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Abstract

Vibrationally inelastic electron transport through a molecular bridge that

is connected to two leads is investigated. The study is based on a generic

model of vibrational excitation in resonant transmission of electrons through

a molecular junction. Employing methods from electron-molecule scattering

theory, the transmittance through the molecular bridge can be evaluated nu-

merically exactly. The current through the junction is obtained approximately

using a Landauer-type formula. Considering different parameter regimes,

which include both the case of a molecular bridge that is weakly coupled

to the leads, resulting in narrow resonance structures, and the opposite case

of a broad resonance caused by strong interaction with the leads, we investi-

gate the characteristic effects of coherent and dissipative vibrational motion

on the electron transport. Furthermore, the validity of widely used approx-

imations such as the wide-band approximation and the restriction to elastic

transport mechanisms is investigated in some detail.
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I. INTRODUCTION

The experimental demonstration of the possibility to connect two electrodes by a single

molecule and to measure a current through such a molecular junction [1–3] has stimulated

increasing theoretical efforts to elucidate the basic mechanisms of electron transport in such

systems (see, for example, [4–7] and references therein). Most of the theoretical work in

recent years has been devoted to the determination of the electronic structure of molec-

ular junctions, employing a variety of methods that include extended Hückel approaches

[8–13], ab initio quantum-chemistry methods [14–16], and density functional theory [17–21].

The majority of these studies have focused on elastic mechanisms for electron transport,

where the current through the molecular junction can be obtained from the single-electron

transmission probability using the Landauer formula [22–24]. These studies have demon-

strated the importance of the electronic energy level structure of the molecular bridge: the

tunneling of electrons through occupied and unoccupied levels of the molecule results in res-

onance structures in the transmission probability which in turn may cause strongly nonlinear

current-voltage characteristics.

Much less is known about the effect of vibrationally inelastic processes, associated with

the vibrational motion of the molecular bridge, on the electron transport. In experiments

on electron transport through H2 molecules between two platinum electrodes [2] as well as

C60 molecules connected to gold electrodes [25], indications for an influence of the center-of-

mass motion of the respective molecule on the conductivity have been found. Effects of the

internal vibrational motion of the molecular bridge on the current through the junction, on

the other hand, have (to our knowledge) not yet been reported. Such effects have, however,

been predicted in a variety of theoretical studies. For example, the ”static” influence of

the internal vibrational modes has been studied by averaging the transmittance over the

probability distribution of the vibrational degrees of freedom [26–28]. The dynamical im-

pact of the vibrational degrees of freedom on the tunneling current in molecular junctions

has been investigated within, e.g., nearest neighbor tight-binding models [29–33]. These
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studies have demonstrated that the vibrational motion of the molecular bridge may result in

additional (vibrational) resonance structures in the transmission probability which can alter

the current-voltage characteristic significantly. Furthermore, the excitation of the vibra-

tional degrees of freedom of the molecule provides a mechanism for heating of the molecular

junction and thus is a possible source of instability [34,35].

The effect of vibrationally inelastic processes on electron transport has also been inves-

tigated for a variety of closely related problems including the tunneling of electrons through

long polymer chains (molecular wires) [36,37], electron transport through quantum dots and

heterostructures [38–42], as well as the theoretical description of single-molecule vibrational

spectroscopy in scanning tunneling microscopy (STM) experiments [43–50].

Another closely related process is vibrationally inelastic electron-molecule scattering.

Here, it is well established that the resonant scattering of a low-energy electron from a

molecule can result in strong vibrational excitation. This process has been studied in great

detail experimentally (see, for example, the reviews [51,52]). Furthermore, efficient theoret-

ical methods have been developed to describe the interaction of electronic and vibrational

degrees of freedom in resonant collision processes of low-energy electrons with molecules

[53]. As a result, inelastic electron scattering from diatomic molecules is now well under-

stood from first principles [54]. Due to the close similarities between the process of vibra-

tional excitation induced by electron scattering from a molecule and vibrationally inelastic

electron transmission trough a molecular junction, it is to be expected that the methods

and concepts developed in the former field can advantageously be used in the latter field.

An example is the so-called wide-band approximation, where the energy dependence of the

coupling between the molecule and the leads is neglected. This approximation, which has

been adopted in most of the theoretical studies of vibrationally inelastic electron transport

in molecular junctions (for exceptions, see Refs. [29,37,39,40,55]) has been tested in detail

for resonant electron-molecule scattering [53]. It has been shown that the wide-band approx-

imation breaks down at energies close to thresholds and often does not accurately describe

vibrational excitation processes.
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In this paper we study vibrationally inelastic effects on electron transport through a

molecular junction beyond the wide-band approximation. To this end, we consider a generic

model for vibrational excitation in resonant electron transmission processes trough a molec-

ular junction. The model includes the coupling of an electronic resonance state, located at

the molecular bridge, to the continuum of electronic lead states as well as the coupling of

the electronic degrees of freedom to a vibrational reaction mode of the molecule. Employ-

ing projection-operator techniques [56] well-known from electron-molecule scattering [53],

the transmission probability through the molecular junction can be evaluated numerically

exactly within this model. The current trough the bridge is obtained employing a general-

ized Landauer formula [57]. Based on numerical results for models in different parameter

regimes, we study the importance of inelastic effects on molecular conductance as well as

the validity of the wide-band approximation.

