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A new computational method for determining the eigenvalues and eigenfunctions of the 
Schrodinger equation is described. Conventional methods for solving this problem rely on 
diagonalization of a Hamiltonian matrix or iterative numerical solutions of a time independent 
wave equation. The new method, in contrast, is based on the spectral properties of solutions to 
the time-dependent Schrodinger equation. The method requires the computation of a 
correlation function (ay(r, O)l ay(r, t)) from a numerical solution yl(r, t). Fourier analysis of this 
correlation function reveals a set of resonant peaks that correspond to the stationary states of 
the system. Analysis of the location of these peaks reveals the eigenvalues with high accuracy. 
Additional Fourier transforms of w(r,t) with respect to time generate the eigenfunctions. The 
effectiveness of the method is demonstrated for a one-dimensional asymmetric double well 
potential and for the two-dimensional Henon-Heiles potential. 

1. INTRODUCTION 

The need for solving the Schrodinger equation numerically can arise in the 
description of nuclear motion in molecules in the Born-Oppenheimer approximation 
or in the description of atoms and molecules in self-consistent field approximations. 
For either application, the currently available numerical methods for solving the time- 
independent Schrodinger equation fall into two categories. Methods in the first 
category rely on matrix diagonalization and have as their starting point the represen- 
tation of the wavefunction in terms of a finite set of basis functions [l-6]. The basis 
functions may be selected from a complete orthogonal set or they may be chosen for 
specific properties such as symmetry and spatial behavior. In either case, the 
diagonalization of a Hamiltonian matrix computed from the basis functions produces 
the desired eigenvalues and eigenfunctions. In the second category are the iterative 
methods that require repeated numerical integrations of the Schriidinger equation, 
accompanied by adjustments of the energy eigenvalues [7-g]. Typically, an eigen- 
value is estimated initially, and the corresponding eigenfunction is computed by 
numerical integration. Knowledge of the eigenfunction enables the computation of an 
improved eigenvalue, which provides the input to the next iteration, and so on. 
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Matrix diagonalization is attractive for treating Hamiltonians that do not differ 
greatly from Hamiltonians with known eigenfunctions or for potentials with simple 
analytic forms, which permit setting up the Hamiltonian matrix without excessive 
computation. Matrix diagonalization becomes less attractive when a large amount of 
computation is required to set up the Hamiltonian matrix or, in general, when the 
required Hamiltonian matrix is of high order. The iterative numerical integration 
methods are known to give very accurate results for one-dimensional problems. To 
apply them, it is necesssary to home in on the individual eigenvalues before the cycle 
of iterations is begun, both to reduce the number of iterations and to assure that no 
eigenvalues are missed [8]. While this poses no problem in principle, it can lower 
efficiency in situations where information on the eigenvalue spectrum is limited. To 
our knowledge, no practical iterative numerical integration scheme has been 
developed for two dimensions. 

In this paper we describe a new method for solving the Schrodinger eigenvalue 
problem, which utilizes numerical solutions to the time-dependent Schrodinger 
equation. The method is quite general and has, we believe, some special advantages 
for certain problems. The new method, which we shall call the spectral method, was 
developed earlier for determining the eigenvalues and eigenfunctions for the modes of 
optical waveguides from numerical solutions of the paraxial wave equation [ 10-131. 
Since the latter equation is identical to the Schrodinger equation, it is possible to 
apply the previously developed methodology to quantum mechanical problems with 
little change. 

The spectral method requires computation of the correlation function 9,(t) = 
(vh 0) I w(r, t)>, w h ere ~(r, t) represents a numerical solution to the time-dependent 
Schriidinger equation, and ~(r, 0) is the wave function at t = 0. The solution W(r, t) 
can be accurately generated with the help of the split operator FFT method [ 141. The 
numerical Fourier transform of 9,(t), or Y1(E), displays a set of sharp local maxima 
for E = E,, where E, are the desired energy eigenvalues. With the aid of lineshape 
fitting techniques, both the positions and heights of these resonances can be deter- 
mined with high accuracy. The former yield the eigenvalues and the latter the weights 
of the stationary states that compose the wave packet. Once the eigenvalues are 
known, the corresponding eigenfunctions can be computed by numerically evaluating 
the integrals 

v(r, E,) = lr v(r, t) w(t) exp(iE, t) dt, 
0 

where T is the time encompassed by the calculation, and w(t) is a window function. 
An attractive feature of this method is that it allows the eigenvalue spectrum to be 

displayed graphically and the energy levels to be identified visually as they would be 
from an experimentally determined spectrum. Since the lineshapes for the theoretical 
spectrum are known, it is also possible to characterize the spectrum quantitatively. 

The spectral method is in principle applicable to any linear eigenvalue problem 
[ 151 and to problems involving any number of dimensions. The only essential is an 
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available numerical solution for the time-dependent wavefunction (or other dependent 
variable) specified on a suitable coordinate grid. The high accuracy of the split 
operator FFT method [ 141 makes it particularly attractive for application with the 
spectral method to the Schrijdinger equation in Cartesian coordinates. 

