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Department of Theoretical Physics,

Faculty of Mathematics and Physics, Charles University Prague,
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Abstract
A generalization of the Schwinger-Lanczos algorithm for the calculation

of the off-shell T -matrix elements is presented and shown to be equivalent
to the Wynn’s epsilon algorithm for acceleration of the Born series. Both
methods are applied to the calculation of cross section for the dissociative
attachment of electrons to hydrogen molecule, e−+H2 → H+H−. Although
formally fully equivalent both methods behave very differently numerically.
It is shown that the Schwinger-Lanczos algorithm is more stable and gener-
ally superior to all other methods discussed in this paper.

PACS codes: 02.60.Nm, 31.15.Pf, 34.80.Ht
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1 Introduction

A very efficient method for computing the T -matrix elements in the pres-
ence of non-local interactions, the Schwinger-Lanczos algorithm, was pro-
posed recently [1]. This method has been successfully used in several real-
istic applications [2]-[4] to calculate cross sections for vibrational excitation,
associative detachment and dissociative attachment based on the use of the
non-local resonance model (NRM), where the non-locality of the nuclear dy-
namics stems from coupling of a discrete resonance state to the continuum.
Originally, the method was designed for calculation of the diagonal T -matrix
elements. In principle, it can be used also for calculation of non-diagonal
T -matrix elements resulting from multichannel collisions, but the calculation
is rather cumbersome and the incoming and outgoing states are not treated
symmetrically. It is the purpose of this work to present a generalization of
the Schwinger-Lanczos algorithm for the multichannel case and to establish
its relation to other methods.

As is well known the T -matrix can be represented in the form of the
Born series, which however often converges very slowly or does not converge
at all [5]. Several methods have been developed to sum such a divergent
series. In Section 4 one of these methods, the Wynn’s epsilon algorithm, is
discussed and proved to be equivalent to our generalization of the Schwinger-
Lanczos algorithm. This formal equivalence does not imply equivalence of
numerical properties. To show this we compare the numerical performance
of all three methods applied to the dissociative attachment of an electron to
the H2 molecule. The model system studied represents a typical example of a
resonance process in which a strong non-local interaction affects the nuclear
dynamics. The development of very efficient procedures for the calculation of
the T-matrix elements is important for case such as associative detachment
calculations, where many partial waves contribute to cross section (see [6] for
a H+H− associative detachment calculation including non-local effects).

We review briefly the Schwinger-Lanczos method in Section 2 and gen-
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eralize it in Section 3. In section 4, a relation between the Wynn’s epsilon
algorithm and the generalized Schwinger-Lanczos method is established. A
description of the dissociative attachment is shortly outlined in Section 5 and
applications of the studied algorithms to this problem are discussed in more
details. The numerical performance of all methods as applied to the problem
of dissociative attachment is discussed in Section 6.

2 Short review of the Schwinger-Lanczos ap-

proach

According to the Schwinger variational principle [7] the T -matrix element

Tfi ≡ 〈φf |T |φi〉 = 〈φf |V (V − V G0V )−1V |φi〉 (1)

is given by the stationary value of the functional

T [ψ−, ψ+] = 〈φf |V |ψ+〉+ 〈ψ−|V |φi〉 − 〈ψ−|V − V G0V |ψ+〉, (2)

where V is an interaction potential and G0 the free particle Green’s function.
This stationary value is achieved for |ψ±〉 being solutions of the corresponding
Lippmann-Schwinger equations. Considering |ψ±〉 in the form

|ψ±〉 =
N∑

k=1

c
(±)
k |gk〉, (3)

with variational parameters c
(±)
k we obtain an approximation to the T -matrix

TN
fi =

N∑

k,l=1

〈φf |V |gk〉(M−1)kl〈gl|V |φi〉, (4)

where the matrix M is given by Mkl = 〈gk|V −V G0V |gl〉. The set of vectors
{|gk〉}N

k=1 can be chosen arbitrarily (not necessarily orthogonal) provided that
Mkl is a regular matrix. The Schwinger-Lanczos method (SLM) was proposed
for calculation of the diagonal T -matrix elements [1], e.g. |φf〉 = |φi〉 = |φ〉.
In this method TN

fi is calculated according to (4), with |g1〉 = |φ〉〈φ|V |φ〉−1/2

and the set {|gk〉}N
k=1 is taken as V -orthogonal

〈gk|V |gl〉 = δkl (5)
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and such that matrix V G0V is tridiagonal