Furthermore, we investigate how vibrationally inelastic effects on electron transport are

altered if the vibrational motion has dissipative character. Dissipative vibrational processes

(such as, for example, vibrational dephasing and relaxation) are expected to be of importance

in larger molecules or in molecular bridges that are embedded in an environment. To describe

dissipative vibrational motion, we consider the coupling of the reaction mode to a vibrational

bath. The various observables are then obtained employing an expansion with respect to the

number of quanta in the final state of the bath. This technique, which has been proposed

some years ago in the context of electron scattering from large molecules [58], allows us to

describe the effect of vibrational relaxation in an approximate, yet controlled, way, without

invoking Markov-type approximations. Moreover, it is shown that in the case of identical

left and right leads and zero bias voltage a unitarity condition can be exploited, which

allows a numerically exact evaluation of the transmission probability, including the effects

of a dissipative vibrational bath.

This paper is organized as follows: After an introduction of the model and the observ-

ables of interest, Sec. II outlines the theoretical methods used to describe the transmission

probability and the current through the molecular bridge. In particular, we discuss var-
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ious levels of the theoretical treatment: a theoretical description based on purely elastic

transport mechanisms, the incorporation of vibrationally inelastic processes (coherent and

dissipative), as well as the wide-band approximation. Sec. III presents model studies of vi-

brationally inelastic electron transport for different parameter regimes, comprising both the

case of a molecular bridge that is weakly coupled to the leads, resulting in narrow resonance

structures, and the opposite case of a broad resonance caused by strong interaction with the

leads. Furthermore, the various levels of theory are critically compared. Finally, Sec. IV

gives a summary and concludes.

II. THEORY

A. Model Hamiltonian

To investigate the influence of vibrational motion on the transmission of electrons through

a molecular bridge, we consider a situation where two metallic leads, which serve as a reser-

voir of electrons, are connected to a molecule through which electrons can be transferred

from one lead the other. As has been demonstrated in previous work on elastic electron

transport (see, for example, [59]), the transmission of electrons through molecular junctions

is typically characterized by resonances which correspond to the various electronic orbitals

of the bridging molecule. From the theoretical point of view, the situation is thus charac-

terized by a set of resonance states which are embedded in the continuum of lead states. In

this paper, we will consider, for simplicity, a situation where only a single electronic reso-

nance, corresponding (in the limit of vanishing coupling to the leads) to a molecular anion,

contributes to the transmission process.

From the theory of resonant electron-molecule scattering, it is well known that the in-

fluence of vibrational motion on the electron transmission can be advantageously described

by choosing a basis of diabatic electronic states consisting of a discrete state |φd〉, which

represents the resonance (i.e. the situation where the transmitting electron is situated at the
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bridging molecule) and a set of orthogonal continuum states, |φkα〉, α =L,R, describing the

electron in the left and right lead, respectively. Accordingly, the Hamiltonian reads

HS = |φd〉H̃d〈φd|+
∑

k,α=L,R

{
|φkα〉(εkα + H̃0)〈φkα|+ |φd〉Vdkα〈φkα|+ |φkα〉V ∗

dkα〈φd|
}

, (1)

where H̃0 denotes the vibrational Hamiltonian of the neutral molecule in the electronic

ground state and H̃d the vibrational Hamiltonian in the discrete electronic state |φd〉. The

electronic coupling between the leads and the molecule is specified by the coupling matrix

elements Vdkα.

The electronic parameters of the model Hamiltonian (1) can in principle be determined

by electronic structure calculations [60]. In the model studies considered below, we have

adopted a parameterization which is based on a simple tight-binding model schematically

shown in Fig. 1. The central site corresponds to the electron in the discrete state |φd〉 and

the states |l〉, l = ±1,±2, ... represent the atomic sites of the left (−) and right (+) lead,

respectively. The nearest-neighbor coupling constants between two lead sites and between

the leads and the central site are specified by β and v, respectively, and µL/R denotes the

chemical potential in the leads. The stationary continuum states in the right lead are given

by

|φk〉 =
∑

l

sin(kl)√
πβ sin k

|l〉, (2)

and similar for the left lead. The energy ε of the electron satisfies the dispersion relation

ε = εkα = µα + 2β cos k, (3)

in the left and right lead, α = L/R, respectively. Using this particular model for the leads

we obtain

Vdkα ≡ 〈φd|Hel|φkα〉 = v

√
sin k

πβ
. (4)

As we will see in Sec. II C, the electronic structure of the leads enters the expressions for

the observables of interest only through the energy-dependent width function of the leads

(atomic units with e = h̄ = 1 are used throughout the paper unless stated otherwise)
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Γα(ε) ≡ 2π
∑

k

δ(ε− εkα)|Vdkα|2. (5)

The width function Γα(ε) is the imaginary part of the self-energy function

Σα(ε) =
∑

k

|Vdkα|2
ε+ − εkα

≡ ∆α(ε)− i
2
Γα(ε), (6)

where ε+ = ε+ iγ, γ being a positive infinitesimal. The real part of the self-energy function,

the level-shift function ∆α(ε), is related to the width function via Hilbert transformation,

i.e.

∆α(ε) =
1

2π
P

∫ Γα(ε′)
ε− ε′

dε′, (7)

where P denotes the principal value of the integral.

