from
local measurements of quantum particle detectors.

6Achim Kempf’s cold hammer – heats up (high frequency modes) as well as extracts energy due
to thermal contact (low energy - resonant modes).
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� Idea.

– Penetrate spacetime with an array of quantum probes.

– Measure their correlations and recover from here the Wightman function
[26, 27].

– The metric then given by the coincidence limit [28, 29]:

gµν(x) = lim
x→x′
−1

2

(Γ(D/2− 1)

4πD/2

)2/(D−2)[
∂µ∂ν′(W (x, x′))2/(2−D)

]
. (4.31)

(One can show that this is independent of field state.)

– This means that one can replace rulers and clocks of Einstein’s relativity
with quantum probes – in scales where the former no longer make sense.

– Is it possible to reformulate Einstein equations in terms of the dynamics of
quantum fields? Ask Rick, when he visits.

� Note. One has to make sure that

– Using other fields (beyond scalar) one recovers the same geometry gµν . That
is, the above has to be universal (has this been checked?).

– In non-linear classical theories (e.g. theories of non-linear electrodynamics)
it may happen that their fundamental degrees of freedom propagate along
different than background geometry. (For example, in the presence of strong
electromagnetic fields, photons interact with other photons, and we may
observe extra photon horizons, and so on.) While these are pure non-linear
effects, such theories are often motivated by a desire to capture quantum
field theory effects by classical description, e.g. Heisenberg–Euler theory
[30]. How do we go around this problem? Is it enough to restrict to vacuum
configurations, or due to quantum effects, this is important even therein?



Chapter 5: Quantum
communication

5.1 Quantum collect calling

� Let us return back to two detectors interacting with the massless scalar field via

HI =
∑

ν∈(A,B)

λνχν(t)

∫
dnxFν(~x− ~xν)m̂ν(t)φ̂(~x, t) , m̂ν = σ+

ν e
iΩνt + σ−ν e

−iΩνt .

(5.1)
where m̂ν = σ+

ν e
iΩνt + σ−ν e

−iΩνt. Assume uncorrelated state to start with:

ρ0 = ρ0,AB ⊗ ρ0,φ , (5.2)

where ρ0,φ is an arbitrary state. Then, using the Dyson’s expansion, we have

ρT = ρ0 + ρ(1) + ρ(2) +O(λ3) . (5.3)

At ρ(1), 1 detector interacts with the field – no communication! Thus, leading
order terms for signaling are in ρ(2):

ρ
(2)
T,AB = Trφ(ρ

(2)
T ) =

∑
ν,η

λνλη

[∫ ∞
−∞

dt

∫ ∞
−∞

dt′χν(t
′)χη(t)m̂ν(t

′)ρ0,ABm̂η(t)W(~xη, t, ~xν , t
′)

−
∫ ∞
−∞

dt

∫ t

−∞
dt′χν(t)χη(t

′)
(
m̂ν(t)m̂η(t

′)ρ0,ABW(~xν , t, ~xη, t
′)

+ρ0,ABm̂η(t
′)m̂ν(t)W(~xη, t

′, ~xν , t)
)]
. (5.4)

Note that the limits of the second integral (which comes from U (2) terms) are
different than those of the first integral (which comes from U (1) term). Here,

W(~xν , t, ~xη, t
′) =

∫
dnxdnx′F (~x− ~xν)F (~x′ − xη) Wρφ,0(t, ~x, t

′, ~x′)︸ ︷︷ ︸
Trφ
(
φ(t,~x)φ(t′,~x′)ρφ,0

) . (5.5)

� Terms involved in communication are proportional to λAλB. So, separate (local)
noise from signal:

ρ
(2)
T,AB = λAλBρ

(2)
pre-signal +

∑
ν

λ2
νρ

(2)
ν,noise . (5.6)

45
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� Let’s assume for simplicity that A switches on earlier than B, and that their
switchings do not overlap in time:

In consequence, terms from U (2) with mA(t′) vanish. We thus find

ρ
(2)
pre-signal =

∫ ∞
−∞
dt

∫ ∞
−∞
dt′χA(t)χB(t′)

[
W(xB, t

′, xA, t)
(
m̂A(t)ρ0,ABm̂B(t′)

−m̂B(t′)mA(t)ρ0,AB

)
+W(xA, t, xB, t

′)
(
m̂B(t′)ρ0,ABmA(t)

−ρ0,ABmA(t)mB(t′)
)]
. (5.7)

This also contains harvesting (non-trivial for spacelike separations that has noth-
ing to do with signaling)! Note also that both integrals over time can now go
from −∞ to ∞ by our assumption on detectors’ switchings.