〈gk−1|V G0V |gk〉 = 〈gk|V G0V |gk−1〉 = βk−1, (6)

〈gk|V G0V |gk〉 = αk, (7)

〈gk|V G0V |gl〉 = 0 for |k − l| ≥ 2. (8)

Let us note that the complex-symmetric scalar product (i.e. without complex
conjugation) is used throughout this paper and not the usual (hermitian)
one, since G0 is a symmetric but non-hermitian operator. Only the matrix
element (M−1)11 is needed in (4) and this element is for a tridiagonal matrix
M easily expressible in the form of a continued fraction. The T -matrix then
reads

TN = 〈φ|V |g1〉(M−1)11〈g1|V |φ〉 =
〈φ|V |φ〉

1− α1 − β2
1

1−α2−
β2
2

1−α3−...−
β2

N−1
1−αN

. (9)

The numbers αk, βk and the vectors |gk〉 with properties (5)-(8) are con-
structed according to the recurrence (see [1] and the refs. therein for more
details about the Lanczos algorithm)

|rk〉 = G0V |gk〉 − βk−1|gk−1〉, (10)

αk = 〈gk|V |rk〉, (11)

|sk〉 = |rk〉 − αk|gk〉, (12)

βk = 〈sk|V |sk〉1/2, (13)

|gk+1〉 = β−1
k |sk〉, (14)

with |g1〉 = |φ〉〈φ|V |φ〉− 1
2 and β0 = 0.

The off-diagonal matrix elements of the T−matrix are also often needed
in the applications. The same Lanczos basis with the properties (5)-(8)
generated by the algorithm (10)-(14) and with the starting vector |g1〉 =
|φi〉〈φi|V |φi〉−1/2 can be used in such a case. The formula for the T -matrix
element resulting from (4) will be slightly more complicated than in the
previous case

TN
fi =

N∑

k=1

〈φf |V |gk〉(M−1)k1〈g1|V |φi〉. (15)
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Note that now the first column of M−1 is needed instead of the single element
M−1

11 . Using elementary algebra it turns out that

(M−1)k1 =
β1

f1

β2

f2

. . .
βk−1

fk−1

1

fk

, (16)

where the quantities

fk = 1− αk − β2
k/fk+1, fN = 1− αN (17)

are involved also in the calculation of the continued fraction (9). As pointed
out in the reference [1] this approach does not treat in and out states in
a symmetrical manner. For this reason the band Lanczos algorithm [8] was
proposed [1] which leads to a banded instead of a tridiagonal matrix. Another
approach preserving the tridiagonality of the matrix, but using different basis
sets for in- and outgoing states will be presented in the next section. This
approach represents a generalization of the standard SLM. We will refer to
it as GSLM.

3 Generalization of SLM for off-diagonal T -

matrix elements

A generalization of the SLM is obtained by expressing the functions |ψ±〉 in
the Schwinger variational principle (2) in the form

|ψ±〉 =
N∑

k=1

c
(±)
k |g(±)

k 〉, (18)

introducing two different basis sets {|g(+)
k 〉}N

k=1 and {|g(−)
k 〉}N

k=1. The value
of the functional (2) stationary with respect to variations of the coefficients

c
(±)
k is

TN
fi =

N∑

k,l=1

〈φf |V |g(+)
k 〉(M−1)kl〈g(−)

l |V |φi〉, (19)

with
Mkl = 〈g(−)

k |V − V G0V |g(+)
l 〉.
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If we define |g(±)
k 〉 in such a way, that

〈g(−)
k |V |g(+)

l 〉 = δkl, (20)

〈g(−)
k−1|V G0V |g(+)

k 〉 = 〈g(−)
k |V G0V |g(+)

k−1〉 = βk−1, (21)

