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A method to describe the quantum dynamics of photoinduced heterogeneous electron-transfer processes at
dye—semiconductor interfaces is proposed. The method is based on a model Hamiltonian, the parameters of
which are determined by first-principles electronic structure calculations and a partitioning scheme to define
localized donor and acceptor states as well as deaoceptor coupling matrix elements. On the basis of this
modeling procedure, accurate quantum dynamical simulations are performed employing the multilayer
multiconfiguration time-dependent Hartree method. As a representative example, applications to coumarin
343 adsorbed on titanium oxide nanoparticles are presented. The results of the simulations show that the
ultrafast electron-injection process in this system is accompanied by electronic coherence effects, which are
partially quenched due to electroninuclear coupling.

I. Introduction dynamics including the coupling to the nuclear degrees of

Photoinduced electron-transfer (ET) reactions at -dlye freedom. Since it is currently not feasible to carry out a full
semiconductor interfaces represent an interesting class of ETAuantum dynamical simulation of the interfacial ET dynamics
processes. In particular, the process of electron injection from that takes into account the coupling to the nuclear degrees of
an electronically excited state of a dye molecule into a freédom and employs an adequate electronic structure theory,
semiconductor substrate has been investigated in great detaiflifferent approximate strategies have been applied. One pos-
experimentally in recent yeatsl? This process represents a sibility is to use a first-principles electronic structure method
key step for photonic energy conversion in nanocrystalline solar 0 describe the dyesemiconductor system but employ an
cells26:9.18.1%E mploying femtosecond spectroscopy techniques, @pproximate treatment of the nuclear motion. An example is
it has been demonstrated that electron-injection processes afb initio molecular dynamics, where the dynamics of the nuclear
dye—semiconductor interfaces often take place on an ultrafast degrees of freedom are described classicafl? Another
(sub-picosecond) time scal&21113142For example, electron-  Strategy, which is particularly useful if an accurate, fully
injection times as fast as 6 fs have been reported for alizarin quantum dynamical treatment is required, is to use a physically
adsorbed on Ti@nanoparticle® in time-resolved experiments, ~ motivated model. A commonly used model to study heteroge-
and even faster ET times have been found for biisonicotinic neous ET processes at interfaces is the Anderbewns
acid on a TiQ surface employing resonant photoemission model?’ A[ong this I|ne,'several workers have studied the.
spectroscopy! Other interesting aspects of these ultrafast electron-injection dynamics based on models of reduced di-
interfacial ET reactions are the nonequilibrium character and mensionality, taking into account typically a single reaction
the influence of electronienuclear coupling. For example, mode!’?%-% Dissipative effects, such as vibrational relaxation
studies of dye-semiconductor systems with electron-injection of the reaction mode, have been considered (for weak coupling)
time scales on the order of a few tens to a few hundred within Redfield theony! In a recent model study, we have
femtoseconds indicate that the coupling of the electronic investigated in detail the influence of multidimensional coherent
dynamics to the nuclear (i.e., vibrational) motion of the and dissipative vibrational motion on the electron-injection
chromophore may have a significant impact on the injection dynamics}’ employing the self-consistent hybrid appro#ehi
proces$:2° As a result of this correlated electrorinuclear in combination with the multilayer multiconfiguration time-
dynamics, the electron injection in these systems is often not adependent Hartree methétiThese methods allow an accurate
simple exponential decay process and thus cannot be characterguantum dynamical description of the ET process beyond the
ized by a single rate constant. limitations of perturbation theory.

The theoretical stuqu of suchjnt_erfacial ET processes r.equ_ires To apply such models to experimentally studied systems,
a quantum mechanical description of the electron-injection various model parameters such as the energies and couplings
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on experimental specttd To simulate interfacial ET dynamics H =T+ [P V@] + |9Vl +Z [PV, +
in systems with multidimensional nuclear dynamics, we have ° 9o

recently employed a semiempirical strategy, where the vibra-
tional modes and electroniwibrational couplings were deter- Z(de/dk@kl + Vi @gl) (2.1)
mined by electronic structure calculatiohs'? while for the
donor—acceptor coupling and the description of the semicon-
ductor substrate an empirically parametrized tight-binding model
was utilized*34! As a step toward a fully first-principles-based
description of quantum dynamics in dysemiconductor sys- 1
tems, we propose here a method to determine the electronic T=- Z p|2 (2.2)
energies and donefacceptor coupling matrix elements from 2

electronic structure calculations.

The determination of doneracceptor couplings in ET  the potential energy in the electronic ground st#gQ), and
reactions requires, in principle, the definition of charge-localized the diabatic (donoracceptor) potential matri¥;(Q), which
diabatic states. To this end, several different approaches havedepend on the nuclear coordina®s The diagonal elements
been proposed, including the Mulliketdush methoti*5and of the diabatic potential matriX/yg andVi, describe the energies
its generalizatiotf*” as well as the fragment charge difference of the electronic donor and acceptor states, respectively, while
approactt® Besides these methods, which are specific to the the nondiagonal elementéy, characterize the doneacceptor
ET problem, there exist a variety of general diabatization ET coupling.
schemeg? The introduction of charge-localized diabatic states  The potential energy in the electronic ground stég,can
for dye-semiconductor systems involves the additional com- (at least in principle) rather straightforwardly be determined with
plication that a (quasi-)continuum of acceptor states (corre- electronic structure calculations. As discussed in the introduc-
sponding to the (quasi-)conduction band of the semiconductortion, the characterization of the diabatic (doracceptor)
nanoparticle or surface) has to be treated. Thus, the problempotential matrix Vj, however, requires the introduction of
involves the treatment of a single (or a small set of) discrete syitable diabatic donor and acceptor stateg[Jand |y
donor state(s), which is (are) embedded in a (quasi-)continuum B petermination of Electronic Energies and Donor
of acceptor states. This problem is closely related to the acceptor Coupling Matrix Elements. In our previous work
treatment of resonances in scattering theory, e.g., electronicon heterogeneous ET41we have used a semiempirical method,
resonance states in low-energy electramlecule scattering.  motivated by the Newns model of chemisorptf@nwith a
In this context, the projection-operator approdichas been  parametrization based on a tight-binding md@et characterize
proven to be a very useful concept to introduce localized diabatic the giabatic stategyqOand [yxDand thus to determine the
states’!53 For the present problem, we employ a method that glectronic energies and doreacceptor coupling matrix ele-
is similar to the projection-operator approach. The method is ments V. In the following, we will refer to it as the
based on a partitioning of the overall Hilbert space into a donor semjempirical Newns model.
and acceptor part and a subsequent separate diagonalization of A 5 first step toward a first-principles description of quantum

the two blocks o; thef_Hamlltonl_an rt1o define the donor and kdynamics in dyesemiconductor systems, we use here an
acceptor states. As a first step, In the present paper we wor approach based on electronic structure calculations. This ap-

Within the 'mean-field singlg—gleptron picture and use atomic proach is motivated by the projection-operator approach of
orbitals to introduce the partitioning. A treatment within corre- resonant electronmolecule scattering® Specifically, we em-
lated many-electron states will be the subject of future work. ploy a partitioning scheme based on density functional theory
(DFT) calculations for a complex of the dye molecule with a
II. Theory finite TiO- cluster. The scheme for defining the diabatic states