For the nearest-neighbor tight-binding model of the leads introduced above, the self-

energy function Σ(z) is given by the Hubbard Green’s function [61,62], multiplied by the

coupling strength v between the last atomic site in the leads and the bridge,

Σα(z) =
2v2

z − µα +
√

(z − µα)2 − 4β2
. (8)

Here, the width of the conduction band is given by 4β. Analytic continuation in the complex

energy (z) plane gives the real part

∆α(ε) =





v2

2β2 (ε− µα) for |ε− µα| < 2β

v2

2β2

[
(ε− µα)∓

√
(ε− µα)2 − 4β2

]
for ±(ε− µα) > 2β

(9)

and the imaginary part

Γα(ε) =





v2

β2

√
4β2 − (ε− µα)2 for |ε− µα| < 2β

0 for |ε− µα| > 2β
(10)

As will be demonstrated in Sec. III, the inclusion of the energy dependence of the width

function Γα(ε) and thus of the coupling matrix elements Vdkα, which complicates the theo-

retical treatment significantly, is crucial in order to account correctly for inelastic effects, in

particular for energies close to the edge of the conduction band.
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To study vibrationally inelastic effects on the transmission through the molecular bridge,

we consider a single vibrational (reaction) mode, along which the equilibrium geometry of the

discrete electronic state is shifted with respect to the continuum states due to the presence of

the additional electron at the molecule. Within the harmonic approximation, this situation

is described by the vibrational Hamiltonians

H̃0 = ωS a†a , H̃d = ωS a†a + λ(a + a†) + εd = ωS a†dad + εd − λ2

ωS

. (11)

Here, ωS is the vibrational frequency of the reaction mode, and a† and a denote the creation

and annihilation operators for the reaction mode which are related to the corresponding

operators in the discrete electronic state by the shift in equilibrium geometry, λ/(
√

2ωS) ,

i.e. ad = a + λ/ωS.

Most of the experimental studies of electron transport through molecular bridges con-

ducted so far have considered relatively large molecules with many vibrational degrees of

freedom. In large molecules the coupling of reaction coordinates (which are strongly coupled

to the electronic degrees of freedom) to the remaining (inactive) vibrational modes of the

molecule results in the process of intramolecular vibrational redistribution, which is well

known from the spectroscopy of large molecules [63–69]. To study the effect of vibrational

relaxation on the electron transmission, we adopt a linear response model for vibrational re-

laxation [58] in the discrete state, where the reaction mode is coupled to a bath of harmonic

oscillators. Thus the Hamiltonian of the overall system is given by

H = HS + HB + HSB, (12)

where the ’system’ Hamiltonian HS is given by Eq. (1), the bath Hamiltonian reads

HB =
∑

j

ωj b†jbj, (13)

and the coupling between the reaction coordinate and the bath is given by

HSB = |φd〉
∑

j

cj(adb
†
j + a†dbj)〈φd|. (14)
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Here, b†j and bj denote creation and annihilation operators for the bath mode with frequency

ωj and cj is the corresponding system-bath coupling constant.

As is well known [70,71], all properties of the vibrational bath which influence the dy-

namics of the system are characterized by the bath spectral density

J(ω) =
∑

j

c2
jδ(ω − ωj). (15)

In the numerical calculations reported below, it will be modeled by a continuous Ohmic

bath with exponential cutoff [70,71]

J(ω) = ηωe−ω/ωc . (16)

Here, the characteristic frequency ωc defines the maximum of the spectral density and the

overall strength of the system-bath coupling is measured by η.

B. Observables of Interest

Various observables are of interest when investigating the influence of vibrational motion

on the electron transport trough a molecular bridge. The most detailed information on the

transmission process of a single electron is comprised in the initial- and final-state resolved

scattering probability. Employing scattering theory, it is straightforward to show that the

probability for scattering of an electron with the energy εi from lead αi into a state with

energy εf in the lead αf , accompanied by a vibrational transition from state |vi〉|vi〉 to state

|vf〉|vf〉/ 6= |vi〉|vi〉 (we denote the bath vibrations with bold face letters and the system

mode vibrations with italic letters) is given by [53]

tαf←αi
(εf , vf ,vf , εi, vi,vi) = δ(εi + Evi

+ Evi
− εf − Evf

− Evf
)Γαi

(εi)Γαf
(εf )

×
∣∣∣〈vf |〈vf |〈φd|(ε+

i −H)−1|φd〉|vi〉|vi〉
∣∣∣
2
, (17)

where Evi
, Evi

and Evf
, Evf

are the initial and final vibrational energies of the bath and

system modes, respectively. Writing the transition probability in the form (17), we have

9



assumed, for simplicity, that the coupling element Vdkα does not depend on the vibrational

degrees of freedom. The generalization of the formula to include such effects is straightfor-

ward (see, for example, Ref. [53]).

While Eq. (17) describes the most detailed information on the scattering process, in

experiments typically more averaged observables are measured. It is thus expedient to

introduce the integral transmission probability from lead αi into lead αf (summed over all

possible final vibrational states)

tαf←αi
(εf , εi) ≡

∑
vf ,vf

tαf←αi
(εf , vf ,vf , εi, vi,vi), (18)

and the total transmission probability, integrated over the final energy of the electron, εf ,

tαf←αi
(εi) =

∫
tαf←αi

(εf , εi) dεf . (19)

The most important observable for the study of electron transport trough a molecular

bridge is, of course, the current which is induced when a finite voltage is applied to the

molecular junction. To calculate the current through the bridge, we employ the generalized

Landauer formula [5]

I =
1

π

∫
dεi

∫
dεf {tR←L(εf , εi)fL(εi)[1− fR(εf )]− tL←R(εf , εi)fR(εi)[1− fL(εf )]} , (20)

where fα(E), α = L,R, denotes the Fermi-Dirac distribution for the left and right lead,

respectively.

In principle the basis states |φd〉, |φkα〉, and therefore also the functions Γα(ε) and vibra-

tional Hamiltonian Hd, depend on the bias voltage V across the bridge. Here, we assume for

simplicity that the bias voltage V enters Eq. (20) only through the Fermi distribution of the

leads and the width function Γα(ε) [cf. Eq. (3), (5)] via the chemical potentials of the leads

µL/R = ±V/2. Moreover, in this paper we will not consider thermal effects on the electron

transport, i.e. in all numerical calculations reported below we have taken T = 0 K. Thus,

the initial state of the vibrational degrees of freedom is the ground state of the system and

bath modes, respectively, |vi = 0〉|vi = 0B〉 and the Fermi-Dirac distribution fα(E) in Eq.

