
Nuclear dynamics of the H−
2 collision complex

beyond the local approximation: Associative

detachment and dissociative attachment to

rotationally and vibrationally excited molecules
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Abstract: An improved nonlocal resonance model for the description of
the nuclear dynamics of the H−2 collision complex is developed. The model is
based on the ab initio electron-H2 scattering data of Berman et al. at short
internuclear distances, the ab initio data of Senekowitsch et al. for the bound
2Σ+

u state of H−2 at intermediate distances, and exhibits the correct polarization
interaction at large internuclear distances. Cross sections for associative de-
tachment and dissociative attachment to rotationally and vibrationally excited
molecules were calculated for a wide range of energies and angular momenta
with full inclusion of nonlocal effects. The calculated associative-detachment
rate constant at 300 K is 3.8 × 10−9 cm3s−1, which is significantly larger than
the experimental value reported by Schmeltekopf et al. A series of narrow
low-energy orbiting resonances was found in the associative-detachment cross
section. Our results compare well with previous calculations of dissociative at-
tachment cross sections within the nonlocal resonance model. The dissociative
attachment cross section for vibrationally and rotationally hot H2 (T = 1400K)
has been calculated and compared with the experimental data of Allan and
Wong. It is demonstrated that the local-complex-potential approximation is an
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excellent approximation for the associative detachment process, whereas it fails
severely for the dissociative attachment process in H2.

1 Introduction

The system H−2 is the most fundamental molecular anion. It is unstable, with
a very short lifetime (τ ∼ 10−15 s). The dynamics of this complex is still not
well understood. But it is important in a number of collisional processes. As
examples of the most studied ones we mention dissociative attachment (DA)

e− + H2 → H + H−, (1)

vibrational excitation (VE)

e− + H2(νi) → e− + H2(νf ), (2)

associative detachment (AD)

H + H− → H2 + e− (3)

and, for scattering energies higher than the electron affinity of H, also collisional
detachment (CD)

H + H− → H + H + e−. (4)

Understanding of these processes is important for a number of practical applica-
tions. AD and DA determine the thermal equilibrium densities of H− ions and
H2 molecules in many astrophysical plasmas. Neutral molecules produced in AD
are vibrationally excited and the emission spectra of such molecules are quite
different from those of molecules excited by ultraviolet pumping or shock exci-
tation [1]. DA of electrons to molecular hydrogen is thought to be the primary
source of the H− ions produced in hydrogen plasmas. These ions may serve for
the generation of neutral particle beams, the injection of ions into controlled
thermonuclear devices, or for electromagnetic propulsion of space vehicles.

In the early models of the H−2 dynamics the interaction between the nuclei
was described in the local-complex-potential approximation [2]-[4], with empir-
ically adjustable parameters and later with ab initio potentials [5], [6]. The
importance of nonlocal effects was pointed out in [6]. Recently, the dynamics
of nonlocal models has been studied [7], [8], [9], [10] for DA and VE in H2.

In the present work we extend the nonlocal resonance theory to treat the
AD reaction as well as DA to rotationally excited molecules. The existing non-
local resonance model for the H−2 dynamics [7], [8] is modified to account for
the long-range behaviour of the H−2 potential-energy function, which is of rel-
evance for the AD reaction. VE, DA and AD processes can thus be treated
within a single model with no adjustable parameters. To our knowledge, this is
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the first calculation of AD cross sections as well as DA cross sections including
rotational motion within the nonlocal resonance model. It should be mentioned
that rotational effects on DA dynamics have been included in the largely equiv-
alent effective-range model of Gauyacq [11]. Rotational motion is also routinely
included in multi-channel quantum-defect treatments of dissociative recombina-
tion, see, e. g., [12].

We present only a brief outline of the theory and the computational proce-
dures and a short account of the results here. A more detailed description of
the methods and results will be given elsewhere [13].

2 Theoretical description

We use the projection-operator formalism (see [14] for a recent review) for the
description of the quasi-molecule H−2 formed during the collision process. We
will mostly follow the notation of reference [14] here. We will employ the double-
ket notation | 〉〉 to denote kets in the combined Hilbert spaces of electronic and
nuclear motion and single-ket notation | 〉 for kets in either electronic or nuclear
part of the Hilbert space. The treatment of the rotational degrees of freedom
follows the work of Bieniek [15].