� Introduce
ρ

(2)
B,signal ≡ TrA(ρ

(2)
pre-signal) . (5.8)

Contains information about A and is locally accessible to B! Let’s assume A and
B uncorrelated at the beginning:

ρ0,AB = ρ0,A ⊗ ρ0,B . (5.9)

Then

ρ
(2)
B,signal =

∫ ∞
−∞
dtdt′χA(t)χB(t′)TrA(m̂Aρ0,A)2iIm[W(xA, t, xB, t

′)]

×
(
m̂B(t′)ρ0,B − ρ0,Bm̂B(t′)

)
, (5.10)

where we used that W ∗(t, x, t′, x′) = W (t′, x′, t, x), and that c− c∗ = 2iIm(c).

Using further the matrix representation

|g〉 =

(
1
0

)
, |e〉 =

(
0
1

)
, mν(t) =

(
0 e−iΩνt

eiΩνt 0

)
, (5.11)

and

ρ0,AB = ρ0,A ⊗ ρ0,B =

(
aA bA
b∗A 1− aA

)
⊗
(
aB bB
b∗B 1− aB

)
, (5.12)
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we find TrA(m̂A(t)ρ0,A) = 2Re(bAe
iΩAt), and

[m̂B(t′), ρ0,B] =

(
−2iIm(bBe

iΩBt
′
) e−iΩBt

′
(1− 2aB)

( )∗ 2iIm(bBe
iΩBt

′
)

)
. (5.13)

Remember that the imaginary part of W is the smeared commutator:

C(t, t′) = i

∫
dnxdnx′F (x− xA)F (x− xB) 〈[φ(t, x), φ(t′, x′)]〉ρφ,0︸ ︷︷ ︸

C(t,x,t′,x′)

, (5.14)

where 〈[ , ]〉 is a c-number (independent of the initial state of the field). We thus
arrive at a simple conclusion that

ρ
(2)
B,signal = 2

∫ ∞
−∞
dtdt′χA(t)χB(t′)Re(bAe

iΩAt)[m̂B(t′), ρ0,B]C(t, t′) . (5.15)

This gives the probability of signalling in the leading order of the perturbation
theory. See [31, 32] for more details.

� Some perhaps surprising features:

– If spacelike separated point, [ , ] = 0 (micro-causality); B knows nothing
about A unless causally connected!1

– Note that for this communication we need coherences, that is, we need
quantum antennas:

|ψA〉 = αA|eA〉+ βA|gA〉 , |ψB〉 = αB|eB〉+ βB|gB〉 . (5.16)

Classical antenna does not have b-terms! So the effect is not there!

– Probability of exchanging a photon, while field is in vacuum is of order 4
(exchange of energy)! We need to de-excite A while φ in |0〉 (order 2), and
excite B while φ excited in 1〉 (order 2), see formulas from the first lecture
(P ∝ λ2)!

Here it is order 2! This is not a real photon exchange. It is in a way similar
to Casimir type interaction: A interacted with φ and altered it, now we pick
up that altered field in B.

– Since C is independent of the initial state – we do not mind a noisy field –
the signalling does not care! This is intuitively very unusual.