(20) reduces to the Heaviside step function.
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The validity of the formula (20) for calculating currents including inelastic effects has

been discussed controversially in the literature. The current formula is sometimes used

without the Pauli exclusion principle factors [1−f(ε)] (see for example the discussion in Refs.

[24,72]). It has been argued, however, that for weak metal-bridge coupling the expression

(20) is appropriate [5]. Employing nonequilibrium Greens-function theory and the second

quantized version of the Hamiltonian (1) , it can be shown that Eq. (20) gives the correct

description of the current in the limit where many-electron processes are negligible for the

dynamics [73]. It should also be mentioned that the use of Eq. (20) implicitly assumes that

the bridge relaxes into the ground vibrational state |vi = 0〉|vi = 0B〉 before each subsequent

transmission event. In view of the low currents observed experimentally, this should be a

reasonable assumption (for a similar discussion in the case of STM currents, see, for example,

Ref. [46]).

C. Method of Solution

1. Elastic transmission

Let us first consider the case without coupling to the vibrational degrees of freedom [i.e.

λ = η = 0 in Eqs. (11),(16)]. In this case, only elastic processes contribute to the electron

transport, and the total transmission probability is given by

tR←L(εi) = tL←R(εi) =
ΓR(εi)ΓL(εi)

[εi − εd −∆L(εi)−∆R(εi)]2 + [ΓL(εi) + ΓR(εi)]2/4
, (21)

which is the well-known result for elastic resonant tunneling transmission. The Landauer

formula (20) for the current is exact in this case (see, for example, Ref. [74]) and the

evaluation of the current reduces to a simple numerical integration.

2. Inelastic transmission without dissipation

Let us next consider the influence of the coupling to the vibrational degrees of freedom

on the transmission of the electron, i.e. vibrationally inelastic transmission through the
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molecular bridge. If we exclude dissipative processes induced by the coupling to the bath,

the dynamics is described by the system Hamiltonian HS, Eq. (1). The probability for

transmitting an electron with energy εi from the left lead into a state with energy εf in the

right lead, accompanied by a vibrational transition from the state |vi = 0〉 to the state |vf〉
is given by

tR←L(εf , εi) =
∑
vf

δ(εi − εf − Evf
)ΓR(εf )ΓL(εi)

∣∣∣〈vf |G(S)
d (εi)|0〉

∣∣∣
2
, (22)

where

GS
d (E) ≡ 〈φd|(E+ −HS)−1|φd〉 (23)

denotes the Green’s function projected on the resonance state. Employing projection op-

erator techniques well known from the theory of resonant electron-molecule scattering (see

[53] and references therein), GS
d (E) can be recast in the form

GS
d (E) =

[
E+ − H̃d − ΣL(E − H̃0)− ΣR(E − H̃0)

]−1
. (24)

This form has the advantage that the electronic continuum has been formally eliminated

and only vibrational dynamics in the discrete electronic space has to be evaluated. Effi-

cient techniques have been developed [75,76] to evaluate the matrix elements of the Green’s

function (24). In the present case, where H̃0 and H̃d describe harmonic oscillators, the

Green’s function (24) can be obtained, e.g., by inverting a basis representation of the opera-

tor E+− H̃d−ΣL(E − H̃0)−ΣR(E − H̃0) for each energy E, employing efficient algorithms

for the inversion of tridiagonal matrices [77].

3. Wide-band approximation

While the expressions discussed so far take full account of the energy dependence of the

width function Γ(ε), in the majority of previous work on the effect of vibrational motion on

electron transmission, the so-called wide-band (WB) approximation has been invoked, where

the width function is assumed to be constant, i.e. Γ(ε) = const. In this approximation, the
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level-shift function vanishes [cf. Eq. (7)], ∆(ε) = 0, and the transmission probability, Eq.

(22), can be written as

t
(WB)
R←L (εf , εi) = ΓRΓL

∑
vf

δ(εi − εf − Evf
)

∣∣∣∣∣
∑
n

〈vf |n〉〈n|0〉
εi − En + i

2
(ΓR + ΓL)

∣∣∣∣∣
2

, (25)

which yields after integration over the final energy of the electron the total transmission

probability

t
(WB)
R←L (εi) = ΓRΓL

∑
n

|〈n|0〉|2
(εi − En)2 + 1

4
(ΓR + ΓL)2

(26)

= ΓRΓL

∑
n

1
n!

(
λ2

2ωS

)n
e
− λ2

2ωS

(εi − En)2 + 1
4
(ΓR + ΓL)2

.

In Sec. III, we will study the validity of the wide-band approximation based on the compar-

ison of Eq. (26) with the full inelastic transmission probability given by Eq. (22).

4. Inelastic transmission including vibrational relaxation

Finally, we consider the case of inelastic transmission of an electron through the molecular

bridge in the presence of vibrational relaxation. The theoretical treatment of this problem

is considerably more complicated than the cases considered above, because we have to deal

with two qualitatively different continua: the electronic scattering continuum describing

the leads and the dissipative vibrational mode continuum of the bath. In principle, it is

possible to start from the general formula for the transition probability (17) and derive formal

expressions as in Eqs. (22), (24) with the bath modes included in H̃0 and H̃d. However, with

increasing number of bath modes it becomes difficult to perform the matrix inversion in Eq.

(24) and, therefore, such an approach is limited to very few bath modes.

To circumvent this problem, we adopt an approach that has been proposed to describe

the effect of vibrational relaxation in the context of resonant electron scattering from large

molecules [58]. The basic idea of this method is to express the transmission probability, Eq.