Since the spectral method is fundamentally based on numerical solutions to a time- 
dependent differential equation, its implementation is always straightforward. No 
special ad hoc selection of basis functions is required, nor is it necessary for the 
potential to have a special analytic form. The only requirement for accuracy is the 
specification of adequate sampling rates in space and time for the numerical solution. 
Criteria for these sampling rates are simply related to the Nyquist sampling rates 
used in digital signal analysis. The accuracy of matrix diagonalization techniques, on 
the other hand, can be influenced by the specific choice of basis functions, and the 
amount of computation to set up the Hamiltonian matrix will vary strongly with both 
the basis set and the potential. 

In this paper, we describe the application of the spectral method to the solution of 
the Schrddinger equation in either one or two Cartesian coordinates, and we provide 
results for two representative potentials, the 1-D asymmetric double well potential [ 2, 
16, 171 and the Hinon-Heiles potential [3, 4-61, which has received considerable 
attention in studies of quantum ergodicity. Generalization of the method to three 
Cartesian coordinates, however, is both straightforward and feasible for some current 
generation computers. Results for three-dimensional computations will be described 
in subsequent publications. For further applications and accuracy tests of the spectral 
method, the reader is referred to [ 10-151. 

The paper is organized as follows: In Section 2, the split operator FFT method for 
solving the time-dependent Schrodinger equation is reviewed, and accuracy criteria 
are established for picking the time increment At and the number of increments to be 
used in the temporal advance of the solution. In Section 3, the computation of a 
correlation function from the numerical solution for ~(x, y, t) is described. From a 
finite record of this correlation function, a Fourier energy spectrum can be 
constructed with the help of a window function. An analysis of the resonant line 
structure of this spectrum in turn yields the eigenvalues. In Section 4, it is shown how 
the eigenfunctions can be generated by computing additional Fourier transforms of 
v/(x, y, t) with respect to time. Results for the asymmetric double well potential are 
presented in Section 5, and results for the Henon-Heiles potential in Section 6. 

2. SOLUTION METHOD FORTHE SCHR~DINGER EQUATION 

We shall be concerned in this paper with solutions to the Schriidinger equation in 
two Cartesian coordinates, which in dimensionless form is 
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where 

v*=-$+<. 
aY 

(3) 

We review briefly the symmetrically split operator algorithm for advancing the 
solution to Eq. (2) by an incremental time At. This can be expressed formally as 

y(x, y, to + At) = exp((idt/4M) V’) exp(-i AtV) exp((i At/4M) V’) ~(x, y, to) 

+ wwl (4) 
In Eq. (4), commutation errors give rise to the third order term in At, and the 
operator 

exp((i At/4M) V’) (5) 

applied to ~(x, y, to) is equivalent to solving the free particle wave equation 

. aw 1 

( 

a*yl a*iy -- 
1at=-2M ax* + ay* 1 

(6) 

over a time At/2, with ~(x, y, to) as the initial wavefunction at t = to. The solution to 
Eq. (6) is obtained with the help of the band-limited Fourier series representation 

N/2 N/2 

v(x, Y, 0 = Y- T 
L 

m=-y/2+1 n=-NI2tI 
v,,(t) exp : (mx + ny) 

[ . 
(7) 

0 

where 

v,,(to + 4 = vmn(to) exp[-(iAt/2M)(2n/Lo)* Cm’ + n*>], (6) 

and Lo is the length of a side of the square computational grid. The right-hand side of 
expression (4) is thus equivalent to free particle propagation over a half time 
increment, a phase change from the action of the potential applied over the whole 
time increment, and an additional free particle propagation over a half time 
increment. If many factors of the form (4) are applied in sequence, pairs of half-step 
free particle propagations combine into full-step propagations. The computation thus 
proceeds as a succession of full-step propagations, applied in momentum space, alter- 
nating with phase changes of the wave function executed in configuration space. The 
only exceptions to this rule are the half steps of propagation applied at the beginning 
and end of the calculation. 

This procedure is very efficient, when implemented with the help of the fast 
Fourier transform (FFT) algorithm, and very accurate, since, as is well known, the 
spatial derivatives are approximated to Nth order in Lo/N, where N is the number of 
grid points along a grid line and Ax = Ay = Lo/N is the grid spacing. The grid length 
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L, must be chosen sufficiently large that the wavefunction is negligible on the grid 
boundary. The spatial sampling interval Ax must be chosen small enough to accom- 
modate the spatial bandwidth of the wavefunction. This can be assured by monitoring 
the Fourier coefficients w,,,, and determining that they are small on the boundaries of 
the grid in reciprocal space. 

The time increment or sampling interval At must be chosen small enough to assure 
accurate computation of the time-dependent wavefunction. The overriding criterion 
for this selection is based on the width of the energy spectrum, determined by the 
Fourier transform of (t&x, y, O)( ~(x, y, t)). The sampling interval At limits the 
spectral bandwidth of a function that can be represented by a Fourier series deter- 
mined by sampled values. That maximum bandwidth is 

The sampling interval At should therefore be chosen small enough to accommodate at 
least the entire spectrum of bound state energy levels or 

At < n/A V,,,,, , 

where A Vmax is the maximum excursion of the potential. Failure to meet criterion 
(10) will result in aliasing errors. Excellent results are normally assured when 

At < n/3 AV,,,,,. 