In this section, the theoretical methodology used to describe [#al}and [yillin the Hamiltonian (eq 2.1) is based on three
photoinduced ET reactions in dysemiconductor systems is  Steps: (i) a partitioning of the Hilbert space in a donor and

outlined. The major focus is thereby on the method to determine 8CCeptor group using a localized basis, (ii) a partitioning of the
electronic energies and donreacceptor coupling matrix ele- Hamiltonian according to the doneacceptor separation, and

ments. To keep the paper self-contained, we also discuss briefly(iil) & separate diagonalization of the donor and acceptor blocks
the method used to describe the nuclear degrees of freedom a8f the partitioned Hamiltoniaft. In the present paper, we work

well as the dynamical approach employed in the simulation. within the mean-field single-electron picture. Thus we identify
A. Electron-Transfer Hamiltonian. To study ET dynamics the effective Hamiltonian with the Fock (or KohiSham) matrix

in dye—semiconductor systems, we use an ab initio (first- and use the orbitals and orbital energies in the partitioning
principles)-based model for heterogeneous ET reactions. Within mEtth- ) ] )

this model the Hamiltonian is represented in a basis of the Various types of localized basis functions can be used to
following diabatic (charge-localized) electronic states that are Séparate the donor and acceptor space. Here, we employ the
relevant for the photoreaction: the electronic ground state of atomic orbitalsigjlused in the electronic structure calculation
the overall systenfiyy[] the donor state of the ET proceigs,] for thg overall_system. The atomic orbltals are based on Gausglan
(which, in the limit of vanishing coupling between chromophore  functions, which are well localized in space. The set of atomic
and semiconductor substrate, corresponds to the product of arProitals of the overgll systenfy;L]is divided into two groups
electronically excited state of the chromophore and an empty the donor group|{;T), which comprises the orbitals centered
conduction band of the semiconductor), and the (quasi-)- @t the atoms of the dye molecule, and the acceptor group
continuum of acceptor states of the ET reactjgpll(corre- (I¢{D), which includes the orbitals centered at the Teluster.
sponding in the zero coupling limit to the product of the cationic  Since it is advantageous to work with orthogonal orbitaFs,
state of the chromophore and a conduction band state of thethe set of atomic orbitals of the overall system is orthogonalized
semiconductor substrate). Thus, the Hamiltonian reads according to Levdin®7-58

with the kinetic energy of the nuclei (we use mass-scaled
coordinates and atomic units throughout the paper)
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|, z(sillz)jnm)jl:l (2.3) The diagonal blocks of the Fock matrix (eq 2.9) with indices
T d anda contain the energies of the localized chromophore states
and those of the cluster, respectively. The off-diagonal blocks
whereSdenotes the atomic orbital overlap matrix with elements contain the electronic coupling elements between chromophore
Sa = [glgil) The new basis functions obtaineé@,L) exhibit a and cluster sites. Identifying the donor stégeCwith one of
minimal deviation from the original ones in a least-square sense, the states|@’0 (based, e.g., on the orbital energy or the
and hence, their localization is preserved. In particular, the transition dipole moment to the ground state) and the acceptor
classification as donoi@;[) or acceptor [¢30) orbitals is still states|yOwith the statesg?[) the electronic energies and the
valid. In contrast to other orthogonalization procedures, such donor acceptor matrix elements are given\uhy = €dn Vik =
as the Gram Schmidt method, the symmetric orthogonalization ¢, andVe = Fyani respectively. It is obvious that this method
according to Levdin has also the advantage that it is “least can also be used in cases where several donor states are involved
biased". in the ET reaction.

The new set of orthogonal basis functions is then used to  The partitioning method discussed above is not limited to
partition the Fock (or KohrSham) matrix from the converged  dye—semiconductor systems with a finite semiconductor cluster
SCF (DFT) calculation into the two (donor and acceptor) pyt can, in principle, also be applied to a dye molecule adsorbed
subspaces. The Fock matrix in the orthogonal basis is given bygn an extended surface. One possibility is to employ a slab

~ /2 e1/2 model and electronic structure calculations with periodic bound-

F=S"FS (2.4) ary conditions. Alternatively, the effect of an infinite semicon-
ductor substrate can also be described using surface Green’s
function technique®? Within this method, the effect of the
infinite substrate enters via the self-energy. In the application
considered below, we have used a simpler approximate version
of this method to mimic the effect of an extended surface.

whereF denotes the Fock matrix in the original atomic orbital
basis. The Fock matrix can be arranged in the following denor
acceptor block structure

E= Faa Foa (2.5) Thereby a constant imaginary part is added to the atomic orbital
Faa Faa energies (in the orthogonal ba$q?§[j at the outer atoms of the
where the matrix elements are given by TiO, cI(;Jster. The details of this method are described in the
Appendix.
f:aﬂ = [@mf@{;m C. Characterization of Nuclear Degrees of FreedomTo
' characterize the nuclear degrees of freedom, the partitioning
= z E@ﬁlxi @i%@f‘nm (2.6) procedure outlined above has to be performed for each nuclear
I

geometry, thus resulting in diabatic potential energy surfaces
. . Vii(Q) and coordinate-dependent don@cceptor coupling
Here,.lc is the Fock operatonXiDdgnotg the molecular orbitals  matrix elements/g(Q). If many nuclear degrees of freedom
resulting from the SCF calculation, i.d[yil)= «xilJand the  gre important, as in the system considered below, such a global

Greek indiceso. and 8 denote either the donor ) or the characterization of the potential energy surfaces is not feasible.

acceptor (&") subspace. A more practical, local procedure is to employ the normal modes

Separate diagonalization of the two (donor and acceptor) (Q) of the electronic ground state and expand the diabatic
blocks of the Fock matrida via potential matrix elements;(Q) around the equilibrium geom-

_ e etry of the ground state of the overall system. This approach is

Foa = DaFaeDa (2.7) appropriate for photoinduced ultrafast dynamics in systems

. . . without large amplitude motion. It has been applied recently
and transformation of the off-diagonal parts to the corresponding ¢, the related problem of molecular conduction through a

eigenstates in the two blocks metal-molecule-metal junctiorf?

For the present purpose of testing the partitioning procedure,
we adopt the strategy used in our previous work, where the
vibrational parameters and electronigbrational coupling
parameters are determined based on electronic structure calcula-

Fos = Dj;r:aﬂoﬁ (2.8)

result in the following prediagonalized block structure

€1 0 ... tions .for the isolatgd chromophore, thereby neglecting the
0 ' €4 I‘:d couplmg_ to the semiconductor _substrate and to the_phonons pf
E E oL 2 the semiconductor. The extension of the method to include this
F— I—:dd Ifda I S 2.9) interaction will be presented in a future publication.
ad " aa - al ’ The approach has been described in detail elsewhere.