(18), as a sum
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tR←L(εf , εi) =
∞∑

m=0

t
(m)
R←L(εf , εi), (27)

where t
(m)
R←L(εf , εi) describes transmission processes with m quanta of excitation in the final

state of the bath. In the parameter regime where the vibrational relaxation rate is small

compared to the electronic decay rate of the resonance, only the first few terms in the

expansion will contribute to the overall transmission probability. The first two terms in the

expansion, which correspond to processes where the final state of the bath contains zero or

one quantum of excitation, respectively, read

t
(0)
R←L(εf , εi) =

∑
vf

δ(εi − εf − Evf
)ΓR(εf )ΓL(εi) |〈vf |Gd(εi)|0〉|2 , (28a)

t
(1)
R←L(εf , εi) =

∑
vf

J(εi − εf − Evf
)ΓR(εf )ΓL(εi)

∣∣∣〈vf |Gd(εf + Evf
) ad Gd(εi) |0〉

∣∣∣
2
, (28b)

with the Green’s function

Gd(E) ≡ 〈φd|
(
E+ −HS − |φd〉a†d〈φd|

∫
dω

J(ω)

E+ −HS − ω
|φd〉ad〈φd|

)−1

|φd〉 (29)

= 〈φd|
(
E+ −HS − |φd〉a†d

∫
dω J(ω) GS

d (E − ω) ad〈φd|
)−1

|φd〉.

The expressions for higher order terms (m > 1) can be found in Ref. [58]. The Green’s

function Gd(E) can be evaluated either as the unique solution of the Lippmann-Schwinger

equation

Gd(E) = GS
d (E) + GS

d (E)
[
a†d

∫
dω J(ω) GS

d (E − ω) ad

]
Gd(E) (30)

using the iterative Schwinger-Lanczos method [76,78] (which converges with only few itera-

tions) or employing matrix inversion techniques as described in Ref. [58].

In general situations where the left and right lead are not identical, e.g., due to a non-

zero bias voltage, the expansion in Eq. (27) has to be terminated for practical reasons at a

certain order m and is thus only applicable in the case of a weakly damped system mode.

We would like to emphasize, though, that the electronic coupling of the molecule to the

leads is treated exactly in the approach outlined above and it can thus be arbitrarily strong.
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Furthermore, the treatment of the dissipation described by Eq. (28) does not invoke Markov-

type approximations and is, therefore, not limited to situations where the bath-correlation

time is short compared to the system dynamics.

In the case of identical left and right leads and zero bias, however, one can exploit the

unitarity condition to express the sum of all higher order corrections, i.e. t
(m)
R←L with m > 0,

in terms of the elastic (with respect to the bath) terms t
(0)
R←L and t

(0)
L←L. To see this, it is

noted that in the symmetric case we have t
(m)
R←L = t

(m)
L←L for all m > 0. For m=0, the total

transmission probabilities are given by

t
(0)
R←L(εi) =

∞∑

vf=0

ΓR(εi − Evf
)ΓL(εi) |〈vf |Gd(εi)|0〉|2 , (31a)

t
(0)
L←L(εi) = |1− iΓL(εi)〈0|Gd(εi)|0〉|2 +

∞∑

vf=1

ΓL(εi − Evf
)ΓL(εi) |〈vf |Gd(εi)|0〉|2 . (31b)

The difference between the transmissions probabilities from the left to the right lead and

from the left back to the left lead is due to the special role of the transition amplitude with

the same initial and final state which only contributes in the latter case. Together with the

unitarity condition

t
(0)
L←L(ε) +

∑

m>0

t
(m)
L←L(ε) + t

(0)
R←L(ε) +

∑

m>0

t
(m)
R←L(ε) = 1, (32)

this yields

tR←L(εi) = 1
2

(
1 + t

(0)
R←L(εi)− t

(0)
L←L(εi)

)
= −ΓL(εi) Im〈0|Gd(εi)|0〉. (33)

Eq. (33) is an exact formula for the total transmission of the electron through the molecular

bridge, including the bath to all orders in the system-bath coupling. Moreover, it can easily

be evaluated numerically. Although it is limited to symmetric leads, and thus cannot be

applied directly to calculate the current, it is very helpful for checking the convergence

properties of the expansion (27) for zero bias or in the linear response regime.
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III. RESULTS AND DISCUSSION

In this section we present the results of a model study of the influence of vibrational

motion and vibrational dissipation on the transmission probability and the current-voltage

characteristics of a molecular bridge. To obtain a comprehensive picture of the various

mechanisms, we shall consider models in different parameter regimes. In particular, we will

consider both the case of a molecular bridge that is weakly coupled to the leads, resulting in

narrow resonance structures, and the opposite case of a broad resonance, caused by strong

interaction with the leads. The parameters specific to the different models are collected

in Table I. The nearest-neighbor coupling strength in the leads is β = 1 eV in all models

considered (this parameter is an overall energy scaling factor). The characteristic frequency

of the bath is chosen to coincide with the frequency of the system mode, i.e. ωC = ωS, and

we will consider a relatively weak coupling between the system mode and the bath, η = 0.1.

A. Tunneling through a narrow resonance

First, we consider the resonant transmission of electrons in the tunneling regime, which

is characterized by a relatively weak coupling of the electronic state localized at the bridge

to those in the leads. We have chosen a coupling strength of v = 0.2 eV, which corresponds

to a fifth of the nearest-neighbor hopping amplitude β in the leads. We will, furthermore,

consider a localized state that is situated well inside the conduction band with an energy of

εd = 0.5 eV (for zero voltage, the conduction band extends over the range [ -2 eV, 2 eV]).

We start with Model A, which is characterized by a relatively weak coupling between the

electronic degrees of freedom and the vibrational motion of the system mode, λ = 0.3 eV.

