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A method to describe the quantum dynamics of photoinduced heterogeneous electron-transfer processes at
dye-semiconductor interfaces is proposed. The method is based on a model Hamiltonian, the parameters of
which are determined by first-principles electronic structure calculations and a partitioning scheme to define
localized donor and acceptor states as well as donor-acceptor coupling matrix elements. On the basis of this
modeling procedure, accurate quantum dynamical simulations are performed employing the multilayer
multiconfiguration time-dependent Hartree method. As a representative example, applications to coumarin
343 adsorbed on titanium oxide nanoparticles are presented. The results of the simulations show that the
ultrafast electron-injection process in this system is accompanied by electronic coherence effects, which are
partially quenched due to electronic-nuclear coupling.

I. Introduction

Photoinduced electron-transfer (ET) reactions at dye-
semiconductor interfaces represent an interesting class of ET
processes. In particular, the process of electron injection from
an electronically excited state of a dye molecule into a
semiconductor substrate has been investigated in great detail
experimentally in recent years.1-17 This process represents a
key step for photonic energy conversion in nanocrystalline solar
cells.2,6,9,18,19Employing femtosecond spectroscopy techniques,
it has been demonstrated that electron-injection processes at
dye-semiconductor interfaces often take place on an ultrafast
(sub-picosecond) time scale.3,8,9,11,13,14,20For example, electron-
injection times as fast as 6 fs have been reported for alizarin
adsorbed on TiO2 nanoparticles14 in time-resolved experiments,
and even faster ET times have been found for biisonicotinic
acid on a TiO2 surface employing resonant photoemission
spectroscopy.11 Other interesting aspects of these ultrafast
interfacial ET reactions are the nonequilibrium character and
the influence of electronic-nuclear coupling. For example,
studies of dye-semiconductor systems with electron-injection
time scales on the order of a few tens to a few hundred
femtoseconds indicate that the coupling of the electronic
dynamics to the nuclear (i.e., vibrational) motion of the
chromophore may have a significant impact on the injection
process.8,20 As a result of this correlated electronic-nuclear
dynamics, the electron injection in these systems is often not a
simple exponential decay process and thus cannot be character-
ized by a single rate constant.

The theoretical study of such interfacial ET processes requires
a quantum mechanical description of the electron-injection

dynamics including the coupling to the nuclear degrees of
freedom. Since it is currently not feasible to carry out a full
quantum dynamical simulation of the interfacial ET dynamics
that takes into account the coupling to the nuclear degrees of
freedom and employs an adequate electronic structure theory,
different approximate strategies have been applied. One pos-
sibility is to use a first-principles electronic structure method
to describe the dye-semiconductor system but employ an
approximate treatment of the nuclear motion. An example is
ab initio molecular dynamics, where the dynamics of the nuclear
degrees of freedom are described classically.21-26 Another
strategy, which is particularly useful if an accurate, fully
quantum dynamical treatment is required, is to use a physically
motivated model. A commonly used model to study heteroge-
neous ET processes at interfaces is the Anderson-Newns
model.27 Along this line, several workers have studied the
electron-injection dynamics based on models of reduced di-
mensionality, taking into account typically a single reaction
mode.17,28-36 Dissipative effects, such as vibrational relaxation
of the reaction mode, have been considered (for weak coupling)
within Redfield theory.31 In a recent model study, we have
investigated in detail the influence of multidimensional coherent
and dissipative vibrational motion on the electron-injection
dynamics,37 employing the self-consistent hybrid approach38,39

in combination with the multilayer multiconfiguration time-
dependent Hartree method.40 These methods allow an accurate
quantum dynamical description of the ET process beyond the
limitations of perturbation theory.

To apply such models to experimentally studied systems,
various model parameters such as the energies and couplings
of the relevant electronic states, the important vibrational modes
of the chromophore, and the electronic-vibrational couplings
need to be determined. If only a single (or a few) reaction
mode(s) is considered and a simple model for the donor-
acceptor coupling (e.g., the wide-band approximation) is used,
then it is possible to determine the parameters empirically based
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on experimental spectra.17 To simulate interfacial ET dynamics
in systems with multidimensional nuclear dynamics, we have
recently employed a semiempirical strategy, where the vibra-
tional modes and electronic-vibrational couplings were deter-
mined by electronic structure calculations,41,42 while for the
donor-acceptor coupling and the description of the semicon-
ductor substrate an empirically parametrized tight-binding model
was utilized.43,41As a step toward a fully first-principles-based
description of quantum dynamics in dye-semiconductor sys-
tems, we propose here a method to determine the electronic
energies and donor-acceptor coupling matrix elements from
electronic structure calculations.

The determination of donor-acceptor couplings in ET
reactions requires, in principle, the definition of charge-localized
diabatic states. To this end, several different approaches have
been proposed, including the Mulliken-Hush method44,45 and
its generalization46,47as well as the fragment charge difference
approach.48 Besides these methods, which are specific to the
ET problem, there exist a variety of general diabatization
schemes.49 The introduction of charge-localized diabatic states
for dye-semiconductor systems involves the additional com-
plication that a (quasi-)continuum of acceptor states (corre-
sponding to the (quasi-)conduction band of the semiconductor
nanoparticle or surface) has to be treated. Thus, the problem
involves the treatment of a single (or a small set of) discrete
donor state(s), which is (are) embedded in a (quasi-)continuum
of acceptor states. This problem is closely related to the
treatment of resonances in scattering theory, e.g., electronic
resonance states in low-energy electron-molecule scattering.
In this context, the projection-operator approach50 has been
proven to be a very useful concept to introduce localized diabatic
states.51-53 For the present problem, we employ a method that
is similar to the projection-operator approach. The method is
based on a partitioning of the overall Hilbert space into a donor
and acceptor part and a subsequent separate diagonalization of
the two blocks of the Hamiltonian to define the donor and
acceptor states. As a first step, in the present paper we work
within the mean-field single-electron picture and use atomic
orbitals to introduce the partitioning. A treatment within corre-
lated many-electron states will be the subject of future work.

II. Theory

In this section, the theoretical methodology used to describe
photoinduced ET reactions in dye-semiconductor systems is
outlined. The major focus is thereby on the method to determine
electronic energies and donor-acceptor coupling matrix ele-
ments. To keep the paper self-contained, we also discuss briefly
the method used to describe the nuclear degrees of freedom as
well as the dynamical approach employed in the simulation.