1Had we used the detector in rotating wave approximation in quantum optics – would find that
we can have communication for spacelike separated detectors [33]. The same goes for single mode
approximation.
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� Commutators. In (3 + 1), commutator is only supported on a light cone. Namely,
we have the following:
Huygens principle: The Green’s function of the (massless) wave equation in (3+1)
Minkowski space has support only on the light cone. Hence, any disturbances
propagate strictly along null geodesics (at the speed of light).2

How general is this? Even in Minkowski, if number of spatial dimensions is even
or one, it is not satisfied!:

In (1 + 1) energy propagates on a light cone, but communication happens inside
it (it cannot be due to energy exchange, rather a Casimir force). So we can miss
the energy signal, but still know about A.

If beyond Minkowski, it generally does not work! Namely, if there is curvature
(and no full conformal invariance) it is probably violated. Thence, in general
spacetimes there will be a leakage of info towards the inside of the light-cone
decoupled from energy propagation. We shall see an explicit example below.

� Summary: We have challenged the following ‘reasonable’ properties of wireless
communication:

– Communication mediated by ‘real’ energy-carrying quanta (emitter emits
photon, receiver captures it). Info reaches when energy reaches.

– Communication only possible at the speed of light (miss the beam – miss
the message).

In flat (3+1) this is the case, but not true for optical fibres, in curved spacetime,
important in cosmology (after glow,. . . ). Instead:

2Field commutator is the radiation Green’s function (retarded-advanced):

∇2G(x, x′) = −4πδ(x− x′) , [φ(x), φ(x′)] =
i

4π
G(x, x′) . (5.17)

However, Wightmann is a kernel (∇2W = 0).
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– Info propagates arbitrarily slow (even for massless fields).

– Can recover message even if the beam is missed.

– Info flow is not supported by real quanta (photons) flow.

– There is info flow in the absence of energy flow.

5.2 Example: Echoes from Early Universe

� Consider a spatially flat open FRW Universe:

ds2 = a(η)2(−dη2 + dr2 + r2dΩ2) . (5.18)

Here, cosmological time t is related to the conformal time η via dt = adη, or

a ∝ ηα+1/2 ∝ t
2α+1
2α+3 , (5.19)

where α = (3−3w)/(6w+2) and p = wρ is the equation of state the perfect fluid.

Consider test scalar field in Bunch–Davies vacuum.3 This can either be minimally
coupled (ξ = 0) or conformal (ξ = 1):(

� +
1

6
ξR
)
φ = 0 . (5.20)

The field couples to 2 UdW detectors (antennas) in the following initial states:

|ψν〉 = αν |eν〉+ βν |gν〉 . (5.21)

with the following communication protocol: i) Alice encodes “1” by coupling her
detector A to the field and “0” by not coupling it. ii) Later Bob switches B and
measures its energy. If B is excited, Bob interprets that as “1”, and “0” otherwise.

� Thus we have the initial state:

ρ0 = |ψ0〉〈ψ0| ⊗ ρφ , |ψ0〉 = (αA|eA〉+ βA|gA〉)⊗ (αB|eB〉+ βB|gB〉) . (5.22)

Bob’s evolved state is
ρBf = TrATrφ(Uρ0U

+) , (5.23)

and the probability of exciting Bob’s detector is given by

PB(t) = |αB|2︸ ︷︷ ︸
initial prob

+O(λB) +O(λ2
B) +O(λB)4︸ ︷︷ ︸

local noise

+ O(λAλB) +O(λ2
Aλ

2
B)︸ ︷︷ ︸

S:Casimir-like+real photon exchange

.

(5.24)

3This is an example of adiabatic vacuum (a ‘closest’ to conformal vacuum): starting with this
vacuum as I evolve I have the smallest possible number of particles in the future. In BH physics we
have Boulvare, Hartle–Hawking, or Unruh vacuum. Some diverge at the horizon, other at infinity, and
then something in between.
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Here, S is the signalling estimator (influence of the presence of A on B) S =
λAλBS2 + O(λ4), where as derived in (5.15) (note the appearance of additional
scaling factors a3 due to the proper volume element in FRW):

S2 = 4

∫
a3(t)d3xdt

∫
a3(t′)d3x′dt′χA(t)χB(t′)Re(α∗AβAe

iΩAt)F (x− xA, t)