Fig. 2 depicts the transmission probability for model A obtained for zero voltage using the

different levels of theory introduced in Sec. II C: the elastic transmission probability, Eq.

(21), the vibrationally inelastic transmission probability integrated over the final electron

energy, Eq. (22), the wide-band approximation of the vibrationally inelastic transmission
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probability, Eq. (26), and the transmission probability in the presence of vibrational relax-

ation, Eq. (33). The elastic transmission probability (dotted line) exhibits a rather narrow

peak at the position of the discrete electronic state. Including the coupling of the electronic

degrees of freedom to the vibrational motion of system mode (vibrationally inelastic trans-

mission, thick dashed line), this peak is seen to become split into several sub-peaks which

correspond to the different vibrational levels in the discrete electronic state. This effect is

well known from previous studies [41,42]. The comparison between the elastic and inelas-

tic transmission probability in Fig. 2 demonstrates that even in the case of relatively weak

electronic-vibrational coupling a theoretical treatment which only includes elastic processes

provides a rather poor description. The wide-band approximation (thin dashed line), on

the other hand, which takes the vibrational excitation into account but neglects the energy

dependence of the width function, is seen to give an excellent description of the transmission

probability. This is due to the fact that in model A the resonance is situated well inside the

conduction band and, therefore, threshold effects are are negligible.

The inclusion of the coupling to the vibrational bath (solid line) causes a further broad-

ening and slight shift of the peaks belonging to the first and second excited vibrational level

in the discrete electronic state. The main peak, which corresponds to tunneling trough the

ground vibrational state of H̃d, on the other hand, remains almost unaffected. This is due

to the fact that (in a zero-order picture without electronic coupling) the ground vibrational

state of H̃d is a stationary state, while all excited vibrational states decay into the ground

state.

The result for the inelastic electron transmission including vibrational relaxation depicted

in Fig. 2 has been obtained employing Eq. (33) which is only valid for zero bias. For situations

with non-zero bias (in particular, to evaluate the current through the bridge), we will use

the expansion of the total transmission probability in terms of the number of excitations in

the final states of the bath, Eq. (27). It is therefore important to study the validity of this

expansion. The results in Fig. 3 demonstrate that for the present example the expansion

(27) is well converged if bath states with zero and one quantum of excitation (m = 0, 1) are
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taken into account.

Fig. 4 shows the current through the bridge as a function of the applied voltage for

model A. The results have been obtained employing Eq. (20). As has been discussed in

detail by other authors [79,80], each resonance peak in the transmission probability has

its counterpart in a step in the current-voltage curve. Thereby, the steps occur in the

order as they appear in the transmission probability counted from the zero-voltage Fermi

energy (which is set to zero). Accordingly, the current based on the elastic treatment of

the transmission (dotted line) exhibits only a single broad maximum corresponding to the

position of the discrete electronic state. The inelastic current (thick dashed line), on the

other hand, exhibits several steps which belong to the different vibrational peaks in the

transmission probability. The wide-band approximation (thin dashed line) is seen to give

very good results except at high voltages, where the resonances are closer to the edge of

the conduction band and, therefore, the energy dependence of the width function becomes

important.

Although there is a pronounced effect of the vibrational motion on the current in model

A, the influence of the coupling to the bath (thick solid line) is rather small. This is a

consequence of the location of the discrete electronic state, which is situated 0.5 eV above

the Fermi energy in this model. As a result, the current for low voltages (0− 1V) is almost

exclusively due to tunneling of electrons via the resonance corresponding to the ground state

of H̃d, which is hardly affected by dissipation (cf. the discussion above).

If we change the discrete state energy to εd = −0.5 eV (Model B), the transmission

functions, depicted in Fig. 5, remain virtually unchanged except for a shift in energy by 1 eV.

In contrast, the current-voltage characteristic for Model B, shown in Fig. 6, is qualitatively

different from that of Model A (cf. Fig. 4). The reason is that the order of the peaks as

counted from the Fermi energy is reversed and therefore the low-voltage region of the current

is influenced by tunneling trough excited vibrational states of H̃d which are more strongly

affected by the presence of the bath. The current with and without vibrational relaxation

thus differs by more then 50 % for voltages in the range 0.5− 1 V.
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The differences between the various levels of the theoretical treatment become more

significant if we consider a model with larger coupling between the electronic and vibrational

degrees of freedom. Such a situation is described by model C, where the vibrational frequency

is chosen as ωS = 0.4 eV and the vibronic coupling strength as λ = 0.7 eV. The location of the

discrete state is the same as in model A, εd = 0.5 eV. The transmission probability for model

C is shown in Fig. 7. It is seen that the stronger vibronic coupling results in a pronounced

vibrational progression in the transmission probability. In contrast to the cases considered

above, the wide-band approximation essentially fails to describe the transmission probability.

It predicts an amplitude which is too small by about a factor of two. Furthermore, the

position of the peaks is not correctly described in the wide-band approximation due to

the neglect of the level-shift function ∆(E), and the individual peaks in the numerically

exact results are narrower than in the wide-band approximation. This effect of ’vibrational

narrowing’ is well-known from resonant electron-molecule scattering [77] and results from

the interference between overlapping resonances.

The effect of vibrational relaxation on the transmission probability, illustrated in Fig. 8,

also is much more pronounced in this model than in model A. Except for the lowest two

peaks, the vibrational resonances are smeared into a broad hump, when vibrational dissipa-

tion is included. This is due to the fact that the vibrational relaxation process becomes more

effective for higher excited vibrational states. Also shown in Fig. 8 is the expansion of the

total transmission probability in terms of the number of excitations in the final state of the

bath, Eq. (27). As a result of the importance of higher vibrational states and the relatively

small electronic coupling to the leads, the expansion is seen to converge much slower than

in the models considered above.