A. Electron-Transfer Hamiltonian. To study ET dynamics
in dye-semiconductor systems, we use an ab initio (first-
principles)-based model for heterogeneous ET reactions. Within
this model the Hamiltonian is represented in a basis of the
following diabatic (charge-localized) electronic states that are
relevant for the photoreaction: the electronic ground state of
the overall system|ψg〉, the donor state of the ET process|ψd〉
(which, in the limit of vanishing coupling between chromophore
and semiconductor substrate, corresponds to the product of an
electronically excited state of the chromophore and an empty
conduction band of the semiconductor), and the (quasi-)-
continuum of acceptor states of the ET reaction|ψk〉 (corre-
sponding in the zero coupling limit to the product of the cationic
state of the chromophore and a conduction band state of the
semiconductor substrate). Thus, the Hamiltonian reads

with the kinetic energy of the nuclei (we use mass-scaled
coordinates and atomic units throughout the paper)

the potential energy in the electronic ground state,Vg(Q), and
the diabatic (donor-acceptor) potential matrixVij(Q), which
depend on the nuclear coordinatesQ. The diagonal elements
of the diabatic potential matrix,Vdd andVkk, describe the energies
of the electronic donor and acceptor states, respectively, while
the nondiagonal elements,Vdk, characterize the donor-acceptor
ET coupling.

The potential energy in the electronic ground state,Vg, can
(at least in principle) rather straightforwardly be determined with
electronic structure calculations. As discussed in the introduc-
tion, the characterization of the diabatic (donor-acceptor)
potential matrix Vij, however, requires the introduction of
suitable diabatic donor and acceptor states,|ψd〉 and |ψk〉.

B. Determination of Electronic Energies and Donor-
Acceptor Coupling Matrix Elements. In our previous work
on heterogeneous ET,37,41we have used a semiempirical method,
motivated by the Newns model of chemisorption,27 with a
parametrization based on a tight-binding model,43 to characterize
the diabatic states|ψd〉 and |ψk〉 and thus to determine the
electronic energies and donor-acceptor coupling matrix ele-
ments Vdk. In the following, we will refer to it as the
semiempirical Newns model.

As a first step toward a first-principles description of quantum
dynamics in dye-semiconductor systems, we use here an
approach based on electronic structure calculations. This ap-
proach is motivated by the projection-operator approach of
resonant electron-molecule scattering.53 Specifically, we em-
ploy a partitioning scheme based on density functional theory
(DFT) calculations for a complex of the dye molecule with a
finite TiO2 cluster. The scheme for defining the diabatic states
|ψd〉 and |ψk〉 in the Hamiltonian (eq 2.1) is based on three
steps: (i) a partitioning of the Hilbert space in a donor and
acceptor group using a localized basis, (ii) a partitioning of the
Hamiltonian according to the donor-acceptor separation, and
(iii) a separate diagonalization of the donor and acceptor blocks
of the partitioned Hamiltonian.54 In the present paper, we work
within the mean-field single-electron picture. Thus we identify
the effective Hamiltonian with the Fock (or Kohn-Sham) matrix
and use the orbitals and orbital energies in the partitioning
method.

Various types of localized basis functions can be used to
separate the donor and acceptor space. Here, we employ the
atomic orbitals|æj〉 used in the electronic structure calculation
for the overall system. The atomic orbitals are based on Gaussian
functions, which are well localized in space. The set of atomic
orbitals of the overall system,|æj〉, is divided into two groupss
the donor group (|æj

d〉), which comprises the orbitals centered
at the atoms of the dye molecule, and the acceptor group
(|æj

a〉), which includes the orbitals centered at the TiO2 cluster.
Since it is advantageous to work with orthogonal orbitals,55,56

the set of atomic orbitals of the overall system is orthogonalized
according to Lo¨wdin57,58

Hs ) T + |ψg〉Vg〈ψg| + |ψd〉Vdd〈ψd| +∑
k

|ψk〉Vkk〈ψk| +

∑
k

(|ψd〉Vdk〈ψk| + |ψk〉Vkd〈ψd|) (2.1)

T )
1

2
∑

l

Pl
2 (2.2)
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whereSdenotes the atomic orbital overlap matrix with elements
Skl ) 〈æk|æl〉. The new basis functions obtained,|æ̃n〉, exhibit a
minimal deviation from the original ones in a least-square sense,
and hence, their localization is preserved. In particular, the
classification as donor (|æ̃n

d〉) or acceptor (|æ̃n
a〉) orbitals is still

valid. In contrast to other orthogonalization procedures, such
as the Gram-Schmidt method, the symmetric orthogonalization
according to Lo¨wdin has also the advantage that it is “least
biased”.

The new set of orthogonal basis functions is then used to
partition the Fock (or Kohn-Sham) matrix from the converged
SCF (DFT) calculation into the two (donor and acceptor)
subspaces. The Fock matrix in the orthogonal basis is given by

whereF denotes the Fock matrix in the original atomic orbital
basis. The Fock matrix can be arranged in the following donor-
acceptor block structure

where the matrix elements are given by

Here,f is the Fock operator,|øi〉 denote the molecular orbitals
resulting from the SCF calculation, i.e.,f |øi〉 ) εi|øi〉, and the
Greek indicesR and â denote either the donor (“d”) or the
acceptor (“a”) subspace.

Separate diagonalization of the two (donor and acceptor)
blocks of the Fock matrixF̃RR via

and transformation of the off-diagonal parts to the corresponding
eigenstates in the two blocks

result in the following prediagonalized block structure

The corresponding donor and acceptor molecular orbitals,
|æj n

R〉, are given as the eigenvectors ofF̃RR and are related to the
orthogonalized atomic orbitals|æ̃j

R〉 and the original atomic
orbitals |æl〉 via

The diagonal blocks of the Fock matrix (eq 2.9) with indices
d anda contain the energies of the localized chromophore states
and those of the cluster, respectively. The off-diagonal blocks
contain the electronic coupling elements between chromophore
and cluster sites. Identifying the donor state|ψd〉 with one of
the states|æj n

d〉 (based, e.g., on the orbital energy or the
transition dipole moment to the ground state) and the acceptor
states|ψk〉 with the states|æj k

a〉, the electronic energies and the
donor acceptor matrix elements are given byVdd ) εd,n, Vkk )
εa,k, andVdk ) Fhda,nk, respectively. It is obvious that this method
can also be used in cases where several donor states are involved
in the ET reaction.