If the potential under consideration is unbounded, it will be necessary to apply an 
appropriate bound in order to apply the method. 

If the wave function is generated over a total time T, the minimum separation in 
energy levels that can be resolved is 

AE,i, = n/T. 

Equation (10) also provides an estimate of the accuracy with which individual eigen- 
values can be determined from the numerically computed energy spectrum without 
the aid of lineshape fitting techniques. With the aid of such techniques, on the other 
hand, the accuracy of eigenvalue determination implied by Eq. (12) can be improved 
by roughly two orders of magnitude. 

The excitation of energy eigenstates can be controlled by the selection of the initial 
wavefunction I&X, y, 0). There are various reasons for wanting to control the presence 
of eigenstates in the wave packet. One practical reason is to avoid exciting states with 
energy eigenvalues close enough to make it difficult to resolve the corresponding 
spectral lines. It may also be useful to control the number of states excited at one 
time to facilitate their classification. The choice of the initial wavefunction for one or 
more of these purposes can normally be based upon symmetry considerations. The 
simplification of the energy spectra by specification of the symmetry of the initial 
wavefunction is analogous to simplification of the Hamiltonian matrix by applying 
group theory to the symmetry properties of the Hamiltonian. 



SPECTRAL SCHRdDINGER SOLUTION 417 

3. CORRELATION FUNCTIONS, SPECTRA, AND EIGENVALUE DETERMINATION 

The solution to Eq. (2) can be expressed as a linear superposition of eigen- 
functions, 

(13) 

where the index j is used to distinguish states within a degenerate set and u,Jx, y) 
satisfies 

-( 1/2M) V2unj + VU, = E, unj. (14) 

Let us define the correlation function Yr(t) as 

If expression (13) is used in Eq. (15), the result is 

9,(t) = 1 IA,l* exp(-iE,t). 
n.1 

The Fourier transform of Eq. (16) is 

2qE) = 1 p,I* J(E -E,). 
n.i 

(15) 

(16) 

(17) 

The presence of the a-functions in Eq. (17) implies that an infinite length record of 
the correlation function Y(t) is available. In practice, only a finite record of length T 
is available, either from observation or computation. We take account of this fact by 
multiplying the right-hand side of Eq. (16), before Fourier transforming, by the 
normalized Hanning window function w(t)/T, where 

The result is 

w(t) = 1 - cos(27ct/T), if O<t<T, 

= 0, if t>T. 
(18) 

q(E)=c W&F--A (19) 
n 

where the relative weights of the states are 

wn =C IAnj12 (20) 
j 
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and the lineshape function g(E - E,) is defined by 

“;‘“-EJ=+j; exp [ i(E - E,)t] w(t) dt 

= exp[i(E - E,)T] - 1 1 exp{i[(E-E,)T+ 27~1) - 1 -- 
i(E - EJT 2 [ i[(E-EE,)T+ 2n] 

+ exp{i[(E - EJT- 27r]} - 1 

I i[(E-EJT-2x1 * (21) 

Without the window function, the individual resonances would resemble the function 
sin(f(E - E,)T)/(E - E,), whose sidelobes might be confused with or overlap other 
resonances. Employing the window function (18) in the Fourier transform greatly 
reduces the amplitudes of these sidelobes and makes possible an accurate iden- 
tification of the positions of the resonances. 

The procedure for calculating eigenvalues is straightforward. The correlation 
function %Yi(t) is evaluated numerically by trapezoidal integration for each time step, 
the Fourier transform ,P,(E) is evaluated numerically from the sampled values of 
.9,(t) upon completion of the desired number of integration steps, and, finally, the 
data set for 9,(E) is fit to the form of (19). For most cases, excellent results are 
obtained by assuming a single-line fit or 

<q(E) = W,q(E -E,) (22) 

for E - E,. Occasionally, when resonances overlap significantly, the accuracy of the 
weights W,, can be improved with a multiline nonlinear least square fit, but even in 
such cases, the eigenvalues can still be determined to high accuracy from the single 
line tit expression (22). The single line tit is reviewed in the Appendix. 

4. COMPUTATION OF EIGENFUNCTIONS 

If both sides of Eq. (13) are multiplied by TP’w(t) exp(iEt) and integrated from 0 
to T, the result is 

w(x, y, E) = G j” v(x, Y, t) w(t) exp(iEt) dc 
0 

=C A,UJX,Y) %(E -En), 
n,j 

(23) 

where the integration is to be interpreted as numerical using the trapezoidal rule. 
The function t&x, y, E) will exhibit a maximum whenever E = E,. If E,, is a 

particular member of the set E,, ~(x, y, E, ,) can be written 

W(X,y,E,,)=CA”,ju”,j(X,Y)~(O)+C”.j’”j(X,Y)~(E,,-‘E,), (24) 
i n,.i 
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where the prime on the second summation implies omission of terms corresponding to 
n = n’. 