〈g(−)
k |V G0V |g(+)

k 〉 = αk, (22)

〈g(−)
k |V G0V |g(+)

l 〉 = 0 for |k − l| ≥ 2 (23)

and |g(+)
1 〉 = |φi〉〈φf |V |φi〉−1/2, 〈g(−)

1 | = 〈φf |V |φi〉−1/2〈φf | then in analogy
with (9)

TN
fi = 〈φf |V |g(+)

1 〉(M−1)11〈g(−)
1 |V |φi〉 =

〈φf |V |φi〉
1− α1 − β2

1

1−α2−
β2
2

1−α3−...−
β2

N−1
1−αN

. (24)

It is simple to show by mathematical induction that vectors |g(±)
i 〉 with the

properties (20)-(23) can be constructed from |g(±)
1 〉 according to the recur-

rence relations

〈r(−)
k | = 〈g(−)

k |V G0 − βk−1〈g(−)
k−1|, (25)

|r(+)
k 〉 = G0V |g(+)

k 〉 − βk−1|g(+)
k−1〉, (26)

αk = 〈g(−)
k |V |r(+)

k 〉 = 〈r(−)
k |V |g(+)

k 〉, (27)

〈s(−)
k | = 〈r(−)

k | − αk〈g(−)
k |, (28)

|s(+)
k 〉 = |r(+)

k 〉 − αk|g(+)
k 〉, (29)

βk = 〈s(−)
k |V |s(+)

k 〉1/2, (30)

〈g(−)
k+1| = β−1

k 〈s(−)
k |, (31)

|g(+)
k+1〉 = β−1

k |s(+)
k 〉. (32)

4 GSLM and the Wynn’s epsilon algorithm

In this Section we prove that our generalization of the Schwinger-Lanczos
method is mathematically equivalent to the Wynn s epsilon algorithm. This
equivalence does not mean, however, that both methods are equally efficient
when used as tools for numerical calculations.
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From Eqs. (25) - (32) it is obvious that the numbers αj, βj needed for cal-
culation of TN

fi can be expressed in terms of the quantities 〈φf |V (G0V )k|φi〉,
which constitute the Born series for Tfi (for the determination of the TN

fi only
the quantities with k < 2N are needed). The algorithm (25) - (32) together
with the equation (24) can thus be understood as means of re-summation of
the Born series. In light of this it therefore appears important to compare
this algorithm with other algorithms for the acceleration of convergence of
power series.

Let us write the T -matrix in terms of the Born series

Tfi = 〈φf |V |φi〉+ 〈φf |V G0V |φi〉+ 〈φf |V G0V G0V |φi〉+ . . . (33)

Introducing a coupling constant V → λV this becomes a power series

T (λ) =
∞∑

k=0

akλ
k = lim

n→∞ sn, (34)

with a0 = 0 and ak = 〈φf |V (G0V )k−1|φi〉 for k > 0. Formally, the sum of this

series is defined as the limit of the sequence s0, s1, s2, . . .
(
sn =

∑n
k=1 akλ

k
)
.

In reality, however, this limit often does not exist or the series converges very
slowly. Several methods how to accelerate the convergence can be found
in the literature (Padé approximation, the MCF approach of Horacek and
Sasakawa [9], [10], the Shanks transformation [11], etc.). The Shanks trans-
formation of the sequence {sn}∞n=0 of an order k is the sequence {ek(sn)}∞n=0

defined by the following ratio of determinants

ek(sn) =

∣∣∣∣∣∣∣∣∣

sn . . . sn+k

bn+1 . . . bn+k+1
...

. . .
...

bn+k . . . bn+2k

∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣

1 . . . 1
bn+1 . . . bn+k+1

...
. . .