The partitioning method discussed above is not limited to
dye-semiconductor systems with a finite semiconductor cluster
but can, in principle, also be applied to a dye molecule adsorbed
on an extended surface. One possibility is to employ a slab
model and electronic structure calculations with periodic bound-
ary conditions. Alternatively, the effect of an infinite semicon-
ductor substrate can also be described using surface Green’s
function techniques.59 Within this method, the effect of the
infinite substrate enters via the self-energy. In the application
considered below, we have used a simpler approximate version
of this method to mimic the effect of an extended surface.
Thereby a constant imaginary part is added to the atomic orbital
energies (in the orthogonal basis|æ̃j

a〉) at the outer atoms of the
TiO2 cluster. The details of this method are described in the
Appendix.

C. Characterization of Nuclear Degrees of Freedom.To
characterize the nuclear degrees of freedom, the partitioning
procedure outlined above has to be performed for each nuclear
geometry, thus resulting in diabatic potential energy surfaces
Vii(Q) and coordinate-dependent donor-acceptor coupling
matrix elementsVdk(Q). If many nuclear degrees of freedom
are important, as in the system considered below, such a global
characterization of the potential energy surfaces is not feasible.
A more practical, local procedure is to employ the normal modes
(Q) of the electronic ground state and expand the diabatic
potential matrix elementsVij(Q) around the equilibrium geom-
etry of the ground state of the overall system. This approach is
appropriate for photoinduced ultrafast dynamics in systems
without large amplitude motion. It has been applied recently
for the related problem of molecular conduction through a
metal-molecule-metal junction.60

For the present purpose of testing the partitioning procedure,
we adopt the strategy used in our previous work, where the
vibrational parameters and electronic-vibrational coupling
parameters are determined based on electronic structure calcula-
tions for the isolated chromophore, thereby neglecting the
coupling to the semiconductor substrate and to the phonons of
the semiconductor. The extension of the method to include this
interaction will be presented in a future publication.

The approach has been described in detail elsewhere.41

Briefly, we perform a vibrational analysis of the isolated
chromophore in the electronic ground state and employ the
harmonic approximation for the corresponding potential energy
surface

Here,Ql denotes thelth normal mode (with frequencyΩl), and
εg is the ground-state equilibrium energy. The latter is obtained
from an electronic structure calculation for the overall (dye-
semiconductor) system. We assume the donor-acceptor cou-

|æ̃n〉 ) ∑
j

(S-1/2)jn|æj〉 (2.3)

F̃ ) S-1/2FS-1/2 (2.4)

F̃ ) (F̃dd F̃da

F̃ad F̃aa) (2.5)

F̃Râ,nm ) 〈æ̃n
R|f |æ̃m

â 〉

) ∑
i

〈æ̃n
R|øi〉εi〈øi|æ̃m

â 〉 (2.6)

FhRR ) DR
†F̃RRDR (2.7)

FhRâ ) DR
†F̃RâDâ (2.8)

Fh ) (Fhdd Fhda

Fhad Fhaa) ) (εd,1 0 ...
0 εd,2 ... Fhda

l l
εa,1 0 ...

Fhad 0 εa,2 ...
l l

) (2.9)

|æj n
R〉 ) ∑

j

(DR)jn|æ̃j
R〉

) ∑
j,l

(DR)jn(S
-1/2)lj|æl〉 (2.10)

Vg(Q) ) εg +
1

2
∑

l

Ωl
2Ql

2 (2.11)
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pling matrix elementsVdk to be approximately independent of
the nuclear geometry61 and expand the diabatic potential energy
surfaces around the equilibrium geometry of the electronic
ground state,Q0

In the simplest approximation, only the linear term of the
expansion is taken into account. The frequencies are ap-
proximated by their ground-state values, and Dushinsky rota-
tion62 of the normal modes is neglected. In this way we obtain

This approximation has been used successfully to describe
Franck-Condon and resonance Raman spectra.63 It is also used
in the linear vibronic coupling model of conical intersections64

and in the Marcus theory of ET.65

Within the description of the nuclear degrees of freedom
employed here, the parameters of the diabatic potential energy
surfaces of the donor and acceptor states are obtained from the
potential energy functions of the excited state of the neutral
chromophore and the ground state of the cation of the chro-
mophore, respectively. Accordingly, we have

whereεd and εk denote the energy of the donor and acceptor
states (at the equilibrium geometry of the ground state),
respectively, which are obtained from an electronic structure
calculation of the overall system. The electronic-vibrational
coupling constants,κl

d andκl
a, are obtained from the gradients

of the excited state of the neutral chromophore (corresponding
to the donor state) and the ground state of the cation of the
chromophore (corresponding to the acceptor state) at the
equilibrium geometry of the ground state of the neutral
chromophore. The details of the electronic structure calculations
as well as the specific parameters for the system considered
below (coumarin 343 at titanium oxide) are described else-
where.41,42

In most experiments on electron injection in dye-semicon-
ductor systems, a colloidal solution of dye-sensitized nanopar-
ticles was employed.3,5,6,13To account for the influence of the
surrounding solvent on the ET dynamics in our simulations,
we employ a standard (outer-sphere) linear response model66-68

where the Hamiltonian of the dye-semiconductor system is
coupled linearly to a bath of harmonic oscillators. Thus the
Hamiltonian of the overall system reads

with Hs given by eq 2.1 and

The parameters of the solvent part of the Hamiltonian are
characterized by the spectral densities

in the donor and acceptor states, respectively. The spectral
densities describe the response of the solvent polarization to
the change of the charge distribution of the solute associated
with electronic transitions from the ground electronic state to
the excited state of the chromophore and to the cation,
respectively. In principle, the spectral densities can be different
for the two electronic transitions. Here we use for simplicity a
modeling where the response of the solvent for both transitions
is described by a coupling to the same bath that differs only in
the overall coupling strength, i.e.,cj

a ) Rcj
d. (Accordingly, in

the following the superscript for the coupling constants will be
omitted, i.e.,cj ≡ cj

d.) It is emphasized that this approximation
is only invoked for the solvent bath modes but not for the
intramolecular modes. This description is in accordance with
simple dielectric continuum theories of relaxation in polar
solvents.41,68-70 As a result of this assumption, we have