The projection-operator formalism takes advantage of the fact that all the
processes of interest, (1)-(4), arise from resonant electron scattering. The res-
onance in the present case is the short-lived 2Σ+

u shape resonance 1 of H−2 .
The electronic wave function of this state can approximately be described by
a square integrable function |ϕd 〉. The electronic Hilbert space is divided into
two subspaces by means of two projection operators

Q = |ϕd 〉 〈ϕd|, (5)

P =
∫

kdkdΩk |ϕ̂(+)
k 〉 〈 ϕ̂(+)

k | . (6)

The functions |ϕ̂(+)
k 〉 spanning the P space are constructed as scattering wave

functions of an electron with energy 1
2k2 and direction Ωk, scattered by H2

keeping the nuclei fixed. Given the electronic basis states |ϕd 〉, |ϕ̂(+)
k 〉, the

Hamiltonian including nuclear motion can be written in the form

H = |ϕd 〉[TN + Vd(R)] 〈ϕd|+
∫

kdkdΩk |ϕ̂(+)
k 〉[TN + V0(R) + 1

2
k2] 〈 ϕ̂(+)

k |+

+

∫
kdkdΩk |ϕd 〉Vdk(R) 〈 ϕ̂(+)

k |+
∫

kdkdΩk |ϕ̂(+)
k 〉V ∗

dk 〈ϕd|, (7)

1The repulsive 2Σ+
g state has a very small influence on the low-energy scattering and it is

not considered here.
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where TN denotes the kinetic-energy operator of the nuclei, V0(R) is the po-
tential energy for the ground electronic state of H2, Vd(R) = 〈ϕd|Hel |ϕd 〉 is
the discrete-state potential, and Vdk = 〈ϕd|Hel |ϕ̂(+)

k 〉 is the discrete-state-
continuum coupling. Note that in (7) we neglected the terms 〈ϕd|TN |ϕ̂(+)

k 〉
and 〈 ϕ̂(+)

k |TN |ϕ̂(+)
k′ 〉, which however should be small by construction of |ϕ̂(+)

k 〉
(see [14]).

Using the form (7) of the Hamiltonian H, we can easily remove the P -space
part of the wave function |Ψ 〉〉 from the Schrödinger equation H|Ψ 〉〉 = E|Ψ 〉〉.
Thus we obtain for the projected state vector

|Ψd 〉 = 〈ϕd|Ψ 〉〉 (8)

the equation

(TN + Vd − E)|Ψd 〉 =

−
∫

kdkdΩkVdk(E − 1
2k2 − TN − V0 + iε)−1V ∗

dk|Ψd 〉, (9)

where ε is the usual positive infinitesimal. We make use of the partial-wave
expansion

〈R|Ψd 〉 =
∑

lm

Y ∗
lm(ΩK)Ylm(ΩR)ilψl(R)R−1 (10)

and of the fact that only the p wave contributes to Vdk (see the discussion in
[5]). Following Bieniek [15], we arrive at the radial Schrödinger equation for
ψl(R) (

− 1
2µ

d2

dR2
+ Vd(R) +

l(l + 1)
2µR2

+ Fl

)
ψl(R) = Eψl(R), (11)

where µ is the reduced mass of H2 and

Flψl(R) =
∫

dR′
∫

kdkdΩkVdk(R)f (+)
l (E − 1

2k2, R,R′)V ∗
dk(R)ψl(R′), (12)

f
(+)
l (E,R, R′) =

1
2l + 1

[
(l + 1)g(+)

l+1(E, R,R′) + lg
(+)
l−1(E,R, R′)

]
, (13)

g
(+)
l (E,R, R′) being the Green’s function for nuclear motion in V0(R)

g
(+)
l (E) =

(
E +

1
2µ

d2

dR2
− V0(R)− l(l + 1)

2µR2
+ iε

)−1

. (14)

The function ψl(R) thus fulfills the Schrödinger equation with the potential
Vd + Fl, which is nonlocal, energy-dependent and couples the nuclear motion of
H−2 with the nuclear motion of H2, with the angular momenta differing by one.
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For computational purposes it is more convenient to work with the integral
(Lippmann-Schwinger) equation for ψl(R)

|ψ(+)
l 〉 = |φl 〉+G

(+)
l (E)[Vd + Fl]|ψ(+)

l 〉, (15)

instead of the integro-differential (Schrödinger) equation. Here |φl 〉 is the free
wave

〈R|φl 〉 = Rjl(KR) (16)

and G
(+)
l (E) is the free-particle Green’s function

〈R|G(+)
l ( 1

2µK2)|R′ 〉 = −iKRR′jl(KR<)h(+)
l (KR>). (17)

With K we denote the wave number of the relative motion of the nuclei; jl,
hl are the spherical Bessel and Hankel functions respectively; R< and R> is
smaller and bigger value of R and R′ respectively.