...
bn+k . . . bn+2k

∣∣∣∣∣∣∣∣∣
, (35)

where the abbreviation bj = sj − sj−1 = ajλ
j was used. Shanks showed that

this transformation is equivalent to the Padé approximant [n+k, k]T (λ). The
expression (35) is not convenient for numerical calculations due to occurrence
of determinants. However, as shown by Wynn, the quantities ek(sn) can

be expressed in terms of other quantities, ε
(j)
i , obtained from the following

nonlinear recurrence scheme (Wynn’s epsilon algorithm - see [12])

ε
(n)
−1 = 0 ε

(n)
0 = sn (36)

ε
(n)
k+1 = ε

(n+1)
k−1 + 1/[ε

(n+1)
k − ε

(n)
k ]. (37)
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Both quantities are related as follows

ε
(n)
2k = ek(sn) and ε

(n)
2k+1 = 1/ek(anλ

n). (38)

To accelerate the convergence of the sequence {sn}∞n=0 by means of the Shanks
transformation means to replace the sequence {sn}∞n=0 by {en(s0)}∞n=0. In

what follows we prove that the quantities T
(N)
fi obtained from GSLM coincide

with eN(s0).

According to the recurrence relations (25) - (32), the vectors {|g(+)
k 〉}N

k=1

span the same space (the Krylov space) as the vectors

{|pk〉}N
k=1 = {|φi〉, G0V |φi〉, ..., (G0V )N−1|φi〉} (39)

and vectors {〈g(−)
k |}N

k=1 the same as

{〈qk|}N
k=1 = {〈φf |, 〈φfV G0, ..., 〈φf |(V G0)

N−1}. (40)

Thus from the equation (19), T
(N)
fi can be written as

TN
fi =

N∑

k,l=1

〈φf |V |pk〉(M−1)kl〈ql|V |φi〉 =
N∑

k,l=1

bk(M
−1)klbl, (41)

where
Mkl = 〈qk|V − V G0V |pl〉 = bk+l−1 − bk+l. (42)

With the use of the Cramer’s rule (M−1)kl = (−1)k+lmkl/|M | (where mkl

are minors of the matrix M), the T-matrix, equation (41), can be expressed

in the form T
(N)
fi = t/|M | with

t =
∑

k,l

bkblmkl(−1)k+l =
∑

k

bkBk. (43)

Here, Bk are obtained from the matrix M by replacing the kth column of M
by the vector (b1, b2, ..., bN)

Bk ≡

∣∣∣∣∣∣∣∣∣∣

b1 − b2 b2 − b3 . . . b1 . . . bN − bN+1

b2 − b3 b3 − b4 . . . b2 . . . bN+1 − bN+2
...

...
...

...
bN − bN+1 bN+1 − bN+2 . . . bN . . . b2N−1 − b2N

∣∣∣∣∣∣∣∣∣∣
. (44)
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If we interchange the first and the k-th column and subsequently subtract the
new first column from the second, then second from the third, . . . , (k−1)-th
from the k-th we obtain

Bk =

∣∣∣∣∣∣∣∣∣∣

b1 . . . bk bk+1 − bk+2 . . . bN − bN+1

b2 . . . bk+1 bk+2 − bk+3 . . . bN+1 − bN+2
...

...
...

...
bN . . . bN+k−1 bN+k − bN+k+1 . . . b2N−1 − b2N

∣∣∣∣∣∣∣∣∣∣
. (45)

Repeated use of the formula
∣∣∣∣∣∣∣

a1 + b1 A12 . . . A1N

...
...

...
aN + bN AN2 . . . ANN

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

a1 A12 . . . A1N

...
...

...
aN AN2 . . . ANN

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

b1 A12 . . . A1N

...
...

...
bN AN2 . . . ANN

∣∣∣∣∣∣∣
(46)

yields

t =
N∑

k=1

bk

N∑

l=k

(−1)N+lCl+1 (47)

with

Cl+1 =

∣∣∣∣∣∣∣∣∣∣

b1 . . . bl bl+2 . . . bN+1

b2 . . . bl+1 bl+3 . . . bN+2
...

...
...

...
bN . . . bN+l−1 bN+l+1 . . . b2N

∣∣∣∣∣∣∣∣∣∣
. (48)

Changing the order of the sums we obtain

t =
N∑

l=1

l∑

k=1

(−1)N+lbkCl+1 =
N∑

l=1

(−1)N+lslCl+1, (49)

which is the first row expansion of

t = (−1)N

∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sN

b1 b2 . . . bN+1
...