The solvent reorganization energies associated with the
transitions from the electronic ground to the excited state and
to the cation of the chromophore are given by

The solvent reorganization energy for the ET process, which
corresponds to a transition from the electronically excited state
to the cation of the chromophore, however, is given by

As has been discussed in detail in ref 41, the spectral densities
of the solvent model are chosen to be of bimodal form

with a Gaussian part accounting for the ultrafast inertial
dynamics of the solvent polarization and a Debye part describing
the slower diffusive decay. The corresponding parameters,ωG

) 144 cm-1, ωD ) 25 cm-1, λD
d ) λG

d ) 700 cm-1, andR )
-0.1, have been chosen in accordance with experimental results

Vjj(Q) ) Vjj(Q0) + ∑
l

κ l
jQl + ∑

l,k

γ lk
j QlQk (2.12)

Vjj(Q) ) Vjj(Q0) + ∑
l

κ l
jQl +

1

2
∑

l

Ωl
2Ql

2 (2.13)

Vdd(Q) ) εd + ∑
l

κl
dQl +

1

2
∑

l

Ωl
2Ql

2 (2.14a)

Vkk(Q) ) εk + ∑
l

κl
aQl +

1

2
∑

l

Ωl
2Ql

2 (2.14b)

H ) Hs + Hb + Hsb (2.15)

Hb )
1

2
∑

j

(pj
2 + ωj

2xj
2) (2.16a)

Hsb ) |ψd〉 ∑
j

cj
dxj 〈ψd| + ∑

k

|ψk〉 ∑
j

cj
axj 〈ψk| (2.16b)

Jd(ω) )
π

2
∑

j

(cj
d)2

ωj

δ(ω - ωj) (2.17a)

Ja(ω) )
π

2
∑

j

(cj
a)2

ωj

δ(ω - ωj) (2.17b)

Jb
a(ω) ) R2Jb

d(ω) ) R2 π

2
∑

j

cj
2

ωj

δ(ω - ωj) (2.18)

λd ) ∑
j

(cj
d)2

2ωj
2
≡ ∑

j

cj
2

2ωj
2

(2.19a)

λa ) ∑
j

(cj
a)2

2ωj
2

) R2 ∑
j

cj
2

2ωj
2

(2.19b)

λET ) ∑
j

(cj
d - cj

a)2

2ωj
2

) (1 - R)2 ∑
j

cj
2

2ωj
2

(2.20)

Jd(ω) ) xπ
λGω
ωG

e-[ω/(2ωG)]2
+ 2λD

ωωD

ω2 + ωD
2

(2.21a)

Ja(ω) ) R2Jd(ω) (2.21b)
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on solvation dynamics and absorption spectra of coumarin 343
in water.13,71

D. Observables of Interest and Dynamical Methods.
Several observables are of interest for the study of heterogeneous
ET in dye-semiconductor systems, in particular, the electronic
population dynamics, the associated nuclear wave packet
dynamics, as well as stationary and time-resolved spectra. In
this work, we will concentrate on the photoinduced electronic
injection dynamics, which are most directly reflected by the
time-dependent population of the donor state

Here, we have assumed that the system is initially prepared by
an ultrafast laser pulse in the donor state|ψd〉. The initial state
of the nuclear degrees of freedom is specified by the Boltzmann
operator e-âHNg of the nuclear Hamiltonian in the electronic
ground state

To simulate the quantum dynamics of this system, we use
the multilayer (ML) formulation40,72 of the multiconfiguration
time-dependent Hartree (MCTDH) method73-76 in combination
with an importance sampling scheme to describe the thermal
initial conditions in the observables introduced above. The
method as well as applications to different reactions in the
condensed phase have been described in detail previously.37,40,77

Here, we only briefly introduce the general idea and give some
details specific to the application in this work.

The ML-MCTDH method40 is a variational approach for the
description of quantum dynamics in systems with many degrees
of freedom. It extends the original MCTDH method73-76 for
application to significantly larger systems. In the original (single-
layer) MCTDH method, the overall wave function is expanded
in terms of time-dependent configurations

Here, |φjk
k (t)〉 is the “single-particle” (SP) function for thekth

SP degree of freedom, andM denotes the number of SP degrees
of freedom. Each SP group usually contains several (Cartesian)
degrees of freedom in our calculation, and for convenience the
SP functions within the same SP degree of freedom are chosen
to be orthonormal.

In contrast to the original MCTDH method, where the SP
functions are represented by time-independent basis functions

the ML-MCTDH method employs adynamiccontraction of the
basis functions that constitute the SP functions. To this end, a
time-dependentmulticonfigurational expansion of the SP func-
tions is used

i.e., the basic strategy of MCTDH is adopted to treat each SP
function. Here,Q(k) denotes the number of level two (L2) SP
degrees of freedom in thekth level one (L1) SP group, and
|V iq

k,q(t)〉 is the L2-SP function for theqth L2-SP degree of
freedom. Employing two dynamical layers, the expansion of
the overall wave function can thus be written in the form

The extension to more dynamical layers is obvious. In the
calculation considered below up to three dynamical layers are
employed.

The equations of motion within the ML-MCTDH approach
can be obtained from the Dirac-Frenkel variational principle.40

For two layers, they are given by

where the mean-field operators, reduced densities, and projection
operators are defined in ref 40. The equations of motion for
further layers are again obvious extensions of eq 2.28. The
inclusion of several dynamically optimized layers in the ML-
MCTDH method provides more flexibility in the variational
functional, which significantly advances the capabilities of
performing wave packet propagations in a complex system. This
has been demonstrated by several applications to quantum
dynamics in the condensed phase including many degrees of
freedom.37,40,72,77-80

III. Application to the Dye -Semiconductor System
Coumarin 343-TiO2

As a representative example of interfacial ET processes, we
consider photoinduced electron injection in the dye-semicon-
ductor system coumarin 343 (C343)-TiO2. This system has
been investigated experimentally by a number of groups.3,5,6,13,81

Recently, we have studied the electronic injection dynamics as
well as the associated nuclear wave packet dynamics in this
system employing a semiempirical Newns model.41 Here, we
apply the first-principles model outlined above.