The formula for the total AD cross section σAD is in accordance with [6],
[15]

σAD =
∞∑

l=0

σl, (18)

where

σl =
4π2

E
wl

{
(l + 1)

∑
ν

| 〈ψ(+)
l |Vdk|χν

l+1 〉 |2 + l
∑

ν

| 〈ψ(+)
l |Vdk|χν

l−1 〉 |2
}

.

(19)
The kets |χν

l 〉 denote bound-state wave functions of H2 (ν denotes vibrational
quantum number) with the bound-state energy Eν

l . The wave number k in (19)
refers to the outgoing electron. In the matrix element 〈ψ(+)

l±1|Vdk|χν
l 〉, k is given

by the energy-conservation law 1
2k2 = E − Eν

l . The factor wl accounts for the
nuclear spin statistics; it equals 1

4 for odd l and 3
4 for even l. Note that the

normalization of the wave function ψ
(+)
l (R) used here is different from [6] and

is defined by equation (15). Hence the formula (19) differs slightly from the
corresponding expression in [6].

For astrophysical applications it is useful to know the scattering cross sec-
tions σν

l for AD processes resulting in the rotationally and vibrationally excited
state |χν

l 〉 of H2 [5]

σν
l =

4π2

E
wl

[
(l + 1)| 〈ψ(+)

l+1|Vkd|χν
l 〉 |2 + l| 〈ψ(+)

l−1|Vkd|χν
l 〉 |2

]
. (20)

The DA cross section for the scattering of an electron from H2 in the state |χν
l 〉

can be obtained from this formula using the principle of detailed balance

σDA =
8π2µ

k2(2l + 1)

[
(l + 1)| 〈ψ(+)

l+1|Vkd|χν
l 〉 |2 + l| 〈ψ(+)

l−1|Vkd|χν
l 〉 |2

]
. (21)
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3 Construction of the model

We constructed a new nonlocal resonance model for the description of the nu-
clear dynamics of the H−2 collision complex by modifying the long-range part
of the model of Mündel, Berman, Domcke [7] (this model will be further re-
ferred to as MBD) to account for the proper long-range behaviour of the H−2
potential-energy function.

The nonlocal resonance model is specified by the three functions V0(R),
Vd(R) and Vdk(R), see eq (7). In MDB these functions are given as

Vd(R) = D1

{
e−2α1(R−R1) − 2te−α1(R−R1)

}
+ Q, (22)

Vdk(R) =
1√
2π

3∑

i=1

fi( 1
2k2)gi(R), (23)

where

fi(E) = AiE
3
4 eBiE i = 1, 2, 3 (24)

gi(R) = exp(−C2
i (R−R0)2) i = 1, 2 (25)

g3(R) = exp(−C3(R−R0)). (26)

The function V0(R) is constructed via a spline interpolation of the data given by
Kolos and Wolniewicz [16]. The exponent 3

4 in the equation (24) is determined
by the threshold law of Wigner for p-wave electron-molecule scattering [14].
The values of the parameters D1, α1, t, Ai, Bi and Ci were chosen to reproduce
previous ab initio fixed-nuclei electron-scattering data for internuclear distances
ranging from 1 a. u. to 3 a. u. [17]. The R-dependence of the model potential
functions of MDB for R > 3 a.u. represents therefore a somewhat arbitrary
extrapolation. This was justified by the expectation of a small sensitivity of the
DA cross section to the long-range part of interaction [7]. The AD cross sec-
tion, on the other hand, should be rather sensitive to the long-range behaviour
of the H−2 potential. For large internuclear distances the 2Σ+

u state of H−2 is
(electronically) bound and the long-range behaviour of its energy is dominated
by the polarization potential (Dalgarno and Kingston [18]). The potential en-
ergy of the H−2 ion for the internuclear distances 3−20 a.u. was calculated by
Senekowitsch et. al. using ab initio multiconfiguration-interaction methods [19].