...
. . .

...
bN bN+1 . . . b2N

∣∣∣∣∣∣∣∣∣∣
. (50)

Furthermore

|M | =
∣∣∣∣∣∣∣

b1 − b2 . . . bN − bN+1
...

. . .
...

bN − bN+1 . . . b2N−1 − b2N

∣∣∣∣∣∣∣
=

∑

k

(−1)N+k+1Ck, (51)
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which is the first row expansion of the determinant

(−1)N

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
b1 b2 . . . bN+1
...

...
. . .

...
bN bN+1 . . . b2N

∣∣∣∣∣∣∣∣∣∣
. (52)

Comparing t/|M | with the definition (35) we clearly see that T
(N)
fi = eN(s0) =

[N/N ]T (λ). This completes the proof.

5 Dissociative electron attachment on H2

As it was shown in the previous section the GSLM and WEA are fully equiv-
alent and should therefore yield same results. In fact the two methods are
quite different from the numerical point of view. Especially in the case of
strongly divergent Born series we expect the performance of WEA to be
rather poor, because relevant information about the dynamic is lost by stor-
ing large terms of the divergent series in computer memory with a limited
accuracy.

In the derivation of GSLM we have seen that a more flexible basis was
used in GSLM than that for SLM and therefore GSLM is expected to con-
verge more rapidly. On the other hand more calculations are needed for one
iteration of GSLM.

To compare the performance of SLM, GSLM and WEA on the physically
relevant system we have chosen the non-local resonance model of Gertitschke
and Domcke [13] for the dissociative attachment (DA) of an electron to H2

molecule. The importance of the non-local effects for this system has been
emphasised [13, 14] and usual methods for solving the Schrödinger equation
can not be applied. The model is described in detail elsewhere [13]. Here
we discuss only the aspects of the model relevant for the application of the
tested method.

The model is based on the projection operator description of the diabatic
discrete state (describing the unstable H−

2 scattering complex) interaction
with the continuum (H2+e−). Motion of nuclei in the discrete state is de-
scribed with the potential Vd(R) (R is the internuclear distance). Coupling
with the continuum adds the non-local effective potential F to this local term.
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The scattering state 〈K(−)| with the outgoing asymptotic condition and with
E = 1

2µ
K2 being the kinetic energy of the dissociative motion H+H− is the

unique solution of the Lippmann-Schwinger equation (see [15])

〈K(−)| = 〈K(−)
d |+ 〈K(−)|FGd, (53)

where 〈K(−)
d | is the scattering solution for the local potential Vd(R) and Gd

is the Green function

Gd = (E − TN − Vd + iε)−1, TN = − 1

2µ

d2

dR2
(54)

for this potential. Cross section σDA for the dissociative attachment of an
electron with energy 1

2
k2

i (atomic units) to the molecule H2 in the vibrational
state |νi〉 reads

σDA =
4π3

k2
i

ν|TDA|2, (55)

where
TDA = 〈K(−)|Vdki

|νi〉 (56)

is the T -matrix element and Vdk(R) the discrete-state-continuum coupling.
The functions Vdk(R), Vd(R) and the operator F for the model of Gertitschke
and Domcke are given in [13].

Equation (56) together with (53) gives

TDA = 〈K(−)
d |F (F − FGdF )−1F · F−1Vdki

|νi〉, (57)

which is of the form (1) and variational approach (18) - (24) can be applied

with 〈φf | → 〈K(−)
d |, V → F , G0 → Gd and |φi〉 → F−1Vdki

|νi〉 and with the

vectors |g(±)
k 〉 and the numbers αk, βk given by the recurrence (25) - (32).

There are two ways how to avoid the occurrence of F−1. First is to write
TDA as

TDA = 〈K(−)
d |Vdki

|νi〉+ 〈K(−)
d |F (F − FGdF )−1F ·GdVdki

|νi〉, (58)

and to calculate 〈K(−)
d |F (F − FGdF )−1F ·GdVdki

|νi〉 with the starting vec-
tor |φi〉 = GdVdki

|νi〉. We did our calculations in the second way, start-
ing directly from (57), but rewriting the algorithm (25)-(32) for vectors
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|g,(+)
k 〉 = V |g(+)

k 〉. This only changes the order of operators V and G0 in

(26) and V is not present in (27) and (30). The starting vector is |g,(+)
1 〉 =

Vdki
|νi〉〈K(−)

d |Vdki
|νi〉−1/2.