A. Characterization of the System, Donor-Acceptor
Separation, and Coupling Matrix Elements.To model C343
adsorbed on TiO2 nanoparticles at the atomic level, we have
considered complexes of C343 with anatase TiO2 clusters of
different sizes, as depicted in Figure 1. All interatomic distances
and valence angles of the TiO2 clusters were taken from the
X-ray structure of bulk anatase.82 To avoid artificial effects due
to dangling bonds, the clusters were saturated by adding

Pd(t) )
1

Tr[e-âHNg]
Tr[e-âHNg|ψd〉〈ψd|eiHt|ψd〉〈ψd|e-iHt] (2.22)

HNg )
1

2
∑

l

(Pl
2 + Ωl

2Ql
2) +

1

2
∑

j

(pj
2 + ωj

2xj
2) (2.23)

|Ψ(t)〉 ) ∑
J

AJ(t)|ΦJ(t)〉 ≡

∑
j1

∑
j2

‚‚‚ ∑
jM

Aj1 j2‚‚‚jM
(t) ∏

k)1

M

|φjk
k (t)〉 (2.24)

|φn
k(t)〉 ) ∑

I

BI
k,n(t)|uI

k〉 (2.25)

|φn
k(t)〉 ) ∑

I

BI
k,n(t)|uI

k(t)〉 ≡

∑
i1

∑
i2

‚‚‚ ∑
iQ(k)

Bi1i2‚‚‚iQ(k)

k,n (t) ∏
q)1

Q(k)

|Viq

k,q(t)〉 (2.26)

|Ψ(t)〉 ) ∑
j1

∑
j2

‚‚‚ ∑
jM

Aj1 j2‚‚‚jM
(t)

× ∏
k)1

M

[∑
i1

∑
i2

‚‚‚ ∑
iQ(k)

Bi1i2 ‚‚‚ iQ(k)

k, jk (t) ∏
q)1

Q(k)

|V iq

k,q(t)〉] (2.27)

i|Ψ̇(t)〉L1 coefficients) Ĥ(t)|Ψ(t)〉 (2.28a)

i|φk(t)〉L2 coefficients)

[1 - P̂k(t)][ F̂k(t)]-1〈Ĥ(t)〉k|φk(t)〉 (2.28b)

i|ν̆k,q(t)〉L3 coefficients)

[1 - P̂L2
k,q(t)][ F̂k,q(t)]-1〈Ĥ (t)〉k,q|Vk,q(t) (2.28c)
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hydrogen atoms and hydroxyl groups to the boundary oxygen
and titanium atoms, respectively. The number of added hydrogen
atoms and hydroxyl groups as well as the adsorption sites were
chosen in a way to obtain neutral closed-shell clusters with high
coordination of the boundary titanium and oxygen atoms. Very
similar saturated cluster models have been used to study surface
photoreactions on anatase nanoparticles83 as well as adsorption
of water and catechol on the (101) anatase surface.84 The
adsorption site of the clusters is characterized by two titanium
atoms from the (101) surface of anatase (see below). The
minimal model that can capture all of these features is the cluster
(TiO2)2(H2O)5 (Figure 1, left image). However, significantly
larger clusters had to be considered to minimize boundary
effects. Well converged results could be obtained with the cluster
(TiO2)24(H2O)30, and only these results will be reported in the
following.

To obtain the structure of the C343-(TiO2)24(H2O)30 complex
shown in Figure 1 (right image) we have used the following
protocol: The geometry of isolated C343 was taken from an
earlier study.42 The deprotonated form of C343 was aligned to
the saturated (TiO2)8(H2O)14 cluster (Figure 1, middle image)
by optimizing the ground-state energy in internal coordinates.
Thereby, the internal nuclear degrees of freedom of C343 and
of the cluster were kept fixed, and only the six relative
orientation coordinates (three translations and three rotations)
were allowed to vary. Then, C343 was attached to the larger
(TiO2)24(H2O)30 cluster (Figure 1, right image) using the six
relative orientation coordinates from the alignment optimization
at the smaller (TiO2)8(H2O)14 cluster. The proton detached from
C343 upon adsorption was attached to a surface oxygen atom
adjacent to the adsorption center. This choice of the protocol
and the adsorption site is supported by a more detailed electronic
structure study on the adsorption of C343 on anatase TiO2,85

which has revealed that (i) the adsorbate is deprotonated upon
adsorption and the proton is attached to a doubly coordinated
surface oxygen atom and (ii) the preferred complexation is
bidentate bridging as shown in Figure 1 but not bidentate
chelation to only one surface titanium atom.

The alignment of C343 relative to the cluster (TiO2)8(H2O)14

was optimized with DFT usingGaussian 0386 with the B3LYP
functional and the 3-21G basis set. All other electronic structure

calculations were performed with the program package TUR-
BOMOLE87 employing DFT with the B3LYP functional and
the SV(P) basis set.

To discuss the donor-acceptor partitioning procedure, we
first consider the energy-level scheme. Figure 2 shows the
energies of the molecular orbitals of the overall system as well
as those of the donor and acceptor orbitals obtained by the
partitioning procedure outlined in section IIB. Also shown, in
comparison, are the energy levels of the isolated (TiO2)24(H2O)30

cluster and the isolated chromophore C343. The isolated
(TiO2)24(H2O)30 cluster exhibits a rather dense level structure
with a valence and conduction band separated by a band gap.
The calculated value for band gap of the finite cluster is 2.8
eV, which is somewhat smaller than calculated (4.0 eV88) and
experimental (3.4 eV89) values for anatase TiO2 nanoparticles.
This underestimation of the band gap is presumably due to the
added hydrogen and hydroxyl groups used to saturate the cluster.
Unsaturated finite clusters88 show typically a larger band gap

Figure 1. Complexes of C343 with the clusters (TiO2)2(H2O) (left image), (TiO2)8(H2O)14 (middle image), and (TiO2)24(H2O)30 (right image).