The energy of the H−2 bound state in the MBD model is given by

V1(R) = Vd(R) + ∆(R), (27)

where ∆(R) is the level shift, which is completely determined by the functions
V0(R) and Vdk(R) (see [7] for the details). It is clear that by adjusting Vd(R)
we can make V1(R) to be consistent with the ab initio results for intermediate
[19] and the long [18] internuclear distances. Fortunately, we can do it in such a
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way that the new Vd(R) joins smoothly with the original potential Vd(R) from
the MBD model for R < 3 a.u. Thus the new model is consistent also with the
fixed-nuclei electron-H2 scattering data of Berman, Mündel, Domcke [17].

The potential V1(R) for the new model together with the old V1(R) and
V0(R) of MBD are shown in figure 1. The analytic form of the new discrete
state potential Vd(R) is (atomic units)

Vd(R) =

{
1.74e−2.37R − 94.4e−22.5/R

((R−2.54)2+3.11)2
for R ≤ 10.6

−0.00845Re−0.35R − 2.25
R4 − 97

R6 for R > 10.6
(28)

The discrete-continuum coupling element Vdk(R) of the new model is the same
as in the MBD model, see eq (23).

It should be mentioned that similar combinations of short-range, interme-
diate-range and long-range potentials have previously been adopted within the
local-complex-potential approximation by Sakimoto [20] and Launay et al. [21].
In the intermediate range (3 < R < 20 a. u.) the ab initio 2Σ+

u potential-energy
function is considerably more attractive than the polarization potential, which
is of relevance for the AD cross section (see below).

4 Computational method

Cross sections for AD and DA were calculated from eq. (18)-(21) with the wave
function |ψ(+)

l 〉 obtained as the unique solution of eq. (15). It is convenient to
rewrite this equation in the form

|ψ(+)
l 〉 = |u(+)

l 〉+Ḡ
(+)
l (E)(Fl −Wl)|ψ(+)

l 〉, (29)

where Ḡ
(+)
l (E) and |u(+)

l 〉 are the Green’s function and the scattering solution
for the local potential Vd +Wl, with Wl(R) being a suitably chosen local poten-
tial, so that Fl−Wl is ”small” (see [22]). The function |u(+)

l 〉 is easily found as
properly normalized regular solution of the Schrödinger equation in the presence
of the local potential Vd(R) + Wl(R), and Ḡ

(+)
l (E) can be written in terms of

the regular and irregular solutions of this equation in analogy with eq. (17).
The nonlocal operator Fl is evaluated as follows. First we write the Green’s

function g
(+)
l (E) in terms of the eigenfunctions χν

l of the operator − 1
2µ

d2

dR2 +

V0(R) + l(l+1)
2µR2

g
(+)
l (E,R, R′) =

∑
ν

χν
l (R)

1
E − Eν

l + iε
χν

l (R′). (30)

Substitution of this expression for g
(+)
l and eqs. (23) for Vdk(R) into eq. (12),

(13) yields

Fl(E, R, R′) =
∑

ν

χν
l (R)

(
∆ν

l (E, R, R′)− i

2
Γν

l (E, R, R′)
)

χν
l (R′), (31)
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∆l(E, R, R′) =
∑

ij

gi(R)
(l + 1)∆ij(E − Eν

l+1) + l∆ij(E − Eν
l−1)

2l + 1
gj(R

′), (32)

Γl(E, R, R′) =
∑

ij

gi(R)
(l + 1)Γij(E − Eν

l+1) + lΓij(E − Eν
l−1)

2l + 1
gj(R

′), (33)

where
Γij(E) = 2πfi(E)fj(E)

and

∆ij = P

∫ ∞

0

dE′ Γij(E)
E − E′ .

where P denotes the principal value. Note that for the functions fi(E) given
by eq. (24) we can express ∆ij(E) analytically [7].

A very efficient method for solving scattering problems in the presence of
complicated nonlocal potentials like (31)–(33), called the Schwinger-Lanczos
method (SLM), has been developed recently and is described in detail elsewhere
[23]. This method is based on the Schwinger variational principle [24]. The test
functions are chosen as linear combinations of the Lanczos basis functions for
a certain, suitably chosen operator. This basis is constructed with a recurrence
scheme from the vector |u(+)

l 〉. The T -matrix and wave function |ψ(+)
l 〉 are

obtained by the inversion of a tridiagonal matrix. The SLM has been successfully
used for the calculation of DA and VE cross sections (for l = 0) in several
systems [22], [25], [26].