The accurate calculation of the DA cross section in the threshold region is
known to be a difficult task. It turns out that GSLM for DA converges rather
slowly for energies near the threshold. As was shown in [3] the convergence
can be accelerated if a certain local approximation VL is subtracted from F
and included in Vd. The local approximation proposed in [3] is

VL(R) =
∫ ∞

0
F (R, R′)dR′. (59)

Subtraction of this local potential is done so that in all the results F is
replaced by FL = F − VL and Vd with Vd + VL. Especially the T -matrix
element reads

TDA = 〈K(−)
L |FL(FL − FLGLFL)−1FL · F−1

L Vdki
|νi〉 (60)

where 〈K(−)
L | is the scattering solution in the potential Vd + VL and GL =

(E − TN − Vd − VL − iε)−1.
The Green’s function GL or Gd needed for evaluation of the TDA can be

expressed in terms of the regular and the irregular solution of the Schrödinger
equation with the potential Vd(R) and Vd(R)+VL(R) respectively, using usual
formula

G(E, R, R′) = − 1

W
ψr(E,R<)ψirr(E, R>), (61)

where ψr(E, R) and ψirr(E, R>) are the regular and the irregular solutions,
W is their Wronskian and R<, R> is the smaller and the larger of the values
R, R′ respectively.

6 Test of numerical performance

In this Section we apply all three methods, SLM, GSLM and WEA to the
calculation of the dissociative attachment cross section for attachment of
low-energy electrons to H2 molecule as described in the previous Section.
All calculations were done in REAL*8 Fortran77 arithmetics. The wave
functions were calculated for internuclear distances R < 8 a.u. on a grid

12



using 1000 mesh points. To calculate the non-local potential F methods
described in detail in [3] were used; i.e. F was expanded in eigenstates of
the adiabatic Hamiltonian for the electronic ground state of H2. In the case
of H2, 24 expansion functions guarantee convergence for all the calculations
discussed in this paper.

Let us first discuss the original SL method. To calculate the T-matrix,
TN

DA, for N iterations of the method N basis functions {|gi〉}N
i=1 are needed.

We denote as σN the cross section obtained from (55) with TDA = TN
DA.

To evaluate the T-matrix using GSLM to the same order N , however, 2N
basis functions {|g±i 〉}N

i=1 are required. To account for this we denote as σ2N

the cross section derived from TN
DA in this case. The most time-consuming

step in the calculation is the application of the non-local potential F to a
wave function |ψ〉 (calculation of an element 〈ψ′|F |ψ〉 is much faster). In the
SLM and GSLM this needs to be done N and 2N times, respectively. The
calculation of eN(S0) in WEA requires knowledge of the matrix elements

〈φf |V |φi〉, 〈φf |V G0V |φi〉, ..., 〈φf |V (G0V )2N−1|φi〉,

which means 2N applications of F. For the same reason we denote as σ2N

the cross section obtained from TN
DA = eN(s0) in this case. Thus N measures

time of the calculation of σN in all three methods.
As is well known the DA cross section changes dramatically when energy

of the incident electron approaches the threshold. For this reason we found
it necessary to test all methods for two energies; one just above the threshold
and one sufficiently high above the threshold.

Numerical performance of all the methods is shown in Figures 1-4. Log-
arithm (base 10) of the relative error |σN − σ∞|/σ∞ is plotted against the
number of iterations N . The value σN with N sufficiently large (so that σN

does not change with increasing N) is taken as σ∞. Since WEA did not
always fully converge it was necessary to take σ∞ from other methods. The
full line represents GSLM, dashed line SLM with TDA computed according
to (15)-(17) and diamonds represent the results of WEA.