×F (x′ − xB, t′)Re(α∗BβBe
iΩBt

′
)C(t, x, t′, x′) . (5.25)

� For conformal scalar we then find

C(t, x, t′, x′) =
i

4π

[δ(∆η + |x− x′|)− δ(∆η − |x− x′|)
a(t)a(t′)|x− x′|

]
. (5.26)

This is a ‘boring’ propagator, that i) has only support on the lightcone and ii)
decays with spatial separation as 1/|x−x′|. On the other hand, in the minimally
coupled case, one obtains a complicated propagator (with Bessel functions), which
in particular case of the matter dominated universe (α = 2) simplifies to

C(t, x, t′, x′) =
i

4π

(
conformal piece +

θ(−∆η − |x− x′|)− θ(∆η − |x− x′|)
a(t)a′(t′)η(t)η(t′)

)
.

(5.27)
Obviously, the second term violates Huygens principle, as it has timelike leakage.
Moreover, it does not decay with spatial separation.

In the case of de Sitter Universe, we have exponential expansion, and the timelike
signal does not decay in time! Can we detect signals from the Early Universe (not
carried by light)?

� How much information survives cosmological cataclysm? Quantum Bounce vs. Big
Bang?

Can we get an RQI echo of an ancient civilization? (Atoms or any complex sys-
tems will not survive a quantum bounce.) They will encode the info in quantum
field – due to unitarity such info cannot be destroyed (it can only be scrambled).



CHAPTER 5. QUANTUM COMMUNICATION 51

Namely, consider the following scenario:

Provided the spacetime still exists during the bounce (although with some quan-
tum corrections), if we violate Huygens principle, we can still get signal S, see
[34, 35] for details and plots of the corresponding channel capacities:

Here, the channel capacity, c describes how much information can be sent, which
is given by

c ∝ λ2
Aλ

2
B

( S2

4|αB||βB|

)2

+O(λ6) (5.28)

(for the noisy asymmetric binary channel).

Note that already 1 detector switched on from Early Times till now can tell the
difference between Big Bang and Big Bounce scenarios via the Gibbons–Hawking
effect, e.g. [36, 37, 38]. In this case, however, we need a detector that can survive
the Early times – not an atom, but perhaps a quantum field.



Chapter 6: Quantum energy
teleportation

6.1 A few words about thermodynamics

� Thermal states are passive: all unitary operations have a positive energy cost.
Namely, as shown by Pusz and Woronowicz in 1978, for arbitrary unitary op-
eration U we have [39]:

ρ′ = Uρ(β)U+ ⇒ ∆E = Tr(Hρ′)− Tr(Hρ(β)) ≥ 0 . (6.1)

This implies stability of thermal equilibrium state under unitary disturbances.
(Classically, I cannot run a heat engine with just 1 thermal bath – cannot extract
work from a thermal state.)

In particular, this is true for the local unitary operations (local passivity):

� Note: knowing ρ does not give me T , unless I also know the Hamiltonian:

ρ(β) =
1

Z
e−βH (6.2)

remains invariant under β → λβ and H → H/λ. Thence, thermometers need to
register the dynamics! (Thermometers cannot take a snapshot, they need to take
the video and watch it – they register dynamics.)

� Process of thermalizations. Can we extract energy from a thermal state if we allow
arbitrary operations? Yes! E.g. coupling to a colder subsystem (thermometer):

52
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We thus can extract energy from the system, as the state evolves: ρ(β)→ Γ(ρ(β))
and

∆E = Tr(Γ(ρ(β)H)− Tr(Hρ(β)) < 0 . (6.3)

Thermal energy flow is non-local! The process takes a while and involves (the
dynamics of) the whole system. (In particular, thermometer sees the dynamics
of the whole system.)1

� Strong local passivity. Can we extract energy purely locally by using a colder
Masahiro Hotta’s hand?

Just touching quickly and locally (but not necessarily unitarily) – will the hand
get burned? Not in general! In fact the hand gets cooler – strong local passivity!