The SLM has been employed to solve the radial integral equation (29) for
a given l. The functions |χν

l 〉 in the sum (30) were obtained with a discrete-
variational-representation (DVR) method using the Fourier basis on the interval
(0, 10). This method also provides a discretization of the continuous spectrum
[22]. Converged results were obtained with 100 Fourier functions for the DVR
and 40 functions |χν

l 〉 in eq. (31) for Fl. All the functions |u(+)
l 〉, |χν

l 〉, |ψ(+)
l 〉

and the Green’s function Ḡ
(+)
l were calculated in the interval (0,10 a. u.) on a

grid of typically 2000 meshpoints. For the proper normalization of the scat-
tering solution |u(+)

l 〉 and for the calculation of the Green’s function Ḡ
(+)
l the

Schrödinger equation with the local potential Vd(R) + Wl(R) was solved up to
R = 100 a. u. Convergence of the partial-wave sum for the H + H− AD cross
section, eq (18), for a collision energy of 1eV requires the inclusion of angular
momenta up to lmax = 30.

We would like to stress that the calculation of the AD cross section for typi-
cally hundreds of energies (to obtain the energy-dependence) is quite demanding
and the computational procedures need to be very efficient. A more detailed de-
scription of the numerical techniques which were employed in these calculations
will be given elsewhere [13].
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5 Results and discussion

The calculated total AD cross section for H + H− and its partial-wave compo-
nents are shown in figure 2 on a doubly logarithmic scale. The results of the
nonlocal model (full line) are compared with the results obtained in the local
approximation (dashed line). The local approximation has been constructed as
described in reference [7], i. e. V1(R) of eq. (27) is the real part of the local
approximation. It is seen that the local AD cross section is in excellent agree-
ment with the nonlocal result. The reason of this is the following. Only the
nuclear dynamics in the region of large internuclear distances R is essential for
the AD process in the low-energy region, and the nonlocal effects for such values
of R are weak. The only important feature of the nuclear dynamics for small R
(R less then crossing point of the potentials V1 and V0, i. e. 3 a. u.) is that the
probability of the H−2 → H2+e− decay is large, and this is the feature contained
in both local and nonlocal models.

The local effective potential V1(R)+ l(l+1)
2µR2 depicted in figure 3 is an important

tool for the interpretation of the AD process. Each partial component of the
AD cross section is very small for energies below the centrifugal barrier (located
in the region R > 5 a. u. in figure 3) and increases with energy according to
the threshold law σl ∼ El− 1

2 . The cross section decreases above the centrifugal
barrier, σl ∼ l+1

E . Irregularities in the region E =0.02–0.2 eV and the change
of slope of the total AD cross section near E = 0.02 eV are associated with the
sudden switching of the inner repulsive barrier from R ' 2 a.u. to R ' 4 a. u. as
l increases from l = 22 to l = 23.

Upon closer inspection, the AD cross section exhibits weak and narrow reso-
nance structures. These are clearly seen in the partial wave components l = 23–
26 in the energy region 0.01–0.03 eV in figure 2. These resonances are typical
examples of orbiting resonances, which are a consequence of the particles be-
ing trapped in the region R ' 4–8 a. u. behind the centrifugal barrier. This
phenomenon increases the AD probability, since the particle trapped in the res-
onance state has a better chance for the tunneling into the detachment region,
R < 3 a. u. The shape (including the resonance structures) of the partial compo-
nent σl(E) depends essentially only on the parameter β = l(l+1)

2µ in the effective
potential. The same is true for the D− + D AD, with a higher value of µ in the
expression for β. This means that in the case of D− + D the distribution of the
values β is more dense and there is thus a better chance to find a resonance near
the maximum of σl(E) for some l. Such a resonance is more clearly discernible
in the total AD cross section. This is the case for the resonance in σ32(E) for
D− + D collisions. A detailed view of such a resonance structure in the total
D+D− AD cross section is given in Fig. 4. The width of this resonance is of the
order of 1 meV. Such a structure presumably cannot be resolved in present-day
collision experiments. The measurement of these structures would be a sensitive
test of the long-range part of the H−2 potential.
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Resonance structures in the H + H− AD cross section have previously been
discussed by Sakimoto [20] within the local-complex-potential approximation.
In Sakimoto’s calculation the resonances only became visible when the imag-
inary part of the Bardsley-Wadehra complex potential [4] was reduced by at
least a factor of 10 [20]. The imaginary part of the ab initio complex potential
[7] is smaller than the imaginary part of the Bardsley-Wadehra potential (see
Fig. 1 of [7]) and therefore resonance structures are apparent in the present
calculation without artificial suppression of the imaginary part.