Fad 0 € .. Briefly, we perform a vibrational analysis of the isolated
N chromophore in the electronic ground state and employ the
harmonic approximation for the corresponding potential energy
The corresponding donor and acceptor molecular orbitals, surface
|paC)are given as the eigenvectorskaf, and are related to the

orthogonalized atomic orbitalgp*0and the original atomic . 1 2 2
orbitals ¢ Dvia : Ve Q=egt 7 Z Q°Q (2.11)
—Q ~ QL
|7al= Jz(D“)i”WJ . Here,Q denotes théth normal mode (with frequenc®,)), and
€gis the ground-state equilibrium energy. The latter is obtained
= Z(Da)jn(sfllz),jkp,D (2.10) from an electronic structure calculation for the overall (eye
i semiconductor) system. We assume the demarceptor cou-
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pling matrix elementd/q to be approximately independent of The parameters of the solvent part of the Hamiltonian are
the nuclear geometfyand expand the diabatic potential energy characterized by the spectral densities
surfaces around the equilibrium geometry of the electronic

ground stateQp T (C,-d)2
_ _ Jw) == > —— o - ) (2.17a)
V”(Q) = ij(Qo) + Z ©Q + Z QQ:  (2.12) 297 o
. L . 7 (Cja)z
In the simplest approximation, only the linear term of the I (w) =— z — (v — w) (2.17b)
expansion is taken into account. The frequencies are ap- 29 o J

proximated by their ground-state values, and Dushinsky rota-
tion®2 of the normal modes is neglected. In this way we obtain in the donor and acceptor states, respectively. The spectral
densities describe the response of the solvent polarization to
i 1 the change of the charge distributi f th lut iated
. i < 22 g ge distribution of the solute associate
Vi Q= Vi (Qo) + Z KiQ + 2 Z Q" (213) with electronic transitions from the ground electronic state to
the excited state of the chromophore and to the cation,

This approximation has been used successfully to describerespectively. In principle, the spectral densities can be different
Franck-Condon and resonance Raman spe®tteis also used for the two electronic transitions. Here we use for simplicity a
in the linear vibronic coupling model of conical intersectitns modeling where the response of the solvent for both transitions
and in the Marcus theory of ES. is described by a coupling to the same bath that differs only in
Within the description of the nuclear degrees of freedom the overall coupling strength, i.eci = ac. (Accordingly, in
employed here, the parameters of the diabatic potential energythe following the superscrlpt for the COUP“”Q constants will be
surfaces of the donor and acceptor states are obtained from thémitted, i.e.. = C .) Itis emphasized that this approximation
potential energy functions of the excited state of the neutral is only invoked for the solvent bath modes but not for the
chromophore and the ground state of the cation of the chro- intramolecular modes. This description is in accordance with

mophore, respectively. Accordingly, we have simple dielectric continuum theories of relaxation in polar
solventst:68-70 As a result of this assumption, we have
1
Vel Q) = €4+ Z KQ + ) Z QQ7 (2.14a) x_ ¢
I¥(w) = 0PI(w) = aZE > —d@-w) (218

— a 1 2~ 2 : w]
VilQ = et Z QT 2 Z QT (2140) The solvent reorganization energies associated with the
transitions from the electronic ground to the excited state and
whereeq and e, denote the energy of the donor and acceptor to the cation of the chromophore are given by
states (at the equilibrium geometry of the ground state),

respectively, which are obtained from an electronic structure (de)z cj2

calculation of the overall system. The electronigbrational W=y —=y — (2.19a)
coupling constantszg,d and«?, are obtained from the gradients ] 260,-2 ] 2wj2

of the excited state of the neutral chromophore (corresponding

to the donor state) and the ground state of the cation of the (c:Jf"‘)2 c:j2

chromophore (corresponding to the acceptor state) at the 2= —zaZZ— (2.19b)
equilibrium geometry of the ground state of the neutral T 202 T 2w.°

chromophore. The details of the electronic structure calculations
as well as the specific parameters for the system consideredThe solvent reorganization energy for the ET process, which
below (coumarin 343 at titanium oxide) are described else- corresponds to a transition from the electronically excited state

where#142 to the cation of the chromophore, however, is given by
In most experiments on electron injection in ehgemicon-

ductor systems, a colloidal solution of dye-sensitized nanopar- (c -G 2)2

ticles was employe@>513To account for the influence of the AFT= Z =1- )7 Z — (2.20)

surrounding solvent on the ET dynamics in our simulations, ]
we employ a standard (outer-sphere) linear response Afotfel

where the Hamiltonian of the dyesemiconductor system is As has been discussed in detail in ref 41, the spectral densities
coupled linearly to a bath of harmonic oscillators. Thus the of the solvent model are chosen to be of bimodal form
Hamiltonian of the overall system reads

l

Ac® ww
droy — 267 lwlug)? b
H=H,+ H, + Hg, 215) @) =vm g © T2 g (2.218)
with Hs given by eq 2.1 and
sgiven by ed () = 021%w) (2.21b)
Hb:}z (p_2+w_2xl_2) (2.16a) with a Gaussian part accounting for the ultrafast inertial
2 ' . dynamics of the solvent polarization and a Debye part describing

the slower diffusive decay. The corresponding parametgss,
Hy, = deDZ o Gyl + Z |1/)sz cx [y (2.16b) =144 cml, wp = 25 cn'?, A% = A4 = 700 cn1?, ando =
] ] —0.1, have been chosen in accordance with experimental results
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on solvation dynamics and absorption spectra of coumarin 343 4kt= § B*"(t)|ul(t) (=
in waterl371 " Z

D. Observables of Interest and Dynamical Methods. QK
Several observables are of interest for the study of heterogeneous z z Z B,kl,r; iy, () |_| |9t 0 (2.26)
ET in dye-semiconductor systems, in particular, the electronic TRl iom WL

population dynamics, the associated nuclear wave packet

dynamics, as well as stationary and time-resolved spectra. Ini.€., the basic strategy of MCTDH is adopted to treat each SP
this work, we will concentrate on the photoinduced electronic function. Here Q(k) denotes the number of level two (L2) SP
injection dynamics, which are most directly reflected by the degrees of freedom in thkth level one (L1) SP group, and

time-dependent population of the donor state v (®0is the L2-SP function for thetth L2-SP degree of
freedom. Employing two dynamical layers, the expansion of
Pyt = the overall wave function can thus be written in the form
o Trle My Mgy Mpgle ™ (2.22) wHo= Y A ®
g A 2272 P

- M QK

Here, we have assumed that the system is initially prepared by Kj kg

an ultrafast laser pulse in the donor stapell The initial state X !][Z Z Z Bilizk-'- iQ(k)(t) I] |Uiq O (2.27)
of the nuclear degrees of freedom is specified by the Boltzmann ook fow =

operator &My of the nuclear Hamiltonian in the electronic

ground state The extension to more dynamical layers is obvious. In the

calculation considered below up to three dynamical layers are
1 1 employed.