For negligible overlap between the resonant terms in Eq. (23), the second 
summation in Eq. (24) can be neglected, and to an excellent approximation one has 

(25) 

If one chooses the initial wavefunction ~(x, y, 0) so that at most one member of a 
degenerate set of states is excited at one time, the numerical computation of a 
particular eigenfunction u”(x, y) reduces to the numerical integration 

.T 

24,(x, y) = const X J ty(x, y, t) w(t) exp(iE, t) dt = const X ~(x, y, E,). (26) 
0 

Generation of the eigenfunctions by means of Eq. (26) requires prior knowledge of 
the energy eigenvalues and consequently one or more additional time dependent 
solutions of the Schrodinger equation. The number depends on computer storage 
available for the eigenfunctions that are generated simultaneously with ~(x, y, t). 
Obviously, storage requirements are the least stringent for one-dimensional problems 
and a large number of eigenfunctions can be generated simultanously in a single 
computer run. 

Tests have shown that eigenfunctions computed in this manner are exceedingly 
accurate [ 11, 151. Diagonal matrix elements for a harmonic oscillator potential can 
be computed to an accuracy of one part in lo6 using wavefunctions constructed in 
this manner [ 111. Recently, Davis and Heller used an expression similar to Eq. (26) 
with a I,V(X, y, t) determined from semi-classical considerations to generate individual 
eigenfunctions [ 181. 

5. FURTHER COMPUTATIONAL CONSIDERATIONS 

There is as yet little concrete information on the relative computational efficiencies 
of the spectral method and matrix diagonalization. A few general comments, 
however, are in order. 

In applying the procedure to the determination of energy eigenvalues, a prepon- 
derant fraction of the computer time goes to the generation of the time-dependent 
wavefunction by Eqs. (4)-(g). Equivalently, for a little more than the price of solving 
the time-dependent Schrodinger equation, the energies and probabilities of the 
component stationary states in a time-dependent wave packet can be determined. 
Since most of the computer time for advancing the time-dependent solution is 
invested in FFT computations, the computation time for the overall calculation scales 
as -MNk In N, where M is the number of time steps, k is the number of space 
dimensions required for the problem, and Nk is the number of grid points. In general, 
M is determined by the desired resolution of the energy levels and does not vary with 
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the dimensionality of the problem. The number N* of plane wave basis states used in 
the calculation is equal to the number of grid points. Consequently, computer time 
must scale with the number of basis states as -MN* In N*. 

If the same problem is formulated and solved by matrix diagonalization using the 
same set of plane wave basis states, the computation time must scale at least as the 
time required for diagonalizing the matrix, or as wN*~, implying that for problems 
requiring large numbers of basis states, matrix diagonalization could become less 
efficient than the spectral method. For certain potentials, it is possible to employ 
basis functions that minimize the required number N*, and there may be little or no 
relative penalty for having to perform NN*~ numerical operations. If one approaches 
the task of setting up a general computational scheme applicable to a wide variety of 
potentials, on the other hand, it becomes necessary to fix on a particular set of basis 
functions. In this more general case, the NN*~ numerical operations can result in a 
relative computational penalty. In addition, computation of the matrix elements can 
become an important factor in the overall time required. 

In conclusion, the relative computational efficiencies of the spectral and matrix 
diagonalization techniques can be expected to be problem dependent. The main 
attraction of the spectral method is that it is applicable with comparable efftciency 
and accuracy to a wide class of potential functions. 

6. 1-D ASYMMETRIC DOUBLE WELL POTENTIAL 

A potential of the form 

V(x) = k, - k,x* + k3x3 + k,x4 (27) 

was used to describe an asymmetric double well potential in [2, 16, 171. 
Computations with the spectral method were made for this potential and the 
parameter values k, = -132.7074997, k, = +7, k, = 0.5, k, = 1, corresponding to 
one of the cases treated in the above papers. The constant k, was selected to give a 
zero value to the potential for x = x, = 3.8 13 and x = x2 = -4.112. This constant 
value was continued for x > xi, and x < x2. The resulting potential is a finite well 
that replaces the unbounded potential of (27). The depth of the potential well was 
selected to satisfy criterion (11) for the time step At = 5.73. A plot of the potential is 
displayed in Fig. 1, overlaid with a plot of the initial wavefunction 

ty(x, 0) = exp[-(x - a)*/2cr2] + exp[-(x + a)*/2u2], (28) 

where a = 1.9 and cr = 0.87. The cutoff of the potential can affect the energy eigen- 
values for one or two levels near the top of the well but otherwise has a negligible 
effect on the remaining bound states. The value M = f was used in conformity with 
[171. 