Figure 2. Representation of the energy levels of the system investi-
gated. Shown are (from left to right) energy levels of the isolated
chromophore C343, the donor molecular orbitals,|æj n

d〉, as obtained
from the partitioning procedure, the complex (TiO2)24(H2O)30C343, the
acceptor molecular orbitals,|æj n

a〉, as obtained from the partitioning
procedure, and the pure cluster (TiO2)24(H2O)30. The orbital chosen as
the donor state is denoted by|Ψd〉. Furthermore, correlations between
selected energy levels are indicated.
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than bulk anatase. A detailed analysis of the orbitals of (TiO2)24-
(H2O)30 revealed that the lowest unoccupied orbitals are
localized predominantly on saturation groups (cf. Figure 2,
rightmost panel) and can be regarded as levels in the band gap.
As has been demonstrated in a computational study of similar
clusters,83 this deficiency of the saturated cluster model is not
expected to have a significant influence on the electronic levels
involved in ET transitions. Moreover, these levels in the band
gap do not couple to the donor levels of C343 in the complex
(see below).

The adsorption of the chromophore C343 on the (TiO2)24-
(H2O)30 cluster changes the level structure noticeably. In
particular, it introduces energy levels in the lower part of the
band gap, which can be associated with the highest occupied
molecular orbitals (in particular HOMO and HOMO- 2) of
the isolated chromophore. The complex also exhibits a few
energy levels in the higher part of the band gap, which

correspond to orbitals localized at the TiO2 cluster. While the
highest occupied levels of C343 are located in the band gap
and thus retain their discrete structure in the complex, the lowest
unoccupied levels of C343 (in particular LUMO and LUMO+
1) are located energetically in the conduction band of TiO2. As
a consequence, in the complex these levels are dissolved in the
dense manifold of conduction band levels.

The partitioning procedure results in orbitals localized at the
chromophore and the TiO2 cluster, respectively. Although the
energy levels of both parts resemble the level structure of
isolated C343 and TiO2 to some extent, there are noticeable
differences due to the fact that these orbitals are not the
molecular orbitals of the separated parts but take some of the
interaction into account. For the study of electron-injection
dynamics, the donor orbital is chosen as the orbital that
corresponds in the limit of infinite separation to the LUMO of
isolated C343. Employing TD-DFT calculations, it has been

Figure 3. Selected orbitals obtained with the partitioning procedure. Shown are the orbitals corresponding to the HOMO orbital of isolated C343
(A), the donor orbital (B), and two representative acceptor orbitals (C and D).
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shown recently42 that this orbital is the dominant excitation in
isolated C343 and in complexes with small clusters of TiO2.90

The acceptor orbitals include all orbitals localized at the TiO2

cluster with energies above the energy of the HOMO of the
overall system.

The local character of the orbitals resulting from the partition-
ing procedure is illustrated in Figure 3. The orbital that can be
associated to the HOMO orbital of isolated C343 (in the
complex, this orbital corresponds to HOMO- 1) as well as
the donor orbital are well localized on the chromophore. The
acceptor orbitals are, however, localized at the TiO2 cluster.
The latter orbitals are dominated by the 3d orbitals of titanium.

In the system investigated, the localization works very well
for all donor and acceptor orbitals that participate in the ET
process. In the energy range of interest, the maximal nonlocal
contribution to donor or acceptor states is about 1%. It should
be emphasized, however, that the localization method (as any
localization procedure) should be tested for each system to which
it is applied. In the method used here, problems may arise
because due to the orthogonalization, which precedes the
donor-acceptor separation, some of the local character of the
orbitals may be lost. This concerns in particular orbitals localized
close to the dye-semiconductor binding site. An example of
such an orbital is shown in Figure 4. Although this orbital is
predominantly localized at C343 it also has non-negligible
contributions from the TiO2 cluster. However, this orbital
corresponds to an occupied orbital of the overall system, with
an energy well separated from the donor state, and is thus not
involved in the electron-injection process.

The donor-acceptor coupling matrix elements obtained based
on the partitioning are depicted in Figure 5. It is seen that a

rather broad distribution of acceptor states couples to the donor
state. In contrast to the Newns model used in our previous
study,41 where the donor-acceptor coupling varies smoothly
with the energyεk, the first-principles-based couplings exhibit
significant structures.

B. Electron-Transfer Dynamics. On the basis of the first-
principles model discussed above, we have performed dynamical
simulations of the ET dynamics. Thereby, the chosen donor
state, all 1184 acceptor states, and 39 modes of C343 (selected
according to their electronic-vibrational coupling strength) were
taken into account explicitly. The continuous distribution of
solvent modes was represented by 20 additional oscillators.

Figure 6 shows the result of the simulation for the population
of the donor state after photoexcitation (thick dashed line). The
simulation predicts an ultrafast injection of the electron from
the donor state localized at the chromophore into the quasi-
continuum of acceptor states localized in the TiO2 cluster on a
time scale (1/e time) of ∼13 fs. In addition to the ultrafast
injection component, the simulation results also exhibit a small
component of slower injection dynamics as well as oscillatory
structures superimposed on the decay. A comparison with a
purely electronic calculation (thin dashed line in Figure 6), where
the coupling to the nuclear degrees of freedom has been set to
zero, reveals that the high-frequency oscillations are of electronic
origin, i.e., can be classified as electronic coherence. In the
results of the purely electronic calculation, these coherence
effects are much more pronounced than in the full vibronic
results (thick dashed line in Figure 6). Thus, the coupling to

Figure 4. Example of a “donor” orbital, where the orthogonalization
procedure results in noticeable contributions at the TiO2 cluster

Figure 5. Modulus of the donor-acceptor coupling matrix elements
Vdk. The red line indicates the energy of the donor level,εd.

Figure 6. Population dynamics of the donor state after photoexcitation.
Shown are results obtained with vibronic coupling (thick lines), without
vibronic coupling (thin lines), for the finite TiO2 cluster (dashed lines),
and for the model of an infinite TiO2 surface (solid lines).
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the nuclear degrees of freedom results in a significant deco-
herence effect. In addition to this quenching of electronic
coherence, the coupling to the nuclear degrees of freedom also
introduces slower oscillations of vibrational origin. This vibra-
tional coherence effect is, however, small in the present system.