_ 2 202\ 4 = 2 2,2 The equations of motion within the ML-MCTDH approach
Hg 2 Z (P*+ Q79 + 2 Jz B+ o) (223 . be obtained from the Diradrenkel variational principlé?
For two layers, they are given by

To simulate the quantum dynamics of this system, we use N s
the multilayer (ML) formulatioA®72 of the multiconfiguration PO coeticiems= HOIP(OD (2.282)
time-dependent Hartree (MCTDH) metH&d'® in combination _— _
with an importance sampling scheme to describe the thermal'@ (DL coeficients =
initial conditions in the observables introduced above. The [1 — PXOI 0] TH(1) K4 ()0 (2.28b)
method as well as applications to different reactions in the
condensed phase have been described in detail previgdsiy. i gk'q(t) s coefficients=
Here, we only briefly introduce the general idea and give some Ak, Ak =127 idy k.
details specific to the application in this work. [1 — PO 0] E‘V{(t)ﬁqw (t) (2.28¢)
The ML-MCTDH methodC s a variational approach for the
description of quantum dynamics in systems with many degrees
of freedom. It extends the original MCTDH metH8d’® for
application to significantly larger systems. In the original (single-
layer) MCTDH method, the overall wave function is expanded
in terms of time-dependent configurations

where the mean-field operators, reduced densities, and projection
operators are defined in ref 40. The equations of motion for
further layers are again obvious extensions of eq 2.28. The
inclusion of several dynamically optimized layers in the ML-
MCTDH method provides more flexibility in the variational
functional, which significantly advances the capabilities of
performing wave packet propagations in a complex system. This
|W(t) = Z AP, = has been demonstrated by several applications to quantum

dynamics in the condensed phase including many degrees of

E E - K freedom37.:40,72,7780
2 Az ! | |$i(D0(2.24)

i 2 v —

[ll. Application to the Dye —Semiconductor System
Coumarin 343—-TiO;

As a representative example of interfacial ET processes, we
consider photoinduced electron injection in the €gemicon-

Here, |¢j‘f<(t)Dis the “single-particle” (SP) function for thkth
SP degree of freedom, aMidenotes the number of SP degrees

of freedom. Each SP group usually contains several (CarteSian)ductor system coumarin 343 (C343Ji0,. This system has

gtlaogfreest.of free.dr?.m It? our calcéuFI)a(';lon, andff;n r cgnvemencr? the been investigated experimentally by a number of gréiy§s.3-81
unctions within the same egree ot lreedom are ¢ Oser]?ecently, we have studied the electronic injection dynamics as
to be orthonormal. well as the associated nuclear wave packet dynamics in this
In contrast to the original MCTDH method, where the SP system employing a semiempirical Newns motietere, we
functions are represented by time-independent basis functionsapp|y the first-principles model outlined above.
A. Characterization of the System, Donor-Acceptor
K= Z BE(t)|ukD (2.25) Separation, and Coupling Matrix Elements.To model C343
adsorbed on Ti@nanoparticles at the atomic level, we have
considered complexes of C343 with anatase ;Téfisters of
the ML-MCTDH method employs dynamiccontraction of the different sizes, as depicted in Figure 1. All interatomic distances
basis functions that constitute the SP functions. To this end, aand valence angles of the Ti@lusters were taken from the
time-dependennulticonfigurational expansion of the SP func-  X-ray structure of bulk anata$éTo avoid artificial effects due
tions is used to dangling bonds, the clusters were saturated by adding
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Figure 1. Complexes of C343 with the clusters (B)H20) (left image), (TiQ)s(H20)14 (middle image), and (Tig)24(H20)s0 (right image).

hydrogen atoms and hydroxyl groups to the boundary oxygen C343 Donor  Complex  Acceptor  Cluster
and titanium atoms, respectively. The number of added hydrogen ; i
atoms and hydroxyl groups as well as the adsorption sites were
chosen in a way to obtain neutral closed-shell clusters with high oF—— [ i
coordination of the boundary titanium and oxygen atoms. Very ' ' [Uq)
similar saturated cluster models have been used to study surfac LUMO '
photoreactions on anatase nanoparti€las well as adsorption | '
of water and catechol on the (101) anatase sufackne
adsorption site of the clusters is characterized by two titanium
atoms from the (101) surface of anatase (see below). The
minimal model that can capture all of these features is the cluster I
(TiO2)2(H20)s (Figure 1, left image). However, significantly _
larger clusters had to be considered to minimize boundary : | =
effects. Well converged results could be obtained with the cluster  _1g ! I
(TiO2)24(H20)30, and only these results will be reported in the  Figure 2. Representation of the energy levels of the system investi-
following. gated. Shown are (from left to right) energy levels of the isolated

To obtain the structure of the C348Ti02)24(H20)30 complex chromophore C343, the donor molecular orbita@d‘lj as obtained
shown in Figure 1 (right image) we have used the following from the partitioning procedure, the complex (Bj§(H20):0C343, the
protocol: The geometry of isolated C343 was taken from an acceptor molecular orbital$g;) as obtained from the partitioning
earlier study*? The deprotonated form of C343 was aligned to Procedure, and the pure cluster (}jéXH:0)s. The orbital chosen as
the saturated (Tigs(H,O)w4 cluster (Figure 1, middle image) the donor state is denoted WdD Furthermore, correlations between

L . - selected energy levels are indicated.

by optimizing the ground-state energy in internal coordinates.
Thereby, the internal nuclear degrees of freedom of C343 and
of the cluster were kept fixed, and only the six relative calculations were performed with the program package TUR-
orientation coordinates (three translations and three rotations)BOMOLE®” employing DFT with the B3LYP functional and
were allowed to vary. Then, C343 was attached to the larger the SV(P) basis set.
(TiO2)24(H20)30 cluster (Figure 1, right image) using the six To discuss the doneracceptor partitioning procedure, we
relative orientation coordinates from the alignment optimization first consider the energy-level scheme. Figure 2 shows the
at the smaller (TiQ)g(H20)14 cluster. The proton detached from  energies of the molecular orbitals of the overall system as well
C343 upon adsorption was attached to a surface oxygen atomas those of the donor and acceptor orbitals obtained by the
adjacent to the adsorption center. This choice of the protocol partitioning procedure outlined in section IIB. Also shown, in
and the adsorption site is supported by a more detailed electroniccomparison, are the energy levels of the isolated fpiH.0)z0
structure study on the adsorption of C343 on anatase,®iO cluster and the isolated chromophore C343. The isolated
which has revealed that (i) the adsorbate is deprotonated upon(TiO,).4(H20)s0 cluster exhibits a rather dense level structure
adsorption and the proton is attached to a doubly coordinatedwith a valence and conduction band separated by a band gap.
surface oxygen atom and (ii) the preferred complexation is The calculated value for band gap of the finite cluster is 2.8
bidentate bridging as shown in Figure 1 but not bidentate eV, which is somewhat smaller than calculated (4.6%¥%nd
chelation to only one surface titanium atom. experimental (3.4 e¥) values for anatase Tihanoparticles.

The alignment of C343 relative to the cluster (})§0H20)14 This underestimation of the band gap is presumably due to the
was optimized with DFT usin@Gaussian 0% with the BSLYP added hydrogen and hydroxyl groups used to saturate the cluster.
functional and the 3-21G basis set. All other electronic structure Unsaturated finite clustei&show typically a larger band gap

Energy (e

|

-5 HOMO |
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Figure 3. Selected orbitals obtained with the partitioning procedure. Shown are the orbitals corresponding to the HOMO orbital of isolated C343
(A), the donor orbital (B), and two representative acceptor orbitals (C and D).