The time-dependent solution to the Schrodinger equation was generated over 
16,384 increments in time. A computation with twice as many increments left the 
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-25 

-125 

t 

FIG. 1. Plot of I-D asymmetric double well potential and initial wavefunction used to generate 
energy spectrum. 

energy eigenvalues unchanged to seven significant figures. The computational grid 
contained 5 12 points with Ax = 0.825. Computation with 256 grid points resulted in 
changes of the energy eigenvalues in the seventh significant figure. Since this example 
was intended as an illustration, no attempt was made to optimize with respect to 
running time and accuracy. Acceptable accuracy for most applications could be 
obtained with far fewer time and space increments. 

The resulting energy spectrum is displayed in Fig. 2, which shows a total of 27 

Emw 
FIG. 2. Energy spectrum of bound states 01 :I\! mmetric double well potential. 



422 FEIT, FLECK, AND STEIGER 

bound levels. The energy eigenvalues are listed in Table I together with values for the 
same potential from [ 2, 16, 171 where available. The eigenvalues determined by the 
spectral method are also listed in reduced form with the origin shifted to correspond 
with those of [ 171, which locates the zero in the potential at the top of the hump 
between the two wells. 

The eigenvalues in [2] were calculated with a limited basis set of only 20 harmonic 
oscillator eigenfunctions. As a result, great accuracy is not expected. In [ 161, the 
number of harmonic oscillator basis functions was increased to 30, which improves 
accuracy substantially. Agreement between [ 161 and the spectral method results is 
good for the four lowest order levels, but becomes successively worse with increasing 
order after that. Computation in [ 171 is based on a combination power series and 
WKB solution. The authors of [ 171 claim accuracy in three to five places after the 

TABLE I 

Energy Eigenvalues E, for Asymmetric Double Well Potential 

Spectral method 

n Ref. 2(SH) Ref. 16(PS) Ref. I7(ZT) Reduced Unreduced 

0 

I 
2 
3 
4 
5 
6 
7 
8 
9 

IO 
II 
I2 
I3 
14 
I5 
I6 
I7 
18 
I9 
20 
21 
22 
23 
24 
25 
26 

-12.2550 -12.2585 -12.258824 
-6.0450 -6.0455 -6.045688 
-5.265 -5.286 -5.287076 
-0.625 -0.646 -0.647054 

0.735 0.692 0.689775 
4.210 4.059 4.051291 
7.55 7.3785 7.364894 

II.85 11.2665 II.227179 
16.70 15.5125 15.413241 

-12.258438 -144.96594 
-6.0454 I8 -138.7533 1 
-5.286089 -137.66686 
-0.646627 -133.35413 

0.691204 -132.01629 
4.053229 -128.65342 
7.368937 -125.33856 

11.235521 -121.47198 
15.431918 -I 17.27558 
19.938752 -112.76882 
24.722016 - 107.98548 
29.758660 -102.94872 
35.029816 -97.67768 
40.5 19900 -92.18760 
46.215701 -86.49180 
52.105824 -80.60168 
58.180283 -74.52721 
64.430175 -68.27733 
70.847383 -61.86011 
77.424233 -55.28325 
84.152963 -48.55450 
9 1.024978 -4 1.68244 
98.029195 -34.67820 

105.149081 -27.5581 I 
112.356276 -20.35076 
119.592224 -13.11431 
126.704585 -6.00153 

- - - 
- - 
- 

- 
- - 
- 

- - 
- 
- 

- 

Note. Comparison between spectral method, Ref. [2](SH), Ref. [ I6](PS), and Ref. [17](ZT). 
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FIG. 3. Selected eigenfunctions for asymmetric double well potential. 

decimal point. The agreement with the spectral method is this good for the lowest two 
levels only. Agreement is to at least three significant figures throughout, however. 

Figure 3 shows selected eigenfunctions calculated using Eq. (26). The lower order 
eigenfunctions in Fig. 3 resemble closely their counterparts in [ 2, 171. 

7. HBNON-HEILES POTENTIAL 

We turn our attention next to the H&non-Heiles potential which has the 
following form in Cartesian coordinates: 

qx, y) = $l4(o;x* + co; y’) + Lx( y2 - ix’). (29) 

For M = 1 and o, = w2 = 1, the potential (29) becomes in polar coordinates 

V(r) = r*/2 - (A/3) r3 cos 38. (30) 

Energy eigenvalues and eigenfunctions were determined with the spectral method for 
I = 0.1118034, corresponding to a dissociation energy V, = 13.3333. Energy 
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eigenvalues for this potential were previously determined by matrix diagonalization 
and can be found in [3-61. 

A contour plot of the potential (30) is shown in Fig. 4a. The spectral method, 
however, requires a cutoff, which was imposed at 25 percent above the dissociation 
energy. A contour plot of the bounded potential used in the computations is shown in 
Fig. 4b. 

Computations were made on a 128 x 128 grid of length L,, = 12.5. The time- 
dependent solution of the Schrtidinger equation was advanced in increments 
At = 0.025. 