Let us next consider the current-voltage characteristic for model C, depicted in Fig. 9.

It is seen that the coupling to the vibrational motion has a rather strong effect on the

current through the bridge. In particular, the current-voltage characteristic exhibits step-

like structures corresponding to the different vibrational levels in the discrete electronic

state. As expected from the discussion of the transmission probability above, both the
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elastic treatment and the wide-band approximation fail severely in the description of the

current. Fig. 10 demonstrates that the coupling to the bath has a strong effect on the

current-voltage characteristic in model C. In particular, the step-like structure is washed-

out and the magnitude of the current decreases by more than a factor of two. Also shown in

Fig. 10 is the contribution of the different terms in the expansion (27) to the total current.

In contrast to the transmission probability, the expansion for the current converges relatively

fast for this model. The reason for this at first sight surprising finding is that, due to the

Pauli principle exclusion factors in the formula for the current, terms with a higher number

of excitations in the final state of the bath are suppressed at lower voltage.

B. Transmission through a bridge strongly coupled to the leads

All models considered so far were characterized by a relatively weak coupling of the

discrete electronic state to the leads, which results in narrow resonance structures. In this

section we shall consider the opposite limit of a localized state that is strongly coupled to

the leads. Such a situation is realized in model D, where the coupling strength between the

discrete electronic state and the leads is chosen as v = 1 eV. The position of the discrete

state is in the upper part of the conduction band, εd = 1.6 eV. All other parameters are the

same as in Model C. We mention that if the coupling to the bath is not considered, model D

is essentially equivalent to a model studied by Gelfand et al. [55] in the context of inelastic

tunneling in heterostructures.

The results for the transmission probability are depicted in Fig. 11. The strong coupling

to the leads results in a rather broad transmission probability, which is qualitatively well

described taking into account only elastic processes. Vibrationally inelastic contributions to

the transmission probability manifest themselves in various cusp structures. Thereby, each

cusp indicates the opening of a new vibrational channel. It is well-known from the theory

of electron-molecule scattering that the wide-band approximation is not at all applicable

in this case. The effect of the coupling to the bath, which is well described including the
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two lowest term in the expansion (27), is very small. This is a consequence of the strong

electronic coupling which results in a very short residence time of the electron on the bridge.

Fig. 12 displays the current-voltage characteristic for model D. As to be expected from the

transmission probabilities, the differences among the various levels of theory are small with

the exception of higher bias voltages. For higher voltages, the elastic current vanishes due to

the empty overlap of the left and right conduction bands. Inelastic transmission processes,

however, which are accompanied by an energy loss of the electron, are still allowed.

Although there are no structures in the transmission probability in Fig. 11 which are

obviously related to the position of the discrete electronic state, the location of this state

does play an important role. This is demonstrated in Fig. 13, which shows the transmission

probability for Model E, which differs from Model D only in a lower energy of the discrete

electronic state, εd = −0.7 eV. This different location of the discrete state results in pro-

nounced peaks and minima in the transmission function, which are somewhat smoothed,

but not destroyed, by the coupling to the bath. To facilitate the interpretation of these

structures, Fig. 14 shows the potential-energy curve of the discrete state (corresponding to

H̃d) together with the energies of the vibrational states. In addition, the potential energy

of H̃0 is shown, shifted by ±2 eV, respectively, to indicate the energy which electrons com-

ing from the conduction band may carry into the bridging molecule. Though the localized

state is strongly coupled to the continuum, due to the shift of the two potential curves, the

ground vibrational state in H̃d has only a small overlap with the respective ground state

in H̃0. Consequently the coupling between the two states is effectively small and sharp

resonances may be observed. If the discrete state is localized higher in energy (as in model

D), the potential energy curve of H̃d is shifted up. Then, the ground state of H̃d still has

a small overlap with the ground state of H̃0 but the decay into higher vibrational states

becomes energetically possible. The sharp resonances thus ”dissolve” in the continuum. As

is demonstrated in Fig. 15, the sharp structures close to the bottom of the conduction band

have no significant effect on the current, and the overall appearance of the current-voltage

characteristic is similar as in model D.
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IV. CONCLUSIONS

In this paper we have studied vibrationally inelastic effects on electron transport through

a molecular bridge that is connected to two metal leads. The study was based on a generic

model for vibrational excitation in resonant electron transmission processes through a molec-

ular junction. Employing projection-operator methods well-known from resonant electron-

molecule scattering, we have outlined how the transmission probability can be evaluated

numerically exactly within this model, without invoking the wide-band approximation or

perturbation theory with respect to the coupling between the bridging molecule and the

leads. Furthermore, the influence of dissipative vibrational processes was investigated by

considering the coupling of a vibrational reaction mode to a dissipative bath.

The results of the model study can be summarized as follows: In the case of tunneling

through a molecular bridge which is weakly coupled to the leads, the transfer of an electron

may result in strong vibrational excitation, which manifests itself in pronounced vibrational

resonance structures in the transmission probability and in a step-like appearance of the

current-voltage characteristic. Since in this case the residence time of the electron on the

molecular bridge is relatively long, dissipative processes such as vibrational relaxation can

have a significant effect on the dynamics. In particular, they result in a broadening of the

resonance peaks in the transmittance and of the step-like structures in the current-voltage

characteristic. Furthermore, vibrational relaxation may result in this case in a significant

reduction of the overall magnitude of the current. Due to the pronounced effects of the

vibrational degrees of freedom, a theoretical treatment which only includes elastic processes

is not appropriate in this parameter regime. Our studies also show that the wide-band

approximation can only be applied if the electronic resonance state is situated well within

the conduction band and the electron-vibrational coupling is weak.