than bulk anatase. A detailed analysis of the orbitals of {pi© correspond to orbitals localized at the Bi€luster. While the
(H20)30 revealed that the lowest unoccupied orbitals are highest occupied levels of C343 are located in the band gap
localized predominantly on saturation groups (cf. Figure 2, and thus retain their discrete structure in the complex, the lowest
rightmost panel) and can be regarded as levels in the band gapunoccupied levels of C343 (in particular LUMO and LUMBD
As has been demonstrated in a computational study of similar 1) are located energetically in the conduction band of, T&>
clusters® this deficiency of the saturated cluster model is not a consequence, in the complex these levels are dissolved in the
expected to have a significant influence on the electronic levels dense manifold of conduction band levels.
involved in ET transitions. Moreover, these levels in the band  The partitioning procedure results in orbitals localized at the
gap do not couple to the donor levels of C343 in the complex chromophore and the TiCxluster, respectively. Although the
(see below). energy levels of both parts resemble the level structure of
The adsorption of the chromophore C343 on the ¢Ji% isolated C343 and TiPto some extent, there are noticeable
(H20)30 cluster changes the level structure noticeably. In differences due to the fact that these orbitals are not the
particular, it introduces energy levels in the lower part of the molecular orbitals of the separated parts but take some of the
band gap, which can be associated with the highest occupiedinteraction into account. For the study of electron-injection
molecular orbitals (in particular HOMO and HOM®O 2) of dynamics, the donor orbital is chosen as the orbital that
the isolated chromophore. The complex also exhibits a few corresponds in the limit of infinite separation to the LUMO of
energy levels in the higher part of the band gap, which isolated C343. Employing TD-DFT calculations, it has been
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Figure 4. Example of a “donor” orbital, where the orthogonalization
procedure results in noticeable contributions at the,TlDster

shown recentl§? that this orbital is the dominant excitation in
isolated C343 and in complexes with small clusters of 4O
The acceptor orbitals include all orbitals localized at the,TiO
cluster with energies above the energy of the HOMO of the
overall system.

The local character of the orbitals resulting from the partition-
ing procedure is illustrated in Figure 3. The orbital that can be
associated to the HOMO orbital of isolated C343 (in the
complex, this orbital corresponds to HOMO 1) as well as
the donor orbital are well localized on the chromophore. The
acceptor orbitals are, however, localized at the ;Taluster.
The latter orbitals are dominated by the 3d orbitals of titanium.

In the system investigated, the localization works very well
for all donor and acceptor orbitals that participate in the ET
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Figure 6. Population dynamics of the donor state after photoexcitation.
Shown are results obtained with vibronic coupling (thick lines), without
vibronic coupling (thin lines), for the finite Tigcluster (dashed lines),
and for the model of an infinite TiPsurface (solid lines).

rather broad distribution of acceptor states couples to the donor
state. In contrast to the Newns model used in our previous
study#! where the donoracceptor coupling varies smoothly
with the energy, the first-principles-based couplings exhibit
significant structures.

B. Electron-Transfer Dynamics. On the basis of the first-
principles model discussed above, we have performed dynamical
simulations of the ET dynamics. Thereby, the chosen donor
state, all 1184 acceptor states, and 39 modes of C343 (selected
according to their electronievibrational coupling strength) were
taken into account explicitly. The continuous distribution of

process. In the energy range of interest, the maximal nonlocalsolvent modes was represented by 20 additional oscillators.

contribution to donor or acceptor states is about 1%. It should

Figure 6 shows the result of the simulation for the population

be emphasized, however, that the localization method (as anyof the donor state after photoexcitation (thick dashed line). The
localization procedure) should be tested for each system to whichsimulation predicts an ultrafast injection of the electron from
it is applied. In the method used here, problems may arise the donor state localized at the chromophore into the quasi-
because due to the orthogonalization, which precedes thecontinuum of acceptor states localized in the Jifuster on a
donor-acceptor separation, some of the local character of the time scale (1 time) of ~13 fs. In addition to the ultrafast
orbitals may be lost. This concerns in particular orbitals localized injection component, the simulation results also exhibit a small

close to the dyesemiconductor binding site. An example of
such an orbital is shown in Figure 4. Although this orbital is
predominantly localized at C343 it also has non-negligible
contributions from the Ti@ cluster. However, this orbital

component of slower injection dynamics as well as oscillatory
structures superimposed on the decay. A comparison with a
purely electronic calculation (thin dashed line in Figure 6), where
the coupling to the nuclear degrees of freedom has been set to

corresponds to an occupied orbital of the overall system, with zero, reveals that the high-frequency oscillations are of electronic
an energy well separated from the donor state, and is thus notorigin, i.e., can be classified as electronic coherence. In the

involved in the electron-injection process.

results of the purely electronic calculation, these coherence

The donor-acceptor coupling matrix elements obtained based effects are much more pronounced than in the full vibronic
on the partitioning are depicted in Figure 5. It is seen that a results (thick dashed line in Figure 6). Thus, the coupling to
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result based on the first-principles model. The different ET time
scale is caused by the overall stronger deramceptor coupling

in the semiempirical Newns model. The different importance
of electronic coherence effects, however, is related to the way
the donor-acceptor coupling is described in the two models.
In the semiempirical Newns model the dor@cceptor coupling
matrix elementsVyk are described by a continuous function
T'(E) (cf. the discussion in the Appendix). Because in the model
used the function'(E) varies slowly and, furthermore, the
energy of the donor state is well above the conduction band
edge of the semiconducttt,the result of the Newns model
does not show electronic coherence effects. In the first-principles
model, however, the done@acceptor coupling matrix elements
Vak depend significantly on the energy, thus resulting in
pronounced electronic coherence effects in the population
dynamics. The comparison in Figure 7 also shows that the effect
of the coupling to the nuclear degrees of freedom on the
electron-injection time scale is more pronounced in the semiem-

Fully vibronic and purely electronic population dynamics are depicted

by thick lines and thin lines, respectively. pirical Newns model.

the nuclear degrees of freedom results in a significant deco- V. Concluding Remarks

herence effect. In addition to this quenching of electronic  Inthis paper, we have outlined a first-principles-based method
coherence, the coupling to the nuclear degrees of freedom alsdo describe the quantum dynamics of heterogeneous ET reactions
introduces slower oscillations of vibrational origin. This vibra- at dye-semiconductor interfaces. The method employs an
tional coherence effect is, however, small in the present system.expansion of the Hamiltonian in a diabatic basis of electronic

The results in Figure 6 also show that the electron-injection donor and acceptor states localized at the dye molecule and the
process is not complete: There is a small but noticeable Semiconductor substrate, respectively. To determine the diabatic
probability (~2%) to find the electron for long times at the donor ~ States and thus the electronic energies and the darueptor
state. This finite probability for electron trapping at the donor coupling matrix elements, we have used a partitioning scheme.
also persists for even longer times (data not shown). The This scheme is based on a partitioning of the overall Hilbert
incomplete injection is a result of the finite cluster considered. Space into a donor and acceptor part and a subsequent separate
If an additional imaginary par(= 1 eV) is included into the diagonalization of the two blocks of the Hamiltonian to define

orbital energies of the outer atoms of the Ti@uster (cf. the the donor and acceptor states. In _this articleZ we have employed
discussion in section 11B and the Appendix) to mimic electron the Kohn-Sham orbitals and matrix to describe the system and