Theorem: If the ground state contains max-rank entanglement (involves the whole
Hilbert space, but not necessarily maximal entanglement), there exists a temper-
ature T ∗ (dependent on the system), such that for T < T ∗ (where T is the
temperature of the system) it is not possible to extract work from the system
through any local operation [40, 41] (even if the hand was actually colder than
the system)!

In particular: can we extract energy from the ground state of vacuum with T = 0?
(It is maximally entangled.) Touching it, we get colder! (Strong point contact in
a short duration):

1In quantum information science, local operations, that is operations that act independently on
each subsystem, do not affect the entanglement. Here is an example of a global operator:

Ŵψ(x) =

∫
dx′W (x, x′)ψ(x′) . (6.4)

Such operations can affect entanglement.
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6.2 Breaking strong local passivity: quantum

energy teleportation

� Can we cheat this? We can use ground state entanglement as a resource for local
energy extraction! Namely, if we assist local operations with classical communi-
cation (LOCC), it is possible to extract energy with local operations. Even from
the ground state:

“Alice does the projective measurement and gives Bob information what to do to
extract energy.”

Intuition: Because of the ground state entanglement, the measurement in A pro-
vides information about fluctuations in B. “Unlocking zero-point fluctuations at
a cost.” Extract energy with local operations assisted by the info in A. Energy
does not travel from A to B! Info does!

� Minimal QET model. Following [40], let us consider two qubits A and B, and the
following Hamiltonian:

H = HA +HB + V , (6.5)

where

HA = hσAz + f(h, k)I , HB = hσBz + f(h, k)I ,

V = 2
[
kσAx σ

B
x +

k2

h2
f(h, k)I

]
. (6.6)

Here, f(h, k)I just rescales the groundstate energy of the system, and V is designed
not to commute with the free Hamiltonians. If we pick

f(h, k) =
h2

√
h2 + k2

, (6.7)

then
〈g|HA|g〉 = 〈g|HB|g〉 = 〈g|V |g〉 = 0 , (6.8)



CHAPTER 6. QUANTUM ENERGY TELEPORTATION 55

and we know that H is non-negative. Here |g〉 is the ground state of the whole
system:

|g〉 =
1√
2

(√
1− f

h
|1〉A|1〉B −

√
1 +

f

h
|0〉A|0〉B

)
, (6.9)

where
σνz |0〉ν = −|0〉ν , σνz |1〉ν = |1〉ν (6.10)

for ν = A,B. Note that when k = 0 (no interaction), we have a ground state
of σz’s and there is no entanglement. When k → ∞ ground state is maximally
entangled. The state satisfies the assumptions of the theorem. Thence, there
exists T ∗.

� Protocol.
i) We start from the ground state |g〉.
ii) Alice carries out a PVM of σAx and repeats it many times. This will have an
average energy cost EpA > 0. Thus increase the energy of the system.
iii) The result of the measurement (1 bit: α = ±1) is announced to Bob through
a classical channel. This can be fast – timescale much smaller than 1/k (timescale
of H).
iv) With the information of α, Bob carries out an informed local unitary U(α).
After many repetitions of this protocol, the average energy cost of Bob’s unitary
will be negative (B looks like in a ground state).

� Step 1. Average energy cost of PVM on A. Alice measures σAx and obtains α = ±1.
In a single shot PVM, the post measurement state is

|ψPM(α)〉 =
1√
p(α)

PA(α)|g〉 , p(α) = 〈g|PA(α)|g〉 , (6.11)

where

PA(α) =
1

2
(I + ασAx ) . (6.12)

If we repeat this projection on an ensemble of identical setups, the post-measurement
state of the ensemble is

ρ1 =
∑
α=±1

p(α)|ψPM(α)〉〈ψPM(α)| =
∑
α=±1

PA(α)|g〉〈g|PA(α) . (6.13)

The average energy cost of step 1 is

EPA = Tr(ρ1H)− Tr(ρ0H)︸ ︷︷ ︸
0

=
∑
α=±1

〈g|PA(α) H︸︷︷︸
HA+HB+V

PA(α)|g〉 . (6.14)

Lemma: We have

[PA(α), HB] = 0 = [PA(α), V ] , (6.15)