A. Symmetry Conditions and the Choice of Initial Wave Functions 

The complete spectrum of energy levels below the dissociation energy, computed 
from an initial wavefunction composed of randomly phased plane waves is shown in 
Fig. 5. The number of integration steps is 8192. Unfortunately, this spectrum is not 
suitable for an accurate determination of all of the desired eigenvalues. Some of the 
lines in this spectrum really represent overlapping resonances that result from the 
narrow splitting of degenerate levels of the harmonic oscillator. Although the 

FIG. 4. Contour plot of (a) Hinon-Heiles potential, (b) H&non-Heiles potential cutoff at twenty-five 
percent above the dissociation energy used for computations. 
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10-10 

10-12 

FIG. 5. Energy spectrum excited by random superposition of plane waves for stationary states of 
Hinon-Heiles potential below the dissociation energy. 

resolution of such a spectrum can always be enhanced by developing the numerical 
solution to the Schrodinger equation over a longer time, it is more profitable to make 
multiple runs with initial wave functions of selected symmetry to avoid ‘the 
simultaneous excitation of closely spaced energy levels. We thus turn our attention to 
the symmetry properties of the potential (Eq. (30)) and the corresponding 
wavefunction. Although much of the following exposition represents a recapitulation 
of the properties of the group C3”, which is a symmetry group of the potential of 
Eq. (30), its completeness is essential to properly explain the choice of initial 
conditions for the time-dependent Schrodinger equation. 

Clearly, the Hamiltonian of (30) is invariant under a rotation of 2x/3 in 8. If 9 is 
an operator such that St&-, 19) = ~(r, 8 + 2x/3), 9 and H must commute, and it is 
possible to find simultaneous eigenfunctions of 9 and H. Furthermore, the eigen- 
values of 5%’ satisfy the relation R3 = 1, or R = 1, exp(fi2x/3). Straightforward 
analysis shows that the eigenfunctions of the Schrodinger equation must therefore 
have the following general form: 

h(e) =-t-m +fi(e + 27~3) +fi(e - 2~13)~ 

24+(e) =f+(e) +f+(e+ 2x/3) edi2=13 +f+(e- 27c/3)ei2”13, (31) 

u-(e) =f-(0) +f-(0 + 2~/3) ei2n’3 +f-(0 - 2x/3) e-i2n’3, 

where for simplicity the dependence on r has been suppressed. Here 

9249 = U,(B), 22% + (0) = ei2=13u + (e), z%k(O)=e -i2=‘3u-(0). (32) 

If f,(0) is expressed as a Fourier series 

581/41/3-l 

(33) 
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u,(0) is expressible as 

u,(B) = -jJ (3~11,) ei318. 
I 

Similarly, if 

f+(e) = Cf+ P, 

f-(d) = C f- (eire, 
I 

(34) 

(3% 

W) 

then u + (6’) and u _ (0) are expressible as 

u+(O)=C (3f+ 3,+,)ei(31+1)e, u-(e) = c (3f- 3,-1) ei(3’-1)e. (36) 
I I 

The Hamiltonian of (30) is also invariant under reflection through the x axis. 
Let this reflection operator be called cr”. If u,(I, 8) is an eigenfunction satisfying 

the Schrodinger equation, IT, u,,(I, 0) = u,(r, -0) also satisfies the Schrodinger 
equation with the same energy eigenvalue. If f,(O) is chosen either even or odd, U, (0) 
is an eigenfunction of uV with eigenvalues f 1, respectively, or 

u,,u,(e) = *u,(e). (37) 

*ff+(e) and f-(e) are either both even or both odd, one obtains 

0,u,(e) = r+(e). (38) 

If f+ (0) and f-(O) are neither even nor odd, it is clear that 0,~ + and crz, U- must be 
representable as a linear combination of u+(e) and u-(e). In either case, the behavior 
of u + (r3) and u _ (0) under application of u implies that these sets of states are doubly 
degenerate. 

We can thus generate all energy eigenvalues in three separate runs with the initial 
wavefunction chosen to have the following forms: (a) u,(T, t9) with f,(r, 0) even, (b) 
u,(r, t9) with f,(r, t9) odd, (c) either u+(T, 0) or U-(r, 8). In this manner, all of the 
states of the three important symmetry types can be excited separately and the 
overlap of narrowly split degenerate levels can be avoided. Equations (34) and (36) 
serve as a model for the initial wavefunctions. The actual excitation functions used 
were 

w&, 8, 0) = exp(-r2/2u2) C (r/~>~’ iv,, cos 318, 
n=o 

(394 

v/,&, 8, 0) = exp(-r2/2u2) jJ (r/u)“’ N,, sin 318, 
l=O (39b) 

v+(r, e, 0) = exp(-r2/2u2) 2 (+J)~~+’ N,,, , exp[i(31+ i)el, 
I=0 (39c) 
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where o = 1.5 and 

Iv, = (2/l!) - 1’2 (40) 

is a normalization coefficient. Functions (39a)-(39c) are chosen to have the same 
form in the limit I--, 0 as solutions to the Schrodinger equation for a harmonic 
oscillator potential, namely, 

un,(r, 0) = exp(il6) exp(-r2/2a2)(r/0)’ LL(r*/a*), 

where L!,(r*, a’) is a generalized Laguerre polynomial. 