injection at an infinite surface, then the donor population decays thus used an effective single-electron Hamiltonian. The exten-
to zero. This is demonstrated by the solid lines in Figure 6. sion of the method to many-electron states will be the subject
The result for the infinite system agrees well with the one for ©f future work.
the finite TiO, cluster for short times but decays to zero for ~ As an application, we have considered photoinduced electron
longer times, corresponding to a complete electron-injection injection for coumarin 343 adsorbed at titanium oxide nano-
process. particles. The latter were modeled by a finite titanium oxide
The time scale of electron injection predicted by the simula- ¢luster. The quantum dynamics of the ET reaction were
tion (~13 fs) is faster than the experimental results for the Simulated using the ML-MCTDH method, which allows an
C343-TiO, system, where injection times in the range 0f-20 efﬂment and accurate description of this system, which com-
200 fs have been found using different technigtie&1381This prises many electronic states and nuclear degrees of freedom.
discrepancy can have a variety of reasons. As discussed above! N results demonstrate the ultrafast character of the electron-
the electron-injection dynamics are not a single-exponential INjéction process in this system. The ET dynamics exhibit
decay but also exhibit a slower injection component as well as significant electronic coherence effects. The coupling to _the
oscillatory structures, which may result effectively in an overall Nuclear degrees of freedom of the chromophore results in a
longer injection time. Furthermore, the dynamics depend on the duénching of the coherence effects.
energy-level structure, in particular the relative position of the [N the present application we have assumed that the photo-
donor state with respect to the conduction band edge, as well€Citation by an ultrashort laser pulse can be described by an
as on the doneracceptor coupling matrix elements and thus instantaneous transition fr(_)m the electronic ground state to the
on the accuracy of the electronic structure model used. Anotherdonor state. As shown previousKthe methodology also allows

reason for the deviation may be the limited time resolution of US to include the laser field explicitly in the calculation to study
the experiments. the influence of the laser pulse on the dynamics of these ultrafast

Finally, Figure 7 shows a comparison of results obtained from ET rgat(_:tlons]; E”tlflog'r;g’_ fturthetr_more, tlt_hednonpertturglatwe
the first-principles model, where the electronic energies and escription of matterfield interaction outlined recentf,

electronic coupling matrix elements have been determined by it will also .be p.055|ble to_5|mulate tlme-res_olved nqnllnear
electronic structure calculations, with results where these spectra, which will allow a direct comparison with experimental
parameters have been determined by the semiempirical Newnsresults.

model#! Overall, the two models predict similar ET character-
istics and thus confirm the robustness of the Newns model. The
major differences are the slower ultrafast injection component  Description of Electron Injection for a Chromophore
(by about a factor of 2) and the electronic coherences in the Adsorbed on an Extended SubstrateAs mentioned above,

Appendix
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the partitioning procedure introduced in section 1B is not limited 1 5 > o

to dye—semiconductor systems with a finite semiconductor HNaZE Z P+ Q")+

cluster but can, in principle, also be applied to a dye molecule 1

adsorbed on an extended surface. One possibility is to employ a - 2 2,2

the slab model and electronic structure calculations with periodic Z QI 2 JZ (R + %)+ ]z % (A8)
boundary condition® Alternatively, the effect of an infinite

semiconductor substrate can also be described using surfacés the nuclear Hamiltonian in the acceptor states. Equation A.6

Green’s function techniqué8.in this appendix, we outline an
approximate variant of the latter method.

shows that the influence of the semiconductor substrate and of
the chromophoresurface coupling enters only through the

To this end, let us assume that the partitioning procedure function I'(t) or, equivalently, its Fourier transforii(E).

outlined in section 1IB has been performed for a chromophore

While T'(t) is a smooth function for finite semiconductor

adsorbed on an infinite surface (e.g., using the slab model) clusters and extended surfac&%$E) is a continuous function

resulting in a Hamiltonian of the form of eq 2.1. We first show

only for a chromophore adsorbed on an infinite surface. The

that if one is only interested in observables that are localized width functionI'(E) is the imaginary part of the self-energy in
on the chromophore, then the influence of the semiconductor the donor stat&y4(E)
substrate and the chromophore surface coupling on the dynamics

is fully characterized by the function

I(t) = Z V2 e (A.1)
or, equivalently, its Fourier transform
I(E) =27 Z Vad *0(E — &) (A2)

The latter function describes the density of states of the
semiconductor substrate weighted by the deramceptor

coupling and is also called the energy-dependent decay width

of the donor state.
To demonstrate this fact, let us consider the electronic
projection of the time-dependent vibronic wave function
w(t)=e w0 (A.3)
onto the donor state
B POT= Gyl €W (A4)
where |Wolldenotes the initial state and the Hamiltonidns
given by eq 2.15. In the following, we will assume that the
initial wave function is localized at the chromophore, i.e.,
O |P,=0 (A.5)
Using projection-operator techniques, it is straightforward

to show?® that the equation of motion foifgy|W ()0 is
given by

PERLIOI
—iHy @4 W O f; dv T(z) & ™ W(t — )0 (A.6)
where

Hy, = @alHIp 0
1
=e,+ 5 Z PP+ Q°Q4 + Z Q +
1
5 z (P + w%?) + Z % (A7)
] ]

denotes the nuclear Hamiltonian in the donor state and

I'E) = -2 ImZ(E) (A.9a)
2 4d(E) = g VG(E)VIyp U (A.9b)

where
(A.10)

V= Z (Ve + [V Vg @gl)

describes the interaction between the chromophore and the
semiconductor surface and

Gy(E) = (E+ iy — Hy ™ (A.11)
is the electronic Green'’s function of the semiconductor surface.
Thereby,Hs; denotes the electronic Hamiltonian of the semi-
conductor substrate angdis the usual positive infinitesimal.

In our previous work on heterogeneous®&E¥we have used
a semiempirical Newns model, wheFg¢E) was parametrized
based on a tight-binding model developed by Peterssornfét al.
The parameters within this model have been determined to fit
the lower 3d group of the Ti©conduction band (see refs 41
and 43 for further details).

As was mentioned above, a first-principles calculation of
I'(E) is possible by employing the slab model and electronic
structure calculations with periodic boundary conditions. Al-
ternatively, a finite part of the semiconductor surface (in the
following referred to as the cluster) can be treated explicitly,
and the influence of the remaining infinite part can be described
using surface Green’s function techniq@&vithin this method
the effect of the infinite substrate enters via a self-energy matrix
that is localized at the boundary of the cluster, which is treated
explicitly. To discuss this approach, we introduce a projection
operatorP that projects on the cluster, i.e., on the part of the
substrate that is explicitly treated. Using standard projection-
operator techniques one obtains for the projected Green'’s
function of the surface

PG(E)P = (E+ iy — PH,P— M(E) " (A.12)
Here,M(E) is a self-energy term that describes the influence of
the remainder of the substrate given by

M(E) = PHyQ(E + in — QHyQ) "QH«P (A.13)

whereQ = 1 — P. The self-energM(E) in eq A.13 should not

be confused with the self-energ@yE) defined in eq A.9b. While

the latter describes the influence of the overall substrate on the
adsorbate, the former describes the effect of the remaining part
of the infinite substrate, without the explicitly treated BiO
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cluster, on the explicitly treated system, i.e., the complex of A.2 as described previousfy.In the present applications, 6000
the dye molecule and the finite TiQluster. electronic states within an equidistant discretization schema were
Within our treatment outlined in section 1B the projection sufficient to represent the electronic continuum over the time

operatorP is given by the orthogonal orbitals of the explicitly scale of interest.