In the opposite case of a molecular bridge that is strongly coupled to the leads, the

transmission probability is typically characterized by a broad distribution, which in turn

results in a rather structureless current-voltage characteristic. Nevertheless, the vibrational
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motion may manifest itself in cusp structures in the transmittance. Furthermore, sharp

resonance structures may occur in the transmission probability, if the energy of the discrete

electronic state is low enough and the electronic-vibrational coupling sufficiently strong,

such that the vibrational ground state of H̃d has some overlap with lower-lying vibrational

states of H̃0. Except for the latter case, the effect of vibrational relaxation is very small in

this parameter regime. The comparison of the results obtained at different levels of theory

shows that methods which only include elastic processes can give a rather good qualitative

description of the electron transport in this case, although they miss the detailed cusp and

resonance structures. The wide-band approximation, on the other hand, is not valid in

this parameter regime; due to the strong molecule-lead coupling, threshold effects become

important which are neglected in the wide-band approximation.

To study the basic mechanisms of vibrationally inelastic electron transport, we have

focused in this work on relatively simple models with a single harmonic reaction coordinate

and a single electronic resonance state. It should be noted, however, that the methods

employed in this work are not limited to these models. The extension of the theory to an

anharmonic reaction coordinate, several reaction coordinates, and several resonance states is

relatively straightforward. Also, it should be emphasized that the potential-energy surfaces

of such models can in principle be determined ab intio by electronic structure calculations.

In this way, for example, the possibility of dissociation of the molecular bridge induced by

a strong current can be studied.

Finally, it is noted that in the present work the current through the molecular junction

was obtained with the generalized Landauer formula, Eq. (20). Although this formula gives

the correct description in the limit of weak coupling between molecule and leads as well as in

the situation when only single-electron processes are important, it needs to be extended for

applications where these assumptions are not fulfilled. A theoretical treatment of inelastic

processes without these limitations is possible within the framework of non-equilibrium

Green’s function theory [74]. The combination of this formalism with the methods employed

in this paper is a challenging subject for future research.
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TABLES

Model εd v ωS λ

A 0.5 0.2 0.5 0.3

B -0.5 0.2 0.5 0.3

C 0.5 0.2 0.4 0.7

D 1.6 1 0.4 0.7

E -0.7 1 0.4 0.7

TABLE I. Parameters for the different models considered. We have set β = 1 eV in all cases,

and η = 0.1, ωC = ωS if the coupling to the dissipative bath is taken into account. Furthermore,

the center of the conduction band is equal to Fermi energy µL/R = ±1
2V = εF for the left and right

lead respectively

30



FIGURES

±°
²¯

±°
²¯

±°
²¯

¹¸

º·
±°
²¯

±°
²¯

±°
²¯

µL µL µL µR µR µRεd

β β β βv v
-3 -2 -1 |φd〉 1 2 3

Left lead Bridge Right lead

FIG. 1. Schematic representation of the tight-binding model used to parameterize the Hamil-

tonian, Eq. (1). The circles depict the atomic sites for the leads and the molecular site for the

bridge (with energy written below) and the lines indicate the nonzero hopping amplitudes (written

above).
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FIG. 2. Transmission probabilities for Model A at zero bias voltage. The results shown have

been obtained at different levels of theory: purely elastic transmittance (dotted line), numerically

exact inelastic transmittance (thick dashed line), inelastic transmittance in the wide-band approx-

imation (thin dashed line). The full line depicts the inelastic transmission probability including

vibrational relaxation.
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FIG. 3. Transmission probability for Model A as in Fig. 2. The different levels of approximation
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without coupling to the bath (thick dashed line). The result including up to one quantum in the

final state of the bath (t(0) + t(1)) is indistinguishable from the exact result (full t).
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FIG. 5. Transmission probabilities for Model B at zero bias voltage. Shown are results obtained

at different levels of theory as explained in the caption of Fig. 2.
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FIG. 6. Current-voltage characteristic for Model B. Shown are results obtained at different

levels of theory.
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FIG. 7. Transmission probabilities for Model C at zero bias voltage. Shown are results obtained

at different levels of theory.
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FIG. 8. Transmission probabilities for Model C at zero bias voltage. Shown are the numeri-

cally exact results for the inelastic transmittance with (thick dashed line) and without (full line)

vibrational relaxation, as well as the convergence of the expansion with respect to the number of

quanta in the final state of the bath (thin lines).
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FIG. 9. Current-voltage characteristic for Model C. Shown are results obtained at different

levels of theory as explained in the legend.

0
1

2
3

4
5

0 0.5 1 1.5 2

C
ur

re
nt

 (
10

-3
 2

e/
h)

Voltage (V)

Model C

No Bath
Bath 0

Bath 0+1
Bath 0+1+2

FIG. 10. Current-voltage characteristic for Model C. Shown are results that illustrate the con-

vergence of the expansion with respect to the number of quanta in the final state of the bath, as

well as the result without vibrational relaxation (thick dashed line)

35



0
0.

2
0.

4
0.

6
0.

8
1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

T
ra

ns
m

is
si

on
 p

ro
ba

bi
lit

y

Electron energy (eV)

Model D

elastic
inelastic

inelast. in WB-approx.
inelastic with dissipation

FIG. 11. Transmission probabilities for the case of a bridge strongly coupled to the leads (Model

D) at zero bias voltage.
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FIG. 12. Current-voltage characteristic for Model D.
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FIG. 13. Transmission probabilities for the case of a bridge strongly coupled to the leads (Model

E) at zero bias voltage.
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FIG. 14. Potential-energy curves for the interpretation of the vibrational structures in Model

E (as explained in the text).
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FIG. 15. Current-voltage characteristic for Model E
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