(41) 

B. Energy Eigenvalues 

Figure 6 shows the energy spectra for states of the three symmetry types resulting 
from excitation by the initial wave functions (39a)-(39c). Energy eigenvalues 
computed in runs of 16,384 steps are listed in Table II, in addition to corresponding 
values from [4-61. Each run required 13 minutes of time on a CRAY 1 computer. 

102 

100 

_B 
10-z 

ii 

10-4 

10-a 

10-s 

FIG. 6. Energy spectra for H&on-Heiles potential below the dissociation energy for states of three 
main symmetries (a) R = 1, u, = 1; (b) R = 1, u,. = -1; (c) R = exp(i2n/3), exp(-i2n/3) (degenerate 
states). 
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TABLE II 

Energy Eigenvalues for the Hinon-Heiles Potential 

Quantum numbers Ref. [4](NM) 
n I Ref. [6](NKTM) Ref. 5 (DH) 

Spectral 
method 

0 0 0.9986 0.9986 0.9986 
1 1 1.9901 1.9901 1.9901 
2 0 2.9562 2.9562 2.9563 

2 2.9853 2.9853 2.9854 
3 1 3.9260 3.9260 3.9261 

3 3.9824 3.9824 3.9825 
-3 3.9858 3.9858 3.9859 

4 0 4.8702 4.8701 4.8703 
2 4.8987 4.8986 4.8988 
4 4.9863 4.9863 4.9864 

5 1 5.8170 5.8170 5.8172 
3 5.8670 5.8670 5.8672 

-3 5.8815 5.8814 5.8816 
5 5.9913 5.9913 5.9915 

6 0 6.7379 6.7379 6.7381 
2 6.7649 6.7649 6.7650 
4 6.8534 6.8534 6.8538 

-6 6.9989 6.9989 6.9991 
6 6.9994 6.9994 6.9996 

7 1 7.6595 7.6595 7.6597 
3 7.6977 7.6977 7.6979 

-3 7.7369 7.7369 7.7371 
5 7.8327 1.8327 7.8329 
7 8.0094 8.0094 8.0096 

8 0 8.5541 8.5540 8.5542 
2 8.5764 8.5764 8.5165 
4 8.6779 8.6779 8.6782 

-6 8.8113 8.8113 8.8116 
6 8.8152 8.8152 8.8154 
8 9.0217 9.0217 9.0220 

9 1 9.444 9.444 1 9.4442 
3 9.467 9.4668 9.4670 

-3 9.552 9.5524 9.5526 
5 9.629 9.6294 9.6296 
7 9.794 9.7941 9.7944 

-9 10.0354 10.0354 10.0356 
9 10.0356 10.0356 10.0359 

10 0 10.3052 10.305 1 10.3053 
2 10.318 10.3184 10.3185 
4 10.463 10.4636 10.4637 

-6 10.573 10.5729 10.5727 
6 10.590 10.5905 10.5907 
8 10.774 10.7740 10.7742 

Table continued 
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TABLE II (Continued) 

Quantum numbers 
n I 

Ref. [4](NM) 
Ref. [6](NKTM) Ref. [S](DH) 

Spectral 
method 

10 11.0497 
11 1 11.152 

3 11.160 
-3 11.325 

5 11.383 
7 11.534 
9 11.750 

-9 11.752 
11 11.968 

12 0 Il.966 
2 12.065 
4 12.206 
6 12.334 

-6 12.277 
8 12.480 

10 12.712 
12 12.748 

-12 13.052 
13 1 12.762 

3 13.077 
-3 13.087 

5 13.081 
7 13.233 

11.0497 
11.1518 
11.1603 
11.3259 
11.3835 
11.5337 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

11.0500 
11.1517 
11.1603 
33.3253 
11.383 1 
11.5337 
11.7497 
11.7525 
11.9679 
11.9659 
12.065 1 
12.2054 
12.3335 
12.2771 
12.4801 
12.7116 
12.1414 
13.0310 
12.7609 
13.0772 
13.0868 
13.0800 
13.2319 

Nofe. Comparison between Ref. [4](NM) (four figures aRer decimal), Ref. [6](NKTM) (three 
figures after decimal), Ref. [5](DH), h w ere available, and spectral method. 

The large number of steps were computed to ensure the resolution of some closely 
spaced states near dissociation. The computations in [4], which took advantage of the 
tridiagonal structure of the Hamiltonian matrix, were based on sets of 406 and 595 
basis states, and the computations in [6] required sets of 990 and 1225 basis states. 

The ordering of the eigenvalues is analogous to the conventional ordering of the 
states of a two-dimensional harmonic oscillator. This ordering principle becomes less 
physically meaningful for the higher order states most affected by the perturbing term 
in Eq. (30), but it nonetheless serves as a classification scheme. 