〈g|σAx |g〉 = 〈g|
(
|1〉A〈0|+ |0〉A〈1|

)
|g〉 = 0 ,

〈g|σBz σAx |g〉 = 〈g|
(
|1〉B〈1| − |0〉B〈0|

)
⊗
(
|1〉A〈0|+ |0〉A〈1|

)
|g〉 = 0 .(6.16)
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Using this lemma, we find:∑
α=±1

〈g|PA(α)HBPA(α)|g〉 =
∑
α=±1

〈g|HBPA(α)|g〉 =
1

2

∑
α=±1

(
〈g|HB|g〉︸ ︷︷ ︸

0

+α〈g|HBσ
A
x |g〉

)
=

1

2

∑
α=±1

α 〈g|HBσ
A
x |g〉︸ ︷︷ ︸

∝〈g|σBz σAx |g〉

= 0 . (6.17)

Similarly∑
α=±1

〈g|PA(α)V PA(α)|g〉 =
∑
α=±1

〈g|V PA(α)|g〉

=
1

2

∑
α=±1

(
〈g|V |g〉︸ ︷︷ ︸

0

+α 〈g|V σAx |g〉︸ ︷︷ ︸
∝〈g|σBx |g〉

)
= 0 . (6.18)

So we have

EPA = Tr(ρ1H)−Tr(|g〉〈g|H) =
∑
α=±1

〈g|PA(α)HAPA(α)|g〉 = f(h, k) > 0 . (6.19)

So on average, changing the ground state costs energy!

� Step 2. Classical communication of α and (informed) local unitary on B:

UB(α) = cos θI− iα sin θσyB , (6.20)

where

cos 2θ =
h2 + 2k2√

(h2 + 2k2)2 + h2k2
, sin 2θ =

hk√
(h2 + 2k2)2 + h2k2

. (6.21)

In a single shot application of the protocol: start from |g〉, apply PVM PA(α),
and then UB(α):

|ψ2〉 =
1√
p(α)

UB(α)PA(α)|g〉 . (6.22)

The ensemble is thus

ρ2 =
∑
α=±1

UB(α)PA(α)|g〉〈g|PA(α)U+
B (α) . (6.23)

The energy cost of applying the unitary is then

EUB = Tr(ρ2H)− Tr(ρ1H)︸ ︷︷ ︸
EPA

(6.24)
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To calculate

Tr(ρ2H) =
∑
α=±1

〈g|PA(α)U+
B (α)HUB(α)PA(α)|g〉 , (6.25)

is some work. To aid this calculation, we can use that apart from (6.15), we also
have [HA, UB] = 0. In the end this yields

EUB = − 1

h2 + k2

[
hk sin 2θ − (h2 + k2)(1− cos 2θ)

]
. (6.26)

If 0 < θ � 1, this yields

EUB ≈ −
2hkθ

h2 + k2
< 0 . (6.27)

We are unlocking the zero point fluctuations energy. B acts on what looks like
a ground state for him (communication is much faster than the energy transfer).
We are breaking the strong passivity of the ground state by local operations! No
matter how negative, we always have

|EUB | ≤ |EPA| . (6.28)

Energy is not coming from A, rather it is ‘energy teleportation’.

� Natural energy flow from A to B: how fast is this?

〈HB(t)〉ρ1 =
∑
α=±1

〈g|PA(α)eiHtHBe
−iHtPA(α)|g〉 =

1

2
f
[
1− cos(4kt)

]
, (6.29)

which has characteristic speed
1

k
. (6.30)

We may also need the interaction part energy, but we find

〈V (t)〉ρ1 =
∑
α=±1

〈g|PA(α)eiHtV e−iHtPA(α)|g〉 = 0 . (6.31)

Thus, communication has to happen faster than 1/k. This means that QET can
be arbitrarily faster than the natural energy flow!

