MFF UK, meeting with students, September 2025

Applications of chirally motivated meson-baryon coupled channel model

A. Cieplý

Nuclear Physics Institute, Řež, Czechia

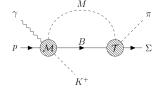
Meson-nucleon interactions

- hadrons (and quarks) interact through strong interaction that is in effect responsible for the nuclear force
- the pertinent quantum theory is quantum chromodynamics (QCD), but it is unperturbative at low energies due to large coupling constant
- effective field theories introduced by Weinberg in 1979 to give
 qualitatively correct results in situations when the application of a proper
 quantum field theory is difficult (if not impossible): using the most
 general Lagrangian that is consistent with the symmetries of the
 underlying theory
- chiral perturbation theory (ChPT) is the QCD effective theory at low energies, based on spontaneous chiral symmetry breaking (would be an exact QCD symmetry for massless quarks)
- the degrees of freedom are no longer quarks (and gluons) but rather hadrons (reflects quark confinement)
- our approach: describe coupled channel interactions of the meson octet with the baryon octet on the basis of the ChPT

Coupled channels meson-baryon interactions

```
ar{K} N system \pi \Lambda \pi \Sigma \bar{K} N \eta \Lambda \eta \Sigma K \equiv \eta N, \eta' N system \pi N \eta N K \Lambda K \Sigma \eta' N
```

strongly interacting multichannel systems with dynamically generated resonances: the $\Lambda(1405)$, just below the K^-p threshold, or $N^*(1535)$ above the ηN threshold


our understanding of elementary meson-nucleon interactions at low energies has impact on a broad field of physics phenomena:

- structure of hadron resonances (hadronic molecules? pentaquarks?)
- energy levels of exotic atoms (e.g. kaonic atoms)
- meson-nuclear quasi-bound states (do they exist? can they be observed?)
- few-body systems including strange hadrons
- meson-baryon correlations in high energy collisions (heavy ions, pp)
- equation of state of compact astrophysical objects (e.g. neutron stars)

Topic 1: meson-baryon photoproduction

We have already started with $\pi\Sigma$ photoproduction, $\gamma p \longrightarrow K^+\pi\Sigma$, a reaction in which MB rescattering is relevant in the final state. Simple model, CLAS data reproduction not quite satisfactory.

two-step process with the final state interaction of the MB pair accounted for:

- leading-order $B\chi PT$ used to derive expressions for the photoproduction amplitude \mathcal{M} constructed from tree level graphs (WT, Born and anomalous)
- $\pi\Sigma \bar{K}N$ coupled channels models provide the ${\cal T}$ amplitudes, that describe the MB re-scattering
- ullet task for a student improvement of the ${\mathcal M}$ part including the contributions of vector mesons
- alternative task similar treatment of the $\gamma p \longrightarrow \eta n/\eta' n$ process (no kaon emitted)

Topic 2: femtoscopic meson-baryon correlations

 New type of data: femtoscopic MB correlation functions measured in high energy heavy-ion or pp collisions at LHC, i.e. correlations of the out-going hadrons due to their FSI.

$$C_{j}(p) = \sum_{i} w_{i} \int d^{3}r \, S_{i}(r) |\Psi_{ji}(p,r)|^{2}$$

 w_i and $S_i(r)$ - statistical weights and source functions of all i-particle pairs produced initially in the high-energy collision

 $\Psi_{ji}(p,r)$ - relative wave function for the measured pair j containing information on the i o j transition

- The theoretical analysis of the K⁻p femtoscopic data requires a treatment of Coulomb interaction, a tricky business in the momentum space as the interaction is divergent for p → 0.
- task for a student develop a computer code to compare the calculated MB correlation functions with the available experimental data

Literature

```
general intro - J. R. Taylor – Scattering theory, The quantum theory on nonrelativistic collisions, John Wiley & sons (1972)
```

S. Weinberg - Phenomenological Lagrangians, Physica A 96, 327 (1979)

KN model - P. C. Bruns, A. C., Nucl. Phys. A 1019, 122378 (2022)

 ηN model (no $\eta' N$) - A. C., J. Smejkal - Nucl. Phys. A 919, 46 (2013)

(with $\eta' N$) - P. C. Bruns, A. C. - Nucl. Phys. A 992, 121630 (2019)

πΣ photoproduction - P. C. Bruns, A. C., M. Mai - Phys. Rev. D 106, 074017 (2022)
A. C., P. C. Bruns - Nucl. Phys. A 1043, 122819 (2024)

femtoscopic correlations - R. Lednický, V. L. Lyuboshits, Yad. Fiz. 35, 1316 (1981) [Sov. J. Nucl. Phys. 35, 770 (1982)] J. Haidenbauer, Nucl. Phys. A 981, 1 (2019)

contact: cieply@ujf.cas.cz