It has been known for some time that the local approximation performs
very poorly for the DA and VE processes in H2 [7], [8], [9], [10]. Considering
that AD is just the reverse process to DA, the excellent performance of the
local approximation for the AD process (cf. Fig. 2) is a bit surprising. The
solution of this puzzle is given in figure 5. Here the AD cross section σν

l is
plotted for a number of final states |χν

l 〉, for a collision energy of 0.1 eV. It is
clear from this figure that only high values of l and ν contribute to the AD
cross section. For these values the difference between the local and nonlocal
calculations is small (at most a few per cent). In [7] and [8], on the other hand,
the DA cross sections for small values of ν and l = 0 were calculated. For these
values of ν, l the discrepancy between the nonlocal and local calculations for
AD are pronounced, but the magnitude of these cross section is so small that
they contribute negligibly to the total cross section. The same feature is seen in
the electron spectrum in figure 5. The difference between the local and nonlocal
calculations is again small, except in the region where the probability of electron
emission is small. The physical reason for this behaviour is clear. For the AD
into final state |χν

l 〉 with low ν, l to occur, the particles have to get deep into
the decay region (the minimum of the H2 potential V0(R) is at R ' 1.4 a. u.).
The probability for this is very small and strongly dependent on the details of
the nonlocal dynamics in the region R < 3 a. u..

The only measurement on the H + H− AD process is the reaction rate at
300◦K, 1.3× 10−9cm3s−1, of Schmeltekopf et al [27], who claim reliability of a
factor of two. Our calculation gives 3.8 × 10−9cm3s−1, which is almost three
times larger than the experimental result and the Langevin value of 1.33 ×
10−9 cm3s−1. To find out the reason why our value is so large we have compared
our result with previous theoretical calculations: 2.0 × 10−9cm3s−1 (Browne
and Dalgarno [28]), 1.89×10−9cm3s−1 (Bieniek and Dalgarno [5]) and 2.03 and
1.49× 10−9cm3s−1 (Launay et al. [21], their potentials V1 and V2 respectively).
The AD reaction rate at 300◦K is determined essentially by the long-range part
of the potential (R > 10 a. u.). In the case of the models of Browne and Dalgarno
[28], Bieniek and Dalgarno [5] and potential V1 of Launay et al. [21] this part
of the potential is approximately given by

−0.03887Re−0.7441R − 2.25
R4

− 97
R6

. (34)

This potential gives a reaction rate close to 2 × 10−9cm3s−1. Our potential
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also possesses the proper polarization asymptotics − 2.25
R4 − 97

R6 , but it is much
more attractive than (34) for R < 20 a. u.. The potential of Senekowitsch et
al. [19] is ten times deeper than (34) in the relevant region, which rises the
reaction rate by almost a factor of two. The potential V2 of Launay et al. [21]
is, like our potential, adjusted to the ab initio data of Senekowitsch et al. [19]
for 3 < R < 20 a. u. and should yield a rate coefficient which is significantly
larger than the rate coefficient for potential V1. The thermal rate coefficient
reported by Launay et al. for potential V2 is obviously incorrect. Sakimoto
[20] has reported rate constants for very low temperatures which appear to be
consistent with the present results.

If the DA cross sections for l = 0 of the present model are compared with
the results obtained with the MBD model, we find that the modification of
the long-range part of the H−2 potential function does not change the DA cross
section much. Only the threshold region is affected; the peaking of the cross
section at threshold is sharper. The calculated cross section for DA to H2 in its
ground state at threshold is 4.86× 10−5Å2, which is three times larger than the
experimental value 1.6× 10−5Å2 of Schulz and Asundi [29].