treated acceptor space
Acknowledgment. We thank Wolfgang Domcke for numer-
P= Z Laasirria] (A.14) ous helpful discussions. The generous allocation of computing
0 time by the National Energy Research Scientific Computing
. o o Center and the Leibniz Rechenzentrum, Munich, is gratefully
and the prolecteql Hamiltonian of the SUb.SthS'P’ IS given acknowledged. This work has been supported by the Deutsche
by the Fock matrix of the acceptor space in the orthogonal bas'sForschungsgemeinschaft (DFG) through the DFG-Cluster of
a ~a ~ Excellence Munich-Centre for Advanced Photonics and a
ol PHPI@n = F (A.15) research grant (M.T.), the Fonds der Chemischen Industrie (MT),
the National Science Foundation CAREER award CHE-0348956
can be calculated using surface Green'’s function techniques.(H'W')’ the Alexander von Humboldt foundation, and research

In the application considered in this paper, we have used agrant GACR 202/07/0833 (M.C.).
variant of this method, which approximates the self-energy by References and Notes

aanm

In principle, the energy-dependent self-energy matti)

a constant diagonal imaginary partat the outer atoms of the
explicitly treated TiQ cluster; i.e. M(E) ~ M with M;; = —io/2
if j belongs to an orbital of the outer atoms of the T®luster,

(1) Moser, J. E.; Gitzel, M. Chem. Phys1993 176, 493.
(2) Hagdfeldt, A.; Grtzel, M. Chem. Re. 1995 95, 49.
(3) Rehm, J. M.; McLendon, G. L.; Nagasawa, Y.; Yoshihara, K;

andMjy = 0 otherwise. Thus, within this method the acceptor Moser, J.; Giel, M. J. Phys. Cheml996 100, 9577.

block of the Fock matrix from eq 2.5 is replaced by

Foo—Fapat M (A.16)

As a result, the Fock matrix is no longer real but complex

symmetric.
In our practical implementation, we calculdf¢E) via the
relation to the self-energ¥qq(E), eq A.9a, with

Zga = WylVG(E)VIy 4O
= [y VPG(E)PVIy O
= FiaGaeFin)' (A.17)

Here,G,a denotes the matrix representationRis(E)P in the
orthogonal basisg30

Gaa,nm = @2' PGsf(E)P| @amlj

The matrixF}, is obtained by diagonalizing the donor block

(A.18)

Faqaccording to eq 2.7 and transforming the off-diagonal blocks

according toF,, = D/Fua Furthermore, in eq A.17, we have
assumed tha®V|y 4= 0, which is expected to be a very good
approximation for the size of the Ti@luster employed in the
present study.

To determineG,,, We calculate the right eigenvectors and
eigenvalues of the complex symmetric matiga + M.
Denoting the matrix of right eigenvectors byand the diagonal
matrix of eigenvalues by and using the identitie§;! = Fi,
and UW-IUT = 1, whereW = UTU is the overlap of the

eigenvectors oF ;3 + M, we obtain the energy-dependent decay

width for the selected donor state

I“(E)=—2Im{~a Ut

TEr
A mu ad} (A.19)

Alternatively, the Green'’s functioB,, could also be determined
directly for each energyE using, e.g., matrix inversion.

However, in the present context, the diagonalization procedure242

(4) Martini, I.; Odak, J.; Hartland, G. V.; Kamat, P. ¥. Chem. Phys.
1997, 107, 8064.
(5) Gosh, H. N.; Asbury, J. B.; Wang, Y.; Lian, T. Phys. Chem. B
1998 102, 10208.
(6) Wachtveitl, J.; Huber, R.; Splein, S.; Moser, J.; Gtael, M. Int.
J. Photoenergy1999 1, 153.
(7) Willig, F.; Zimmermann, C.; Ramakrishna, S.; Storck, Blec-
trochim. Acta200Q 45, 4565.
(8) Zimmermann, C.; Willig, F.; Ramakrishna, S.; Burfeindt, B.;
Pettinger, BJ. Phys. Chem. B001, 105 9245.
(9) Asbury, J.; Hao, E.; Wang, Y.; Ghosh, H. N.; Lian, J.Phys.
Chem. B2001, 105, 4545.
(10) Ramakrishna, G.; Gosh, H. N.. Phys. Chem. 2002 106, 2545.
(11) Schnadt, J.; Bhwiler, P. A.; Patthey, L.; O’'Shea, J. N.; &rgreen,
S.; Odellus, M.; Ahuja, R.; Karis, O.; Baler, M.; Persson, P.; Siegbahn,
H.; Lunell, S.; Martenson, NNature 2002 418 620.
(12) Walters, K. A.; Gaal, D. A.; Hupp, J. T. Phys. Chem. BR002
106, 5139.
(13) Huber, R.; Moser, J. E.; Gzel, M.; Wachtveitl, JChem. Phys.
2002 285, 39.
(14) Huber, R.; Moser, J. E.; Gzel, M.; Wachtveitl, JJ. Phys. Chem.
B 2002 106, 6494.
(15) Kallioinen, J.; Benkp G.; Sundstim, V.; Korrpi-Tommola, J.;
Yartsev, A.J. Phys. Chem. BR002 106, 4396.
(16) Takeshita, K.; Sasaki, Y.; Kobashi, M.; Tanaka, Y.; Maeda, S.;
Yamakata, A.; Ishibashi, T.; Onishi, H. Phys. Chem. B0O03 107, 4156.
(17) Wang, L.; Ernstorfer, R.; Willig, F.; May, VJ. Phys. Chem. B
2005 109, 9589.
(18) Hagfeldt, A.; Grizel, M. Acc. Chem. Re200Q 33, 269.
(19) Grazel, M. Nature2001, 414, 338.
(20) Benko G.; Kallioinen, J.; Korppi-Tommola, J.; Yartsev, A.;
Sundstion, V. J. Am. Chem. So@002 124, 489.
(21) Stier, W.; Prezhdo, Qsr. J. Chem2002 42, 213.
(22) Stier, W.; Prezhdo, Ql. Phys. Chem. BR002 106, 8047.
(23) Stier, W.; Prezhdo, CAdv. Mater. 2004 16, 240.
(24) Duncan, W.; Stier, W.; Prezhdo, @.Am. Chem. So2005 127,
7941.
(25) Duncan, W.; Stier, W.; Prezhdo, @. Phys. Chem. B005 109,
365.
(26) Rego, L.; Batista, VJ. Chem. Phys2005 122, 154709.
(27) Newns, DPhys. Re. 1969 178 1123.
(28) Ramakrishna, S.; Willig, F.; May, \Rhys. Re. B 200Q 62, 16330.
(29) Ramakrishna, S.; Willig, K. Phys. Chem. R00Q 104, 68.
(30) Ramakrishna, S.; Willig, F.; May, \. Chem. Phys2001, 115
2743.
(31) Schreiber, M.; Kondov, I.; Kleinekatfer, U. J. Lumin.2001, 94,
471.
(32) Ramakrishna, S.; Willig, F.; May, \Chem. Phys. Let2002 351,

(33) Ramakrishna, S.; Willig, F.; May, \d. Phys. Chem. BR003 107,

employed is more advantageous because it has to be performedo7.

only once.

In the dynamical simulations, the continuum of electronic

states implicit in the continuous functidr(E) is discretized
and represented by a finite number of stdiggélemploying eq

(34) Wang, L.; May, V.J. Chem. Phys2004 121, 8039.

(35) Liang, K.; Lin, C.-K.; Chang, H.-C.; Lin, SI. Chem. Phys2006
125 154706.