Figure 1 shows the rate of convergence of the calculation of the disso-
ciative attachment cross section for all three methods at the energy of the
incoming electron Eel = 8 eV; i.e. at an energy far from the DA thresh-
old, Eth = 3.71 eV. At this energy we observe that both SLM and GSLM
methods fully converged after 25-30 steps with SLM showing slightly faster
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convergence. The WEA behaves differently. As expected the first few itera-
tions of WEA yielded almost the same values as that of GSLM. Then after
giving roughly four significant figures of σ, WEA failed to converge due to
the accumulation of numerical errors.

As shown in Section 4 both methods, GSLM and WEA, are formally
equivalent. WEA may be interpreted as a Schwinger approach using the
Krylov vectors |pk〉 = (G0V )(k−1)|φi〉. Since the |pk〉 and the Lanczos vectors

|g(+)
1 〉 used in GSLM span the same space, the results of WEA and GLSM

must be identical when the calculation is performed with infinite precision.
Using finite precision, however, |pk〉 and |pk+1〉 become indistinguishable for
sufficient large k because |pk〉 converges for k → ∞ towards the eigenvector
of G0V with the absolute largest eigenvalue. Additional iterations can then
no longer improve the WEA results.

The performance of the WEA can be improved by subtracting the local
approximation mentioned above (60) because this reduces the absolute values
of the eigenvalues of G0V . The results obtained in this way are plotted in
Figure 2. Now all methods yield fully converged results.

As mentioned above the calculation at an energy close to the threshold
is much more difficult. In Figure 3 we show results obtained at the energy
Eel = 3.72eV. At this energy the Born series diverges strongly and also the
WEA fails to yield convergent results. Both methods are completely useless
in this energy range. On the other hand, GSLM and SLM converge even
in this case (though slowly). Subtraction of the local potential, see Figure
4, improves the convergence and WEA and GSLM give practically identical
results. Again the original SLM method provides fastest convergence.

7 Conclusions

The SLM has been generalized for the calculation of the non-diagonal ma-
trix elements of the T -matrix resulting from the multichannel collisions. This
generalization is shown to be mathematically equivalent to the Wynn’s ep-
silon algorithm for the acceleration of the Born series. This however does
not imply that both methods are equally efficient numerically. All methods,
SLM, GSLM and WEA were tested on the example of dissociative attach-
ment process treated in the resonance model with strongly non-local dynam-
ics (dissociative attachment of an electron to H2 molecule) which represents
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a very typical example of molecular resonance processes. It was shown that
despite its formal equivalence with GSLM, WEA breaks down for energies
near the DA threshold where the Born series strongly diverges. GSLM and
SLM converge (though slowly) even in this case. It is possible to improve the
convergence rate of all methods by extracting a part of the non-local interac-
tion redefining the local potential. If this is done the WEA and GSLM yield
results of comparable quality. Concluding we may say that the original SLM
method which proved so successful in all previous calculations represents the
most reliable methods from that discussed in this paper. It is numerically
stable, converges even without modifications of the non-local potential for
all energies. The generalized method GSLM yields results very similar to
that of SLM. The WEA as well as the Born series cannot be generally used
without significant modifications of the underlying interactions.
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[3] J. Horáček, F. Gemperle, H.-D. Meyer (1996) J. Chem. Phys 104 8433
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Figure 1: Convergence rates for the calculation of the e−+H2 dissociative at-
tachment cross section at the electron energy Eel = 8 eV. Logarithm (base
10) of the relative error is plotted against the number of calculation steps
(see the text). Solid line: - the results of GSLM, dashed line: - the results
obtained by the original SLM method; diamonds: - the results of WEA.

Figure 2: Convergence rates for the calculation of the e−+H2 dissociative at-
tachment cross section at the same electron energy Eel = 8 eV as in Figure
1. The rate of convergence was accelerated by subtracting a local approx-
imation VL, Eq. (60), from the non-local potential F .

Figure 3: The same as in Figure 1 but for the energy Eel = 3.72 eV (just
above the threshold).

Figure 4: The same as in Figure 3 but the local approximation was subtracted
from the non-local potential F .
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