As a byproduct of the AD calculations, we have extended the calculation
of the DA cross section to l > 0 and ν > 0. To compare our results with the
measurement of Allan and Wong [30], we have averaged the DA cross sections
over the Maxwell-Boltzmann distribution for the temperature T = 1400 K. The
result is shown in figure 6. To normalize the experimental data, we used the
absolute cross-section value of Schulz and Asundi. The experimental curve is
thus normalized in such a way that the maximum value is three times less than
the maximum value of our calculation. The agreement between calculation and
measurement is rather poor for higher energies (E ∼ 3.5-4eV), which corre-
sponds to attachment to H2 in its ground vibrational state. The agreement is
better for lower energies, i. e., for attachment to vibrationally excited states. It
should be noted that the cross section for DA to the ground vibrational state
is very sensitive to details of the model, because it is determined by the details
of the wave function ψl(R) in the vicinity of the equilibrium distance of H2,
where the wave function is very small due to the rapid decay of H−2 at short
internuclear distances.

6 Conclusions

We have improved the nonlocal resonance model for H−2 proposed by Mündel,
Berman and Domcke to account properly for the long-range behaviour of the
H−2 potential-energy function. The potential function of the improved model
agrees with the ab initio data of Senekowitsch et al. at intermediate internuclear
distances and exhibits the correct polarization interaction at large distances.

Using the SLM, we have performed converged quantum calculations of DA
and AD cross sections for this improved nonlocal resonance model. It has been
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found that the measured thermal rate coefficient for H+H− AD is incompatible
with the presumably accurate 2Σ+

u potential-energy function of Senekowitsch et
al.. The theory predicts a value which is about three times larger than the value
of 1.3×10−9 cm3s−1 reported by Schmeltekopf et al. [27]. It has also been found
that the AD cross section exhibits narrow orbiting resonances. These resonances
appear for collision energies between 10 and 30meV and their width is of the
order of 1meV. The location and width of the resonances depends sensitively
on the long-range part of the interaction.

The local approximation gives results close to that of the fully nonlocal
calculation for the total AD cross section and for the spectra of the released
electron for electron energies less than 1.5 eV. The local approximation fails
when the target states with small l and ν are involved, which is the case in DA.
It can be concluded that it is perfectly justified to determine an empirical local
H−2 potential-energy function by fitting experimental AD data. The fitting of
experimental DA data within the local-complex-potential model, on the other
hand, has no physical basis.

The comparison with experimental data shows that further improvement of
the model is necessary. The calculated cross section for DA to H2 molecules
in the ground vibrational state, which is very sensitive to model parameters,
is too large, and the increase of the DA cross section with ν appears to be
too weak. More accurate ab initio calculations of the short-range part of the
nonlocal H−2 potential-energy function are necessary. More extensive and more
accurate measurements of cross sections for this fundamental and practically
relevant collision system would be very valuable.
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Figure 1: Potential function V0(R) of H2 in its ground electronic state (full line)
and potential function V1(R) of the 2Σ+

u state of H−2 in the MBD model (dot-
ted line) and in the new model (dashed line). Ab initio data of Senekowitsch
et al. for H−2 are plotted as full circles.

Figure 2: The total H+H− associative-detachment cross section (dotted-dashed
line) and its partial-wave components (full lines) l = 30, 29, ... (from the
right). Results of the local approximation are given by dashed lines.

Figure 3: Effective potential V1(R)+ l(l+1)
2µR2 for l = 0, 10, 15, 20, 21, 22, 23, 24 (from

bottom to top). The vertical line at R = 3 gives the position where the
potential V1(R) crosses the potential V0(R).

Figure 4: Detailed view of a resonance in the total cross section for the associa-
tive detachment of D− in the collision with D. The partial wave l = 32 is
responsible for this resonance.

Figure 5: Final-state distribution in H + H− associative detachment at 0.1 eV
collision energy. Relative probabilities for the different final states of H2 and
the energy spectrum of the released electron are shown. The energy of the
emitted electron is plotted on the x-axis, the angular momentum l of the
final H2 state on the y-axis, and the cross section σν

l (arb. units) on the
z-axis. The calculated electron spectrum of the nonlocal model is given by
the full curve; the dotted line gives the electron spectrum obtained in the
local approximation.

Figure 6: Cross section for dissociative attachment to H2 in thermal equilibrium
at 1400 K (long dashes). The full line was obtained by convolution with
a Gaussian of the width 50 meV. Short dashes represent the experimental
result of Allan and Wong, normalized to the threshold value of Schulz and
Asundi.
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