(36) Wang, L.; Willig, F.; May, V.J. Chem. Phys2006 124, 014712.

(37) Thoss, M.; Kondov, I.; Wang, HChem. Phys2004 304, 169.



Dye—Semiconductor Photoinduced ET

(38) Wang, H.; Thoss, M.; Miller, W. HJ. Chem. Phys2001, 115
2979.

(39) Wang, H.; Thoss, Misr. J. Chem2002 42, 167.

(40) Wang, H.; Thoss, MJ. Chem. Phys2003 119 1289.

(41) Kondov, I.; Thoss, M.; Wang, Hl. Phys. Chem. 2006 110
1364.

(42) Kondov, |.; Wang, H.; Thoss, Mnt. J. Quantum Chen2006
106, 1291.

(43) Petersson, A.; Ratner, M.; Karlsson, H.Phys. Chem. R00Q
104, 8498.

(44) Mulliken, R.J. Am. Chem. Sod.952 74, 811.

(45) Hush, N.Prog. Inorg. Chem1968 13, 1005.

(46) Cave, R.; Newton, MChem. Phys. Lettl996 249, 15.

(47) Cave, R.; Newton, MJ. Chem. Phys1997 106, 9213.

(48) Voityuk, A.; Rtsch, N.J. Chem. Phys200Q 117, 5607.

(49) For an overview, see, for example, ref 93 and references therein.

(50) Feshbach, HAnn. Phys1962 19, 287.

(51) O'Malley, T.Phys. Re. 1967, 162 98.

(52) Domcke, WPhys. Re. A 1983 28, 2777.

(53) Domcke, WPhys. Rep1991, 208 97.

(54) Similar partitioning methods have been used in variety of other
fields, for example, in the context of electron transport through single
molecule junction8? Particularly closely related to the approach used here
is the method employed in ref 60.

(55) Kurnikov, L.; Beratan, DJ. Chem. Phys1996 105 9561.

(56) Galperin, M.; Toledo, S.; Nitzan, Al. Chem. Phys2002 117,
10817.

(57) Lowdin, P.-O.J. Chem. Phys195Q 18, 365.

(58) Mayer, l.Int. J. Quantum Chen2002 90, 63.

(59) Xue, Y.; Ratner, MPhys. Re. B 2001, 68, 115406.

(60) Benesch, C.; Cizek, M.; Thoss, M.; Domcke, @hem. Phys. Lett.
2006 430, 355.

(61) This correponds to the Condon approximation, which is often
employed in ET systems, and is expected to be valid for the relatively rigid
systems considered here.

(62) Dushinski, F.; Sassetti, M.; Weiss, Bcta Physicochim. URSS
1937 7, 551.

(63) Myers, A.Chem. Re. 1996 96, 911.

(64) Conical Intersections: Electronic Structure, Dynamics and Spec-
troscopy Domcke, W., Yarkony, D. R., Kgpel, H., Eds.; World Scien-
tific: Singapore, 2004.

(65) Marcus, R. A.; Sutin, NBiochim. Biophys. Actd985 811, 265.

(66) Weiss, U.Quantum Dissipatie Systems2nd ed.; World Scien-
tific: Singapore, 1999.

(67) Makri, N.J. Phys. Chem. B999 103 2823.

(68) Georgievskii, Y.; Hsu, C.-P.; Marcus, R. A.Chem. Phys1999
110, 5307.

(69) Rips, I.; Jortner, JJ. Chem. Physl987 87, 2090.

(70) May, V.; Kithn, O. Charge and Energy Transfer Dynamics in
Molecular Systems: A Theoretical Introductjdiiiley-VCH: Berlin, 2000.

(71) Jimenez, R.; Fleming, G. R.; Kumar, P. V.; Maroncelli, Nature
1994 369, 471.

(72) Wang, H.; Thoss, MJ. Chem. Phys2006 124, 034114.

(73) Meyer, H.-D.; Manthe, U.; Cederbaum, L. Shem. Phys. Lett.
199Q 165 73.

(74) Manthe, U.; Meyer, H.-D.; Cederbaum, L. Chem. Physl992
97, 3199.

J. Phys. Chem. C, Vol. 111, No. 32, 200r1981

(75) Beck, M. H.; Jakle, A.; Worth, G. A.; Meyer, H.-DPhys. Rep.
200Q 324, 1.

(76) Meyer, H.-D.; Worth, G. ATheor. Chem. Acc2003 109, 251.

(77) Thoss, M.; Wang, HChem. Phys2006 322, 210.

(78) Wang, H.; Thoss, MJ. Phys. Chem. 2003 107, 2126.

(79) Thoss, M.; Domcke, W.; Wang, KEhem. Phys2004 296, 217.

(80) Wang, H.; Thoss, MChem. Phys. Let004 389, 43.

(81) Murakoshi, K.; Yanagida, S.; Capel, M.; Castner, E. Interfacial
electron transfer dynamics of photosensitized zinc oxide nanoclusters. In
Nanostructured Materials: Clusters, Composites, and Thin Filbt&laev,

V. M., Moskovits, M.. Eds.; ACS Symposium Series 679; American
Chemical Society: Washigton, DC, 1997; pp 22138.

(82) Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson, J. W., Jr.;
Smith, J. V.J. Am. Chem. S0d.987, 109, 3639.

(83) Bredow, T.; Jug, KJ. Phys. Chem1995 99, 285.

(84) Redfern, P. C.; Zapol, P.; Curtiss, L. A.; Rajh, T.; Thurnauer, M.
C.J. Phys. Chem. BR003 107, 11419.

(85) Kondov, I.; Markmann, A.; Thoss, M., to be submitted for
publication.

(86) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A,; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
N.; Burant, J. C.; Millam, J. M.; lyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A,
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin,
A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma,
K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.;
Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.;
Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G
Liashenko, A.; Piskorz, P.; Komaromi, |.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.;
Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.;
Pople, J. AGaussian 03revision B.04; Gaussian, Inc.: Wallingford, CT,
2003.

(87) Ahlrichs, R.; Ba, M.; Haser, M.; Horn, H.; Kidmel, C.Chem. Phys.
Lett. 1989 162, 165.

(88) Nilsing, M.; Lunell, S.; Persson, P.; Ojama.. Surf. Sci.2005
582, 49.

(89) Kormann, C.; Bahnemann, D.; Hoffmann, 84 Phys. Chenl988
92, 5196.

(90) ltis also noted that the first exited state of isolated C343 corresponds
almost exclusively to a HOMBLUMO excitation. The excitation energy
of 3.43 eV (employing TD-DFT at the B3LYP/SV(P) level) is in good
agreement with the HOMOLUMO gap (3.59 eV). Therefore, the use of
the LUMO as a model for the excited state is well justified in this system.

(91) Seidner, L.; Stock, G.; Domcke, V\Chem. Phys. Lettl994 228
665.

(92) Nilsing, M.; Persson, P.; OjaimaL. Chem. Phys. LetR005 415
375.

(93) Koppel, H. InConical Intersections: Electronic Structure, Dynam-
ics and Spectroscopipomcke, W., Yarkony, D. R., H. Kapel, Eds.; World
Scientific: Singapore, 2004.

(94) Muijica, V.; Kemp, M.; Ratner, MJ. Chem. Physl994 101, 6849.