The results in Figure 6 also show that the electron-injection
process is not complete: There is a small but noticeable
probability (∼2%) to find the electron for long times at the donor
state. This finite probability for electron trapping at the donor
also persists for even longer times (data not shown). The
incomplete injection is a result of the finite cluster considered.
If an additional imaginary part (σ ) 1 eV) is included into the
orbital energies of the outer atoms of the TiO2 cluster (cf. the
discussion in section IIB and the Appendix) to mimic electron
injection at an infinite surface, then the donor population decays
to zero. This is demonstrated by the solid lines in Figure 6.
The result for the infinite system agrees well with the one for
the finite TiO2 cluster for short times but decays to zero for
longer times, corresponding to a complete electron-injection
process.

The time scale of electron injection predicted by the simula-
tion (∼13 fs) is faster than the experimental results for the
C343-TiO2 system, where injection times in the range of 20-
200 fs have been found using different techniques.3,5,6,13,81This
discrepancy can have a variety of reasons. As discussed above,
the electron-injection dynamics are not a single-exponential
decay but also exhibit a slower injection component as well as
oscillatory structures, which may result effectively in an overall
longer injection time. Furthermore, the dynamics depend on the
energy-level structure, in particular the relative position of the
donor state with respect to the conduction band edge, as well
as on the donor-acceptor coupling matrix elements and thus
on the accuracy of the electronic structure model used. Another
reason for the deviation may be the limited time resolution of
the experiments.

Finally, Figure 7 shows a comparison of results obtained from
the first-principles model, where the electronic energies and
electronic coupling matrix elements have been determined by
electronic structure calculations, with results where these
parameters have been determined by the semiempirical Newns
model.41 Overall, the two models predict similar ET character-
istics and thus confirm the robustness of the Newns model. The
major differences are the slower ultrafast injection component
(by about a factor of 2) and the electronic coherences in the

result based on the first-principles model. The different ET time
scale is caused by the overall stronger donor-acceptor coupling
in the semiempirical Newns model. The different importance
of electronic coherence effects, however, is related to the way
the donor-acceptor coupling is described in the two models.
In the semiempirical Newns model the donor-acceptor coupling
matrix elementsVdk are described by a continuous function
Γ(E) (cf. the discussion in the Appendix). Because in the model
used the functionΓ(E) varies slowly and, furthermore, the
energy of the donor state is well above the conduction band
edge of the semiconductor,41 the result of the Newns model
does not show electronic coherence effects. In the first-principles
model, however, the donor-acceptor coupling matrix elements
Vdk depend significantly on the energyεk, thus resulting in
pronounced electronic coherence effects in the population
dynamics. The comparison in Figure 7 also shows that the effect
of the coupling to the nuclear degrees of freedom on the
electron-injection time scale is more pronounced in the semiem-
pirical Newns model.

IV. Concluding Remarks

In this paper, we have outlined a first-principles-based method
to describe the quantum dynamics of heterogeneous ET reactions
at dye-semiconductor interfaces. The method employs an
expansion of the Hamiltonian in a diabatic basis of electronic
donor and acceptor states localized at the dye molecule and the
semiconductor substrate, respectively. To determine the diabatic
states and thus the electronic energies and the donor-acceptor
coupling matrix elements, we have used a partitioning scheme.
This scheme is based on a partitioning of the overall Hilbert
space into a donor and acceptor part and a subsequent separate
diagonalization of the two blocks of the Hamiltonian to define
the donor and acceptor states. In this article, we have employed
the Kohn-Sham orbitals and matrix to describe the system and
thus used an effective single-electron Hamiltonian. The exten-
sion of the method to many-electron states will be the subject
of future work.

As an application, we have considered photoinduced electron
injection for coumarin 343 adsorbed at titanium oxide nano-
particles. The latter were modeled by a finite titanium oxide
cluster. The quantum dynamics of the ET reaction were
simulated using the ML-MCTDH method, which allows an
efficient and accurate description of this system, which com-
prises many electronic states and nuclear degrees of freedom.
The results demonstrate the ultrafast character of the electron-
injection process in this system. The ET dynamics exhibit
significant electronic coherence effects. The coupling to the
nuclear degrees of freedom of the chromophore results in a
quenching of the coherence effects.

In the present application we have assumed that the photo-
excitation by an ultrashort laser pulse can be described by an
instantaneous transition from the electronic ground state to the
donor state. As shown previously,72 the methodology also allows
us to include the laser field explicitly in the calculation to study
the influence of the laser pulse on the dynamics of these ultrafast
ET reactions. Employing, furthermore, the nonperturbative
description of matter-field interaction outlined recently,80,91

it will also be possible to simulate time-resolved nonlinear
spectra, which will allow a direct comparison with experimental
results.

Appendix

Description of Electron Injection for a Chromophore
Adsorbed on an Extended Substrate.As mentioned above,

Figure 7. Population dynamics of the donor state after photoexcitation
obtained by employing the first-principles-based model (solid lines)
and the semiempirical model for the electronic coupling (dashed lines).
Fully vibronic and purely electronic population dynamics are depicted
by thick lines and thin lines, respectively.
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the partitioning procedure introduced in section IIB is not limited
to dye-semiconductor systems with a finite semiconductor
cluster but can, in principle, also be applied to a dye molecule
adsorbed on an extended surface. One possibility is to employ
the slab model and electronic structure calculations with periodic
boundary conditions.92 Alternatively, the effect of an infinite
semiconductor substrate can also be described using surface
Green’s function techniques.59 In this appendix, we outline an
approximate variant of the latter method.

To this end, let us assume that the partitioning procedure
outlined in section IIB has been performed for a chromophore
adsorbed on an infinite surface (e.g., using the slab model)
resulting in a Hamiltonian of the form of eq 2.1. We first show
that if one is only interested in observables that are localized
on the chromophore, then the influence of the semiconductor
substrate and the chromophore surface coupling on the dynamics
is fully characterized by the function

or, equivalently, its Fourier transform

The latter function describes the density of states of the
semiconductor substrate weighted by the donor-acceptor
coupling and is also called the energy-dependent decay width
of the donor state.

To demonstrate this fact, let us consider the electronic
projection of the time-dependent vibronic wave function

onto the donor state

where|Ψ0〉 denotes the initial state and the HamiltonianH is
given by eq 2.15. In the following, we will assume that the
initial wave function is localized at the chromophore, i.e.,

Using projection-operator techniques, it is straightforward
to show53 that the equation of motion for〈ψd|Ψ(t)〉 is
given by

where

denotes the nuclear Hamiltonian in the donor state and

is the nuclear Hamiltonian in the acceptor states. Equation A.6
shows that the influence of the semiconductor substrate and of
the chromophore-surface coupling enters only through the
function Γ(t) or, equivalently, its Fourier transformΓ(E).