� Can the protocol work if the bit from Alice is lost? If Bob does not know α, but
still does a local unitary WB, which does not depend on α, in a single shot we
get:

|ψ2〉 =
1√
p(α)

WBPA(α)|g〉 , (6.32)
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and repeat many times:

ρ2 =
∑
α=±1

WBPA(α)|g〉〈g|PA(α)W+
B = WB

(∑
α=±1

PA(α)|g〉〈g|PA(α)
)

︸ ︷︷ ︸
ρ1

W+
B .

(6.33)
Thus

EWB
= Tr(ρ2H)− Tr(ρ1H)︸ ︷︷ ︸

EPA

=
∑
α=±1

〈g|PA(α)W+
B (HB + V )WBPA(α)|g〉

= 〈g|
∑
α=±1

P 2
A(α)︸ ︷︷ ︸
PA(α)

W+
B (HB + V )WB|g〉 = 〈g|W+

B (HB + V )WB|g〉 .(6.34)

However, since [HA,WB] = 0, we have

〈g|W+
BHAWB|g〉 = 〈g|HA|g〉 = 0 . (6.35)

Thus,

EWB
= 〈g|W+

B (HB + V +HA)WB|g〉 = 〈g|W+
BHWB|g〉 ≥ 0 , (6.36)

as H is a non-negative operator. Therefore, we see that exchanging the informa-
tion is crucial for QET!

6.3 Warping the fabric of spacetime

� We can prepare states of spacetime, e.g. [42]. If the Weak Energy Condition
(WEC):

ρ ≡ Tµνξ
µξν ≥ 0 , for every timelike vector ξµ , (6.37)

is violated, we can have exotic solutions, such as wormholes, warp drives, anti-
gravity/screening,. . .

However, it is well known that quantum fields can violate AWEC, e.g. [43, 44, 45]:

∆ρ̂ =
τ0

π

∫ ∞
−∞

〈Tµνξµξν〉
τ 2 + τ 2

0

≥ − 3

32π2τ 4
0

. (6.38)

Note the Lorentzian weight τ0/[π(τ 2 + τ 2
0 )], determining the effective probing of

the energy density (τ0 corresponds to the duration of reading).2

2See also [46] for Kip Thorne’s discussion of a possibility of violating energy conditions with Casimir
effect (accelerating mirrors). But that is tough.
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� QET: we can unlock zero-point energy consuming entanglement (correlations).
Instead of two qubits let’s do it with quantum fields, replacing projective mea-
surements with atoms (detectors) – Hotta 2008 [47]:

Here, Alice measures – injects energy in left-moving modes, and sends a signal
to the right to Bob who extracts energy (also from left-moving modes). Thus, in
this setup energy always flows to the left, while information flows to the right.
The energy extracted is smaller than the one injected.

� Engineering energy densities in 3+1, We will focus on the state of the field (rather
than the energy extracted), while coupling to both left and right movers:

Since everything is relativistic now, the information to B arrives at the same time
as the excited energy packet from Alice – need to overcome the positive energy
due to Alice! Moreover, in 3+1 we need a distribution of detectors (cannot clone
states) – trick with many Bobs and Alices:
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Protocol: i) Alice measures the field by coupling an atom to it ii) Alice measures
her non-relativistic atom iii) Alice broadcasts her results to agency of Bobs iv)
Bob’s agents use that info to prepare atoms and couple to the field. In this way
Bob can create a negative energy state with as much negative energy as we want
(provided we compress it enough) [42]:

Violates quantum inequalities optimally and saturates quantum interest conjecture.3

� Summary.

– QET can be used to operationally generate negative energy distributions.
Does so ‘consuming’ space-like vacuum entanglement.

– The negative energy packets are accompanied by positive energy packets
(quantum interest conjecture). This suggests interesting scenarios under
gravitational backreaction.

– QET protocol scaling saturates the Quantum Interest Conjecture. QET
protocol scaling optimally violates AWEC.

� Remember: not everything that is allowed by laws of physics happens – I am
allowed to get a Nobel Prize, GR allows for it, but it is unlikely to happen! And
that is all folks!

3This conjecture states that a positive energy pulse must overcompensate the negative energy pulse
by an amount which is a monotonically increasing function of the pulse separation.
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