The states with values of 1 equal to zero or a multiple of three are generated with 
Eqs. (39a) and (39b). The +I and -1 values that are multiples of three are arbitrarily 
assigned to the states with even and odd symmetry, i.e., to those originating from 
Eq. (39a) and Eq. (39b), respectively. States with the remaining I values are generated 
with Eq. (39c). Energy eigenvalues are assigned a principle quantum number n and 
angular quantum number f in accordance with the hierarchy of states of the two- 
dimensional harmonic oscillator. Where harmonic oscillator states for more than one 
1 value are degenerate, the highest eigenvalue is assigned to the highest I value. Our 
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classification scheme is in almost complete agreement with that employed in [4,6]. 
The only exceptions are the interchange of states (n = 12, I = f 12), with states 
(n= 13, l=*3), and state (n= 11, I= 11) with state (n= 12, l=2). 

All three eigenvalue sets listed in Table II are in very close agreement. Where [4, 
51 agree to four figures after the decimal place, the spectral method results are consis- 
tently higher by 1 to 3 in the fourth figure after the decimal. It should be stressed, 
however, that the spectral method is based upon numerical solutions for the 
wavefunction, whereas Hamiltonian S matrix elements are available in analytic form 
for the Hbnon-Heiles potential, which eliminates one’ source of approximation error 
in the matrix diagonalization approach. In any case, the high accuracy achieved by 
the spectral method for the Henon-Heiles potential should be attainable for suitably 
well-behaved potentials whose corresponding Hamiltonian matrices are not 
expressible in simple analytic and/or tridiagonal form. 

C. Wave Functions 

Contour plots of the square amplitude of selected wave functions calculated with 
Eq. (26) are shown in Figs. 7 and 8. The effect of the C, symmetry of the potential is 

5 I" I 'I""1 I I ' / f I" r T. 
n=3, P=l n=3, P--l 

-6 - l- 
I I I I,,, I I,,,, I 8, I , 

5-I ’ I ’ ’ 1 ’ ’ ’ g L-1 ’ I ’ ’ 1 ’ I 3 ’ -J 
n=3,!?=3 n=3,P=-3 

O- 

&, 

-5 - 
I, I ,I I I I I / I,,,, 1 

-5 0 5 -5 0 r 

FIG. 7. Representative wavefunctions for states of Hinon-Heiles potential: contours of square 
amplitudes. 
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-5 0 5 -5 0 5 

FIG. 8. Representative wavefunctions for states of H&non-Heiles potential: contours of square 
amplitudes for I = 0 states. 

evident. The distortion is most noticeable for the I= 0 wavefunctions whose contours 
would be circles if only the harmonic oscillator part of the potential were present. In 
Fig. 8, we see the progressive deformation of 1= 0 wavefunctions with increasing 
values of the principal quantum number n. 

8. SUMMARY AND CONCLUSION 

We have described a new method for determining the eigenvalues and eigen- 
functions of the Schrodinger equation. This new method, which we have called the 
spectral method, relies on a kind of numerical spectroscopy for extracting the eigen- 
values from correlation data. The latter are obtained by solving the time-dependent 
Schriidinger equation using the split operator FFT method and correlating the time- 
dependent wavefunction with the initial wavefunction. States of particular symmetry 
can be isolated and studied by properly choosing the initial wavefunction for the 
calculation. Such a procedure is useful for distinguishing states with very closely 
spaced energy eigenvalues. In sample calculations, the accuracy of the spectral 
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method has been demonstrated to be comparable with that of the matrix 
diagonalization technique. The principal attraction of the spectral method, however, 
is that it can be applied to a general set of potentials with little variation in efficiency. 
It should be particularly useful for potentials that are specified numerically or that 
would require numerical integration for the evaluation of matrix elements. 

APPENDIX: LINESHAPE FITTING METHOD 

The lineshape function q(E - E,) can be written 

q@)=;r;@)-f[Lq6+ 1)+&(6-l>], (Al) 

where 

T(6) = (exp(2&) - 1)/2&, 

and 

6 = (E - E,)T/2z (A3) 

Let us assume that a local maximum in the sampled values of Y,(R) occurs for 
E, = m AE, where AE is the sampling interval in the computation of the numerical 
Fourier transform 9,(E). In the range (m - 1) AE < E < (m + 1) AE, YI(E) can, to 
an excellent approximation, be represented as 

LZ(E> = W&(E -E,), (A4) 

where E, is the desired eigenvalue. Let the following ratio be formed from sampled 
values of -P,,(E) in the neighborhood of E, : 

~Z(&)=9~[(m+ l)AE]/91[(m- l)AE]=g(6’+ 1)/q@‘- l), WI 

where 

6’ = (E, -En) T/27r. 

Making use of Eqs. (A2) and (A3), we can write Eq. (A5) as 

(d’* - 36’ + 2)/(6’* + 36’ t 2) = R, 

G46) 

(A7) 

or equivalently 

B’* - 36’r + 2 = 0, 648) 

r=(l tR)/(l-R). (A9) 

where 
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The appropriate solution to Eq. (A8) is 

6’ = (-3r + (9r* - 8)“‘)/2, R < 1, 

= (-3r - (9r* - 8)“*)/2, R > 1. 
(‘4 10) 

In terms of the line-center offset parameter 29, E, then can be determined from 

E, = E, - 2&‘/T, (All) 

and W, can be obtained from 

W,, = Yl((m dE)/g (S’). 6412) 
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