While Γ(t) is a smooth function for finite semiconductor
clusters and extended surfaces,Γ(E) is a continuous function
only for a chromophore adsorbed on an infinite surface. The
width functionΓ(E) is the imaginary part of the self-energy in
the donor stateΣdd(E)

where

describes the interaction between the chromophore and the
semiconductor surface and

is the electronic Green’s function of the semiconductor surface.
Thereby,Hsf denotes the electronic Hamiltonian of the semi-
conductor substrate andη is the usual positive infinitesimal.

In our previous work on heterogeneous ET37,41we have used
a semiempirical Newns model, whereΓ(E) was parametrized
based on a tight-binding model developed by Petersson et al.43

The parameters within this model have been determined to fit
the lower 3d group of the TiO2 conduction band (see refs 41
and 43 for further details).

As was mentioned above, a first-principles calculation of
Γ(E) is possible by employing the slab model and electronic
structure calculations with periodic boundary conditions. Al-
ternatively, a finite part of the semiconductor surface (in the
following referred to as the cluster) can be treated explicitly,
and the influence of the remaining infinite part can be described
using surface Green’s function techniques.59 Within this method
the effect of the infinite substrate enters via a self-energy matrix
that is localized at the boundary of the cluster, which is treated
explicitly. To discuss this approach, we introduce a projection
operatorP that projects on the cluster, i.e., on the part of the
substrate that is explicitly treated. Using standard projection-
operator techniques one obtains for the projected Green’s
function of the surface

Here,M(E) is a self-energy term that describes the influence of
the remainder of the substrate given by

whereQ ) 1 - P. The self-energyM(E) in eq A.13 should not
be confused with the self-energyΣ(E) defined in eq A.9b. While
the latter describes the influence of the overall substrate on the
adsorbate, the former describes the effect of the remaining part
of the infinite substrate, without the explicitly treated TiO2

Γ(t) ) ∑
k

|Vdk|2 e-iεkt (A.1)

Γ(E) ) 2π ∑
k

|Vdk|2δ(E - εk) (A.2)

|Ψ(t)〉 ) e-iHt|Ψ0〉 (A.3)

〈ψd|Ψ(t)〉 ) 〈ψd| e-iHt|Ψ0〉 (A.4)

〈ψk|Ψ0〉 ) 0 (A.5)

∂

∂t
〈ψd|Ψ(t)〉 )

-iHNd
〈ψd|Ψ(t)〉 - ∫0

t
dτ Γ(τ) e-iHNaτ〈ψd|Ψ(t - τ)〉 (A.6)
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κl
dQl +

1
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j

(pj
2 + ωj

2xj
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j
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dxj (A.7)

HNa
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1

2
∑

l

(Pl
2 + Ωl

2Ql
2) +

∑
l

κl
aQl +

1

2
∑

j

(pj
2 + ωj

2xj
2) + ∑

j

cj
axj (A.8)

Γ(E) ) -2 Im Σdd(E) (A.9a)

Σ dd(E) ) 〈ψd|VGsf(E)V|ψd〉 (A.9b)

V ) ∑
k

(|ψd〉Vdk〈ψk| + |ψk〉Vkd〈ψd|) (A.10)

Gsf(E) ) (E + iη - Hsf)
-1 (A.11)

PGsf(E)P ) (E + iη - PHsfP - M(E))-1 (A.12)

M(E) ) PHsfQ(E + iη - QHsfQ)-1QHsfP (A.13)
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cluster, on the explicitly treated system, i.e., the complex of
the dye molecule and the finite TiO2 cluster.

Within our treatment outlined in section IIB the projection
operatorP is given by the orthogonal orbitals of the explicitly
treated acceptor space

and the projected Hamiltonian of the substrate,PHsfP, is given
by the Fock matrix of the acceptor space in the orthogonal basis

In principle, the energy-dependent self-energy matrixM(E)
can be calculated using surface Green’s function techniques.
In the application considered in this paper, we have used a
variant of this method, which approximates the self-energy by
a constant diagonal imaginary partσ at the outer atoms of the
explicitly treated TiO2 cluster; i.e.,M(E) ≈ M with Mjj ) -iσ/2
if j belongs to an orbital of the outer atoms of the TiO2 cluster,
andMjk ) 0 otherwise. Thus, within this method the acceptor
block of the Fock matrix from eq 2.5 is replaced by

As a result, the Fock matrix is no longer real but complex
symmetric.

In our practical implementation, we calculateΓ(E) via the
relation to the self-energyΣdd(E), eq A.9a, with

Here,Gaa denotes the matrix representation ofPGsf(E)P in the
orthogonal basis|æ̃n

a〉

The matrix F̃′da is obtained by diagonalizing the donor block
F̃dd according to eq 2.7 and transforming the off-diagonal blocks
according toF̃′da ) Dd

†F̃da. Furthermore, in eq A.17, we have
assumed thatQV|ψd〉 ) 0, which is expected to be a very good
approximation for the size of the TiO2 cluster employed in the
present study.

To determineGaa, we calculate the right eigenvectors and
eigenvalues of the complex symmetric matrixF̃aa + M.
Denoting the matrix of right eigenvectors byU and the diagonal
matrix of eigenvalues byλ and using the identitiesF̃′†da ) F̃′da
and UW-1UT ) 1, whereW ) UTU is the overlap of the
eigenvectors ofF̃aa + M, we obtain the energy-dependent decay
width for the selected donor state

Alternatively, the Green’s functionGaa could also be determined
directly for each energyE using, e.g., matrix inversion.
However, in the present context, the diagonalization procedure
employed is more advantageous because it has to be performed
only once.

In the dynamical simulations, the continuum of electronic
states implicit in the continuous functionΓ(E) is discretized
and represented by a finite number of states|ψk〉 employing eq

A.2 as described previously.37 In the present applications, 6000
electronic states within an equidistant discretization schema were
sufficient to represent the electronic continuum over the time
scale of interest.
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